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Abstract Mathematical morphology was originally con-
ceived as a set theoretic approach for the processing of bi-
nary images. Extensions of classical binary morphology to
gray-scale morphology include approaches based on fuzzy
set theory. This paper discusses and compares several well-
known and new approaches towards gray-scale and fuzzy
mathematical morphology. We show in particular that a cer-
tain approach to fuzzy mathematical morphology ultimately
depends on the choice of a fuzzy inclusion measure and on
a notion of duality. This fact gives rise to a clearly defined
scheme for classifying fuzzy mathematical morphologies.
The umbra and the level set approach, an extension of the
threshold approach to gray-scale mathematical morphology,
can also be embedded in this scheme since they can be iden-
tified with certain fuzzy approaches.
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1 Introduction

In the early 1960s, Matheron and Serra invented mathemat-
ical morphology (MM) as the part of binary image process-
ing that is concerned with image filtering and geometric
analysis by means of structuring elements [24, 32]. Relying
heavily on the early work of Minkowski and Hadwiger on
geometric measure theory and integral geometry [17, 25],
Matheron and Serra succeeded in developing a collection
of tools, called morphological operators, that proved to be
extremely useful for the analysis of shape and structure in
binary images. Traditionally, binary images are represented
as subsets of R

n while gray-scale images can be represented
as functions R

n → [0,1]. Therefore, fuzzy set theory ap-
pears to be a logical choice for extensions of binary MM
to gray-scale images and several researchers view fuzzy
mathematical morphology as yet another approach to gray-
scale mathematical morphology [15, 26] although—strictly
speaking—there is a semantic difference between these the-
ories. In contrast to gray-scale MM, fuzzy MM deals with
different types of imprecision or uncertainty, for instance re-
garding the boundary of objects [8].

The most general mathematical framework in which
mathematical morphology can be conducted is given by
complete lattices [4, 18, 33]. Using this framework, Ronse
formulates necessary and sufficient conditions for dilation
and erosion [31]. These conditions reveal that every dila-
tion, erosion respectively, is associated with a structuring
function. Moreover, the complete lattice approach exposes
and resolves certain inconsistencies that are an intrinsic part
of the umbra approach in the continuous case.

The two basic morphological operators are erosion and
dilation [18]. Other morphological operators can be derived
from the basic ones. Erosion marks structuring element ori-
gin locations at which a structuring element fits within an
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image [35]. This concept can be expressed in terms of set
inclusion or subsethood. Depending on the particular choice
of set inclusion, we obtain different notions of fuzzy erosion.
Examples include the approaches of De Baets [1], Bloch and
Maître [6], Kaufmann and Gupta [19], Zadeh [40], Sinha
and Dougherty [34–36], Kitainik [20] as well as Bandler and
Kohout [2]. These approaches are compared in the excel-
lent paper of Nachtegael and Kerre on connections between
binary, gray-scale, and fuzzy mathematical morphologies
[26]. This paper goes beyond the comparison of Nachte-
gael and Kerre by providing simple criteria for classifying
approaches—including the ones mentioned above—to fuzzy
and gray-scale MM. In addition, the insights gained in this
paper can serve as a mathematical basis for developing new
approaches to fuzzy MM.

Fuzzy dilation is usually defined as the dual of fuzzy
erosion. The notion of duality that is used varies among
the researchers of fuzzy MM. Many researchers—including
Bloch and Maître [6], Sinha and Dougherty [36], as well
as Nachtegael and Kerre [26]—introduce a duality relation
based on some concept of negation. Other researchers such
as Deng and Heijmans [15], Ronse [31], and Maragos [23]
advocate a duality relation based on the notion of adjunction.
Recently, Bloch showed that adjunction-based and negation-
based approaches are generally not equivalent [7].

This paper demonstrates that both groups of approaches
that we mentioned above can be embedded into our clas-
sification scheme. In contrast, the earlier survey papers of
both Bloch and Maître [6] and of Nachtegael and Kerre [26]
do not contain yet the adjunction-based approaches to fuzzy
mathematical morphology. The survey of Bloch and Maître
already appeared in 1995 and its focus was much more on
comparing the main approaches to FMM, that had been pub-
lished at the time, in terms of their properties than on pro-
viding a classification of these approaches. Unlike Bloch,
Maître, Nachtegael, and Kerre, we also emphasize the com-
plete lattice framework of mathematical morphology which
allows for the definition of erosion, dilation, negation, and
adjunction, i.e., the basic concepts that represent the foun-
dations of our classification scheme.

The paper is organized as follows. First, we review some
basic concepts of MM. Section 3 discusses some important
approaches towards gray-scale MM including the level set
approach which generalizes Serra’s threshold approach [18,
32]. After providing some background information on fuzzy
MM in Sect. 4, we proceed by classifying approaches to-
wards fuzzy MM in terms of the fuzzy inclusion measures
and relationships of duality. The paper finishes with a clas-
sification scheme for fuzzy mathematical morphologies that
summarizes the main results and observations presented in
this paper. Appendix summarizes the mathematical nota-
tions used in the paper.

2 A Brief Review of Mathematical Morphology

2.1 Basic Concepts on Lattice Theory

The mathematical foundations of morphology can be found
in lattice theory which is concerned with algebraic structures
that arise by imposing some type of ordering on a set [4, 31].

A partially ordered set X is called a lattice if and only
if every finite, non-empty subset of X has an infimum and
a supremum in X. The infimum of Y is also denoted by∧

j∈J yj instead of
∧

Y if Y = {yj : j ∈ J } for some index
set J . Similar notations are used to denote the supremum
of Y .

Suppose that X and Y are lattices. A function f : X → Y

that satisfies the following equations for all x ∈ X and for
all y ∈ Y is called lattice homomorphism.

f (x ∨ y) = f (x) ∨ f (y) and f (x ∧ y) = f (x) ∧ f (y).

(1)

A bijective lattice homomorphism is called lattice isomor-
phism and it is called an automorphism when X = Y . An
injective lattice homomorphism is called lattice endomor-
phism. An involutive bijection ν : X → X which reverses
the partial ordering is said to be a negation on X. Recall that
a function f : X → X is called involutive if f (f (x)) = x

for all x ∈ X. We say that a function f : X → Y is increas-
ing (decreasing) if x ≤ y implies f (x) ≤ f (y) (f (x) ≥
f (y)) for all x, y ∈ X. We refer to f as an extensive (anti-
extensive) function if f (x) ≥ x (f (x) ≤ x) for all x ∈ X.

We speak of a complete lattice X if every non-empty (fi-
nite or infinite) subset has an infimum and a supremum in
X. From now on, we will denote a complete lattice by L.

2.2 The Complete Lattice Framework for Mathematical
Morphology

In the general complete lattice setting, an operator ε : L → L

that commutes with the infimum operation is called an ero-
sion [18]. In other words, the operator ε represents an ero-
sion if the following equality holds for every subset Y ⊆ L:

ε
(∧

Y
)

=
∧

y∈Y

ε(y). (2)

Similarly, an operator δ : L → L that commutes with the
supremum operation is called a dilation. In other words,
the operator δ represents a dilation if the following equal-
ity holds for every subset Y ⊆ L:

δ
(∨

Y
)

=
∨

y∈Y

δ(y). (3)

Note that both erosion and dilation are increasing lattice op-
erators.
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An operator α is an opening if it is increasing, idempo-
tent, and anti-extensive [18]. Dually, an operator β is called
a closing if it is increasing, idempotent, and extensive.

The operators of erosion and dilation are often linked
in terms of a relationship of duality. Some authors such as
Maragos [23], Deng and Heijmans [15] advocate the rela-
tionship of adjunction since—among other advantages—the
compositions of dilations and erosions yield openings and
closings if the pairing between erosion and dilation forms
an adjunction [18].

Consider two arbitrary operators ε, δ : L → L. We say
that (ε, δ) is an adjunction on (L,≤) if we have

δ(x) ≤ y ⇔ x ≤ ε(y), ∀x, y ∈ L. (4)

The following proposition shows that adjunction yields a
duality between erosions and dilations [18, 33].

Proposition 1 Let L be a complete lattice and consider two
operations δ, ε : L → L.

1. If (ε, δ) is an adjunction, then δ is a dilation and ε is an
erosion.

2. For any dilation δ, there is a unique erosion ε such that
(ε, δ) is an adjunction. The adjoint erosion is given by

ε(y) =
∨

{x ∈ L : δ(x) ≤ y} , (5)

for every y ∈ L.
3. For any erosion ε, there is a unique dilation δ such that

(ε, δ) is an adjunction. The adjoint dilation is given by

δ(x) =
∧

{y ∈ L : ε(y) ≥ x} , (6)

for every x ∈ L.

A second type of duality is based on negation. Let � be
an operator mapping a complete lattice L into itself and let
ν be a negation on L. The operator �ν given by

�ν(x) = ν (� (ν(x))) ,∀x ∈ L, (7)

is called the negation or the dual of � with respect to ν

(note that we have (�ν)ν = �). The negation of an erosion
is a dilation, and vice-versa [18]. Similarly, the negation of
an opening is a closing and vice-versa.

The preceding observations clarify that there is a unique
erosion that can be associated with a certain dilation and
vice-versa in terms of either negation or adjunction. The
following proposition establishes a relationship between the
notions of negation and adjunction [18].

Proposition 2 Let L be a complete lattice. For a given nega-
tion ν and an adjunction (ε, δ) on L, the pair (δν, εν) forms
an adjunction on L.

Fig. 1 Scheme to obtain a dilation from an erosion and vice-versa

Propositions 1 and 2 lead to the commutative diagram
that is depicted in Fig. 1.

Apart from erosions and dilations, there are two other
types of elementary morphological operators, namely anti-
erosions and anti-dilations [3, 18]. An anti-erosion arises as
the composition of an erosion followed by a negation and
an anti-dilation arises as the composition of a dilation fol-
lowed by a negation [39]. Banon and Barrera have proven
that every mapping � : L → L can be expressed as a supre-
mum of infimums of erosions and anti-dilations or, alterna-
tively, as an infimum of supremums of dilations and anti-
erosions [3].

2.3 Binary Mathematical Morphology

Mathematical morphology was initially developed for the
analysis of binary images. We identify a binary image A
with a subset of X, where the symbol X denotes the Euclid-
ean space R

d or the digital space Z
d throughout the paper.

The power set of X is partially ordered in terms of the oper-
ation “⊆” and forms a complete lattice. Thus, the complete
lattice framework that we introduced above can be applied
to binary MM.

The basic operations of binary MM are the erosion EB
and the dilation DB that are defined below. These opera-
tions are associated with a subset S of X that is called struc-
turing element (SE). We will point out below that EB and
DB represent operations of erosion and dilation in the sense
of Eqs. 2 and 3 if we fix the SE S.

Let A ⊆ X be a binary image and let S ⊆ X be a binary
SE. The binary erosion EB(A,S) and the binary dilation
DB(A,S) of the image A by the SE S are defined in terms
of translations of sets. For example, the translation Sx of S
by x ∈ X is given by Sx = {s + x : s ∈ S}. We have

EB(A,S) = {x ∈ X : Sx ⊆ A} =
⋂

s∈S̄

As, (8)

DB(A,S) = {x ∈ X : S̄x ∩ A �= ∅} =
⋃

s∈S

As =
⋃

a∈A

Sa. (9)

Here, the symbol S̄ denotes the reflection of S around the
origin. Formally, we have S̄ = {−s ∈ X : s ∈ S}. Thus, S̄x

denotes the translation of S̄ by x.
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Note that the definition of erosion in Eq. 8 corresponds
to Minkowski subtraction and that the definition of dilation
in Eq. 9 corresponds to Minkowski addition. Serra slightly
diverges from these definitions which are due to Sternberg
by defining the dilation of A by the SE S as {x ∈ X : Sx ∩A �=
∅} = DB(A, S̄) [32, 38].

We refer to EB as an erosion and we refer to DB as a
dilation because EB(·,S) satisfies Eq. 2 and DB(·,S) satis-
fies Eq. 3 for a fixed SE S. The pair consisting of EB(·,S)

and DB(·,S) forms an adjunction satisfying Eq. 4. Also note
that complementation represents a negation on P(X) and
that DB(·,S) is the dual of EB(·, S̄) with respect to com-
plementation.

3 Gray-Scale Mathematical Morphology

The tools of binary MM are limited and cannot be applied
to gray-scale images. Serra and Sternberg have developed
successful approaches to extend binary to gray-scale MM in
the 1980s [32, 38]. We will refer to these approaches as the
umbra and the threshold (or flat) approach. This paper also
includes another approach called the level set approach that
can be viewed as an extension of the threshold approach.

In gray-scale morphology, we apply the concepts of lat-
tice theory to images, in other words, functions from some
point set to a set of gray-levels that forms a complete lat-
tice. In this paper, we restrict our attention to images X → G

where the symbol G stands either for the set of extended real
numbers R̄ = R ∪ {+∞,−∞} or for the set of extended in-
tegers Z̄ = Z ∪ {+∞,−∞}.

The symbol G
X denotes the set of images X → G. For

an image a ∈ G
X, the reflection ā of a around the origin and

the translation ay of a by y ∈ X are defined as follows:

ā(x) = a(−x) and ay(x) = a(x − y), ∀ x ∈ X . (10)

A negation on G
X is given by the following operator ∗ :

G
X → G

X:

a∗(x) = −a(x), ∀x ∈ G. (11)

The set G
X inherits the complete lattice structure from G

if a ≤ b for a,b ∈ G
X is defined as follows:

a ≤ b ⇔ a(x) ≤ b(x), ∀x ∈ X. (12)

The basic operators of gray-scale MM are erosions and di-
lations on the complete lattice G

X. These operations consist
of probing a given image with a SE, i.e. another image, in
order to extract some relevant information on the shape and
form of objects.

In this context, we speak of an erosion as an operator E :
G

X ×G
X → G

X that commutes with the infimum in the first
argument. For an image a ∈ G

X and a SE s ∈ G
X, E(a, s) is

said to be the erosion of the image a by the SE s. Similarly,
we speak of a dilation as an operator D : G

X × G
X → G

X

that commutes with the supremum in the first argument and
D(a, s) is said to be the dilation of the image a by the SE s.

For simplicity, we say that (E,D) forms an adjunction
if and only (E(·, s),D(·, s)) forms an adjunction for every
SE s ∈ G

X. Negation represents another duality relationship
that plays an important role in MM. Note that the negation
ν on G induces a negation ν on G

X that arises by applying
ν pointwise. We say that D is the dual of E with respect to
the negation ν, in symbols D = Eν if and only if we have
that D(·, s) is the negation of E(·, s̄) with respect to ν for all
s ∈ G

X. Note that D is the dual of E with respect to ν if and
only if E is the dual of D with respect to ν, that is E(·, s) is
the negation of D(·, s̄) for all s ∈ G

X. In this case, we write
E = Dν .

Now, we are ready to discuss some particular approaches
towards gray-scale MM.

3.1 The Threshold or Flat Approach

Although the threshold approach dates back to Serra’s work
[32], we will permit ourselves to slightly adapt Serra’s origi-
nal definitions in order to streamline them with the other de-
finitions of dilation and erosion in this paper. In other words,
we choose to follow Sternberg’s line of reasoning as far as
the definitions of dilation and erosion are concerned.

An image a ∈ G
X can be decomposed into its threshold

or level sets St (a) given by [18]:

St (a) = {x ∈ X : a(x) ≥ t} . (13)

In other words, St (a) ⊆ X is the set of all points x ∈ X at
which the image a exceeds the threshold t . Note that St (a) ⊆
Sr(a) for every r, t ∈ G such that r ≤ t .

The level sets of an image a can be combined to yield the
following mapping S : G

X → P̂(X)G, where P̂(X)G is the
set of decreasing functions from G into P(X).

S(a) = (St (a))t∈G . (14)

The mapping S constitutes a lattice isomorphism be-
tween G

X and P̂(X)G. The inverse of this isomorphism is
defined as follows. Let p be a decreasing function from G

into P(X). If a = S−1(p) then a is given by

a(x) =
∨

{t ∈ G : x ∈ p(t)} . (15)

This result yields a systematic approach to building opera-
tors on the lattice G

X from operators on P(X).
Let a ∈ G

X be a gray-scale image and let S ⊆ X be a SE.
The increasing property on the first argument of the binary
erosion implies that pE(t) = EB(St (a),S) is a decreasing
operator from G into P(X). Similarly, the function pD(t) =
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DB(St (a),S) is a decreasing function from G into P(X).
The T -erosion ET (a,S) and the T -dilation DT (a,S) are
defined as follows [18]:

ET (a,S) = S−1(pE) and
(16)

DT (a,S) = S−1(pD).

The following proposition provides a characterization of
the T -erosion and the T -dilation.

Proposition 3 Let a ∈ G
X be a gray-scale image and let

S ⊆ X be a SE. The T -erosion and the T -dilation are given
by

ET (a,S)(x) =
∧

y∈Sx

a(y) and

(17)
DT (a,S)(x) =

∨

y∈S̄x

a(y),

for every x ∈ X.

The following theorem concerns the duality relationships
between the T -erosion and the T -dilation.

Theorem 1 The erosion ET and the dilation DT are dual
operators with respect to adjunction and with respect to the
negation ∗ given in Eq. 11.

We provide the proof of this theorem in the next subsec-
tions.

3.2 The Level Set Approach

Allowing for SEs in G
X, the level set approach can be

viewed as an extension of the threshold approach. Given
a gray-scale image a ∈ G

X and a SE s ∈ G
X, the underly-

ing idea of the level set approach is decompose the image
a and the SE s into its level sets and apply the binary mor-
phological operators to St (a) and St (s) for every t ∈ G. The
L-erosion EL(a, s) and L-dilation DL(a, s) are obtained by
means of the inverse of the isomorphism S . The following
formalizes this idea.

Given a family of set operators {ψt : t ∈ G}, the operator
� : G

X → P(X)G is defined as follows:

�(a)(x) =
∨

{t ∈ G : x ∈ ψt (St (a))} . (18)

The operator � is called a semi-flat operator generated by
the family {ψt : t ∈ G}. If this family contains only one op-
erator ψ , then � is called a flat operator generated by ψ

[18].
Suppose that the family {ψt : t ∈ G} in Eq. 18 is a de-

creasing family of increasing operators on P(X). For this

case, Heijmans showed that if every ψt is a dilation, then �

is a dilation as well [18]. Similarly, if every ψt is an erosion,
then � is also an erosion.

Note that, in particular, every operator ψt : P(X) →
P(X) given by ψt(A) = DB(A,St (s)) is increasing for an
arbitrary, fixed function s ∈ G

X. Moreover, we recognize
that the family {ψt = DB(·,St (s)) : t ∈ G} is decreasing.
Therefore, the following definitions derived from Eq. 18
yield a dilation (Eq. 19) and an erosion (Eq. 20) for fixed
s ∈ G

X:

DL(a, s)(x) =
∨

{t ∈ G : x ∈ DB (St (a),St (s))} , (19)

EL(a, s)(x) =
∨

{t ∈ G : x ∈ EB (St (a),St (s))} . (20)

Note that the operators DL(·, s) and EL(·, s) represent
semi-flat operators on P(X) in the sense of Heijmans [18].

The T -dilation DT (a,S) can be expressed as an L-
dilation as follows. Given a binary SE S ⊆ X, let s ∈ G

X

be defined as follows:

s(x) =
{∞ if x ∈ S,

−∞ if x �∈ S.
(21)

Consequently,

DL(a, s)(x) =
∨

{t ∈ G : x ∈ DB (St (a),St (s))}
=

∨
{t ∈ G : x ∈ DB (St (a),S)} . (22)

From these equations, we also infer that the operator �

given by �(a) = DT (a,S) is flat in Heijman’s sense. Sim-
ilar arguments show that ET (a,S) = EL(a, s). Moreover,
we have a flat operator � given by �(a) = ET (a,S).

The L-dilation and the L-erosion form an adjunction
since for every gray-scale images a,b ∈ G

X and every SE
s ∈ G

X, we have

DL(a, s) ≤ b ⇔ St (DL(a, s)) ⊆ St (b) , ∀t ∈ G

⇔ DB (St (a),St (s)) ⊆ St (b), ∀t ∈ G

⇔ St (a) ⊆ EB (St (b),St (s)) , ∀t ∈ G

⇔ St (a) ⊆ St (EL(b, s)) , ∀t ∈ G

⇔ a ≤ EL(b, s). (23)

Here we used the fact that the binary dilation and erosion
represent adjoint operators on (P(X),⊆).

Theorem 2 The pairs (EL,DL) and (ET ,DT ) form ad-
junctions on G

X.

The following theorem provides a characterization of the
L-dilation and the L-erosion.
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Theorem 3 Let a ∈ G
X be a gray-scale image and let s ∈

G
X be a SE. The L-erosion is given by

EL(a, s)(x) =
∧

y∈X

f (sx(y),a(y)) , (24)

where sx is the translation of s by x and f : G × G → G is
such that

f (x, y) =
{+∞, x ≤ y,

y, x > y.
(25)

The L-dilation is given by

DL(a, s)(x) =
∨

y∈X

(s̄x(y) ∧ a(y)) , (26)

where s̄ ∈ G
X denotes the reflection of s around the origin,

i.e. s̄(x) = s(−x) for every x ∈ X.

Proof We first prove Eq. 26. Let a, s ∈ G
X. For all x ∈ X,

we have

x ∈ DB (St (a),St (s)) ⇔ [St (s)]x ∩ St (a) �= ∅
⇔ ∃y ∈ X : y ∈ [St (s)]x

and y ∈ St (a)

⇔ ∃y ∈ X : s(x − y) ≥ t

and a(y) ≥ t

⇔
∨

y∈X

(s(x − y) ∧ a(y)) ≥ t.

(27)

The following sequence of equations concludes the proof of
Eq. 26.

DL(a, s)(x) =
∨

{t ∈ G : x ∈ DB (St (a),St (s))}

=
∨

⎧
⎨

⎩
t ∈ G :

∨

y∈X

(s(x − y) ∧ a(y)) ≥ t

⎫
⎬

⎭

=
∨

y∈X

(s(x − y) ∧ a(y)) . (28)

The proof of the second part follows from Theorem 2 and
statement 2 of Proposition 1.

Consider the following sequence of inequalities for
a,b, s ∈ G

X.

DL(a, s)(y) ≤ b(y), ∀y ∈ X

⇔
∨

x∈X

s̄y(x) ∧ a(x) ≤ b(y), ∀y ∈ X

⇔ s(y − x) ∧ a(x) ≤ b(y), ∀x,y ∈ X

⇔ a(x) ≤ f (s(y − x),b(y)) , ∀x,y ∈ X

⇔ a(x) ≤
∧

y∈X

f (sx(y),b(y)) , ∀x ∈ X. (29)

By Proposition 1 and Theorem 2, EL is the unique erosion
that forms an adjunction together with DL. Therefore, Eqs.
29 through 29 imply Eq. 24. �

Note that Proposition 3 follows from Theorem 3 consid-
ering an SE given by means of Eq. 21.

Recall that we can obtain an erosion from a dilation
and vice-versa by means of a negation. For example, con-
sider the negation ∗ of Eq. 11. Straightforward computation
shows that the erosion D∗

L and the dilation E∗
L have the fol-

lowing representations:

D∗
L(a, s)(x) =

∧

y∈X

(−sx(y)) ∨ a(y), (30)

E∗
L(a, s)(x) =

∨

y∈X

g (s̄x(y),a(y)) , (31)

where g : G × G → G is defined as follows:

g(x, y) = −f (x,−y) =
{−∞, x ≤ −y,

y, x > −y.
(32)

3.3 The Umbra Approach

Sternberg introduced the umbra approach to gray-scale MM
[37, 38] which is based on the observation that the points on
and below the graph of an image a : X → G yield a subset
of the abelian group X × G and thus the tools of binary MM
can be applied. The resulting subsets are of a special form
and are called umbras. More precisely, a subset U of X × G

is called an umbra if—for every x ∈ X and for every t ∈ G—
(x, t) ∈ U implies that (x, s) ∈ U for every s < t .

Let UX×G denote the set of all umbras contained in
X × G. Note that UX×G represents a complete sublattice
of P(X × G). We have a lattice endomorphism U : G

X →
UX×G that associates every gray-scale image a ∈ G

X with
its umbra U(a) where U(a) is defined as follows [31]:

U(a) = {
(x, t) ∈ X × G

′ : t ≤ a(x)
}
. (33)

The symbol G
′ denotes G \ {−∞,∞}.

Using this definition of U(a), the lattice homomorphism
U : G

X → UX×G becomes a lattice isomorphism if the set
of gray-levels G is discrete, in other words if G = Z̄. The
inverse of this isomorphism is given by T : UX×G → G

X

where T (U) is defined as follows:

(T (U))(x) =
∨

{t ∈ G : (x, t) ∈ U} , ∀x ∈ X. (34)

We refer to T (U) as the top of the umbra U . In the case
of continuous gray-levels, i.e. G = R̄, the homomorphism U
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is also injective but fails to be surjective. For both discrete
as well as continuous gray-levels, the U -dilation DU (a, s)
and the U -erosion EU (a, s) are defined as follows for every
a, s ∈ G

X:

DU (a, s) = T (DB (U(a),U(s))) and
(35)

EU (a, s) = T (EB (U(a),U(s))) .

The definitions in Eqs. 35 lead to the following alterna-
tive formulations of U -dilation and U -erosion:

EU (a, s)(x) =
∧

y∈X

(
a(y) +′ (−sx(y))

)
and

(36)
DU (a, s)(x) =

∨

y∈X

(a(y) + s̄x(y)) .

The operations “+” and “+′” differ with respect to the sum
of ∞ and −∞ as described in Eq. 38 below. Otherwise,
these operations behave as one would expect.

∞ + (−∞) = (−∞) + ∞ = −∞ and
(37)

∞ +′ (−∞) = (−∞) +′ ∞ = ∞.

Proposition 4 The erosion EU and the dilation DU are dual
operators with respect to adjunction and with respect to the
negation ∗ given in Eq. 11 [18].

For a given binary SE S ⊆ X, let us construct a gray-scale
SE s ∈ G

X as follows:

s(x) =
{

0, x ∈ S,

−∞, x �∈ S.
(38)

For every image a ∈ G
X, we can compute the U -dilation

DU (a, s)(x) of a by this SE s as follows

DU (a, s)(x) =
∨

y∈X

(a(x − y) + s(y))

=
⎡

⎣
∨

y∈S

(a(x − y))

⎤

⎦ =
⎡

⎣
∨

y∈S̄x

(a(y))

⎤

⎦ . (39)

In a similar vein, we recognize that

EU (a, s)(x) =
∧

y∈Sx

a(y). (40)

In view of the definitions of T -dilation and T -erosion that
we presented in Eq. 18, these observations yield the equal-
ities DT (a,S) = DU (a, s) and E(a,S) = EU (a, s) where s
is given by Eq. 38.

4 Fuzzy Mathematical Morphology

4.1 Basic Concepts of Fuzzy Set Theory

Fuzzy set theory extends conventional (crisp) set theory.
Lotfi Zadeh introduced this mathematical theory as a tool
to model the vagueness and ambiguity in complex systems
[40]. A fuzzy set is formally defined as a function a from
a set X to [0,1]. The function a is also called membership
function and the value a(x) is the degree of membership of
x in the fuzzy set a. In particular, we have that a(x) = 0
represents complete exclusion and that a(x) = 1 represents
complete membership. The class of fuzzy sets in X will be
denoted by F(X) = [0,1]X. Note that fuzzy set theory can
be used for the design of image operators since an image
a : X → [0,1] can be interpreted as a fuzzy set of X. From
now on, an image a ∈ F(X) will be called fuzzy image. We
identify every crisp set A ∈P(X) with a fuzzy set a ∈ F(X)

via the relationship

a(x) =
{

1, if x ∈ A,

0, else.
(41)

A fuzzy conjunction is an increasing mapping CF :
[0,1] × [0,1] −→ [0,1] that satisfies CF (0,0) =
CF (0,1) = CF (1,0) = 0 and CF (1,1) = 1. The minimum
operator obviously yields a simple example. Some other par-
ticular choices of fuzzy conjunction are due to Lukasiewicz
and to Kleene and Dienes [15]:

CM(x, y) = x ∧ y, (42)

CL(x, y) = 0 ∨ (x + y − 1), (43)

CK(x, y) =
{

0, y ≤ 1 − x,

y, y > 1 − x.
(44)

In particular, a commutative, associative, and non-
decreasing fuzzy conjunction T : [0,1]×[0,1] → [0,1] that
satisfies T (x,1) = x for every x ∈ [0,1] is called triangular
norm or simply t-norm [21, 27]. The fuzzy conjunctions CM

and CL are examples of t-norms. An increasing, commuta-
tive, and associative mapping S : [0,1]× [0,1] → [0,1] that
satisfies S(0, x) = x for every x ∈ [0,1] is called triangular
co-norm, for short s-norm.

An operator IF : [0,1]× [0,1] −→ [0,1] that is decreas-
ing in the first argument and that is increasing in the sec-
ond argument is called a fuzzy implication if IF extends the
usual crisp implication on {0,1} × {0,1}, i.e. IF (0,0) =
IF (0,1) = IF (1,1) = 1 and IF (1,0) = 0. Some partic-
ular fuzzy implications, that were introduced by Gödel,
Lukasiewicz, and by Kleene and Dienes, can be found be-
low [15].

IG(x, y) =
{

1, x ≤ y,

y, x > y,
(45)
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IL(x, y) = 1 ∧ (y − x + 1), (46)

IK(x, y) = (1 − x) ∨ y. (47)

The Lukasiewicz implication IL can be generalized to a
class of fuzzy implications. Let λ be a strictly decreasing
mapping [0,1] → [0,1] satisfying

λ(1) = 0, λ(0) = 1 and (48)

x ≤ y ⇔ λ(x) + λ(1 − y) ≥ 1 ∀x, y ∈ [0,1]. (49)

A fuzzy implication IGL : [0,1] × [0,1] → [0,1] is called a
generalized Lukasiewicz implication if IGL has the following
representation [10].

IGL(x, y) = 1 ∧ [λ(x) + λ(1 − y)], ∀x, y ∈ [0,1]. (50)

A negation on the unit interval [0,1] is also called a fuzzy
negation. The following unary operators represent examples
of fuzzy negations.

NS(x) = 1 − x , (51)

ND(x) = 1 − x

1 + px
, p > −1, (52)

NR(x) = p
√

1 − xp, p ∈ (0,∞). (53)

Note that a fuzzy negation NF on [0,1] induces a nega-
tion NF on F(X) that is given by applying NF pointwise,
i.e. NF (a)(x) = NF (a(x)). Here, we use a bold symbol N
for a negation to indicate that the negation is vector-valued.
A subscript of the bold symbol N indicates the correspond-
ing negation on [0,1].

Let NF be an arbitrary fuzzy negation. A fuzzy impli-
cation IF satisfying IF (x, y) = IF (NF (y),NF (x)) for all
x, y ∈ [0,1] is called contrapositive with respect to NF . For
example, every generalized Lukasiewicz implication IGL is
contrapositive with respect to the standard negation NS .

Let NF be a fuzzy negation. We construct a fuzzy
implication IF from a fuzzy conjunction CF by setting
IF (x, ·) = (CF (x, ·))NF for all x ∈ [0,1]. In a similar fash-
ion, we derive a fuzzy conjunction CF from a fuzzy impli-
cation IF by defining CF (x, ·) as the dual of IF (x, ·) with
respect to NF for all x ∈ [0,1]. Simplifying our terminol-
ogy, we say that a fuzzy conjunction CF and a fuzzy nega-
tion IF are dual with respect to a fuzzy negation NF if and
only if CF (x, ·) and IF (x, ·) are dual with respect to NF for
all x ∈ [0,1].

Similarly, we say that a fuzzy conjunction CF and a
fuzzy implication IF form an adjunction if and only if
CF (x, ·) and IF (x, ·) form an adjunction for every x ∈
[0,1]. In this case, we call CF and IF adjoint operators.
For example, the pairs (CM, IG), (CL, IL), and (CK, IK)

represent adjunctions.

Duality with respect to negation and duality with re-
spect to adjunction are two distinct concepts. For exam-
ple, on one hand we have that the conjunction CM and
the implication IK constitute dual operations with respect
to the standard negation NS but fail to be adjoint. On the
other hand, the conjunction CM is adjoint to the implication
IG but they are not dual with respect to any fuzzy nega-
tion for the following reason. Suppose that there exists a
fuzzy negation NF : [0,1] → [0,1] that satisfies the equa-
tion CM(x, y) = NF (IG(x,NF (y)) for all x, y ∈ [0,1]. The
existence of such a fuzzy negation NF would lead to the fol-
lowing contradiction if x is such that 1 > x > 0.

1 > x = x ∧ 1 = CM(x,1) = NF (IG(x,NF (1)))

= NF (IG(x,0)) = NF (0) = 1. (54)

Let CF be a fuzzy conjunction and let IF be a fuzzy
implication such that CF and IF are adjoint. Proposition 1
implies that IF (a, ·) is an erosion and CF (a, ·) is a dilation
on [0,1] in the sense of Eqs. 2 and 3 for every a ∈ [0,1].
As another consequence of Proposition 1, we have that for
every fuzzy implication IF there is at most one fuzzy con-
junction CF and vice-versa such that IF and CF are adjoint.
We would like to point out, however, that there are fuzzy im-
plications that do not yield erosions and there are fuzzy con-
junctions that do not yield dilations. Consider for example
the fuzzy implication ICE given by

ICE(x, y) =
{

0, if x = 1 and y = 0,

1, otherwise.
(55)

Note that ICE(1, ·) does not satisfy Eq. 2 since

ICE

(

1,
∧

n∈N

1

n

)

= ICE (1,0) = 0, (56)

whereas

∧

n∈N

ICE

(

1,
1

n

)

=
∧

n∈N

1 = 1. (57)

4.2 Fuzzy Mathematical Morphology Based on Fuzzy
Inclusion and Intersection Measures

In Eq. 8, the binary erosion of a set A by a SE S was defined
as the set of all points x such that the translated structur-
ing element Sx is contained in A. Formally, we obtain the
following equivalent definition of EB(A,S).

EB(A,S) = {x ∈ X : Inc(Sx,A) = 1} , (58)

where Inc : P(X) ×P(X) → {0,1} represents the set inclu-
sion for crisp sets, i.e. Inc(Sx,A) = 1 if and only if Sx ⊆ A.
We also defined the binary dilation of A by S as the set
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of all x such that the reflection of Sx hits A. This notion
can be expressed as follows in terms of the intersection
Sec : P(X) ×P(X) → {0,1} of crisp sets.

DB(A,S) = {x ∈ X : Sec(S̄x,A) = 1} . (59)

A consistent fuzzy morphology should be based on def-
initions of fuzzy erosion and fuzzy dilation that extend the
definitions of binary erosion and dilation to the fuzzy do-
main. This goal can be achieved as follows.

In this paper, we adhere to the definition that a fuzzy in-
clusion measure or fuzzified set inclusion IncF is a F(X) ×
F(X) → [0,1] mapping whose restriction to P(X) ×P(X)

coincides with the set inclusion for crisp sets [26]. Formally,
we have the following implications for all A,B ∈ P(X) and
their corresponding fuzzy sets a,b ∈F(X).

A ⊆ B ⇒ IncF (a,b) = Inc(A,B) = 1 and
(60)

A �⊆ B ⇒ IncF (a,b) = Inc(A,B) = 0.

The value IncF (a,b) is interpreted as the degree of sub-
sethood or inclusion of the fuzzy set a in the fuzzy set b.

Various researchers have set out to define fuzzy inclusion
measures. Among these definitions are the inclusion mea-
sures of Zadeh, Bandler and Kohout, Kitainik, and Sinha and
Dougherty [2, 20, 34, 35, 40]. Straightforward verification
shows that all of these measures fuzzify the notion of crisp
set inclusion. The subsethood measure SK that is described
below (for a such that a(x) > 0 for some x ∈ X) violates the
definition of fuzzy inclusion measure. Kosko has proposed
this measure of subsethood for a finite universe X [22]

SK(a,b) = 1 − 1
∑

x a(x)

∑

x∈X

0 ∨ (a(x) − b(x)). (61)

A fuzzy erosion EF : F(X) ×F(X) → F(X) based on a
certain fuzzy inclusion measure IncF arises via the follow-
ing definition [26]:

EF (a, s)(x) = IncF (sx,a) . (62)

Note that EF extends the binary erosion EB : P(X) ×
P(X) → P(X) to the fuzzy domain.

We would like to clarify a fact that Nachtegael and Kerre
have failed to mention [26]. Strictly speaking, we may only
refer to EF as a fuzzy erosion if the operators IncF (s, ·)
commute with the infimum operation for all s ∈ F(X). Oth-
erwise, the operator EF (·, s) does not represent an erosion
by the SE s.

In analogy to the measure IncF , we define a fuzzy in-
tersection measure or fuzzified set intersection SecF as
a F(X) × F(X) → [0,1] mapping whose restriction to
P(X) × P(X) coincides with the set intersection for crisp
sets. We interpret the value SecF (a,b) as the degree of in-
tersection of the fuzzy sets a and b or the degree of the fuzzy

set a hitting the fuzzy set b. Given a fuzzified set intersection
SecF such that SecF (s, ·) commutes with the supremum op-
eration, we obtain a function DF : F(X) × F(X) → F(X)

by setting

DF (a, s)(x) = SecF (s̄x,a) , (63)

Note that DF coincides with DB on P(X) × P(X). We re-
fer to DF using the terminology fuzzy dilation if DF (·, s)
commutes with the supremum operator for every s ∈F(X).

In our opinion, almost all approaches towards fuzzy
mathematical morphology are based on a certain fuzzy in-
clusion measure and employ Eq. 62 in order to define the
concept of fuzzy erosion. The constructive approach of
Ronse that we will discuss in Sect. 5.3.3 represents an ex-
ception to this rule. After defining a fuzzy erosion according
to Eq. 62, researchers in fuzzy mathematical morphology
have chosen to define fuzzy dilation as the dual operation of
fuzzy erosion with respect to either adjunction or (a particu-
lar operation of) negation.

In analogy to the gray-scale case, we say that a pair
(EF ,DF ) consisting of a fuzzy erosion EF and a fuzzy
dilation DF forms an adjunction if and only (EF (·, s),
DF (·, s)) forms an adjunction for every SE s ∈ F(X). We
say that a fuzzy erosion EF and a fuzzy dilation DF are
dual operators with respect to a fuzzy negation NF if and
only if EF (·, s) and DF (·, s̄) are dual operators with respect
to NF for all s ∈ F(X).

4.3 Fuzzy Inf-I Inclusion and the Sup-C Intersection
Measures

In the previous section, we have underlined the importance
of fuzzy inclusion and intersection measures in the defini-
tion of fuzzy erosions and fuzzy dilations. This section ex-
plains how a fuzzy inclusion measure can be derived from
the crisp inclusion measure.

Consider arbitrary crisp sets A,B ⊆ X. Obviously, we
have A ⊆ B if and only if x ∈ A implies that x ∈ B for all
x ∈ X. If a,b : X → {0,1} denote the corresponding crisp
membership functions then this statement can be reformu-
lated as follows:

Inc(A,B) =
∧

x∈X

I (a(x),b(x)) . (64)

Now consider arbitrary fuzzy sets a,b ∈ F(X).
A straightforward fuzzification of Eq. 64 leads to the fol-
lowing fuzzy inclusion measure IncF [2]:

IncF (a,b) =
∧

x∈X

IF (a(x),b(x)) . (65)

A fuzzy operation IncF of this form will be called fuzzy Inf-I
inclusion measure or Bandler-Kohout inclusion measure [2].
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We will speak of Inf-IF inclusion measures if we want to re-
fer to a specific implication in Eq. 65. Clearly, the restriction
of IncF to P(X) ×P(X) is given by the crisp set inclusion
Inc since I represents the restriction of IF to {0,1}.

Following a similar line of reasoning, we derive a fuzzy
intersection measure SecF by means of the following equa-
tion.

SecF (a,b) =
∨

x∈X

CF (a(x),b(x)) . (66)

We will call a fuzzy operation SecF of this form fuzzy Sup-
C intersection measure. Note that SecF fuzzifies the crisp
set intersection measure.

Particular choices of fuzzy implications, conjunctions re-
spectively, yield particular fuzzy inclusion measures, inter-
section measures respectively. Given a particular fuzzy Inf-
I inclusion measure, we will indicate the underlying type
of fuzzy implication by means of a subscript. For example,
IncL will denote the fuzzy Inf-I inclusion measure that is
based on the Lukasiewicz implication.

4.3.1 Kitainik Inclusion Measure

Kitainik developed an axiomatic approach to fuzzy inclu-
sion measures [20]. A Kitainik inclusion measure IncKT is
an F(X) × F(X) → [0,1] mapping that satisfies a set of
four axioms. For details, we refer the reader to [10].

The following proposition by Fordor and Yager provides
an exact characterization of the Kitainik inclusion measures
in terms of fuzzy Inf-I inclusion measures [10, 16]:

Proposition 5 A F(X) × F(X) → [0,1] mapping IncF is
a Kitainik inclusion measure if and only if IncF is an Inf-
IF inclusion measure for some fuzzy implication IF that is
contrapositive with respect to the standard fuzzy negation
NS .

For example, the Inf-I inclusion measure IncK and IncGL

represent Kitainik inclusion measures because the implica-
tion of Kleene and Dienes IK as well as every generalized
Lukasiewicz implication IGL are contrapositive with respect
to NS .

4.3.2 Sinha-Dougherty Inclusion Measure

According to Sinha and Dougherty, a fuzzy inclusion mea-
sure should satisfy the seven axioms that are enumerated in
[34, 36]. Specifically, Sinha and Dougherty focus their atten-
tion on inclusion measures of a certain form, namely Inf-Iλ

inclusion measures where Iλ is given in terms of the right
hand side of Eq. 50 for some λ : [0,1] → [0,1].

Burillo et al. proved that an Inf-Iλ inclusion measure sat-
isfies the seven axioms of Sinha-Dougherty if and only if

Iλ belongs to the generalized Lukasiewicz implication class
[9].

From now on, we will refer to a Sinha-Dougherty in-
clusion measure as an Inf-I inclusion measure of the form
IncGL. In other words, we set

IncSD(a,b) = IncGL(a,b) =
∧

x∈X

IGL(a(x),b(x)) , (67)

where IGL is a generalized Lukasiewicz implication. The
symbols IncSD and IncGL will be used interchangeably. Note
that the class of Sinha-Dougherty inclusion measures is con-
tained in the class of Kitainik inclusion measures. Equality
does not hold. For example, the inclusion measure IncK is
a Kitainik inclusion measure but fails to constitute a Sinha-
Dougherty inclusion measure since IK cannot be written as
a generalized Lukasiewicz implication [10].

4.3.3 Zadeh Inclusion Measure

Zadeh defined an inclusion measure IncZ [40] in terms of
the following implication IZ , called the Zadeh implication.

IZ(x, y) =
{

1, x ≤ y,

0, otherwise.
(68)

Note that IZ is contrapositive with respect to the standard
negation NS and therefore the Zadeh inclusion measure
IncZ belongs to the class of Kitainik inclusion measures. If
a and b are fuzzy sets in an universe X then IncZ satisfies
the following equation:

IncZD(a,b) =
{

1, a(x) ≤ b(x) ∀x ∈ X,

0, otherwise.
(69)

5 Classification of Some Specific Approaches to Fuzzy
Mathematical Morphology

In this section, we provide a classification of some impor-
tant particular approaches towards fuzzy MM. Each of these
approaches depends on a particular choice of fuzzy erosion
and fuzzy dilation.

5.1 The General Inf-I/Sup-C Approach of De Baets

De Baets’ definitions of fuzzy erosion and dilation [14] yield
the most general approach towards fuzzy MM among the
ones presented in this section.

If, for all a ∈ F(X), the symbol da denotes the set of
points x ∈ X such that a(x) > 0 then De Baets defines the
fuzzy “erosion” EDB(a, s) as follows:

EDB(a, s)(x) =
∧

y∈(ds)x

IF (sx(y),a(y)) . (70)
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Here, the symbol IF represents an arbitrary fuzzy implica-
tion. Using the fact that IF (0, x) = 1 for all x ∈ [0,1], we
realize that

EDB(a, s)(x) =
∧

y∈X

IF (sx(y),a(y)) . (71)

If IncF represents a fuzzy Inf-I inclusion measure given
by Eq. 65, we obtain

EDB(a, s)(x) = IncF (sx,a)(x) = EF (a, s)(x) . (72)

Similarly, we will see that De Baets’ definition of fuzzy
“dilation” DDB amounts to defining DDB as the operator
DF : F(X) × F(X) → F(X) of Eq. 63 with SecF given
by a Sup-C intersection measure. Formally, we have

DDB(a, s)(x) =
∨

y∈X

CF (s̄x(y),a(y)) . (73)

Here we slightly adapted De Baets’s original definition ac-
cording to Sternberg by reflecting the SE s around the origin.

Thus, De Baets’ approach is based on fuzzy “erosions”
and “dilations” that are defined via Eqs. 62 and 63, the
only restriction being that IncF must be an Inf-I inclusion
measure and that SecF must be a Sup-C intersection mea-
sure. Different choices of fuzzy implications and conjunc-
tions in Eqs. 71 and 73 lead to different fuzzy “erosions”
and “dilations” in the sense of De Baets. From now on, a
subscript of the symbol E will indicate the type of impli-
cation that is used in Eq. 71. For example, the symbol EG

stands for the fuzzy erosion that is given by the equation
EG(a, s)(x) = ∧

y∈X IG(sx(y),a(y)). Similarly, a subscript
of the symbol D will indicate the type of conjunction that is
used in Eq. 73.

Recall that the operators EF (·, s) : F(X) → F(X) given
by Eq. 62 represent erosions for all s ∈ F(X) if and only
if Inc(s, ·) commutes with the infimum operation for all
s ∈ F(X). The latter statement is certainly true for Inf-IF
inclusion measures such that IF (s, ·) is an erosion for all
s ∈ [0,1].

For example, the implications IG, IL, and IK commute
with the infimum operation in the second argument and thus
EG, EL, and EK yield erosions. If ICE that is defined as
in Eq. 55 then ECE does not lead to an erosion as we shall
demonstrate below.

Example 1 Let s denote the constant SE 1, i.e. s(x) = 1 for
all x ∈ X. For all n ∈ N, let an denote the constant fuzzy im-
age whose value a(x) equals 1/n for all x ∈ X. On one hand,
we infer the following sequence of equations from Eqs. 71
and 56.

ECE

(
∧

n∈N

an, s

)

(x) =
∧

y∈X

ICE

(

1,
∧

n∈N

1

n

)

= 0 . (74)

On the other hand, Eq. 57 implies that

∧

n∈N

ECE (an, s) (x) =
∧

n∈N

⎡

⎣
∧

y∈X

ICE

(

1,
1

n

)
⎤

⎦ = 1 . (75)

Thus, there exists a SE s such that the operator ECE(·, s)
does not satisfy the definition of an erosion.

Similar observations can be made for the operator DDB :
F(X) × F(X) → F(X). If C(s, ·) is a dilation in [0,1] for
every s ∈ [0,1] then the operator DDB(·, s) is a dilation for
every s ∈ F(X). In this case, we may speak of the fuzzy
dilation of the image a by the SE s. In a recent paper [7], I.
Bloch shows that a few additional conditions are enough to
guarantee that a fuzzy dilation δ : F(X) → F(X) is of the
form DDB(·, s) where DDB(·, s) is given by Eq. 73.

5.2 Inf-I/Sup-C Approaches Based on (Fuzzy) Negations

The approaches that we will discuss in this section are based
on the following step-wise procedure. First, one constructs
either a fuzzy erosion or a fuzzy dilation satisfying the gen-
eral framework of De Baets. Then, one generates the dual
operator of the previously defined fuzzy erosion or dilation.
In contrast to the Deng-Heijmans approach of Sect. 5.3 that
employs the duality relationship of adjunction, the subse-
quent approaches derive fuzzy dilations from fuzzy erosions
(or vice-versa) by means of the duality relationship of nega-
tion.

5.2.1 Approaches of Nachtegael and Kerre Based on
Various Inclusion Measures

Several approaches toward fuzzy MM that comply with the
general framework of De Baets were discussed in [26]. Each
of these approaches is based on a different fuzzy Inf-I inclu-
sion measure. Therefore, Nachtegael and Kerre have named
them accordingly: Bandler-Kohout, Kitainik, and Zadeh ap-
proach towards fuzzy MM. All three approaches follow the
same scheme:

1. Given a certain fuzzy inclusion measure, one generates a
fuzzy erosion according to Eq. 71.

2. One obtains a corresponding fuzzy dilation as the dual
of this fuzzy erosion with respect to the standard fuzzy
negation NS .

The Bandler-Kohout approach constitutes the most gen-
eral one among the three respective approaches since the
Bandler-Kohout inclusion measure represents an Inf-I inclu-
sion measure in its most general form.

By Proposition 5, Kitainik’s approach is more restrictive,
considering only fuzzy Inf-IKT inclusion measures, where
the fuzzy implication IKT is contrapositive with respect to
NS , in order to construct fuzzy erosions EKT . Kitainik’s
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fuzzy dilation DKT , given by the NS -dual of EKT , involves
the NS -dual of the contrapositive fuzzy implication IKT

which yields a commutative fuzzy conjunction CKT . Simi-
larly, calculating the NS -dual of a commutative fuzzy con-
junction CKT yields a contrapositive fuzzy implication IKT .
Thus, Kitainik’s fuzzy dilation DKT is given by Eq. 73 pro-
vided that the conjunction is commutative.

We pointed out in Sect. 4.3.3 that Zadeh inclusion mea-
sures IncZD belong to the class of Kitainik inclusion mea-
sure. This observation clarifies that the Kitainik approach
generalizes the Zadeh approach to fuzzy MM.

5.2.2 The approach of Bloch and Maître

Bloch and Maître’s definition of fuzzy dilation relies on Sup-
C intersection measure with a t-norm instead of a general
fuzzy conjunction [6]. Thus, the Bloch-Maître fuzzy dilation
represents a special case of the De Baets fuzzy dilation that
is given in Eq. 73.

Given a fuzzy dilation, Bloch and Maître derive a cor-
responding fuzzy erosion as the dual operator with respect
to a fuzzy negation NF . Note that this strategy differs from
the one that we described in Sect. 5.2.1 by allowing for an
arbitrary fuzzy negation instead of NS when forming the
dual operator. Consequently, the Bloch-Maître fuzzy ero-
sion is based on Inf-IF inclusion measure where IF (x, ·) =
T (x, ·)NF for all x ∈ [0,1].

As we explained above, there is no direct relationship be-
tween the Bloch-Maître approach and the Nachtegael and
Kerre’s approaches of Sect. 5.2.1 due to fact that Bloch
and Maître apply general fuzzy negations NF . The special
case of the Bloch-Maître approach that is associated with
the standard fuzzy negation NS , however, complies with Ki-
tainik’s scheme since every t-norm represents a commuta-
tive fuzzy conjunction.

5.2.3 Sinha and Dougherty Approach

Recall that Sinha and Dougherty’s approach towards fuzzy
inclusion measures revolves around seven axioms [34, 36].
We pointed out that the seven axioms hold in particular for
Inf-IGL where IGL denotes a generalized Lukasiewicz im-
plication. In fact, Sinha and Dougherty focus on this type
of inclusion measure IncGL—also denoted using the symbol
IncSD in this paper—and their approach to fuzzy MM con-
sists of the following.

For a, s ∈ F(X), the SD-erosion ESD(a, s) of the image
a by the SE is defined as a special case of Eqs. 62 and 72.

ESD(a, s)(x) = IncSD(sx,a) , ∀x ∈ X . (76)

The SD-dilation immediately arises as the dual operator
with respect to the negation NS . The following sequence of

equalities reveals that the SD-dilation can be expressed in
terms of a Sup-C intersection measure.

DSD(a, s)(x) = 1 −
⎡

⎣
∧

y∈X

IGL (s̄x(y),1 − a(x))

⎤

⎦

= 1 −
⎧
⎨

⎩

∧

y∈X

1 ∧ [
λ(s̄x(y)) + λ(1 − a(x))

]
⎫
⎬

⎭

=
∨

y∈X

0 ∨ [
1 − λ(s̄x(y)) − λ(1 − a(x))

]

=
∨

y∈X

CGL (s̄x(y),a(x)) . (77)

Here CGL is the fuzzy conjunction given by

CGL(x, y) = 0 ∨ [
1 − λ(x) − λ(y)

]
, ∀x, y ∈ [0,1]. (78)

To conclude this section, we explain how the Sinha-
Dougherty approach to fuzzy MM fits into Kitainik’s frame-
work. Note that Sinha and Dougherty as well as Kitainik de-
rive fuzzy erosions from fuzzy inclusion measures accord-
ing to Eq. 62. The corresponding fuzzy dilation are gen-
erated by applying the relationship of duality with respect
to the standard fuzzy negation NS . The two respective ap-
proaches only differ regarding the fuzzy inclusion measures
IncSD and IncKT . Since IncSD is an Inf-IGL inclusion mea-
sure and IGL is contrapositive, Proposition 5 implies that the
Sinha-Dougherty approach can be viewed as a special case
of Kitainik’s approach to fuzzy MM.

5.2.4 The Approach of Minkowski Addition

Recall that the binary dilation of a set A by a structuring el-
ement S corresponds to the Minkowski addition of A and
S. Therefore, extending the Minkowski addition to fuzzy
sets seems to provide a natural way to derive a fuzzy di-
lation [1, 19]. Then, a fuzzy erosion arises as the NS -dual of
this fuzzy dilation. This approach yields the particular case
where CF = CM of De Baets’ fuzzy dilation given in Eq.
73. Since the implication IK represents the NS -dual of the
conjunction CM , the corresponding fuzzy erosion is given
in terms of the Inf-IK inclusion measure as a special case of
Eq. 71.

The approach of Minkowski addition can be embedded
into the framework of Bloch and Maître because the mini-
mum conjunction CM represents a t-norm. In contrast to the
Bloch-Maître approach, the former employs duality with re-
spect to the standard fuzzy negation NS only.

5.3 Inf-I/Sup-C Approaches Based on Adjunction: The
Deng-Heijmans Approach

Deng and Heijmans, as well as other prominent researchers
including Maragos, continue to emphasize the central role
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of the concept of adjunction in MM [15, 18, 23]. Therefore,
the Deng-Heijmans approach to fuzzy MM differs from the
general De Baets approach in one crucial aspect: Deng and
Heijmans generate a fuzzy MM based on a pair (EDB,DDB)

that is required to form an adjunction. According to the fol-
lowing proposition, an equivalent condition is the adjoint-
ness of IF and CF , the operators appearing in Eqs. 71 and
73 [15].

Proposition 6 Let IF be a fuzzy implication and CF be a
fuzzy conjunction. The pair (IF ,CF ) forms an adjunction
on [0,1] if and only if the pair (EDB,DDB) given by Eqs. 71
and 73 is an adjunction on F(X).

Unlike the pair (IK,CM), the pairs (IL,CL) and
(IG,CM) form adjunctions on [0,1]. I. Bloch succeeded
in relating the Inf-I/Sup-C approaches based on adjunction
and the Inf-I/Sup-C approaches based on negation as fol-
lows [7]. A t-norm T and a fuzzy implication IF are adjoint
if and only if we have that for every fuzzy SE s the com-
positions of the corresponding fuzzy erosion EDB(·, s) and
the fuzzy dilation DDB(·, s) that is the dual of EDB(·, s) with
respect to a fuzzy negation NF yield (idempotent) openings
and closings. Thus, openings and closings can only be de-
rived from a fuzzy erosion EDB and a fuzzy dilation DDB

based on a t-norm T that is the dual of IF with respect to a
fuzzy negation NF if T and IF are adjoint.

5.3.1 Approach of Maragos

Recently, Maragos presented a theory that is geared at unify-
ing MM and lattice algebraic systems such as image algebra
and minimax algebra [11, 23, 28, 29]. Ritter et al. had pre-
viously established image algebra [30], a heterogeneous or
many-valued algebra in the sense of Birkhoff and Lipson [5]
that provides a mathematical background for image process-
ing and computer vision. Davidson proved that the lattice
algebra known as minimax algebra can be embedded into
image algebra [13]. The theory of minimax algebra arose
from problems in operations research and machine schedul-
ing [12]. Minimax algebra and MM are closely related [13]
despite the fact that these theories were developed for com-
pletely different purposes.

In contrast to MM that focuses on the complete lattice
structure of the sets of images G

X and F(X), image algebra
and minimax algebra investigate the interactions between
the lattice sup/inf structure and the group structure of real
addition or multiplication. However, image algebra and min-
imax algebra fail to exploit the lattice structure to the level
that MM has and these theories have neglected important
concepts of MM such as adjunctions.

According to the image algebra point of view, MM
can be conducted in a minimax algebra structure that

Cuninghame-Green named blog, which stands for bounded
lattice ordered group [11]. Typical examples for blogs in-
clude (G,∨,∧,+,+′) where G equals R̄ or Z̄ as before and
where + and +′ denote the addition and the dual addition
that we introduced in Sect. 3.3. As Maragos pointed out in
[23], the blog structure does not capture several important
aspects of MM, in particular fuzzy MM. Therefore, Mara-
gos defines the less restrictive notion of clodum or complete
lattice-ordered double monoid. A clodum (V,∨,∧, 
, 
′)
consists of the following:

(C1) A complete infinitely-distributive lattice (V,∨,∧);
(C2) A commutative monoid (V, 
) such that 
 is a dilation;
(C3) A commutative monoid (V, 
′) such that 
′ is an ero-

sion.

For example, we have that [0,1] together with ∨, ∧, a
continuous t-norm T , and a continuous s-norm S repre-
sents a clodum but does not represent a blog. Note that
([0,1],∨,∧,CF , IF ), the underlying algebraic structure of
the more general approaches of De Baets and of Deng and
Heijmans, does not constitute a clodum because the im-
plication I is not commutative by definition. The clodum
([0,1],∨,∧, T , S) lies at the root of Maragos’ approach.
Observe that the set of images F(X) inherits the clodum
structure of [0,1]. Maragos also takes the concepts of ad-
junction and (dual) translation invariance into account. The
latter concept refers the following operators of translation
τh,v and dual translation τ ′

h,v
where h ∈ X and v ∈ [0,1].

τh,v(a)(x) = T (a(x − h), v) and
(79)

τ ′
h,v(a)(x) = S(a(x − h), v).

An operator on F(X) that commutes with the translations
τh,v is called translation invariant. Similarly, an operator on
F(X) that commutes with the dual translations τ ′

h,v is called
dual-translation invariant.

Maragos defines a fuzzy dilation DMT(a, s) of the image
a by the SE s as a Sup-T convolution of a and s—in other
words, he requires the fuzzy conjunction in Eq. 73 to be a
continuous t-norm. Maragos proved that every translation-
invariant dilation on the clodum F(X) is of this form. The
adjoint fuzzy erosion EMT can be expressed in terms of an
Inf-IT convolution of a and s where IT is such that the pair
(T , IT ) forms an adjunction. The implication IT has the fol-
lowing representation [21, 23].

IT (x, y) =
∨

{z ∈ [0,1] : T (x, z) ≤ y} . (80)

Maragos also proposes a second, alternative approach to
fuzzy MM. First, a fuzzy erosion EMS is defined as an Inf-S
convolution of the image a with the SE s:

EMS(a, s)(x) =
∧

y∈X

S(sx(y),a(y)), (81)
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The function EMS is a dual-translation invariant erosion. In
fact, every dual-translation invariant erosion can be written
as in Eq. 81 [23]. If DMS denotes the adjoint fuzzy dilation,
then DMS(a, s) is given by a Sup-JS convolution of a with
s where JS is the adjoint operator of S that is defined as
follows for every x, y ∈ [0,1]:

JS(x, y) =
∧

{z ∈ [0,1] : S(x, z) ≥ y}. (82)

Note that JS(x, y) ≤ z if and only if y ≤ S(x, z). Thus,
JS(x, ·) and S(x, ·) form an adjunction for every x ∈ [0,1].
Finally, we observe that JS is not a fuzzy conjunction since
JS(1,1) = ∧{z ∈ [0,1] : S(1, z) ≥ 1} = 0.

5.3.2 The Approach of Lattice Isomorphism

An approach to fuzzy MM can be deduced from gray-scale
MM on R̄

X by taking advantage of the fact that the complete
lattices [0,1] and R̄ are isomorphic [15].

Let X be an arbitrary point set and let θ : [0,1] → R̄ be
a continuous lattice isomorphism such as θ(t) = tan(π(t −
0.5)). Note that θ and its inverse θ−1 induce continuous lat-
tice isomorphisms θ : F(X) → R̄

X and θ−1 : R̄
X → F(X)

which establish a one-to-one relationship between fuzzy im-
ages in F(X) and gray-scale images in R̄

X.
The following strategy can be employed to derive a fuzzy

erosion from a gray-scale erosion. In a similar way, a fuzzy
dilation can be obtained from a gray-scale dilation. Consider
a fuzzy image a ∈ F(X) and a fuzzy SE s ∈ F(X). An ap-
plication of the lattice isomorphism θ converts a and s into a
gray-scale image θ(a) and a gray-scale SE θ(s). After com-
puting the gray-scale erosion of the image θ(a) by the SE
θ(s), one transforms the resulting gray-scale image b into a
fuzzy image θ−1(b).

An application of this strategy to the level set erosion and
dilation as well as the umbra erosion and dilation results in
the θL-erosion EθL, the θL-dilation DθL, the θU -erosion
EθU and the θU -dilation DθU :

EθL(a, s) = θ−1 [EL (θ(a), θ(s))
]

and
(83)

DθL(a, s) = θ−1 [DL (θ(a), θ(s))
]
,

EθU (a, s) = θ−1 [EU (θ(a), θ(s))
]

and
(84)

DθU (a, s) = θ−1 [DU (θ(a), θ(s))
]
.

The following theorem formulates these fuzzy erosions
and dilations in terms of Inf-I inclusion and Sup-C intersec-
tion measures.

Theorem 4 Suppose that θ : [0,1] → R̄ is a continuous lat-
tice isomorphism. The θL-erosion EθL coincides with EG

and the θL-dilation coincides with DM .

Moreover, if Iθ ,Cθ : [0,1] × [0,1] → [0,1] denote the
fuzzy operators that are defined below then Iθ represents a
fuzzy implication and Cθ represents a fuzzy conjunction.

Iθ (x, y) = θ−1 (θ(y) +′ (−θ(x))
)

and
(85)

Cθ(x, y) = θ−1 (θ(y) + θ(x)) .

In addition, we have

EθU (a, s)(x) =
∧

y∈X

Iθ (sx(y),a(y)) and

(86)
DθU (a, s)(x) =

∨

y∈X

Cθ (s̄x(y),a(y)) .

Proof We only need to prove the first claim since the proof
of the second part of the theorem can be found in [15]. In
fact, we will only show that θL-dilation coincides with DM .
The equality EθL(a, s)(x) = ∧

y∈X IG(sx(y),a(y)) can be
obtained in a similar fashion.

The following equations follow from the definition of the
θL-dilation and from the fact that θ is a continuous lattice
isomorphism. The latter implies that θ commutes with the
operations of supremum and infimum.

DθL(a, s)(x) = θ−1

⎧
⎨

⎩

∨

y∈X

θ (sx(y)) ∧ θ (a(y))

⎫
⎬

⎭

=
∨

y∈X

θ−1 [θ (s(x − y)) ∧ θ (a(y))
]

=
∨

y∈X

s(x − y) ∧ a(y) =
∨

y∈X

s̄x(y) ∧ a(y)

= DM(a, s)(x). (87)

�

Recall that (IG,CM) forms an adjunction. As Deng and
Heijmans have pointed out, Iθ and Cθ are adjoint as well.
Therefore, Proposition 6 induces the following corollary.

Corollary 1 The pairs (EθL,DθL) and (EθU ,DθU ) form
adjunctions on F(X).

The approaches (EθL,DθL) and (EθU ,DθU ) can not
only be embedded into the Deng-Heijmans framework as
stated in Corollary 1 but also into the Maragos framework
in view of the following theorem.

Theorem 5 Let θ : [0,1] → R̄ be a continuous lattice iso-
morphism. Consider Cθ given by Eq. 85 and define C′

θ :
[0,1] × [0,1] → [0,1] as follows for every x, y ∈ [0,1]:
C′

θ (x, y) = θ−1 (θ(y) +′ θ(x)
)

. (88)
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Then, the fuzzy interval [0,1] equipped with Cθ and C′
θ rep-

resents a clodum.

Proof Clearly, the structure ([0,1],∨,∧) constitutes a com-
plete infinitely-distributive lattice. The following shows that
Cθ is a dilation and that the structure ([0,1],Cθ ) is a com-
mutative monoid. Analogously, one can show that C′

θ is
an erosion and that ([0,1],C′

θ ) represents a commutative
monoid.

First, note that the continuity of θ and “+” implies that
Cθ is continuous. Consequently, Cθ represents a dilation.
Now, let x, y, z ∈ [0,1]. The following sequence of equa-
tions shows that Cθ is an associative operation.

Cθ(x,Cθ (y, z)) = θ−1
(
θ(x) + θ(θ−1(θ(y) + θ(z)))

)

= θ−1 (θ(x) + θ(y) + θ(z))

= θ−1
(
θ(θ−1(θ(x) + θ(y))) + θ(z)

)

= Cθ(Cθ (x, y), z). (89)

The commutativity and the monotonicity properties of Cθ

follow from the fact that θ is a lattice isomorphism and the
fact that “+” a is commutative and monotonic binary opera-
tion. Finally, the following equalities reveal that the element
e = θ−1(0) ∈ [0,1] is an identity of Cθ .

Cθ(x, e) = θ−1(θ(x) + θ(e))

= θ−1(θ(x) + 0) = x ∀x ∈ [0,1]. (90)

Thus, the structure ([0,1],Cθ ) represents a commutative
monoid. �

Since EU and DU constitute dual operators with respect
to the negation ∗ according to Proposition 5, it seems rea-
sonable to assume that EθU and DθU are dual operators with
respect to some negation on F(X). In fact, we have the fol-
lowing theorem:

Theorem 6 Let θ : [0,1] → R̄ be a continuous lattice
isomorphism. The operator Nθ : [0,1] → [0,1] given by
Nθ(x) = θ−1(−θ(x)) represents a fuzzy negation and the
fuzzy morphological operators EθU and DθU are dual with
respect to this fuzzy negation.

Proof Clearly, we have Nθ(1) = 0 and Nθ(0) = 1. More-
over, straightforward computation reveals that Nθ(Nθ(x)) =
x for every x ∈ [0,1]. Therefore, Nθ represents a fuzzy
negation and we obtain the following sequence of equalities
for all x, y ∈ [0,1]:
Nθ (Cθ (x,Nθ (y)))

= θ−1
[
−θ

(
θ−1

(
θ
(
θ−1 (−θ(y))

)
+ θ (x)

))]

= θ−1 [− ((−θ(y)) + θ (x))
]

= θ−1 [θ(y) +′ (−θ (x))
] = Iθ (x, y). (91)

We conclude the proof of the theorem as follows. For all
a, s ∈ F(X) and for all x ∈ X, we have

Nθ [DθU (Nθ (a), s̄)] (x)

= Nθ

⎡

⎣
∨

y∈X

Cθ (sx(y),Nθ (a(y)))

⎤

⎦

=
∧

y∈X

Nθ

[
Cθ (sx(y),Nθ (a(y)))

]

=
∧

y∈X

Iθ (sx(y),a(y)) = EθU (a, s) . (92)

�

As a consequence of Theorem 6, the pair (EθU , DθU )

also fits into a general approach based on negation.
Finally, note that the lattice isomorphism θ and its inverse

θ−1 also provide a tool for constructing gray-scale operators
from fuzzy operators. Let EF and DF be a fuzzy erosion
and a fuzzy dilation. A gray-scale erosion can be defined as
follows: Given a gray-scale image a ∈ R̄

X and a gray-scale
SE s ∈ R̄

X, the θ−1F -erosion Eθ−1F is given by

Eθ−1F (a, s) = θ
[
EF

(
θ−1(a), θ−1(s)

)]
. (93)

The θ−1F -dilation Dθ−1F is defined in a similar fashion.
Straightforward computation shows that the following equa-
tions hold:

EU (a, s) = θ [EθU (θ−1(a), θ−1(s))] and
(94)

DU (a, s) = θ [DθU (θ−1(a), θ−1(s))],
EL(a, s) = θ [EG(θ−1(a), θ−1(s))] and

(95)
DL(a, s) = θ [DM(θ−1(a), θ−1(s))].
Thus, we can identify the umbra approach and the level set
approach with certain particular approaches to fuzzy MM
[15].

5.3.3 The Approach of Ronse

In view of the fact that F(X) ⊂ R̄
X, truncating the gray-

levels outside the unit interval yields a simple method for
transforming a gray-scale image into a fuzzy image while
preserving the order of the gray-levels. In particular, this
transformation can be performed after an application of a
gray-scale morphological operator to a fuzzy image a ∈
F(X). Thus, the sequence consisting of the gray-scale mor-
phological operator followed by truncation yields a fuzzy
morphological operator.
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For example, let us consider the fuzzy morphological op-
erators σ (EL(·, s)) and σ (DL(·, s)), where s ∈ F(X) and
where σ denotes the transformation of truncation that is for-
mally defined as follows:

σ (b)(x) = 1 ∧ [0 ∨ b(x)], ∀b ∈ R̄
X, x ∈ X. (96)

Let us recall the formula for the level set dilation
DL(a, s) that we presented in Eq. 26. We realize that the
image DL(a, s) belongs to F(X) if the image a and the SE s
are fuzzy. Thus, truncating DL(a, s) becomes obsolete and
we have σ (DL(a, s)) = DL(a, s) for all a, s ∈ F(X). Fur-
thermore, a comparison of Eq. 26 with Eq. 73 reveals that
σ (DL(a, s)) = DM(a, s).

Now let us consider the level set erosion EL. After a short
glance at Eq. 24, it becomes apparent that EL(a, s)(x) ≥ 0
for all a, s ∈ F(X) and for all x ∈ X. Therefore, we have
σ (EL(a, s))(x) = EL(a, s)(x) ∧ 1 for all x ∈ X. This iden-
tity shows that truncating EL coincides with a special case
of De Baets’ fuzzy erosion given by Eq. 72, namely the
Gödel fuzzy erosion EG. The latter is defined in terms of
the Gödel implication IG that was introduced in Eq. 45.

We summarize the preceding observations in the follow-
ing theorem:

Theorem 7 The following equations hold for all a, s ∈
F(X).

σ (EL(a, s)) = EG(a, s) and
(97)

σ (DL(a, s)) = DL(a, s) = DM(a, s).

As mentioned in Sect. 5.3, the pair (IG,CM) forms an
adjunction which implies that EG and DM are adjoint as
well. By Proposition 1, this fact guarantees that σ (EL(·, s))
is an erosion and that σ (DL(·, s)) is a dilation for every s ∈
F(X).

We would like to point out, however, that the pair consist-
ing of gray-scale erosion followed by truncation and the cor-
responding gray-scale dilation followed by truncation does
not always form an adjunction. This phenomenon may even
occur in the case where the underlying gray-scale opera-
tors are adjoint. An excellent example for this situation is
given by σ (EU (·, s)) and σ (DU (·, s)), whose composition
σ (DU (·, s)) ◦ σ (EU (·, s)) does not lead to an opening [31].
In fact, σ (EU (·, s)) does not even represent an erosion and
σ (DU (·, s)) does not even represent a dilation for every
s ∈ F(X). Furthermore, as an additional problem, truncating
the gray-level outside the interval [0,1] may entail a consid-
erable loss of information.

In the umbra case, the problems that we outlined above
can be circumvented by translating the gray-levels before
truncating them. Specifically, if 1 : X → R̄ denotes the con-
stant gray-scale image such that 1(x) = 1 for every x ∈ X,

then we define EU1 and DU1 as follows for every gray-scale
image a ∈ R̄

X and for every SE s ∈ R̄
X:

EU1(a, s) = EU (a, s) + 1 and
(98)

DU1(a, s) = DU (a, s) − 1.

The argumentation below shows that the pair (EU1,DU1)

forms an adjunction. Therefore, EU1 represents an erosion
and DU1 represents a dilation by Proposition 1. Let a,b ∈
R̄

X be gray-scale images and let s ∈ R̄
X be a gray-scale SE.

DU1(a, s) ≤ b

⇔ DU (a, s) − 1 ≤ b

⇔ DU (a, s) ≤ b + 1

⇔ a ≤ EU (b + 1, s) = EU (b, s) + 1 = EU1(a, s).
(99)

The following theorem demonstrates that truncating the
adjoint operators EU1 and DU1 results in the adjoint op-
erators EL and DL, i.e. the Lukasiewicz erosion and the
Lukasiewicz dilation.

Theorem 8 The following equations hold for all a, s ∈
F(X).

σ (EU1(a, s)) = EL(a, s) and
(100)

σ (DU1(a, s)) = DL(a, s).

Proof From the definitions of the fuzzy erosion EL, we infer
that

EL(a, s)(x) =
∧

y∈X

IL(sx(y),a(y))

=
∧

y∈X

[
1 ∧ (a(y) − sx(y) + 1)

]

= 1 ∧
⎡

⎣
∧

y∈X

(a(y) − sx(y)) + 1

⎤

⎦

= 1 ∧
⎛

⎝0 ∨
[∧

y∈X

(a(y) − sx(y)) + 1

]
⎞

⎠

= 1 ∧ [0 ∨ (EU (a, s) (x) + 1)]
= σ (EU1(a, s))(x), (101)

for all x ∈ X and for all a, s ∈F(X).
In a similar fashion, we obtain DL(a, s)(x) =

σ (DU1(a, s))(x) for all x ∈ X and for all a, s ∈F(X). �

As Ronse pointed out in [31], the problems regarding
σ (EU (·, s)) and σ (DU (·, s)) are due to conceptual differ-
ences between the universal bounds of R̄ and [0,1]. Seek-
ing a general solution to these problems for all approaches
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based on truncation, Ronse introduced the following func-
tions θ0, θ1 : [0,1] → R̄.

θ0(x) =
{

x, if x > 0,

−∞, if x = 0,
(102)

θ1(x) =
{

x, if x < 1,

+∞, if x = 1.

Note that θ0 and θ1 effect transformations between the uni-
versal bounds.

Let θ0 and θ1 be the transformations obtained applying
θ0 and θ1 pointwise. A general approach to fuzzy MM arises
from an adjunction consisting of an erosion and a dilation
in the gray-scale domain and by transforming these oper-
ators using θ0 or θ1 as well as the truncation σ . Ronse’s
approach preserves the adjointness of erosion and dila-
tion. More precisely, the following fundamental proposition
forms the backbone of Ronse’s approach to fuzzy MM.

Proposition 7 If the pair (ε, δ) forms an adjunction on G
X

then the pair (σ ε θ1,σ δ θ0) forms an adjunction on F(X).

In some cases, the operators σ ε θ1 and σ δ θ0 can be sim-
plified as follows.

Proposition 8 Let (ε, δ) be an adjunction on G
X. The fol-

lowing statements hold true for every a ∈F(X).

1. If ε(0) ≥ 0 then σ εθ1(a) = σ ε(a).
2. If δ(1) ≤ 1 then σ δθ0(a) = σ δ(a).
3. If ε(1) = 1 and δ(0) = 0 then σ εθ1(a) = ε(a) and

σ δθ0(a) = δ(a).

As an example for this simplified situation, let us ap-
ply Ronse’s approach to the L-erosion EL(·, s) and the L-
dilation DL(·, s), where s ∈F(X). We will use the following
notations:

ERL(a, s) = σ (EL(θ1(a), s)) and
(103)

DRL(a, s) = σ (DL(θ0(a), s)) ∀a, s ∈ F(X).

As we have mentioned before, EL(a, s) ≥ 0 and that
DL(a, s) ≤ 1 for all fuzzy a and s. Therefore, combining
Proposition 8 with Theorem 7 yields the following:

Theorem 9 For all a, s ∈F(X), we have:

ERL(a, s) = σ (EL(a, s)) = EG(a, s) and
(104)

DRL(a, s) = σ (DL(a, s)) = DM(a, s).

This theorem also shows that the fuzzy MM based on
ERL and DRL belongs to the category of Inf-I/Sup-C ap-
proaches. We would like to clarify however that there are
adjunctions ε, δ on G

X such that σ εθ1 cannot be described

in terms of Eq. 71 or σ δθ0 cannot be described in terms of
Eq. 73.

Let us apply Ronse’s approach to the umbra erosion and
dilation. The symbols ERU and DRU denote the following
operators.

ERU (a, s) = σ (EU (θ1(a), s)) and
(105)

DRU (a, s) = σ (DU (θ0(a), s)), ∀a, s ∈ F(X).

We compute ERU (a, s)(x) as follows for every a, s ∈ F(X)

and for every x ∈ X:

ERU (a, s)(x) = σ (EU (θ1(a), s)(x))

= 1 ∧
⎡

⎣0 ∨
⎛

⎝
∧

y∈X

θ1(a(y)) − sx(y))

⎞

⎠

⎤

⎦

=
∧

y∈X

1 ∧ [
0 ∨ (θ1(a(y)) − sx(y))

]

=
∧

y∈X

ĨRU (sx(y),a(y)), (106)

where ĨRU : [0,1] × [0,1] → [0,1] is defined as follows:

ĨRU (x, y) = σ(θ1(y) − x) . (107)

Here, σ : R̄ → [0,1] is given by σ(x) = 1 ∧ (0 ∨ x) for
every x ∈ R̄. Note that the function ĨRU is decreasing in
the first argument and increasing in the second argument.
However, ĨRU satisfies the boundary conditions ĨRU (0,1) =
ĨRU (1,1) = 1 and ĨRU (0,0) = ĨRU (1,0) = 0. Therefore,
ĨRU does not represent a fuzzy implication. Similarly, we
derive the following representation for DRU (a, s)(x).

DRU (a, s)(x) = σ (DU (θ0(a), s)(x))

= 1 ∧
⎡

⎣0 ∨
⎛

⎝
∨

y∈X

θ0(a(y)) + s(x − y)

⎞

⎠

⎤

⎦

=
∨

y∈X

1 ∧ [
0 ∨ (s̄x(y) + θ0(a(y)))

]

=
∨

y∈X

C̃RU (s̄x(y),a(y)), (108)

where C̃RU : [0,1] × [0,1] → [0,1] is defined as follows:

C̃RU (x, y) = σ(x + θ0(y)) . (109)

The function C̃RU does not constitute a fuzzy conjunction
since C̃RU (0,1) = 1 �= 0.

Furthermore, we have that DRU (a, s) cannot be writ-
ten in terms of a supremum of conjunctions as in Eq. 71.
To explain this fact, let us consider an image a such
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that a(x0) = 1 and a(x) = 0 for all x �= x0. Also assume
that sx0(x0) = 0. Computing DRU (a, s)(x0) should yield
CF (sx0(x0),a(x0)) = CF (0,1) for some fuzzy conjunction
CF . This expression equals 0 by the definition of a fuzzy
conjunction, contradicting the fact that DRU (a, s)(x0) =
C̃RU (0,1) = 1.

These comments reveal that (ERU ,DRU ) does not fit into
the Inf-I/Sup-C framework although (ERU ,DRU ) form an
adjunction and ERU can be expressed as an Inf-IRU erosion.
This situation occurs because there is no fuzzy conjunction
CRU such that IRU and CRU are adjoint.

A slight modification of the (ERU ,DRU )-approach yields
an Inf-I/Sup-C approach. Consider the translated umbra op-
erators EU1 and DU1. As mentioned before, these operators
are adjoint. An application of Ronse’s approach to the pair
(EU1,DU1) yields the adjunction (ERU1,DRU1). Straight-
forward calculations show that ERU1 can be written as an
Inf-IRU1 erosion where IRU1 is a fuzzy implication given
by

IRU1(x, y) = σ(θ1(y) − x + 1) . (110)

Similarly, we have that DRU1 can be written as a Sup-CRU1

dilation where CRU1 is a fuzzy conjunction given by

CRU1(x, y) = σ(x + θ0(y) − 1) . (111)

6 Conclusions

To our knowledge, this paper is the first to classify the main
approaches to fuzzy (and gray-scale) MM in terms of two
simple criteria: the underlying notions of inclusion measure
and duality. The paper includes new theorems and observa-
tions that are relevant for our classification scheme and that
clarify a number of important facts concerning fuzzy MM.
Figure 2 exhibits the resulting classification. We believe that
the results of this paper will be useful for developing new
approaches and for choosing an approach to fuzzy MM that
is suited for a given application.

The definition of a fuzzy erosion and a fuzzy dilation lies
at the root of an approach to fuzzy MM. A fuzzy erosion is
determined by the choice of a fuzzy inclusion measure and
a fuzzy dilation is determined by the choice of a fuzzy inter-
section measure. Almost all approaches to fuzzy MM com-
ply with the general framework of De Baets, i.e. they use an
infimum of implications to generate an inclusion measure
and a supremum of conjunctions to generate an intersection
measure. Strictly speaking, we may not refer to the resulting
operators EF and DF as fuzzy erosion and fuzzy dilation,
since an operator of the form given by Eq. 71 does not nec-
essarily commute with the infimum and since an operator of
the form given by Eq. 73 does not necessarily commute with
the supremum operation.

Apart from Eqs. 71 and 73, De Baets does not impose
any restrictions on fuzzy erosions and dilations. Other re-
searchers, however, hold the firm conviction that a fuzzy
erosion should be linked to a fuzzy dilation in terms of a
relationship of duality, that can be either adjunction or nega-
tion. The duality of a fuzzy erosion and dilation is induced
by the duality of the underlying fuzzy implication and con-
junction. Thus, we distinguish between approaches that are
based on adjunction and approaches that are based on nega-
tion. The former approaches have the advantage that an ad-
joint pair of operators is guaranteed to consist of an erosion
and a dilation. Moreover, compositions of adjoint erosions
and dilations yield openings and closings. Similar observa-
tions cannot be made concerning a pair of operators that are
dual with respect to negation. On the other hand, for every
negation we have that a dual conjunction, a dual implication
respectively, can be easily constructed from a given implica-
tion, a conjunction respectively, whereas a conjunction that
is adjoint to a given implication or vice-versa does not al-
ways exist.

Deng and Heijmans proposed the Inf-I/Sup-C approach
based on adjunction in its’ most general form. This class
comprises the approach of Maragos and the restriction
of Ronse’s approach to pairs of Inf-I erosions and Sup-
C dilations such as (ERL,DRL) and (ERU1,DRU1). In
Sect. 5.3.2, we have embedded the approaches of lattice
isomorphism (EθL,DθL) and (EθU ,DθU ) into the Mara-
gos framework. The dashed arrows below the approaches
on lattice isomorphism indicate one-to-one correspondences
between (EθL,DθL) and (EL,DL) as well as between
(EθU ,DθU ) and (EU ,DU ). Note that the dashed lines re-
late fuzzy approaches with gray-scale approaches. Since
(EθL,DθL) = (EG,DM), we can identify the level set
approach with (EG,EM). By Theorem 5, the adjunction
(EθU ,DθU ) also forms a dual pair with respect to the fuzzy
negation Nθ . Thus, the fuzzy approach (EθU ,DθU ) corre-
sponding to the umbra approach also fits into the general
framework based on negation. As mentioned in Sect. 3,
the threshold or flat approach can be viewed as a special
case of both the level set approach as well as the umbra ap-
proach. The level set approach can be adapted using certain
transformations to obtain Ronse’s (ERL,DRL) approach
and the umbra-approach can be adapted to obtain Ronse’s
(ERU1,DRU1) approach. We showed that both (ERL,DRL)

and (ERU1,DRU1) fit into the Inf-I/Sup-C framework. Re-
call that EU1 and DU1 denote translations of the U -erosion
and U -dilation. A pointed arrow indicates the relationship
(σ (EU1),σ (DU1)) = (EL,DL).

Next to Heijmans’ approach in Fig. 2, the reader encoun-
ters an approach that not associated with any particular re-
searcher: the General Inf-I/Sup-C approach based on nega-
tion. Nachtegael and Kerre have investigated several restric-
tions of this approach that are named after the correspond-
ing inclusion measures of Bandler & Kohout, Kitainik, and
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Fig. 2 Classification of fuzzy mathematical morphologies

Zadeh. All three approaches are limited to the application
of the standard fuzzy negation in order to generate a fuzzy
dilation from a given fuzzy erosion. Figure 2 displays these
approaches from top to bottom, arranging them in the order
from the most general one to the most specific one. Bandler
and Kohout allow for any type of Inf-I inclusion measure.
Kitainik only considers Inf-IKT inclusion measures where
IKT is contrapositive with respect to NS . Zadeh’s inclusion

measure IZ belongs to the class of Kitainik inclusion mea-
sures.

The approach of Bloch and Maître also represents a spe-
cial case of the general approach based on negation. Bloch
and Maître first define a fuzzy Sup-CF dilation in terms of
Eq. 73 subject to the condition that CF is a t-norm. The cor-
responding fuzzy erosion is then defined as the NF -dual of
the fuzzy dilation where NF is an arbitrary fuzzy negation.
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Obviously, we have a particular case of Bandler & Kohout’s
approach if we impose NF = NS and this subset of Bandler
& Kohout’s approaches belongs to the class of Kitainik ap-
proaches because every t-norm represents a fuzzy conjunc-
tion. The restriction of Bloch and Maître’s approach to NS

includes (EL,DL) as well as the approach of Minkowski ad-
dition that coincides with (EK,DM) because IL is the NS -
dual of the t-norm CL and IK is the NS -dual of the t-norm
CM .

The approach of Sinha and Dougherty employs an Inf-
IGL inclusion measure to construct a fuzzy erosion. Since
IGL is contra-positive, this approach can be embedded into
Kitainik’s framework. The Sinha-Dougherty approach com-
prises (EL,DL) since IL is contrapositive and CL is the NS -
dual of IL.

Acknowledgements This work was supported in part by CNPq un-
der grant numbers 303362/2003-0, 306040/2006-9, and 142196/03-7
and FAPESP under grant number 2006/06818-1.

Appendix: Some Mathematical Notations

L A general complete lattice
ν A general negation
�ν The negation or the dual of � with re-

spect to ν

ε and δ General erosions and dilations on com-
plete lattices

EB and DB Binary erosion and dilation
G Either R̄ = R∪{+∞,−∞} or Z̄ = Z∪

{+∞,−∞}
G

X The set of images X → G

ā The reflection of a around the origin
ay The translation of a by y ∈ X
ET and DT Threshold erosion and dilation
EL and DL Level set erosion and dilation
EU and DU Umbra erosion and dilation
F(X) = [0,1]X The class of fuzzy sets in X
CF and IF Fuzzy conjunctions and fuzzy implica-

tions
EF Fuzzy erosion based on a fuzzy inclu-

sion measure. Given a particular fuzzy
Inf-I erosion, we indicate the underly-
ing type of implication by means of a
subscript

DF Fuzzy dilation based on a fuzzy in-
tersection measure. Given a particu-
lar fuzzy Sup-C dilation, we indicate
the underlying type of conjunction by
means of a subscript

EDB and DDB De Baets’ fuzzy erosion and dilation
ESD and DSD Sinha and Dougerty approach of fuzzy

erosion and dilation

EθL and DθL Fuzzy erosion and dilation isomorphic
to EL and DL

EθU and DθU Fuzzy erosion and dilation isomorphic
to EU and DU

ERL and DRL Ronse’s approach to fuzzy erosion and
dilation based on EL and DL

ERU and DRU Ronse’s approach to fuzzy erosion and
dilation based on EU and DU

ERU1 and DRU1 Modified versions of ERU and DRU
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