
J Math Imaging Vis (2009) 34: 17–31
DOI 10.1007/s10851-008-0120-3

Sparse Modeling of Textures

Gabriel Peyré

Published online: 6 November 2008
© Springer Science+Business Media, LLC 2008

Abstract This paper presents a generative model for tex-
tures that uses a local sparse description of the image con-
tent. This model enforces the sparsity of the expansion of lo-
cal texture patches on adapted atomic elements. The analysis
of a given texture within this framework performs the sparse
coding of all the patches of the texture into the dictionary
of atoms. Conversely, the synthesis of a new texture is per-
formed by solving an optimization problem that seeks for
a texture whose patches are sparse in the dictionary. This
paper explores several strategies to choose this dictionary.
A set of hand crafted dictionaries composed of edges, os-
cillations, lines or crossings elements allows to synthesize
synthetic images with geometric features. Another option is
to define the dictionary as the set of all the patches of an in-
put exemplar. This leads to computer graphics methods for
synthesis and shares some similarities with non-local means
filtering. The last method we explore learns the dictionary
by an optimization process that maximizes the sparsity of a
set of exemplar patches. Applications of all these methods
to texture synthesis, inpainting and classification shows the
efficiency of the proposed texture model.

Keywords Image processing · Texture synthesis · Sparse
representation · Learning dictionaries · Inpainting

1 Introduction

The analysis and synthesis of textures is a central topic in
computer vision and graphics. Various methods have been

G. Peyré (�)
CNRS and Ceremade, Université Paris-Dauphine, Place
du Maréchal De Lattre De Tassigny, 75775 Paris Cedex 16,
France
e-mail: gabriel.peyre@ceremade.dauphine.fr

proposed to model textures and to sample new textures from
the corresponding set of constraints. This paper proposes a
framework for texture modeling based on a linear generative
model for the set of patches extracted from the texture. Such
a model is constrained by imposing sparsity in the decom-
position of patches. The overlap of these patches turns the
synthesis of a new texture into an optimization that is solved
iteratively. Depending on the precise way to compute the
sparse expansion of patches, one retrieves some previously
proposed models that now fit into a common framework.

1.1 Sparse Models for Images and Textures

Spatial Domain Modeling The works of Efros and Leung
[19] and Wei and Levoy [54] pioneered a whole area of
greedy approaches to texture synthesis. These methods copy
pixels one by one, enforcing locally the consistency of the
synthesized image with the exemplar. Later enhancements
on this idea led to patch-wise copying, see for example the
work of Efros and Freeman [20], Kwatra et al. [28] and
Ashikhmin [3]. Recent approaches such as the methods of
Lefebvre and Hoppe [30] and Kwatra et al. [27] are fast and
use a multiscale strategy.

Section 3 presents a non-local computation of the sparse
expansion of patches. These non-local weights generalize
the idea of pixel recopy to perform average of pixels be-
longing to similar patches. The resulting iterative synthesis
algorithm is similar to the texture optimization process of
Kwatra et al. [27]. Section 3.3 shows how these ideas relate
to non-local means filtering as proposed by Buades et al.
[10]. Brox and Cremers [9] have introduced an iterated non-
local means algorithm that is used to perform denoising and
differs from the non-local synthesis described in Sect. 3.3.

mailto:gabriel.peyre@ceremade.dauphine.fr

18 J Math Imaging Vis (2009) 34: 17–31

Transformed Domain Modeling Julesz [25] stated simple
axioms about the probabilistic characterization of textures.
A texture is described as a realization of a random process
characterized by the marginals of responses to a set of linear
filters. Zhu, Wu and Mumford [58] setup a Gibbs energy to
learn both the filters and the marginals. They use a Gibbs
sampler to draw textures from this model.

A fast synthesis can be obtained by fixing the analyz-
ing filters to be steerable wavelets as done by Heeger and
Bergen [23] and by wavelet noise [14]. The resulting tex-
tures are similar to those obtained by Perlin [41]. They ex-
hibit isotropic cloud-like structures and fail to reproduce
long range anisotropic features. This is because wavelets de-
compositions represent sparsely point wise singularities but
do not compress enough long edge features. Higher order
statistics such as multiscale correlations [17] and local cor-
relations [44] are used to synthesize high quality textures.

Dictionary Learning Wavelets and more recent tools from
harmonic analysis [36] have proven to be efficient for im-
age compression and denoising. It is however difficult to de-
sign efficient dictionaries for complex textures, as explained
in the review paper of Simoncelli and Olshausen [46] on
wavelet-based models for textures.

Olshausen and Field [39] proposed to learn a dictionary
adapted to the processing of patches extracted from natural
images. They have applied this learning to patches pi ex-
tracted from natural images. The major conclusion of this
line of research is that learning over a large set of disparate
natural images leads to localized oriented edge filters. Other
approaches to sparse coding have been applied with suc-
cess using independent components analysis [6] and differ-
ent sparsity priors on the coefficients [2, 21, 26, 32].

Specific properties of images are captured using con-
strained non-linear models, such as a decomposition using
positive atoms and positive coefficients, see [29]. This non-
negative generative process is used for texture modeling,
synthesis and inpainting by Peyré [42]. Independent com-
ponent analysis and sparse dictionaries have been applied in
texture modeling mainly for features extraction in classifi-
cation [47, 56]. An ICA decomposition is used as a post-
processing step by Manduchi and Portilla [37] to enhance
the synthesis results of Heeger and Bergen multiscale ap-
proach [23].

Section 4 presents a texture model based on a sparse ex-
pansion of patches in a learned dictionary. In contrast to Zhu
et al. [57] that select the dictionary from a library of fixed
atoms, a non-parametric approach is used and the atoms
are optimized to enhance the synthesis result. The iterative
synthesis process is similar to the iterative projection on
constraints used by Portilla and Simoncelli [44]. Dictionary
learning has been used by Mairal et al. [34] to perform color
image denoising and inpainting. Our sparse texture model

allows to use this dictionary learning scheme for texture syn-
thesis.

Manifold Models for Textures The set of patches extracted
from a texture can have a complex geometric structure that
reflects the interactions between the patterns of the image.
A simple model for such a set is a low dimensional manifold
embedded in a high dimensional space. The dimension of
this manifold measures the number of intrinsic parameters
that govern the patches formation and layout in the image.
Peyré [43] studies this manifold structure for simple image
models such as locally parallel textures and periodic tillings
of patterns. Recent approaches to image synthesis in com-
puter graphics use manifold modeling of textures. Matusik
et al. define a manifold from a set of textures [38]. Lefebvre
and Hoppe introduce a mapping of an image into a higher
dimensional appearance space [31]. This embedding allows
a synthesis with high fidelity and spatial variations.

This paper proposes a sparse model for texture patches.
The sparsity hypothesis imposes that patches of textures be-
long to an union of low dimensional vector spaces. This
model can be sampled to produce texture synthesis compa-
rable to state of the art methods in computer graphics.

1.2 Texture Processing

Texture synthesis is achieved by sampling at random a tex-
ture model. More elaborated texture processings can be de-
rived to perform texture restoration, mixing and segmenta-
tion.

Texture Inpainting The inpainting problem consists in fill-
ing a set of missing pixels of a damaged image. Non-
textured inpainting is solved using evolution equations de-
rived from fluid dynamics by Bertalmio et al. [7] and
Ballester et al. [4]. Anisotropic diffusion along a tensor field
is used by Tschumperlé and Deriche [51].

Texture inpainting is closely related to texture synthe-
sis with the additional constraint that the synthesis should
be coherent with the available set of pixels. Starck et al.
[48] and Fadili et al. [22] inpaint both edges and oscilla-
tory textures using sparsity in a set of fixed bases such as
curvelets and local DCT. Criminisi et al. [15] inpaint regions
with complex textures using pixel recopy and patch compar-
isons. Section 3.4 describes an iterative scheme that brings
together both sparsity and patch-based methods using our
sparse texture model.

Texture Mixing The problem of texture mixing consists in
synthesizing a texture that blends seamlessly the geometric
structures of two input exemplars. Bar-Joseph et al. [5] and
Portilla and Simoncelli [44] have proposed architectures for
texture mixing that use a multiscale wavelet decomposition.
Section 4.3 extends these approaches by using a dictionary
learned from the two input textures.

J Math Imaging Vis (2009) 34: 17–31 19

Texture Classification Texture segmentation has been stud-
ied extensively in computer vision. The unsupervised seg-
mentation problem is usually solved by computing local tex-
ture descriptors for each pixel and then applying a standard
clustering algorithm. For instance, early works on texture
analysis use outputs from a set of Gabor filters [8, 12, 24,
33] and local moments of pixel values have been used by
Tuceryan [53]. In contrast, supervised texture segmentation
uses a set of exemplars to build some statistical model for
each texture class. Active contours methods have been ex-
tended to textures using statistical multiscale descriptors by
Paragios and Deriche [40]. Section 4.4 uses our sparse tex-
ture model to perform texture classification, and is similar
to the approach proposed by Skretting et al. [47].

2 Sparse Decompositions of Texture Patches

This section introduces a new model for textures which is
based on a sparse expansion of image patches in a local
dictionary. This model is sampled for texture synthesis pur-
pose with a iterative algorithm that optimizes a sparsity-
promoting energy.

2.1 Patch Domain Modeling

This article focusses on the local geometry of textures
through the extraction of local patches. An image f ∈ R

N

of N pixels is processed by extracting patches px(f) of size
τ × τ around each pixel position x ∈ {0, . . . ,

√
N − 1}2

∀t ∈ {−τ/2 + 1, . . . , τ/2}2, px(f)(t) = f (x + t). (1)

A patch px(f) is handled as a vector of size n = τ 2. In the
following we also consider color images f of N pixels that
can be handled as vectors of dimension 3N . This article uses
periodic boundary conditions to ease notations, but symmet-
ric conditions with reflecting boundaries can be used with
slight modifications.

In the following, � : f �→ {px(f)}x is the linear opera-
tor that extracts all the patches from an image. This patch
extraction is a mapping � : R

N → R
n×N where n is the

dimension of each patch and N is the number of patches
in an image of N pixels. The matrix whose columns are
all the patches pi = pxi

(f) is denoted as �(f) = P =
(p0, . . . , pN−1) ∈ R

n×N where xi indexes the N pixels of f .
An image f̃ is recovered from a given set of patches P =

{pi}i using the pseudo-inverse �+ defined as

�+(P) = f̃ where f̃ = argmin
g∈Rn

N−1∑

i=0

‖pxi
(g) − pi‖2. (2)

This pseudo-inverse reconstruction corresponds to an aver-
aging of overlapping patches

∀x ∈ {0, . . . ,
√

N − 1}2, f̃ (x) = 1

n

∑

|xi−x|≤τ/2

pi(x − xi).

(3)

2.2 Sparse Expansion of Patches

Linear Forward Generative Model A linear generative
model assumes that a patch p ∈ R

n of n = τ × τ pixels is
approximated as a linear superposition

p ≈
m−1∑

k=0

w(k)dk = D w. (4)

Each w(k) ∈ R is a coefficient associated to the atom dk ∈
R

n, and these atoms are stored in a dictionary D = {dk}k
which is a matrix D ∈ R

n×m.
The collection of patches P = {pi}i = �(f) extracted

from an image f ∈ R
N is decomposed with this linear gen-

erative model as

�(f) = P = DW where

W = {wi}i ∈ R
m×N and pi = Dwi. (5)

This dictionary D is the main feature of our texture model
and its atoms dk should be carefully chosen to represent ef-
ficiently geometric patterns of the textures to analyze and
synthesize. Sections 2.4, 3 and 4 explore different ways to
handle this dictionary learning problem.

Sparse Decomposition Equation (4) describes a forward
process that generates a patch given a set of coefficients. The
problem of analyzing a given image f using the local dictio-
nary D is more complex and involves a modeling stage that
enforces constraints on the set of coefficients. In particular,
since both the mapping � and the dictionary D are highly
redundant, there is many ways to perform this analysis.

The patches are modeled by requiring that they are well
approximated by a sparse expansion using the dictionary D.
This means that for a given patch p ≈ Dw, only a few atoms
dk are active to describe p. This requires that the �0 pseudo-
norm of w is small, where ‖w‖�0 counts the number of non-
zero coefficients of w

‖w‖�0 = #{k\w(k)
= 0}. (6)

Such a sparse set of coefficients w approximating a given
patch p is obtained by solving

w = argmin
c∈Rm

‖p − Dc‖�2 subject to ‖c‖�0 ≤ s, (7)

20 J Math Imaging Vis (2009) 34: 17–31

Table 1 Matching pursuit algorithm for solving approximately (7)

1. Initialization: w ← 0, set i = 0.
2. Best correlation: compute the best matching atom

k� = argmax
k

1

‖dk‖ 〈r, dk〉.

3. Update: modify the residual and the coefficients:

r ← r − 1

‖dk�‖2
〈r, dk� 〉dk� and w(k�) ← w(k�)+ 1

‖dk�‖2
〈r, dk� 〉.

4. Stop: if i < s, go back to 2.

where s is the sparsity constant of our model.
The optimization problem (7) is combinatorial and thus

intractable. In practice, several approximation algorithms al-
lows one to compute sparse coefficients w:

– Convexification of the objective: relaxing the problem (7)
replaces the �0 pseudo-norm by the �1 norm ‖w‖�1 =∑

k |w(k)|. This leads to the following convex program

w = argmin
c∈Rm

‖p − Dc‖2
�2 + λ‖c‖�1, (8)

where λ is a parameter that controls the sparsity of w,
and should be tuned so that ‖w‖�0 ≤ s. This convex opti-
mization (8) is the basis pursuit denoising problem intro-
duced by Chen et al. [11]. It can be solved using interior
point algorithms [11] or iterative thresholdings, see for in-
stance [16]. Under restrictive conditions on both D and p,
this relaxed optimization actually solves (7), see [50] for
instance.

– Greedy approximation: approximate algorithms such as
matching pursuit or orthogonal matching pursuit compute
in a greedy manner the coefficients of w, see [36]. Such
greedy approximations are usually less accurate than the
�1 relaxation (8) but offers a faster way to compute w.
Under restrictive conditions, these greedy methods can
be proved do solve the original problem (7), see for in-
stance [49].

The numerical experiments use the matching pursuit algo-
rithm, which is faster than both orthogonal matching pursuit
and basis pursuit, and works well for low values of the spar-
sity parameter s. Table 1 gives the details of this algorithm.

2.3 Sparse Texture Synthesis

Given a fixed dictionary D for patches of size w × w, the
texture synthesis processes by searching for an image whose
patches are sparse in D. This amounts to solve the following
optimization problem

min
f ∈RN

ED(f) subject to f ∈ C (9)

where the energy is defined as

ED(f) = min
W∈RN×m

‖�(f) − DW‖�2

(10)
subject to ∀i,‖wi‖�0 ≤ s.

Each wi corresponds to the coefficients of the patch pxi
(f)

which has to be sparse in D. The additional constraint f ∈
C forces the synthesized f to move away from the trivial
solution f = 0 and is detailed in the next paragraph.

Although the energy ‖�f − DW‖�2 in (10) is convex as
a function of f and W , the additional �0 and C constraints
make this minimization non-convex. In our framework, a
valid synthesized texture is defined as a stationary point of
this energy. The energy ED has typically many local station-
ary points. To sample quite uniformly this set of local min-
ima, ED is optimized using a descent algorithm that starts
from a random initial texture.

Histogram Constraints Arbitrary meaningful constraints
f ∈ C can be imposed in the synthesis optimization (9). This
article considers a constraint on the histogram of the set of
pixels

C = {f ∈ R
N\H(f) = H(f̃)} (11)

where f̃ is a given input exemplar, and where H(f) is the
discrete histogram of the values of f . The goal of this con-
straint is to enforce f to have the same gray-level repartition
as f .

Histogram-matching computes the orthogonal projection
f0 = P C (f) of f on C . If both f and f̃ have N pixels, this
projection is computed by first sorting the values of f and f̃ ,
which corresponds to the computation of indexes α(i) and
α̃(i) such that

∀i = 1, . . . ,N − 1,

{
f (α(i − 1)) ≤ f (α(i)),

f̃ (α̃(i − 1)) ≤ f̃ (α̃(i)),
(12)

and then the copy of the sorted values from f̃ to f0

∀i, f0(α(i)) = f̃ (α̃(i)). (13)

In the case where f̃ and f do not have the same number of
samples, this formula requires interpolation.

Texture Synthesis Algorithm Energy (9) is minimized with
an iterative texture synthesis algorithm. It optimizes the en-
ergy sequentially on the image f and on the patch coeffi-
cients W . Table 2 details this texture synthesis algorithm.
Such a block-coordinates relaxation has been proved to con-
verge by Tseng [52] to a stationary point of ED if one re-
places the �0 pseudo-norm by the �1 norm. The texture ob-
tained at convergence is a valid sample from the sparse tex-
ture model.

J Math Imaging Vis (2009) 34: 17–31 21

Table 2 Texture synthesis algorithm for minimizing (9)

1. Initialization: set f ← random.
2. Computing the patches: P = �f .
3. Sparse coding: perform the matching pursuit, Table 1, to compute

∀i = 0, . . . ,N − 1, wi = argmin
w∈Rm

‖pi − Dw‖�2

subject to ‖w‖�0 ≤ s.

4. Texture reconstruction: reconstruct the patches pi = Dwi and f ←
�+P , where the pseudo-inverse is defined in (3).

5. Imposing histograms: Perform equalization f ← PC (f).
6. Stop: while not converged, go back to 2.

The following sections apply this synthesis algorithm in
various situations where the dictionary D is either created
in an had-oc manner (Sect. 2.4) or learned from some input
data (Sects. 3 and 4).

2.4 Examples with Synthetic Dictionaries

Before detailing in the next sections how to learn dictionar-
ies from some given texture exemplar, this section explores
the synthesis algorithm with hand-crafted synthetic dictio-
naries. The dictionaries D we consider are parameterized
by a small number of parameters as follow

D = {di}mi=0 where

∀t ∈ {−τ/2 + 1, . . . , τ/2}2, di(t) = ϕλi
(2t/τ), (14)

where each λi is drawn uniformly at random in some set
of parameter λi ∈ 	. In the remaining of this section, we
consider various kind functions ϕλ : [−1,1]2 → R, for λ ∈
	. Similar ensembles of low dimensional set of patches are
described in details by Peyré [43].

Dictionary of Edges A simple model of geometric images
is the cartoon model introduced by Donoho [18]. A cartoon
function is regular outside a set of edge curves which are
themselves regular. A typical patch extracted from such a
geometric cartoon image is well approximated by a binary
straight edge. A dictionary composed of binary edges is gen-
erated from the following set of functions

ϕλ(t) = P(Rθ (x − (δ,0))), where

λ = (θ, δ) ∈ [0,2π) × R
+, (15)

where Rθ is the planar rotation of angle θ and the step is
P = h ∗ P̃ where P̃ (t) = 0 if t1 < 0 and P̃ (t) = 1 other-
wise. In this edge model, the local geometry of the image
is described by θ which parameterizes the orientation of the
closest edge and δ which is the distance to that edge. Fig-
ure 1 shows an example of these edge patches.

Figure 2 shows the iterations of the synthesis algorithm
of Table 2 for this dictionary of edges. The resulting synthe-
sized image is a cartoon image with smooth edges.

Fig. 1 Parameterization of the dictionary of edge patches and some
examples

Dictionary of Local Oscillations The following set of
functions

ϕλ(t) = sin(Rθ (t − (δ,0))/ν), and

λ = (θ, δ) ∈ [0,2π) × R
+ (16)

is used to synthesized oscillating textures. The local fre-
quency ν controls globally the width of the oscillations
whereas θ is the local orientation of these oscillations.

Dictionaries of Lines Similarly to the edge dictionary (15),
a dictionary of lines is obtained by rotating and translating a
straight line

ϕλ(t) = �θ,δ,σ (t) = exp

(
1

2σ 2
‖Rθ(t − (δ,0))‖2

)
, (17)

where λ = (θ, δ) ∈ [0,2π) × R
+ and where σ control the

width of the line pattern.

Dictionaries of Crossings A dictionary of crossings is ob-
tained by considering atoms which contain two overlapping
lines

ϕλ(t) = max(�θ1,δ1,σ (t), �θ2,δ2,σ (t)) where

λ = (θ1, δ1, θ2, δ2). (18)

Figure 3 shows examples of synthesis for the four dictionar-
ies generated by the set of functions (15), (16), (17) and (18).

3 Strict Sparsity and Non-local Expansions

Most approaches for texture synthesis in computer graphics
[3, 19, 20, 27, 28, 30, 54] perform a recopy of patches from
an original input texture f to create a new texture f̃ with
similar structures. These processings can be re-casted into
the sparse texture model. This section considers our texture
model in a restricted case where one seeks a strict sparsity
with s = 1 in a highly redundant dictionary.

22 J Math Imaging Vis (2009) 34: 17–31

Fig. 2 Iterations of the
synthesis algorithm with the
dictionary of edges (sparsity
s = 2)

Fig. 3 Examples of synthesis
for two sparsity levels s for the
four kinds of dictionaries
considered

3.1 Strict Sparsity Model

Considering the special case s = 1 means that each patch
of the synthesized image f should be close to a patch in
the original exemplar texture f̃ . Within this assumption, it
makes sense to define the dictionary D as the set of all the
patches extracted from f̃

D = {pxi
(f̃)}N−1

i=0 = �(f̃). (19)

This dictionary is highly redundant and the synthesis algo-
rithm looks for a matching between patches of f and f̃

∀i, pxi
(f) = λi pγ (xi)(f̃), where λi ∈ R, (20)

where γ : {0, . . . ,
√

N − 1}2 → {0, . . . ,
√

N − 1}2 maps the
pixel locations of the synthesized f to the pixel locations
of f̃ .

A further simplifying assumption done frequently in
computer graphics assumes that λi = 1, which leads to the
following definition of the mapping γ

∀x, γ (x) = argmin
y

‖px(f) − py(f̃)‖. (21)

In this setting, the algorithm described in Table 2 iterates be-
tween the best-fit computation (21) (step 3) and the averag-
ing of the patches (step 4). This is similar to the optimization
procedure of Kwatra et al. [27].

The iterative algorithm described in Table 2 is used to
draw a random texture that minimizes ED . Figure 4 shows
the iterations of texture synthesis using the highly redundant
dictionary (19). For these examples, the size of the patches
is set to τ = 6 pixels. Figure 5 shows other examples of syn-
thesis and compares the results with texture quilting [20].
Methods based on pixels and regions copy like [20] tend to
synthesize images very close to the original. Large parts of
the input are often copied verbatim in the output, with some-
time periodic repetitions. In contrast, and similarly to [27],
our method treats all the pixels equally and often leads to a
better layout of the structures, with less global fidelity to the
original.

3.2 Multiscale Synthesis

The choice of the size parameter τ is non-trivial and requires
some prior knowledge of the typical width of the structures
one would like to maintain during the synthesis process. A

J Math Imaging Vis (2009) 34: 17–31 23

Fig. 4 Iterations of
nearest-neighbors matching for
texture synthesis

Table 3 Multiscale synthesis algorithm

1. Initialization: Set j = J to be the coarser scale. Initialize the syn-
thesis with a random noise fJ of N/2J × N/2J pixels.

2. Compute the dictionary: Set τ = 2j τ0. Smooth the exemplar f̃j =
f̃ ∗hj where hj is a Gaussian kernel of width 2j pixels. The current
dictionary Dj is composed of the patches extracted from f̃j and
subsampled by a factor 2j . The elements of Dj have thus τ0 × τ0
pixels.

3. Synthesis: perform the synthesis by minimizing EDj
using algo-

rithm described in Table 2. The algorithm is initialized with the cur-
rent fj and this estimate is updated by the optimization

fj = argmin
g∈RN/2j

EDj
(g) subject to g ∈ C.

4. Up-sample: if j = 0, then stop the algorithm and return f = f0.
Otherwise, upsample the current synthesized texture fj to ob-
tain fj−1 using linear interpolation from N/2j × N/2j pixels to
2N/2j × 2N/2j pixels.

5. Stop: while j > 0, set j → j − 1 and go back to step 2.

multiscale synthesis strategy is used to cope with the fixed
scale τ . A fixed number of pixels τ0 is used but textures are
synthesized with an increasing resolution. This process cap-
tures first elongated structures and then fine scale geometric
details. An interpolation is used to switch between the var-
ious resolutions. At each scale, the synthesis algorithm ma-
nipulates only small patches of size τ0 × τ0. This leads to
the algorithm described in Table 3 that handles J scales.

Figure 5 shows examples of multiscale synthesis using
three scales τ ∈ {4,8,16}. It shows in particular a compar-
ison between the single scale algorithm and the multiscale
extension, which is able to better recover elongated struc-
tures. Another advantage of this approach is that it speeds
up the computation since the synthesis algorithm converges
faster than with a single patch size.

3.3 Connexions with Non-local Means Filtering

Instead of performing the exact recopy of one best fitting
patch pγ (xi)(f̃), as defined in (21), one can select several

patches and use them to do the reconstruction. This shares
some similarities to the non-local means algorithm intro-
duced by Buades et al. [10] that performs image denoising
using a spatially varying filter.

Using some input exemplar image f̃ , an image f is fil-
tered using

N
f̃
(f)(x) =

∑

y

ξ(x, y)f̃ (y) where

ξ(x, y) = 1

Zx

Gσ (px(f) − py(f̃)) (22)

where the weights depends on the distance between patches
in the image

Gσ (a) = exp

(
−‖a‖2

2σ 2

)
and

(23)
Zx =

∑

y

Gσ (px(f) − py(f̃)).

The original non-local means algorithm [10] corresponds to
the filtering of f itself and produces an estimation Nf (f).

This non-local filtering suggests to replace the sparse
coding (step 3 of Table 2) by an averaging based on the
weights w(x,y) of (22). Each patch pi = pxi

(f) is sparsely
approximated as

pi = Dwi where wi(j) = ξ(xi, xj). (24)

The width σ controls the sparsity of the expansion in a man-
ner similar to s in the sparse optimization (7). The compu-
tation of the expansion (24) can be interpreted as a crude
1-step matching pursuit that compute at once all the weights
to approximate pi . When the parameter σ tends to 0, the
non-local sparse coding is equivalent to the best match (21),
because for σ = 0+,

wi(j) =
{

1 if xj = γ (xi),

0 otherwise.
(25)

24 J Math Imaging Vis (2009) 34: 17–31

Fig. 5 Examples of synthesis
using [20] and with our method
with a single-scale τ = 6 and a
multiscale τ ∈ {4,8,16}
(algorithm of Table 3)

Figure 6, left and center, shows the comparison of the
texture synthesis with σ = 0 and σ > 0. Another option
to perform texture synthesis is to replace the reconstruc-
tion step 4 of Table 2 by the non-local mean weighted av-
erage (22). This alternate synthesis algorithm corresponds
to the iteration of the non-local means filtering f ← N

f̃
(f)

starting from a random noise. The resulting synthesis shown
on Fig. 6, right, is noisier than the synthesis with the sparse
texture model. This is because the denoising effect of the
non-local means reconstruction is only achieved by using a
larger value of σ > 0.

Brox and Cremers [9] propose an iterated version of non-
local means process to solve the related fixed point equation
f = Nf (f̃). This iterated process is relevant for denoising
problems since it enforces the denoised image to use its own
patches to do the averaging. This is however different from
our synthesis iterations.

3.4 Application to Texture Inpainting

The inpainting problem consists in filling a set � of missing
pixels of a given image f̃ . The region � ⊂ {0, . . . ,

√
N −1}2

might represent damaged pixels of an old photograph or
some object to erase to achieve a special effect. The sparse

Table 4 Image inpainting algorithm

1. Initialization: Set as initial inpainted image f the original f̃ with
values at random inside �.

2. Update the dictionary: The dictionary is computed from the patches
of f : D ← �(f).

3. Analysis: For each x ∈ �, compute the best fitting patch γ (x) us-
ing (21).

4. Synthesis: The value of each pixel is replaced using the pseudo-
inverse (3) restricted to un-known pixels in �:

∀x ∈ �, f (x) =
∑

|x−y|≤τ,x+γ (y)−y /∈�

pγ (y)(x − y).

5. Stop: While not converged, go back to step 2.

texture model is used to perform inpainting by modify-
ing the algorithm of Table 2. At each iteration, the recon-
struction only modifies the missing pixels in �, leaving the
known pixels unchanged. The resulting algorithm is detailed
in Table 4.

Figure 7 shows some steps of this inpainting process and
Fig. 8 shows additional results and a comparison with [15].
The approach of Criminisi et al. [15] explicitly favors the
recopy of salient structures by progressively filling-in the
missing pixels. In contrast, our method does not enforce any
priority and process all the pixels in parallel. It seems to give
similar or better results over homogeneous textured areas,

J Math Imaging Vis (2009) 34: 17–31 25

Fig. 6 Left: synthesis using
σ = 0 (perfect recopy, sparse
coding using (21)). Center:
synthesis using a larger value
for σ > 0 (averaged recopy,
sparse coding using (24)). Right:
synthesis using iterations of the
non-local means filter
f ← N

f̃
(f)

Fig. 7 Evolution of the
inpainting process

Fig. 8 Examples of inpainting
using [15] and using the
proposed method

but tends to give poor results if � intersects a broad range
of different structures.

4 Dictionary Learning for Synthesis

In the previous section, the dictionary D was obtained by se-
lecting all the patches px(f̃) from some given exemplar f̃ .
This approach is related to computer graphics methods and
does not leads to a compact model for textures, which could
be useful beyond the problem of strict recopy of texture. For
example, texture classification, texture mixing and modifi-
cation require an efficient texture model to reach good per-
formances. The underlying problem is the learning of this

sparse representation to achieve both good approximation
of the original texture and good generalization to capture
patterns slightly different from the input exemplar.

4.1 Learning the Dictionary

Image compression, denoising and even synthesis is most
often performed using a fixed dictionary D such as for in-
stance wavelets or Gabor atoms. Such processing can be en-
hanced by learning a dictionary D to sparsify a set P = {pi}i
of typical texture patches. This set of patches is extracted
from some input exemplar f̃ so that pi = pxi

(f̃), where
{xi}N−1

i=0 is the set of pixel locations. This set of input patches

26 J Math Imaging Vis (2009) 34: 17–31

Table 5 Dictionary learning for minimizing (29)

1. Initialization: set D as a random matrix with unit norm columns.
2. Sparse coding: for each exemplar pi , solve for the coefficients wi

by optimizing

wi ← argmin
w∈Rm

‖pi − Dw‖�2 subject to ‖w‖�0 ≤ s. (26)

This optimization can be solved approximately using the matching
pursuit algorithm, Table 1.

3. Dictionary update: the dictionary D is updated using either a MOD
update [21] or a K-SVD update [2].
MOD update: D is computed as a linear over-determined best fit

D ← PW+ where W+ = (WTW)−1WT (27)

K-SVD update: each atom dk is updated once at a time. Let
Ik = {i\wi(k)
= 0} the signals using atom dk . The atom dk and its
coefficients w·(k) = {wi(k)}i are updated according to

(dk,w·(k)) = argmin
g,a

∑

j∈Ik

‖p̃j − aj g‖�2 where

p̃j = pj −
∑

�
=k

w�(j)d�. (28)

This minization is equivalent to a rank-1 approximation of the ma-
trix containing the signals p̃j , which can be solved with an SVD.

4. Normalization: set for all k, dk ← dk/‖dk‖�2 .
5. Stop: while not converged, go back to 2.

is conveniently stored in a matrix P = �(f̃) ∈ R
n×N as de-

tailed in Sect. 2.1.
An optimal D is selected by requiring that the synthesis

algorithm works optimally when initialized with the exem-
plar f̃ . It means that D should minimize the synthesis en-
ergy ED(f̃) introduced in (9). This leads to a search for the
dictionary D that solves the following optimization problem

min
D∈Rn×m,W∈Rm×N

‖P − DW‖�2

(29)

subject to

{∀i, ‖wi‖�0 ≤ s,

∀k, ‖dk‖�2 = 1,

where P = �(f̃) = {pi}i is the set of patch exemplars. In
this optimization problem, each wi is a column of W that
store the coefficients of an exemplar patch pi and each col-
umn vector dk is a unit norm atom of D. The energy min-
imized in (29) is the same as the one in (9), but this time
the image f̃ is fixed and the optimization is performed on
(D,W).

The optimization problem (29) is both non-smooth and
non-convex in (D,W) and one can compute a stationary
point of this energy using either the MOD algorithm [21] or
K-SVD [2]. Table 5 details both algorithms. In practice, both
K-SVD and MOD iterations give similar results for synthe-
sis. The iterations of K-SVD are usually faster to converge
due to the sequential update of the atoms.

Figure 9 (right) shows an example of dictionary learned
with this iterative algorithm. When one applies the learning

stage to patches from a single homogenous texture, patterns
from the original texture emerge in the trained dictionary.

4.2 Sparse Texture Synthesis

Starting from some input texture f̃ , the algorithm of Table 5
is used to learn a dictionary optimized to approximate the
patches �(f̃). The algorithm of Table 2 is then used to per-
form the synthesis of a new texture f whose patches are
sparse in D. Figure 10 shows some iterations of the synthe-
sis algorithm using a fixed sparsity.

This texture synthesis algorithm depends on two parame-
ters

– The redundancy r = m/n of the dictionary. More redun-
dancy provides more geometric fidelity during the syn-
thesis since patches of the original texture f̃ is better ap-
proximated in D. In contrast, using a small m leads to
a compact texture model that compresses the geometric
patterns of the original texture with a few atoms. Such
a model allows good generalization performance for task
such as texture discrimination or classification when the
data to process is unknown but close to f .

– The sparsity s ≥ 1 of the patch expansion. Increasing the
sparsity s is a way to overcome the limitations inherent to
a compact dictionary (low redundancy m/n) by providing
more complex linear combination. In contrast, for very
redundant dictionaries (such as the non-local expansion
presented in Sect. 3) one can even impose that s = 1. In-
creasing the sparsity also allows to have blending of fea-
tures and linear variations in intensity that leads to slow
illumination gradients not present in the original texture.

Figure 11 shows the influence of both parameters.
Features of various sizes can be captured using the mul-

tiscale synthesis algorithm presented in Table 3. Note that
this synthesis algorithm implicitly considers a set Dj of
highly redundant dictionaries at various resolution. Other
approaches have been proposed to learn a multiscale dic-
tionary, see for instance [35, 45].

4.3 Application to Texture Mixing

Texture mixing consists in synthesizing a texture f that
blends seamlessly the geometric structures of two input ex-
emplars f1 and f2. A dictionary D is learned to sparsify the
patches of both f1 and f2. The set of patches is defined as
the concatenation of the two patch matrices P = (P1,P2)

where Pi = �(fi). Note that this is different from comput-
ing the union D̃ = (D1,D2) of two dictionaries trained in-
dependently on each texture, which leads to poor results be-
cause no atoms in D̃ is able to mix features of both textures.

Figure 12 uses D to perform a synthesis that mixes the
features of both f1 and f2. The set of constraints C is defined

J Math Imaging Vis (2009) 34: 17–31 27

Fig. 9 Left: an input texture f̃ ,
right: the dictionary D learned
from this texture

Fig. 10 Iteration of the
synthesis process for s = 2

Fig. 11 Influence of the
redundancy r = m/n and
sparsity s

28 J Math Imaging Vis (2009) 34: 17–31

Fig. 12 Examples of texture
mixing with sparsity s = 4

using the histogram from pixels of both f1 and f2. Using a
sparsity s > 1 helps to blend the features of the two textures
together.

4.4 Application to Sparse Texture Classification

Our sparse texture model can be used to segment a given
texture f into components corresponding to patterns simi-
lar to exemplars {f 1, . . . , f L}. A texture dictionary D� is
learned for each texture f � using the algorithm of Table 5
with patches �(f �). The texture f to analyze is modified
according to each dictionary D�. This corresponds to the
synthesis of a projected texture f� by applying the synthesis
algorithm of Table 2 with f as the initial texture (in step 1,
the random noise is replaced by f).

The goodness of fit of the texture model of class � around
a pixel x is measured by the projection error

Ã�(x) = |f (x) − f�(x)|2. (30)

Since the boundary separating the textured regions are as-
sumed to be smooth, the classification error is reduced by
considering a smoothed projection error

A� = Ã� ∗ Gσ0 (31)

where Gσ0 is a 2D Gaussian filter of width σ0. The para-
meter σ0 should be adapted to match the smoothed of the
boundary of the regions to reduce as much as possible the
classification error.

The classification �(x) ∈ {1, . . . ,L} of a pixel x is de-
fined as

�(x) = argmin
�∈{1,...,L}

A�(x). (32)

Table 6 Texture classification algorithm

1. Learning: the texture dictionary D� is learned for each class � =
1, . . . ,L.

2. Projection: compute f� by texture synthesis with dictionary D� ap-
plied to f .

3. Error: for each � compute A� as defined using (31).
4. Classification: compute the classifier �(x) using (32).

Table 6 summarize the main step of the segmentation algo-
rithm.

Figure 13 shows the result of classification on a set of
L = 5 exemplar textures. The input image f of 256 × 256
pixels is a patchwork of L textures extracted from large im-
ages. The exemplars f � are similar textures extracted from
the same set of images but at other locations.

4.5 Texture Signature Model

The dictionary learning procedure detailed in Sect. 4.1 al-
lows one to parameterize the texture model with a single dic-
tionary D ∈ R

n×m learned from an input exemplar f̃ . This
representation, while being efficient, is not particularly com-
pact since the original exemplar f̃ of N pixels is replaced by
a matrix of size n×m which becomes large when the redun-
dancy of the dictionary m/n increases.

This increase of dimensionality is reduced by taking into
account the spatial relationship between the patches px(f̃)

extracted from the input exemplar. This is achieved by as-
suming that each atom di in the dictionary is a patch di =
pxi

(F) extracted from a image signature dictionary F ∈ R
m

of
√

m × √
m pixels.

This image signature dictionary has been proposed by
Aharon and Elad [1]. A similar procedure has been intro-
duced in computer graphics [55], but it is restricted to a strict

J Math Imaging Vis (2009) 34: 17–31 29

Fig. 13 (a) Original texture f .
(b) Projected texture f1 of f .
Note how the upper left corner
is well preserved. (c) Projected
texture f2. (d) Projected texture
f3. (e) Ground trust
classification. (f) Classification
�(x) computed with σ0 = 3
pixels. (g) Classification
computed with σ0 = 6 pixels

Fig. 14 Examples of texture synthesis using an image signature dic-
tionary

sparsity s = 1. An early approach to solve a similar problem
of vector quantization is [13].

Using the patch extraction operator � defined in Sect. 2.1,
a dictionary D = �(F) ∈ R

n×m is optimized by minimiz-
ing (29)

min
F∈Rm,W∈Rm×N

1

2
‖P − �(F)W‖�2

(33)

subject to

{∀i, ‖wi‖�0 ≤ s,

∀k, ‖dk‖�2 = 1,

where P stores the set of exemplar patches. If the size m

of the signature F is smaller than N , the resulting texture
ensemble is parameterized with a reduced set of parame-
ters. The procedure introduced by Aharon and Elad [1] min-
imizes iteratively (33) using a block coordinate descent, see
Table 7.

Once a compact image signature F has been learned with
this algorithm, the dictionary D = �(F) is used to per-

Table 7 Image signature learning algorithm

1. Initialization: set F ← random.
2. Dictionary extraction: define D = �F .
3. Sparse coding: compute W by optimizing

wi ← argmin
w∈Rm

‖pi − Dw‖�2 subject to ‖w‖�0 ≤ s. (34)

which can be solved approximately with matching pursuit [36].
4. Dictionary update: update the dictionary D using either the MOD

update or the K-SVD update (see step 3 of Table 5).
5. Signature update: Compute F ← �+D = 1

n
�TD.

6. While not converged, go back to 2.

form texture synthesis with the iterative method exposed in
Sect. 2.3. Figure 14 shows examples of synthesis using im-
age signature dictionaries.

Conclusion

This paper describes a model to capture the geometric struc-
tures of homogeneous textures. This model is based on a
sparse expansion of the patches of the texture into a re-
dundant dictionary. Classical texture synthesis methods are
equivalent to a strict sparsity of s = 1 into the highly redun-
dant dictionary of all the patches from some input exemplar.
More refined models are learned by optimizing a dictionary
that sparsify a set of input patches. Such a compressed rep-
resentation can be tuned to achieve an increasing fidelity to
the exemplar and is useful to perform texture mixing and
texture classification.

References

1. Aharon, M., Elad, M.: Sparse and redundant modeling of image
content using an image-signature-dictionary. J. Imag. Sci. 1(3),
228–247 (2008)

2. Aharon, M., Elad, M., Bruckstein, A.M.: The k-svd: An algorithm
for designing of overcomplete dictionaries for sparse representa-
tion. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

30 J Math Imaging Vis (2009) 34: 17–31

3. Ashikhmin, M.: Synthesizing natural textures. In: SI3D’01: Pro-
ceedings of the 2001 Symposium on Interactive 3D Graphics, pp.
217–226. Assoc. Comput. Mach., New York (2001)

4. Ballester, C., Caselles, V., Verdera, J.: Disocclusion by joint inter-
polation of vector fields and gray levels. Multiscale Model. Simul.
2(1), 80–123 (2003)

5. Bar-Joseph, Z., El-Yaniv, R., Lischinski, D., Werman, M.: Tex-
ture mixing and texture movie synthesis using statistical learning.
IEEE Trans. Vis. Comput. Graph. 7(2), 120–135 (2001)

6. Bell, A.J., Sejnowski, T.J.: The independent components of nat-
ural scenes are edge filters. Vis. Res. 37, 3327–3338 (1997)

7. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image in-
painting. In: Proc. of Siggraph 2000, pp. 417–424 (2000)

8. Bovik, A.C.: Analysis of multichannel narrow-band filters for im-
age texture segmentation. IEEE Trans. Signal Process. 39(9), 2025
(1991)

9. Brox, T., Cremers, D.: Iterated nonlocal means for texture restora-
tion. In: Proc. International Conference on Scale Space and Varia-
tional Methods in Computer Vision, Ischia, Italy. LNCS. Springer,
Berlin (2007)

10. Buades, A., Coll, B., Morel, J.M.: A review of image denoising
algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–
530 (2005)

11. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposi-
tion by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)

12. Clausi, D.A., Jernigan, M.E.: Designing Gabor filters for optimal
texture separability. Pattern Recogn. 33(11), 1835–1849 (2000)

13. Cohen, L.D.: A new approach of vector quantization for image
data compression and texture detection. In: International Confer-
ence on Pattern Recognition, pp. 1250–1254 (1988)

14. Cook, R.L., DeRose, T.: Wavelet noise. ACM Trans. Graph. 24(3),
803–811 (2005)

15. Criminisi, A., Pérez, P., Toyama, K.: Region filling and object re-
moval by exemplar-based image inpainting. IEEE Trans. Image
Process. 13(9), 1200–1212 (2004)

16. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint.
Commun. Pure Appl. Math. 57, 1413–1541 (2004)

17. De Bonet, J.S.: Multiresolution sampling procedure for analy-
sis and synthesis of texture images. In: Proc. of SIGGRAPH’97,
pp. 361–368. Assoc. Comput. Mach./Addison Wesley, New
York/Reading (1997)

18. Donoho, D.: Wedgelets: Nearly-minimax estimation of edges.
Ann. Stat. 27, 353–382 (1999)

19. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric
sampling. In: ICCV’99: Proceedings of the International Confer-
ence on Computer Vision, vol. 2, p. 1033. IEEE Computer Society,
Los Alamitos (1999)

20. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis
and transfer. In: Proc. of SIGGRAPH 2001, pp. 341–346 (2001)

21. Engan, K., Aase, S.O., Hakon Husoy, J.: Method of optimal direc-
tions for frame design. In: Proc. ICASSP’99, Washington, DC, pp.
2443–2446. IEEE Computer Society, Los Alamitos (1999)

22. Fadili, M.J., Starck, J.-L., Murtagh, F.: Inpainting and zooming
using sparse representations. Comput. J. (2006, revised)

23. Heeger, D.J., Bergen, J.R.: Pyramid-Based texture analy-
sis/synthesis. In: Cook, R. (ed.) SIGGRAPH 95 Conference Pro-
ceedings. Annual Conference Series, pp. 229–238. Assoc. Com-
put. Mach./Addison Wesley, New York/Reading (1995)

24. Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation us-
ing Gabor filters. Pattern Recogn. 24(12), 1167–1186 (1991)

25. Julesz, B.: Visual pattern discrimination. IRE Trans. Inf. Theory
8(2), 84–92 (1962)

26. Kreutz-Delgado, K., Murray, J.F., Rao, B.D., Engan, K., Lee, T.-
W., Sejnowski, T.J.: Dictionary learning algorithms for sparse rep-
resentation. Neural Comput. 15(2), 349–396 (2003)

27. Kwatra, V., Essa, I., Bobick, A., Kwatra, N.: Texture optimization
for example-based synthesis. ACM Trans. Graph. 24(3), 795–802
(2005). Proc. of SIGGRAPH 2005

28. Kwatra, V., Schödl, A., Essa, I., Turk, G., Bobick, A.: Graphcut
textures: Image and video synthesis using graph cuts. ACM Trans.
Graph. 22(3), 277–286 (2003). SIGGRAPH 2003

29. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix fac-
torization. In: Advances in Neural Information Processing Sys-
tems 13. MIT Press, Cambridge (2001)

30. Lefebvre, S., Hoppe, H.: Parallel controllable texture synthesis.
ACM Trans. Graph. 24(3), 777–786 (2005)

31. Lefebvre, S., Hoppe, H.: Appearance-space texture synthesis.
ACM Trans. Graph. 25(3), 541–548 (2006)

32. Lewicki, M.S., Sejnowski, T.J.: Learning overcomplete represen-
tations. Neural Comput. 12(2), 337–365 (2000)

33. Lu, S.Y., Hernandez, J.E., Clark, G.A.: Texture segmentation by
clustering of Gabor feature vectors. In: Proc. IJCNN’91, Interna-
tional Joint Conference on Neural Networks, vol. I, pp. 683–688.
IEEE Press, New York (1991)

34. Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color im-
age restoration. IEEE Trans. Image Process. 17(1), 53–69 (2008)

35. Mairal, J., Sapiro, G., Elad, M.: Learning multiscale sparse repre-
sentations for image and video restoration. Preprint (2007)

36. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press,
San Diego (1998)

37. Manduchi, R., Portilla, J.: Independent component analysis of tex-
tures. In: ICCV, pp. 1054–1060 (1999)

38. Matusik, W., Zwicker, M., Durand, F.: Texture design using a sim-
plicial complex of morphable textures. ACM Trans. Graph. 24(3),
787–794 (2005)

39. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive-
field properties by learning a sparse code for natural images. Na-
ture 381(6583), 607–609 (1996)

40. Paragios, N., Deriche, R.: Geodesic active regions and level set
methods for supervised texture segmentation. Int. J. Comput. Vis.
46(3), 223–247 (2002)

41. Perlin, K.: An image synthesizer. In: Proc. of SIGGRAPH’85, pp.
287–296. Assoc. Comput. Mach., New York (1985)

42. Peyré, G.: Non-negative sparse modeling of textures. In: Proc. of
SSVM’07, pp. 628–639 (2007)

43. Peyré, G.: Manifold models for signals and images. Comput. Vis.
Image Underst. (2008, to appear)

44. Portilla, J., Simoncelli, E.P.: A parametric texture model based on
joint statistics of complex wavelet coefficients. Int. J. Comput. Vis.
40(1), 49–70 (2000)

45. Sallee, P., Olshausen, B.A.: Learning sparse multiscale image rep-
resentations. In: Becker, S., Thrun, S., Obermayer, K. (eds.) NIPS,
pp. 1327–1334. MIT Press, Cambridge (2002)

46. Simoncelli, E.P., Olshausen, B.A.: Natural image statistics and
neural representation. Ann. Rev. Neurosci. 24, 1193–1215 (2001)

47. Skretting, K., Husoy, J.H.: Texture classification using sparse
frame based representations. EURASIP J. Appl. Signal Process.
2006(1), 102–102 (2006)

48. Starck, J.-L., Elad, M., Donoho, D.L.: Redundant multiscale trans-
forms and their application for morphological component analy-
sis. Adv. Imaging Electron Phys. 132, 287–348 (2004)

49. Tropp, J.A.: Greed is good: algorithmic results for sparse approx-
imation. IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004)

50. Tropp, J.A.: Just relax: convex programming methods for identify-
ing sparse signals in noise. IEEE Trans. Inf. Theory 52(3), 1030–
1051 (2006)

51. Tschumperlé, D., Deriche, R.: Vector-valued image regularization
with PDEs: A common framework for different applications. IEEE
Trans. Pattern Anal. Mach. Intell. 27(4), 506–517 (2005)

52. Tseng, P.: Convergence of a block coordinate descent method for
nondifferentiable minimization. J. Optim. Theory Appl. 109(3),
475–494 (2001)

J Math Imaging Vis (2009) 34: 17–31 31

53. Tuceryan, M.: Moment-based texture segmentation. Pattern
Recogn. Lett. 15(7), 659–668 (1994)

54. Wei, L.-Y., Levoy, M.: Fast texture synthesis using tree-structured
vector quantization. In: SIGGRAPH’00: Proceedings of the 27th
Annual Conference on Computer Graphics and Interactive Tech-
niques, pp. 479–488. Assoc. Comput. Mach./Addison-Wesley,
New York/Reading (2000)

55. Wei, L.-Y., Han, J., Zhou, K., Bao, H., Guo, B., Shum, H.-Y.: In-
verse texture synthesis. ACM Trans. Graph. 27(3), 1–9 (2008).
http://doi.acm.org/10.1145/1360612.1360651

56. Zeng, X.-Y., Chen, Y.-W., van Alphen, D., Nakao, Z.: Selection of
ICA features for texture classification. In: ISNN (2), pp. 262–267
(2005)

57. Zhu, S.C., Liu, X.W., Wu, Y.N.: Exploring texture ensembles by
efficient Markov chain Monte Carlo-toward a ‘trichromacy’ theory
of texture. IEEE Trans. Pattern Anal. Mach. Intell. 22(6), 554–569
(2000)

58. Zhu, S.C., Wu, Y., Mumford, D.: Filters, random fields and max-
imum entropy (FRAME): Towards a unified theory for texture
modeling. Int. J. Comput. Vis. 27(2), 107–126 (1998)

Gabriel Peyré graduated from Ecole
Normale Supérieure de Cachan,
France, in 2003 and received his
Ph.D in applied mathematics from
École Polytechnique, Paris, France,
in 2005. Before completing his
Ph.D, Mr. Peyré wrote a book in
French about Fourier analysis and
co-authored a book for the French
Agregation de Mathématiques. He
worked with Stéphane Mallat on im-
age compression with bandlets dur-
ing his Ph.D. Since 2006, he has
been a Researcher at the Centre Na-
tionale de Recherche Scientifique

(CNRS), working in Ceremade, University Paris—Dauphine. His re-
search interests include adaptive methods for image processing with
applications in computer graphics and human vision.

http://doi.acm.org/10.1145/1360612.1360651

	Sparse Modeling of Textures
	Abstract
	Introduction
	Sparse Models for Images and Textures
	Spatial Domain Modeling
	Transformed Domain Modeling
	Dictionary Learning
	Manifold Models for Textures

	Texture Processing
	Texture Inpainting
	Texture Mixing
	Texture Classification

	Sparse Decompositions of Texture Patches
	Patch Domain Modeling
	Sparse Expansion of Patches
	Linear Forward Generative Model
	Sparse Decomposition

	Sparse Texture Synthesis
	Histogram Constraints
	Texture Synthesis Algorithm

	Examples with Synthetic Dictionaries
	Dictionary of Edges
	Dictionary of Local Oscillations
	Dictionaries of Lines
	Dictionaries of Crossings

	Strict Sparsity and Non-local Expansions
	Strict Sparsity Model
	Multiscale Synthesis
	Connexions with Non-local Means Filtering
	Application to Texture Inpainting

	Dictionary Learning for Synthesis
	Learning the Dictionary
	Sparse Texture Synthesis
	Application to Texture Mixing
	Application to Sparse Texture Classification
	Texture Signature Model

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

