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Abstract In connective segmentation (Serra in J. Math.
Imaging Vis. 24(1):83–130, 2006), each image determines
subsets of the space on which it is “homogeneous”, in such a
way that this family of subsets always constitutes a connec-
tion (connectivity class); then the segmentation of the image
is the partition of space into its connected components ac-
cording to that connection.

Several concrete examples of connective segmentations
or of connections on sets, indicate that the space covering
requirement of the partition should be relaxed. Furthermore,
morphological operations on partitions require the consider-
ation of wider framework.

We study thus partial partitions (families of mutually
disjoint non-void subsets of the space) and partial connec-
tions (where connected components of a set are mutually
disjoint but do not necessarily cover the set). We describe
some methods for generating partial connections. We inves-
tigate the links between the two lattices of partial connec-
tions and of partial partitions. We generalize Serra’s char-
acterization of connective segmentation and discuss its rel-
evance. Finally we give some ideas on how the theory of
partial connections could lead to improved segmentation al-
gorithms.
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1 Motivation

The algebraic formalization of the concept of connectivity
was given by Serra [17]. Given a space E, a connection on
P(E) is a family C ⊆ P(E) such that (a) ∅ ∈ C, (b) ∀p ∈ E,
{p} ∈ C, and (c) ∀B ⊆ C,

⋂
B �= ∅ ⇒ ⋃

B ∈ C. The ele-
ments of C are then said to be connected. Several authors
[4, 9, 12] call C a connectivity class. The family of topo-
logically connected subsets of a topological space, the one
of arc-connected subsets of Rn, and the one of connected
subsets of a graph, are connections. Hence Serra’s definition
unifies previous notions given in topology and graph theory.

Given a connection C on P(E), a non-empty subset X of
E is partitioned into its connected components according to
C, that is, the maximal subsets of X that belong to C. For
the usual topological or graph-theoretical connectivity, this
represents an elementary form of segmentation of X into its
constituent parts. However more elaborate connections have
been defined in [9, 12, 17], which give more meaningful seg-
mentations of a shape. Let us give an example.

Let E = Rn or Zn, provided with a standard connection
C0 (the topological or arc connectivity for Rn, the digital
connectivity based on the (2n) or (3n − 1)-adjacency for
Zn). Choose a non-void structuring element B ∈ C0. Let the
family CB ⊆ P(E) contain all Z ∈ C0 such that Z ◦ B = Z

(i.e., all connected unions of translates of B), plus all single-
tons in E. Then CB is a connection on P(E) [12]. For any
X ∈ P(E), the connected components of X according to CB

are the connected components of X ◦B according to C0, and
the singletons of X \ (X ◦ B). We illustrate this in Fig. 1 for
the two-dimensional case.

The formalism of connections was extended to complete
lattices in [18], leading to an extensive analysis in [3, 14].
This new framework led to further approaches to segmenta-
tion, in particular in [19], where the jump segmentation was
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Fig. 1 Left: the structuring element B ∈ C0 is a disk. Right: the con-
nected components of the bowtie X according to CB are the two con-
nected components (in C0) of its opening X ◦ B (shown in grey) and
the singletons in the residual X \ (X ◦ B) (shown in black)

introduced. Then [23] introduced the theory of connective
segmentation. Consider a set V of values (that can be nu-
merical grey-levels, multivalued vectors, etc.). We assume a
“homogeneity” criterion that is modeled by a Boolean pred-
icate σ , associating to every function F : E → V and every
subset A ⊆ E a value σ [F,A] that can be 1 (if the criterion
is satisfied by F on A) or 0 (if the criterion is invalidated by
F on A). The criterion σ is said to be connective if for any
F : E → V , the set of all A ∈ P(E) such that σ [F,A] = 1
constitutes a connection CF

σ ; then the segmentation of F is
given by the partition of E into its connected components
according to CF

σ .
For example, assume that E is provided with a standard

connection C0. Define σ by σ [F,A] = 1 iff A ∈ C0 and F

has a constant value on A. Then the criterion σ is connective,
and the segmentation of F according to σ is the partition of
E into the maximal connected sets (in C0) on which F has a
constant value, in other words the flat zones of F .

Several connective segmentation algorithms are based on
first generating some subsets of E called seeds, then ag-
glomerating neighbouring or overlapping seeds into mutu-
ally non-adjacent connected regions. This contrasts with wa-
tershed segmentation [24], where the seeds are the mark-
ers, which are progressively grown into connected regions,
but where two neighbouring regions originating from differ-
ent markers must be separated by a watershed line. Without
a good choice of markers, the watershed tends to produce
over-segmentation, a problem that can be avoided by con-
nective segmentation.

Let us give some examples of connective segmentations,
and describe the associated connective criteria. We assume
a space E provided with a standard connection C0.

In the simplest methods, every F : E → V determines a
subset SF of E comprising all points where F satisfies some
property; then the connected components of SF (according
to C0) will be the regions of the segmentation. Now the resid-
ual RF = E \ SF will make the boundaries separating the
regions. Thus we have a criterion σ where σ [F,A] = 1 if
either A ∈ C0 and A ⊆ SF , or A is a singleton. Then this
criterion is connective, and the connected components of E

according to CF
σ are indeed the connected components of

SF (i.e., the regions) and the singletons included in RF (i.e.,

the boundary singletons). Here we have no seeds, or rather
all singletons in SF constitute seeds, that are aggregated by
connectivity in C0.

We describe two examples for SF . In thresholding, one
selects an interval U ⊂ V ; then for F : E → V , let SF =
{p ∈ E | F(p) ∈ U} be the threshold set of F . In the regional
Lipschitz segmentation [23], to every point p ∈ E one asso-
ciates a neighbourhood B(p) (for example, in Rn, the open
ball of radius r about p); then for F : E → V , let SF be the
set of p ∈ E such that F is Lipschitz on B(p).

There are more elaborated approaches where one defines
non-singleton seeds. The best example is the jump segmen-
tation introduced in [19] and analysed in [23]. We follow
the precise description given in [15]. This method assumes
that the set V of values is an interval in Z, and requires the
choice of an integer parameter k > 0, called the jump con-
stant. Recall that a regional minimum of F is some M ∈ C0

such that for some m ∈ V , all p ∈ M satisfy F(p) = m, but
for any N ∈ C0 strictly greater than M (N ⊃ M), there is
some q ∈ N with F(q) > m; then m is the level of M . For
each m ∈ V , let Mm be the set of regional minima of level m,
and let B(m) be the set of points having their level between
m and m+k −1: B(m) = {p ∈ E | m ≤ F(p) < m+k}. For
M ∈ Mm, we have M ∈ C0 and M ⊆ B(m); let S(M) be the
connected component (according to C0) of B(m) that con-
tains M . Then the S(M) (M ∈ Mm, m ∈ V ) are the seeds
of the segmentation, and the final regions are the maximal
connected unions of seeds, in other words the connected
components (according to C0) of SF = ⋃{S(M) | M ∈ Mm,
m ∈ V }. The residual set RF = E \SF separates the regions,
it can be considered as a boundary, but it can be thick.

Let us describe the corresponding connection. For any
m ∈ V and M ∈ Mm, we will consider as seed not only
S(M), but also every A ∈ C0 such that A ⊆ B(m) and
A ∩ M �= ∅; note that A ⊆ S(M) because S(M) is the con-
nected component of B(m) containing M . Then the family
J k

F comprising all connected unions of seeds and all single-
tons of E, is a connection called the k-jump connection. It
corresponds to the connective criterion of the jump segmen-
tation: indeed, the connected components of E according to
J k

F are the connected components of SF (according to C0)
and the singletons of RF , in other words the regions and the
boundary singletons. We illustrate J k

F in Fig. 2.
We remark that in the above examples of segmentations

(flat zones, thresholding, regional Lipschitz and jump), we
determined not only the regions (the connected components
according to the connective criterion), but the whole connec-
tion corresponding to the connective criterion. This becomes
useful if one wants to segment an image by a Boolean con-
junction σ1 ∧ · · · ∧ σn of connective criteria σ1, . . . , σn, for
example: a jump for both the function and its negative, a
jump limited to points with Lipschitz neighbourhoods, etc.
Indeed this conjunctive criterion will be connective, since
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Fig. 2 Top left: we represent a minimum M as a hatched ellipse, and
the corresponding S(M) as a grey ellipse. Bottom right: several over-
lapping S(M). The thick black line is a connected union of connected
segments, each one included in some S(M) and hitting M ; therefore it
belongs to J k

F

Fig. 3 Let E = Z2 with C0 being given by the 4-connectivity. Top left:
the vertical segment A and the horizontal segment B . Let CA be the
connection consisting of all singletons and all 4-connected unions of
translates of A, and define similarly CB . Top right: the partition of a
set X ⊆ E into its 2 connected components according to CA. Bottom
left: the partition of X into its 2 connected components according to
CB . Bottom right: the partition of X into its 4 connected components
according to CA ∩CB ; the two big components (shown in dark and light
grey) belong to the same connected component according to CA and to
CB , hence their separation is not determined by the two partitions, but
by the two connections

CF
σ1∧···∧σn

= CF
σ1

∩ · · · ∩ CF
σn

is an intersection of connec-
tions, hence a connection [12]. Now the partition of E into
its connected components according to CF

σ1
∩ · · · ∩CF

σn
is not

determined by its partitions into its connected components
according to CF

σ1
, . . . , CF

σn
respectively, it requires the knowl-

edge of the connections CF
σ1

, . . . , CF
σn

[23], see Fig. 3.
It is also possible to combine disjunctively connective

criteria σ1, . . . , σn. However the Boolean disjunction σ1 ∨
· · ·∨σn will usually not be connective, because CF

σ1∨···∨σn
=

CF
σ1

∪ · · · ∪ CF
σn

is in general not a connection. However
CF

σ1
∪ · · · ∪ CF

σn
generates a connection Con(CF

σ1
∪ · · · ∪ CF

σn
),

namely the least connection containing it [12], and it cor-
responds thus to the least connective criterion majorating
σ1 ∨ · · · ∨ σn, that we write con(σ1 ∨ · · · ∨ σn). Here the
segmentation according to con(σ1 ∨ · · · ∨ σn) is easily ob-

tained from those according to σ1, . . . , σn, we have only to
agglomerate the corresponding classes whenever they over-
lap. More precisely, the partition of E into its connected
components according to Con(CF

σ1
∪ · · · ∪ CF

σn
) is the supre-

mum (in the lattice of partitions) of its partitions into its con-
nected components according to CF

σ1
, . . . , CF

σn
respectively

(see Sect. 2.4).
In our first example (the segmentation by flat zones), the

regions constitute a partition of the space E, there is no
need of boundaries to separate them. In all other examples
(thresholding, regional Lipschitz and jump), we constructed
a subset SF of E by agglomerating either points with a re-
quired property (in thresholding and regional Lipschitz seg-
mentations), or seeds (in jump segmentation), and the re-
gions were the connected components (according to the ini-
tial connection C0) of SF . We had thus a residual RF =
E \ SF separating the regions; this set is necessary, other-
wise our construction would fuse neighbouring regions. In
the figures of [23], SF was shown in white and RF in black,
illustrating the notion that RF consists of a boundary (some-
times thick) between regions. Note that RF can also contain
edges that are not closed and do not separate regions (e.g.,
a crack in the middle of a wall). Now in the correspond-
ing connection, we take not only some connected subsets of
SF , but also all singletons in RF . The inclusion of single-
tons is done in order to satisfy the axiom that a connection
contains all singletons. But then this induces a loss of in-
formation, namely, it becomes impossible to distinguish a
region reduced to a single point (in SF ) from a singleton in
the residual RF .

We can thus broaden the notion of a connection by re-
moving the axiom that all singletons are connected. We de-
fine thus a partial connection as a family C ⊆ P(E) such
that ∅ ∈ C and ∀B ⊆ C,

⋂
B �= ∅ ⇒ ⋃

B ∈ C. Then the
connected components (according to C) of a set X will still
be non-empty and mutually disjoint, but they will not nec-
essarily cover X; in other words they constitute what we
call a partial partition of X. A non-empty set X can even
have no connected component at all. This idea was first pro-
posed in [21], under the name of quasi-connection. Thus in
the thresholding and regional Lipschitz segmentations, the
partial connection would be C0 ∩ P(SF ) (i.e., consisting of
all subsets of SF that are connected for C0), while in the
jump segmentation, the partial connection would consist of
all unions of seeds that are connected for C0. One can make
the same reasoning with the connection illustrated in Fig. 1
(see also Fig. 3): the partial connection C∗

B consists of all
Z ∈ C0 such that Z ◦ B = Z (i.e., all connected unions of
translates of B), so the connected components of a set X

according to C∗
B are the connected components of X ◦ B ac-

cording to C0, while X \ (X ◦ B) will be the residual.
We can thus consider a partial segmentation of a func-

tion, that gives a partial partition of E according to the par-
tial connection associated to a partially connective criterion.
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This can be useful in practice. Indeed, in region-based seg-
mentation methods like the watershed, the only edges that
are preserved are those that separate distinct regions; in par-
ticular, edges that are not closed will usually disappear. One
might want to preserve unclosed edges, so that they might
be closed with some post-processing. Furthermore, there is
no guarantee that the watershed will always follow the most
salient edges; thus one might decide to constrain the wa-
tershed not only by initial markers for the regions (as cus-
tomary [24]), but also by markers for the edges (V. Agnus,
personal communication).

From a theoretical point of view, partial partitions model
the progressive building of a segmentation, for instance by
region growing: until all regions have grown into the final
segmentation classes, we have only a partial partition.

In [21], Serra applied the idea of a partial connection for
the sequential partitioning of a set (or for segmentation of a
function). Given A ∈ P(E),

1. construct the partial partition {Ci | i ∈ I } of connected
components of A according to a partial connection C;

2. make a partition {Dj | j ∈ J } of the residual ρ(A) =
A \ ⋃

i∈I Ci ; for example the Dj (j ∈ J ) can be the con-
nected components of ρ(A) according to a connection D.

This gives a final partition {Ci | i ∈ I } ∪ {Dj | j ∈ J } of A.
Note that step 2 can be obtained by the connected compo-
nents of a connection, but also by a recursive application
of the sequence. Thus we can make a partial partition of
A by the connected components according to a partial con-
nection C0, leading to a residual ρ1(A); then the connected
components of ρ1(A) according to a partial connection C1

will make a partial partition of ρ1(A), leading to a second
residual ρ2(A), and so on; finally, the n-th residual ρn(A)

is partitioned into its connected component according to a
connection (not partial) Cn.

In the example of Fig. 1, the connected components of X

according to the partial connection C∗
B (consisting of all con-

nected unions of translates of B), are the connected compo-
nents (according to C0) of X ◦ B , this makes the first partial
partition; then the residual X \ (X ◦ B) is partitioned into its
connected component according to C0. As shown in Fig. 4,
the classes (or blocks [11]) of the resulting partition can be
regrouped by building the influence zones and the SKIZ [24]
in their adjacency graph, with markers being the blocks of
the first partial partition.

Since the jump segmentation gives often a thick residual,
it is generally used sequentially as explained above. The first
jump gives the set SF whose connected components are the
first regions. Then jump segmentation is applied to the space
E1 = E \ SF and the function F1 that is the restriction of F

to E1, leading to the set SF1 whose connected components
are the second regions. Next take E2 = E1 \ SF1 and F2 the
restriction of F to E2, etc. Finally we obtain a partial parti-
tion made of the connected components of SF ,SF1, SF2, . . .

Fig. 4 Top left: the bowtie X is partitioned into its 2 connected com-
ponents according to C∗

B (in grey), and the 5 connected components
(according to C0) of the residual X \ (X ◦ B). Top right: the adjacency
graph of the 7 blocks of the partition. Bottom left: in this graph, choose
the 2 marker nodes (in grey) corresponding to the 2 blocks of the par-
tial partition induced by C∗

B ; the ellipses give the set of nodes in the
influence zones of these markers, and the remaining node is the SKIZ.
Bottom right: fusing the blocks in the respective influence zones gives
a final segmentation into 3 blocks

Fig. 5 Three successive jumps of a function Z → Z, and the associ-
ated regions. The neighbouring regions in the 3 successive jumps are
linked by vertical dotted lines, they could be aggregated

separately, but we can also take the connected components
of SF ∪SF1 ∪SF2 · · · , or build influence zones of the compo-
nents in SF , as in Fig. 4. We show in Fig. 5 the construction
of SF ,SF1, SF2 for a one-dimensional function.

The above discussion shows that connections and par-
tial connections are useful tools for segmentation. Now seg-
mentation can also be improved by applying morphologi-
cal operators to partitions. Indeed, segmentation is gener-
ally seen as the final step of low-level image analysis; thus
when segmentation gives an unsatisfactory result, one usu-
ally returns to the previous image processing stage, where a
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better filtering is performed, before applying the same seg-
mentation algorithm. An alternative approach is to consider
the segmentation partition as a pictorial object that can it-
self be processed and filtered. In a work on the segmenta-
tion of colour images [20], Serra derived from an erosion ε

on P(E) (such that ε(∅) = ∅) an erosion ε′ on partitions: in
a partition, erode all blocks by ε, keep the non-void eroded
blocks, and constitute into singleton blocks {p} all points
p ∈ E which do not belong to an eroded block. In [13],
the lower adjoint dilation δ′ of ε′ was defined: in a parti-
tion, apply the lower adjoint δ of ε to every non-singleton
block, then recursively fuse all overlapping dilated blocks.
The correct understanding of these two operators relies on
the framework of partial partitions. Therefore the study of
morphology on partial partitions is a promising topic in seg-
mentation.

This paper is devoted to the study of the more abstract as-
pect of connective segmentation, namely the theory of par-
tial partitions, partial connections, the lattices they make,
and the relations between the two. The rest of this section
recalls some mathematical prerequisites. Section 2 presents
the various formalisms for partial partitions and partial con-
nections, and it describes the two lattices of partial parti-
tions and of partial connections. Section 3 describes several
methods for constructing a partial connection from another
partial connection and an operator. Section 4 generalizes the
main theorem of [23] and discusses its relevance to segmen-
tation. Finally Sect. 5 concludes. We give as appendix a table
of our notation.

Some results from Sects. 2 and 4 have been stated without
proof in [15].

The study of morphological and geodesic operators on
partial partitions will be the topic of further papers by the
author. Furthermore, a collaborative research will be under-
taken on connective segmentation criteria and algorithms,
and on image filtering adapted to this framework, cf. [25].

1.1 Mathematical Prerequisites

We assume that the reader has a basic knowledge of the
lattice-theoretic framework for morphological operations, in
particular increasing operators, adjunctions, dilations, ero-
sions, openings and closings, see for example [2, 8]. Stan-
dard references in lattice theory are [1, 6, 7].

Given a poset (partially ordered set P ), a directed subset
of P is a non-empty D ⊆ P such that every finite subset X

of D has an upper bound (is majorated) in D; equivalently,
every pair {p,q} ⊆ D has an upper bound in D: ∀p,q ∈ D,
∃ r ∈ D, p,q ≤ r [6].

Let L be a complete lattice with least and greatest ele-
ments 0 and 1. A sup-generating family of L is a subset S

of L such that every element of L is the supremum of some
elements of S; in fact, ∀x ∈ L, x = ∨{s ∈ S | s ≤ x}. An

element a of L is called an atom if 0 < a but there is no
b ∈ L with 0 < b < a. We say that L is atomic if the family
of atoms of L is sup-generating.

A lower set in L is a subset A of L such that for x ∈ A

and y ∈ L with y ≤ x, we must have y ∈ A; an upper set
B satisfies the dual condition: for x ∈ B and y ∈ L with
y ≥ x, we must have y ∈ B . In particular, for a fixed x0 ∈ L,
{y ∈ L | y ≥ x0} is an upper set, and also a complete lattice
for the order ≤ of L, having the same non-empty supremum
and infimum operations as in L, as well as the same great-
est element (or empty infimum) 1 as in L; however its least
element (or empty supremum) will be x0 instead of 0.

Given two sets A and B , we will say that (α,β) : A � B

if α is a mapping A → B and β is mapping B → A. In
particular, given two complete lattices L and M , we will
consider adjunctions (ε, δ) : L � M , that is for ε : L → M

and δ : M → L.
The invariance domain of an operator ψ : L → L is the

set Inv(ψ) = {x ∈ L | ψ(x) = x}.
A Moore family [2] is a subset M of L that is closed

under arbitrary infima: ∀X ⊆ M ,
∧

X ∈ M ; in particular,
1 = ∧∅ ∈ M ; equivalently, it is the invariance domain of
a closing. A dual Moore family is closed under arbitrary
suprema, in particular it contains 0; it is the invariance do-
main of an opening. A Moore family or dual Moore family
is itself a complete lattice for the order ≤.

A classic example of dual Moore family is in P(Rn) the
family Br of all invariants of the opening by a disk of radius
r > 0, in other words all subsets of Rn that are unions of
such disks. This family Br decreases with r , and the union
of all Br for r > 0 is the family of open sets, also a dual
Moore family.

Given a lower set A, A∪{1} is a Moore family, and given
an upper set B , B ∪ {0} is a dual Moore family.

An intersection of Moore families is a Moore family.
Thus the set of Moore families of L is a Moore family of
P(L). Similarly, the family of dual Moore families of L is
a Moore family of P(L). They constitute thus complete lat-
tices for the inclusion order.

The set of openings on L is a dual Moore family of the
lattice of operators on L, it constitutes thus a complete lat-
tice. The map γ �→ Inv(γ ) is an isomorphism between the
lattice of openings and the lattice of dual Moore families.

Throughout the paper, E will designate our “space” on
which we will consider partial partitions and connections,
and its elements will be called “points”; in fact E is an ar-
bitrary set of size at least 2, although in practice E will be
the Euclidean space Rn, the digital space Zn, or a bounded
interval in such spaces.
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2 Partial Partitions and Connections

Partitions can be formalized in 3 ways: in terms of an equiv-
alence relation, of a family of blocks, or of the map associat-
ing to each point its class. Connections are given by 2 equiv-
alent set of axioms [17]: those for the family of connected
sets and those for the openings giving the connected compo-
nents. We extend these formalisms to partial partitions and
partial connections. We describe also the lattices that they
make, and exhibit a link between the supremum operations
for partial connections and for partial partitions.

2.1 Partial Partitions

An equivalence on a set E is a binary relation R on E that
is reflexive (∀p ∈ E, pRp), symmetric (∀p,q ∈ E, pRq ⇔
qRp) and transitive (∀p,q, r ∈ E, [pRq , qRr] ⇒ pRr). A
partition of E is a family π of subsets of E that are non-
empty (∅ /∈ π ), mutually disjoint (∀X,Y ∈ π , X �= Y ⇒
X ∩Y = ∅), and whose union covers E (

⋃
π = E). Equiva-

lently, every point of E belongs to exactly one member of π .
In order to generalize these notions to their partial versions,
we need to introduce the support:

Definition 1 The support

1. of a binary relation R on E is the subset supp(R) of E

comprising all p ∈ E such that there is some q ∈ E with
pRq or qRp;

2. of a family B of subsets of E is the subset supp(B) of E

comprising all points covered by at least one element of
B, in other words supp(B) = ⋃

B.

In order to define a partial equivalence, we drop the ax-
iom of reflexivity of the relation, and for the partial partition,
we drop the axiom of the covering of the set by the blocks:

Definition 2

1. A partial equivalence on E is a binary relation on E that
is symmetric and transitive.

2. A partial partition of E is a family π of subsets of E that
are non-empty and mutually disjoint. Equivalently, π is a
family of subsets of E such that every point of E belongs
to at most one member of π . Every member of a partial
partition is called a block [11]; given a point belonging to
a block, that block is called the class of that point.

Now partiality links with the support:

Lemma 3

1. A binary relation on E is a partial equivalence iff it forms
an equivalence on its support.

2. A family of subsets of E is a partial partition iff it consti-
tutes a partition of its support.

Proof Item 2 is trivial, we prove only item 1. Since the sym-
metry and transitivity conditions are void for points outside
the support, a relation R is symmetric and transitive on E iff
it is symmetric and transitive on supp(R). Let R be symmet-
ric and transitive. For any p ∈ supp(R), there is some q ∈ E

with pRq or qRp; by symmetry we have then both pRq

and qRp, and by transitivity we deduce that pRp; hence R

is reflexive on its support. �

Then the well-known bijection between equivalence re-
lations and partitions extends to their partial counterparts:

Proposition 4 A one-to-one correspondence exists between
partial partitions of E and partial equivalences on E, asso-
ciating to each partial partition π of E the partial equiva-
lence PE(π) on E given by

∀p,q ∈ E, p PE(π) q ⇐⇒ ∃C ∈ π, p,q ∈ C. (1)

Equivalently, π consists of the equivalence classes of the
equivalence induced by PE(π) on its support. We have then
supp(PE(π)) = supp(π).

We now turn to the third formalism for a partial partition,
in terms of the map associating to each point its class. Con-
sider a map cl : E → P(E), and the following properties
that it can satisfy:

(P1a) For any p ∈ E, p ∈ cl(p).
(P1b) For any p ∈ E, cl(p) = ∅ or p ∈ cl(p).
(P2a) For any p,q ∈ E, q ∈ cl(p) ⇒ cl(p) = cl(q).
(P2b) For any p,q ∈ E, cl(p)∩ cl(q) �= ∅ ⇒ cl(p) = cl(q).

Lemma 5 (P1a) implies (P1b), (P2a) implies (P2b), and if
(P1a) holds, then (P2a) and (P2b) are equivalent.

Proof It is obvious that (P1a) implies (P1b). Suppose that
(P2a) holds, and let p,q ∈ E with cl(p) ∩ cl(q) �= ∅; for r ∈
cl(p)∩cl(q), (P2a) gives cl(p) = cl(r) and cl(q) = cl(r), so
cl(p) = cl(q); thus (P2b) holds. Suppose finally that (P1a)
and (P2b) hold, let us show that (P2a) follows: given p,q ∈
E with q ∈ cl(p), by (P1a) we have q ∈ cl(q), so q ∈ cl(p)∩
cl(q), thus cl(p)∩ cl(q) �= ∅, hence by (P2b) we deduce that
cl(p) = cl(q). �

Definition 6 A map cl : E →P(E) is called

1. a partial partition class map on E if it satisfies (P1b) and
(P2a);

2. a partition class map on E if it satisfies (P1a) and (P2a)
(or equivalently: (P1a) and (P2b)).
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Theorem 7 There is a one-to-one correspondence between
partial partitions on E and partial partition class maps on
E, under which:

– To every partial partition π is associated the partial par-
tition class map Clπ given by

∀p ∈ E, Clπ (p) =
⎧
⎨

⎩

∅ if p /∈ supp(π);
C for p ∈ C ∈ π,

if p ∈ supp(π);
(2)

this C being unique.
– To every partial partition class map cl is associated the

partial partition

PP(cl) = {cl(p) | p ∈ E, cl(p) �= ∅}. (3)

Furthermore, it induces a one-to-one correspondence be-
tween partitions on E and partition class maps on E.

Proof We have to show that:

– for a partial partition π : (a) Clπ is a partial partition class
map, (b) PP(Clπ ) = π , and (c) if π is a partition, then Clπ
is a partition class map;

– for a partial partition class map cl: (d) PP(cl) is a partial
partition, (e) ClPP(cl) = cl, and (f) if cl is a partition class
map, then PP(cl) is a partition.

(a) By (2) we have Clπ (p) = ∅ for p /∈ supp(π), and p ∈
C = Clπ (p) for p ∈ supp(π); thus Clπ satisfies (P1b).
Let p,q ∈ E with q ∈ Clπ (p); then Clπ (p) �= ∅, so by
(2) we have Clπ (p) = C for the unique C such that
p ∈ C ∈ π ; but then q ∈ C ∈ π and (2) again gives
Clπ (q) = C, hence Clπ (p) = Clπ (q); so Clπ satisfies
(P2a). Therefore Clπ is a partial partition class map.

(b) Here PP(Clπ ) = {Clπ (p) | p ∈ E, Clπ (p) �= ∅}. By
(2), Clπ (p) �= ∅ means that Clπ (p) = C with C ∈ π ;
thus PP(Clπ ) ⊆ π . Conversely, for any C ∈ π , C �= ∅,
and taking p ∈ C, (2) again gives Clπ (p) = C with
Clπ (p) �= ∅; thus π ⊆ PP(Clπ ). The equality PP(Clπ ) =
π follows.

(c) If π is a partition, then supp(π) = E, so in (2) the
case p /∈ supp(π) may not occur, hence we always have
Clπ (p) = C for p ∈ C; thus Clπ satisfies (P1a) and is a
partition class map.

(d) As cl satisfies (P2a), by Lemma 5 it satisfies (P2b):
cl(p) ∩ cl(q) �= ∅ ⇒ cl(p) = cl(q). Thus the elements
of PP(cl) = {cl(p) | p ∈ E, cl(p) �= ∅} are disjoint; they
are non-empty by definition, so PP(cl) is a partial parti-
tion.

(e) By (3), supp(PP(cl)) = ⋃{cl(p) | p ∈ E, cl(p) �= ∅}, so
q ∈ supp(PP(cl)) iff ∃p ∈ E with q ∈ cl(p). Then (2,3)
gives

∀q ∈ E, ClPP(cl)(q) =
{∅ if ∀p ∈ E, q /∈ cl(p),

cl(p) for q ∈ cl(p), p ∈ E,

this cl(p) being unique. In the first case where ∀p ∈ E,
q /∈ cl(p), we have q /∈ cl(q), so by (P1b) we have
cl(q) = ∅. In the second case where q ∈ cl(p) for some
p ∈ E, (P2a) implies that cl(p) = cl(q). Thus in both
cases ClPP(cl)(q) = cl(q) for all q ∈ E, so ClPP(cl) = cl.

(f) If cl is a partition class map, then by (P1a) for every p ∈
E we have p ∈ cl(p). By (3), supp(PP(cl)) = ⋃{cl(p) |
p ∈ E, cl(p) �= ∅} = E, so PP(cl) covers E and is a
partition. �

Clπ is called the class map of π . Combining (2) with (1),
we get for a partial partition π and the corresponding partial
equivalence relation PE(π):

∀p,q ∈ E, p PE(π) q ⇐⇒ q ∈ Clπ (p). (4)

Remark 8 It is customary to use axioms (P1a) and (P2b) for
the class map of a partition; indeed (P1a) means that the non-
void blocks cover E, and (P2b) that they are mutually dis-
joint. However, in conjunction with the weaker (P1b), (P2b)
becomes insufficient, (P2a) is required for a partial partition,
as shows the following example.

Let E be a finite subset of Z, of size > 3. To a partition
π of E we associate the map cl defined as follows:

∀C ∈ π, cl(minC) = cl(maxC) = C,

cl(p) = ∅ for p ∈ C with minC < p < maxC.

In other words, for p ∈ E, cl(p) = C �= ∅ iff C ∈ π and p

is either the leftmost or the rightmost point of C. Then cl
satisfies (P1b) and (P2b), but not (P2a), and (3) gives π =
{cl(p) | p ∈ E, cl(p) �= ∅}. However cl �= Clπ , so cl is not a
partial partition class map.

2.2 The Lattice of Partial Partitions

We will describe here the complete lattice of partial parti-
tions according to the 3 views given above: partial equiva-
lences, families of disjoint non-void sets, and class maps.

Every binary relation R on E can be identified with
the set of ordered pairs (x, y) ∈ E2 such that xRy. Thus
the family of binary relations becomes the complete lattice
P(E2), ordered by inclusion and with the supremum and
infimum operations given by union and intersection:

R ⊆ S : pRq �⇒ p S q,

R =
⋃

i∈I

Ri : pRq ⇐⇒ ∃ i ∈ I,p Ri q,

R =
⋂

i∈I

Ri : pRq ⇐⇒ ∀i ∈ I,p Ri q.

Let us write E∗(E) for the set of partial equivalences on E.
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Proposition 9 The set E∗(E) of partial equivalences on E

is a Moore family of P(E2). It is thus a complete lattice for
the inclusion order, where the infimum and supremum of a
family of partial equivalences is given respectively by their
intersection and the transitive closure of their union:

∧

i∈I

Ri =
⋂

i∈I

Ri and
∨

i∈I

Ri =
∞⋃

n=1

(⋃

i∈I

Ri

)n

, (5)

with

supp

(∧

i∈I

Ri

)

=
⋂

i∈I

supp(Ri)

and (6)

supp

(∨

i∈I

Ri

)

=
⋃

i∈I

supp(Ri).

The least and greatest partial equivalences are ∅ and E2,
with supp(∅) = ∅ and supp(E2) = E.

Proof Clearly the operation of intersection of relations pre-
serves symmetry and transitivity; moreover the greatest re-
lation E2 and the least one ∅ are both symmetric and tran-
sitive. Hence partial equivalences constitute a Moore fam-
ily with ∅ and E2 as universal bounds. They form thus a
complete lattice where the infimum is given by the intersec-
tion. Now the supremum of a family {Ri | i ∈ I } of partial
equivalences is the least partial equivalence containing each
Ri , in other words the partial equivalence generated by their
union

⋃
i∈I Ri . But the operations of union and transitive

closure R �→ ⋃∞
n=1 Rn both preserve symmetry, so the tran-

sitive closure
⋃∞

n=1(
⋃

i∈I Ri)
n of the union

⋃
i∈I Ri will be

symmetric, it is thus the least partial equivalence (symmet-
ric and transitive relation) containing all Ri , in other words
their supremum.

By item 1 of Lemma 3, a partial equivalence R satisfies
supp(R) = {p ∈ E | (p,p) ∈ R}. Thus p ∈ supp(

∧
i∈I Ri)

iff (p,p) ∈ ∧
i∈I Ri = ⋂

i∈I Ri , iff for all i ∈ I we have
(p,p) ∈ Ri , that is p ∈ supp(Ri); hence supp(

∧
i∈I Ri) =

⋂
i∈I supp(Ri).
The support is compatible with the operations of union

of relations and n-th power of a relation: supp(
⋃

i∈I Ri) =
⋃

i∈I supp(Ri) and supp(Rn) = supp(R). Hence

supp

(∨

i∈I

Ri

)

= supp

( ∞⋃

n=1

(⋃

i∈I

Ri

)n)

=
∞⋃

n=1

supp

((⋃

i∈I

Ri

)n)

=
∞⋃

n=1

supp

(⋃

i∈I

Ri

)

= supp

(⋃

i∈I

Ri

)

=
⋃

i∈I

supp(Ri).

It is also obvious that supp(∅) = ∅ and supp(E2) = E. �

Let us now turn to partial partitions. Write �(E) for the
set of all partitions of E, and �∗(E) for the set of all partial
partitions of E. Since a partial partition is a partition of its
support, we have �∗(E) = ⋃

A∈P(E) �(A).
�(∅) has a unique element, the empty partition having no

block. Formally there is a unique empty set in mathematics,
however we will distinguish its two roles as set of points and
as partial partition. Hence we write ∅ for the empty subset
of E (thus ∅ ∈ P(E)), and Ø for the empty partial partition
on E, thus Ø ∈ �∗(E) and �(∅) = {Ø}.

For A ∈ P(E) with A �= ∅, let 0A be the partition of A

into its singletons, and 1A the partition of A into a single
block:

0A = {{p} | p ∈ A
}

and 1A = {A}. (7)

Following [11], we call 0A the identity partition of A and 1A

the universal partition of A. By extension, for A = ∅, we set
0∅ = 1∅ = Ø.

The family of partitions of E is known to be ordered by
refinement and to constitute a complete lattice [11, 16, 19,
23]. We can extend this order to partial partitions:

Definition 10 Given π1,π2 ∈ �∗(E), we say that π1 is finer
than π2, or that π2 is coarser than π1, and write π1 ≤ π2 (or
π2 ≥ π1), iff every block of π1 is included in a block of π2:

π1 ≤ π2 ⇐⇒ ∀C1 ∈ π1, ∃C2 ∈ π2, C1 ⊆ C2.

This relation on �∗(E) is called refinement.

Theorem 11 By the bijection between E∗(E) and �∗(E)

given in Proposition 4, the refinement relation on �∗(E)

corresponds to the inclusion order on E∗(E):

∀π1,π2 ∈ �∗(E), π1 ≤ π2 ⇐⇒ PE(π1) ⊆ PE(π2). (8)

Therefore (�∗(E),≤) is a complete lattice isomorphic to
(E∗(E),⊆). This order corresponds to the inclusion of class
maps:

∀π1,π2 ∈ �∗(E),

π1 ≤ π2 ⇐⇒ ∀p ∈ E, Clπ1(p) ⊆ Clπ2(p). (9)

Given a family {πi | i ∈ I } of partial partitions, the class
map of their infimum

∧
i∈I πi is given by intersection of the

respective class maps:

∀p ∈ E, Cl∧
i∈I πi

(p) =
⋂

i∈I

Clπi
(p). (10)

The class map of their supremum
∨

i∈I πi is given by chain-
ing class maps: for p,q ∈ E, q ∈ Cl∨

i∈I πi
(p) iff there is
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some integer n ≥ 1 and a sequence x0, . . . , xn in E with
x0 = p and xn = q , such that for each t = 1, . . . , n there
is some i(t) ∈ I with xt ∈ Clπi(t)

(xt−1). Furthermore,

supp

(∧

i∈I

πi

)

=
⋂

i∈I

supp(πi)

and

supp

(∨

i∈I

πi

)

=
⋃

i∈I

supp(πi).

(11)

The least and greatest partial partitions are Ø and 1E , with
supp(Ø) = ∅ and supp(1E) = E.

Proof For π1,π2 ∈ �∗(E), PE(π1) ⊆ PE(π2) means that
for any p,q ∈ E, p PE(π1) q ⇒ p PE(π2) q; by (4), this
is equivalent to q ∈ Clπ1(p) ⇒ q ∈ Clπ1(p); in other words,
PE(π1) ⊆ PE(π2) iff ∀p ∈ E we have Clπ1(p) ⊆ Clπ2(p).
By Theorem 7, π1 = {Clπ1(p) | p ∈ E, Clπ1(p) �= ∅},
and similarly for π2. If for all p ∈ E we have Clπ1(p) ⊆
Clπ2(p), then every non-void Clπ1(p) is included in a non-
void Clπ2(p), so π1 ≤ π2. Conversely, suppose that π1 ≤ π2

and let p ∈ E; if Clπ1(p) = ∅, then obviously Clπ1(p) ⊆
Clπ2(p); if Clπ1(p) �= ∅, then Clπ1(p) is a block of π1, so
it is contained in a block C2 of π2, hence p ∈ C2 and we
have C2 = Clπ2(p), thus Clπ1(p) ⊆ Clπ2(p). Thus we have
shown that

PE(π1) ⊆ PE(π2) ⇐⇒ (∀p ∈ E, Clπ1(p) ⊆ Clπ2(p))

⇐⇒ π1 ≤ π2,

and (8,9) hold. Therefore the two posets (�∗(E),≤) and
(E∗(E),⊆) are isomorphic, and as the latter is a complete
lattice, the same holds for the former.

Consider a family {πi | i ∈ I } ⊆ �∗(E). By the iso-
morphism and (5), PE(

∧
i∈I πi) = ∧

i∈I PE(πi) =
⋂

i∈I PE(πi). We apply (4): for p,q ∈ E, q ∈ Cl∧
i∈I πi

(p)

iff p PE(
∧

i∈I πi) q , that is, p [⋂i∈I PE(πi)] q , in other
words, ∀i ∈ I , p PE(πi) q , that is, q ∈ Clπi

(p). Thus
q ∈ Cl∧

i∈I πi
(p) iff q ∈ ⋂

i∈I Clπi
(p), and (10) holds. (Al-

ternately, we can show that the map p �→ ⋂
i∈I Clπi

(p) is a
partial partition class map.) Similarly,

PE

(∨

i∈I

πi

)

=
∨

i∈I

PE(πi) =
∞⋃

n=1

(⋃

i∈I

PE(πi)

)n

.

Then by (4) q ∈ Cl∨
i∈I πi

(p) iff p PE(
∨

i∈I πi) q , which
means that p [⋃∞

n=1(
⋃

i∈I PE(πi))
n] q , equivalently there

is some n ≥ 1 with p(
⋃

i∈I PE(πi))
nq , in other words there

is a sequence p = x0, . . . , xn = q with xt−1 (
⋃

i∈I PE(πi))

xt for t = 1, . . . , n, that is, for each t = 1, . . . , n there
is some i(t) ∈ I with xt−1 PE(πi(t)) xt , equivalently xt ∈
Clπi(t)

(xt−1).

Fig. 6 A block (shown as a rounded rectangle) of the supremum of
a family of partial partition is obtained by chaining blocks (shown as
ellipses) of these partitions

Now (11) follows by combining (6) with the identity
supp(PE(π)) = supp(π) in Proposition 4. Finally, it is ob-
vious that every π ∈ �∗(E) satisfies Ø ≤ π ≤ 1E , and that
supp(Ø) = ∅ and supp(1E) = E. �

Let us describe the infimum and supremum of a family
{πi | i ∈ I } of partial partitions, in terms of blocks. A block
of

∧
i∈I πi is of the form

⋂
i∈I β(i), where β is a choice

map associating to each i ∈ I a block β(i) ∈ πi , provided
that

⋂
i∈I β(i) �= ∅. A block of

∨
i∈I πi is any A ∈ P(E)

such that for any p,q ∈ A, there exist B0, . . . ,Bn ∈ ⋃
i∈I πi

(n ≥ 0) with p ∈ B0, q ∈ Bn and Bt−1 ∩ Bt �= ∅ for all
t = 1, . . . , n, see Fig. 6, but no such sequence B0, . . . ,Bn

exists for p ∈ A and q /∈ A. The operation of agglomerating
successively overlapping blocks B0, . . . ,Bn, is called chain-
ing [11]. The construction of a supremum of partitions by
chaining the blocks from all of them was given in [11], and
we simply extended it to partial partitions.

Note that when the partial partitions have pairwise dis-
joint supports (i �= j ⇒ supp(πi) ∩ supp(πj ) = ∅), their
supremum is their union:

∨
i∈I πi = ⋃

i∈I πi . In particular,
for any π ∈ �∗(E) we have

∨
C∈π 1C = ⋃

C∈π 1C = π .
One can chain blocks in a family B of non-empty subsets

of E, and this amounts to taking the supremum of the par-
tial partitions 1B , B ∈ B. Hence we will use the following
terminology:

Definition 12 Let B be a family of non-empty subsets of E.

1. The partial partition spanned by B is
∨

B∈B 1B , in other
words the least partial partition such that every B ∈ B is
included in one block of it (in fact,

∨
B∈B 1B is a partition

of supp(B)).
2. For p,q ∈ E, p and q are said to be chained by B if p

and q belong both to one block of
∨

B∈B 1B , in other
words if there are B0, . . . ,Bn ∈ B (n ≥ 0) such that p ∈
B0, q ∈ Bn and Bt−1 ∩ Bt �= ∅ for all t = 1, . . . , n.
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3. Let A ∈ P(E) such that B ⊆ P(A). Then A is chained
by B if any two points of A are chained by B, in other
words

∨
B∈B 1B = 1A (in particular, A = supp(B)).

Note that any partial partition is spanned by its blocks:
∀π ∈ �∗(E), π = ∨

C∈π 1C . The partial partition spanned
by an empty family is Ø. A supremum

∨
i∈I πi of partition

is spanned by their union
⋃

i∈I πi .
There is a situation where the class maps of the supre-

mum of partial partitions can be obtained by union instead
of chaining:

Proposition 13 Let {πi | i ∈ I } be a subset of �∗(E) such
that for every p ∈ E, the set {Clπi

(p) | i ∈ I } is directed.
Then

∀p ∈ E, Cl∨
i∈I πi

(p) =
⋃

i∈I

Clπi
(p).

This holds in particular if the set {πi | i ∈ I } is directed.

Proof The fact that for every p ∈ E, {Clπi
(p) | i ∈ I }

is directed means: ∀p ∈ E, ∀i, j ∈ I , ∃k ∈ I , Clπi
(p) ∪

Clπj
(p) ⊆ Clπk

(p) (k depends on p, i, j ). Let us show that
for every n ≥ 1, given a sequence x0, . . . , xn in E such that
for each t = 1, . . . , n there is i(t) ∈ I with xt ∈ Clπi(t)

(xt−1),
then for some k ∈ I we have xn ∈ Clπk

(x0). We use in-
duction on n. The result is obvious for n = 1. Suppose
that it is true for n, and let us deduce it for n + 1. Given
x0, . . . , xn+1 with xt ∈ Clπi(t)

(xt−1) for t = 1, . . . , n + 1,
the induction hypothesis gives us xn ∈ Clπj

(x0) for some
j ∈ I . By (P2a), Clπj

(xn) = Clπj
(x0), and by (P1b), x0 ∈

Clπj
(xn). As {Clπi

(xn) | i ∈ I } is directed, there is some k ∈
I with Clπj

(xn)∪Clπi(n+1)
(xn) ⊆ Clπk

(xn). Then x0, xn+1 ∈
Clπk

(xn), and by (P2a) we have Clπk
(x0) = Clπk

(xn). There-
fore xn+1 ∈ Clπk

(x0).
Let p,q ∈ E; by Theorem 11, q ∈ Cl∨

i∈I πi
(p) iff we

have a sequence p = x0, . . . , xn = q such that for each
t = 1, . . . , n there is i(t) ∈ I with xt ∈ Clπi(t)

(xt−1). By
the above, this implies that there is some k ∈ I with q ∈
Clπk

(p); conversely, if q ∈ Clπk
(p) for some k ∈ I , then

setting n = 1, i(1) = k, and taking the sequence p = x0,
x1 = q , we have q ∈ Cl∨

i∈I πi
(p). Thus q ∈ Cl∨

i∈I πi
(p)

iff there is k ∈ I with q ∈ Clπk
(p), and the equality

Cl∨
i∈I πi

(p) = ⋃
i∈I Clπi

(p) follows.
The fact that {πi | i ∈ I } is directed means that ∀i, j ∈ I ,

∃k ∈ I , πi,πj ≤ πk ; by (9) this is equivalent to: ∀i, j ∈ I ,
∃k ∈ I , ∀p ∈ E, Clπi

(p) ∪ Clπj
(p) ⊆ Clπk

(p) (k depends
on i, j , not on p). By the above, this implies that for every
p ∈ E, the set {Clπi

(p) | i ∈ I } is directed. �

An alternate proof shows that the map p �→ ⋃
i∈I Clπi

(p)

is a partial partition class map. An example of application of

this result is to show that for any B ∈P(E) and π ∈ �∗(E),
we have

π ∨ 0B = π ∪ 0B\supp(π). (12)

Indeed, for p ∈ supp(π) we have Cl0B
(p) ⊆ {p} ⊆ Clπ (p),

while for p /∈ supp(π) we have Clπ (p) = ∅ ⊆ Cl0B
(p); by

Proposition 13, Clπ∨0B
(p) will be Clπ (p) for p ∈ supp(π)

and Cl0B
(p) for p /∈ supp(π), so (12) follows.

Given A ∈P(E) and blocks B0, . . . ,Bn ∈P(A), the fact
that B0, . . . ,Bn are chained means the same in A and in E.
Hence:

Proposition 14 Let A ∈ P(E). Then the non-empty supre-
mum and infimum operations in �∗(A) are those of �∗(E);
�∗(A) shares with �∗(E) the same least element (or empty
supremum) Ø; however its greatest element (or empty infi-
mum) is 1A (instead of 1E in �∗(E)).

The structure of the lattice of partial partitions deter-
mines that of the lattice of partitions. The following result
is straightforward:

Proposition 15 A partial partition on E is a partition iff it
majorates 0E :

�(E) = {π ∈ �∗(E) | π ≥ 0E}.
Then (�(E),≤) is a complete lattice whose non-empty
supremum and infimum operations are those of �∗(E);
�(E) shares with �∗(E) the same greatest element (or
empty infimum) 1E ; however its least element (or empty
supremum) is 0E (instead of Ø in �∗(E)).

Combining these two propositions, for any A ∈ P(E), a
non-empty supremum or infimum of partitions of A is the
same in �(A), �∗(A) or �∗(E).

By (11), the map �∗(E) →P(E) : π �→ supp(π) is both
a dilation and an erosion. We can thus find its upper and
lower adjoints:

Proposition 16 The support map

supp : �∗(E) →P(E) : π �→ supp(π)

has as upper adjoint the erosion

1• :P(E) → �∗(E) : A �→ 1A,

and as lower adjoint the dilation

0• :P(E) → �∗(E) : A �→ 0A,

in other words

∀π ∈ �∗(E),∀A ∈ P(E), supp(π) ⊆ A ⇐⇒ π ≤ 1A

and A ⊆ supp(π) ⇐⇒ 0A ≤ π. (13)
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For all A ∈ P(E), supp(1A) = supp(0A) = A, the map
supp : π �→ supp(π) is surjective, while the maps 1• : A �→
1A and 0• : A �→ 0A are injective.

Proof Let A ∈ P(E). For A �= ∅, supp(π) ⊆ A and π ≤ 1A

both mean that every block of π is included in A; on the
other hand, 0A ≤ π and A ⊆ supp(π) both mean that every
point of A belongs to a block of π . For A = ∅, 1∅ = 0∅ = Ø;
thus supp(π) ⊆ ∅ and π ≤ 1∅ both mean that π = Ø; on the
other hand, 0∅ ≤ π and ∅ ⊆ supp(π) are both always true.
Therefore the two adjunctions (13) hold, and it follows that
A �→ 1A is an erosion and A �→ 0A is a dilation. Obviously
supp(1A) = supp(0A) = A, from which we deduce the sur-
jectivity of π �→ supp(π) and the injectivity of A �→ 1A and
A �→ 0A. �

The fact that 0• : A �→ 0A is a dilation and 1• : A �→ 1A

is an erosion means:

∀B ⊆ P(E), 0⋃
B =

∨

B∈B
0B

and 1⋂
B =

∧

B∈B
1B. (14)

Then {0A | A ∈ P(E)} is a dual Moore family and {1A |
A ∈ P(E)} is a Moore family. The maps A �→ 0A and
A �→ 1A are order-embeddings of P(E) into �∗(E); this
means that they are injective and that each one induces an
order-isomorphism between P(E) and its image: A ⊆ B ⇔
0A ≤ 0B ⇔ 1A ≤ 1B .

The map 0• : A �→ 0A is not an erosion, because it is
not compatible with the greatest element or empty supre-
mum, which is E in P(E) and 1E in �∗(E), with 0E < 1E .
However, for a non-void family B ⊆ P(E) we have 0⋂

B =
∧

B∈B 0B .
The map 1• : A �→ 1A is not a dilation: for two non-void

and disjoint A,B we have 1A ∨ 1B = {A,B} < 1A∪B . How-
ever it is compatible with the least element or empty infi-
mum, which is ∅ in P(E) and Ø = 1∅ in �∗(E). Moreover,

∀B ⊆ P(E),

(

B �= ∅,
⋂

B �= ∅
)

�⇒ 1⋃
B =

∨

B∈B
1B. (15)

From the two adjunctions (1•, supp) and (supp,0•), we
deduce two operators on �∗(E):

– the block blending closing blend : π �→ 1supp(π), where
all blocks of π are merged;

– the block grinding opening grind : π �→ 0supp(π), where
each block of π is pulverized into its singletons.

Combining these two adjunctions, we obtain

∀π,π ′ ∈ �∗(E), 0supp(π) ≤ π ′

⇐⇒ supp(π) ⊆ supp(π ′) ⇐⇒ π ≤ 1supp(π ′),

in other words, (blend,grind) is an adjunction on �∗(E).

2.3 Partial Connections

Connections were first defined in [17]. In [21] the ax-
iomatics was relaxed, introducing thus under the name of
quasi-connection what we call a partial connection. We will
analyse partial connections and the corresponding partial
partitions of connected components.

Definition 17 A partial connection on P(E) is a family C ⊆
P(E) such that

1. ∅ ∈ C, and
2. for any B ⊆ C such that

⋂
B �= ∅, we have

⋃
B ∈ C.

We call the partial connection C a connection on P(E) if it
satisfies the following third condition:

3. for all p ∈ E, {p} ∈ C.

Note that in condition 2 we did not require B to be non-
empty: for B = ∅,

⋂
B = E �= ∅ and

⋃
B = ∅ ∈ C thanks

to condition 1. In other words, condition 1 represents the
limiting case of an empty family in condition 2. In particular,
C is a partial connection iff it satisfies condition 1 and the
restriction of condition 2 to a non-empty family B.

For any X ⊆ E, let us write S(X) for the family of all
singletons in X: S(X) = {{p} | p ∈ X}. Formally, S(X) is
the same set as 0X , however we will use the notation 0X

in the case of (partial) partitions, and S(X) in relation to
(partial) connections.

Proposition 18 A family C ⊆ P(E) is a partial connection
iff C ∪S(E) is a connection; then C ∪S(E) is the least con-
nection containing C.

Proof Clearly C ∪ S(E) satisfies condition 3. As for condi-
tion 1, ∅ ∈ C iff ∅ ∈ C ∪ S(E). If C ∪ S(E) satisfies con-
dition 2, then by restriction this condition holds also in C.
Conversely, suppose that C satisfies condition 2, and let us
show that it holds then in C ∪S(E). Let B ⊆ C ∪S(E) such
that

⋂
B �= ∅, and let p ∈ ⋂

B; we have 3 cases:

– B ⊆ C; then
⋃

B ∈ C by hypothesis, so
⋃

B ∈ C ∪ S(E).
– B = {{p}}; then

⋃
B = {p} ∈ S(E), so

⋃
B ∈ C ∪ S(E).

– B = B′ ∪ {{p}} for a non-void B′ ⊆ C; then p ∈ ⋂
B′ and

⋃
B′ ∈ C by hypothesis; as B′ is non-void, we must have

p ∈ ⋃
B′, so

⋃
B = ⋃

B′ ∪{p} = ⋃
B′ ∈ C, hence

⋃
B ∈

C ∪ S(E).
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Therefore C ∪ S(E) satisfies also condition 2.
Every connection contains S(E), thus any connection

containing C contains C ∪ S(E), so this is the least connec-
tion containing C. �

Connections have an alternate description in terms of the
operation that associates to a set and a point the connected
component of the set marked by the point [17]. Let us extend
it to partial connections. Suppose that to every point p ∈
E is associated an opening γp on P(E). Consider then the
following properties that they may satisfy:

(C0a) For any p ∈ E, γp({p}) = {p}.
(C0b) For any p ∈ E and X ∈ P(E), p ∈ X ⇒ p ∈ γp(X).
(C1a) For any p ∈ E and X ∈ P(E), p ∈ X or γp(X) = ∅.
(C1b) For any p ∈ E and X ∈ P(E), p ∈ γp(X) or

γp(X) = ∅.
(C2a) For any p,q ∈ E and X ∈ P(E), q ∈ γp(X) ⇒

γp(X) = γq(X).
(C2b) For any p,q ∈ E and X ∈ P(E), γp(X) ∩ γq(X) �=

∅ ⇒ γp(X) = γq(X).

In order to characterize connections in terms of connected
components, one usually takes the axioms (C0a), (C1a) (un-
der the form p /∈ X ⇒ γp(X) = ∅) and (C2b) [17]. We have
the following counterpart of Lemma 5:

Lemma 19 Let γp be an opening on P(E) for every p ∈ E.
Then

1. (C0a) and (C0b) are equivalent;
2. (C1a) and (C1b) are equivalent;
3. (C2a) implies (C2b), and if (C0b) holds, then (C2a) and

(C2b) are equivalent.

Proof 1. For p ∈ X we have {p} ⊆ X, and as γp is in-
creasing, γp({p}) ⊆ γp(X); so if (C0a) holds, we have p ∈
γp({p}), hence p ∈ γp(X), that is (C0b). As γp is anti-ex-
tensive, γp({p}) ⊆ {p}; applying (C0b) with p ∈ {p}, we get
p ∈ γp({p}); hence γp({p}) = {p}, that is (C0a).

2. Applying (C1a) with γp(X) in place of X gives
p ∈ γp(X) or γp(γp(X)) = ∅, but as γp is idempotent,
γp(γp(X)) = γp(X), hence we get (C1b). Since γp is anti-
extensive, γp(X) ⊆ X, so p ∈ γp(X) ⇒ p ∈ X; hence (C1b)
implies (C1a).

3. Since γp is anti-extensive, γp(X) ⊆ X. Thus we can
apply the proof of Lemma 5 with γp(X), γq(X) in place of
cl(p), cl(q). �

Definition 20 A system of partial connection openings on
P(E) associates to each p ∈ E an opening γp on P(E),
and satisfies (C1a) (or equivalently (C1b)), and (C2a). If it
satisfies also (C0a) (or equivalently (C0b)), it is a system of
connection openings on P(E).

Note that in a system of connection openings, by (C0a) /
(C0b) we can replace (C2a) by (C2b); however this is in gen-
eral not possible for a system of partial connection openings,
as we will see later.

The following result, which parallels Theorem 7, gener-
alizes the well-known characterization [17] of connections
by systems of connection openings:

Theorem 21 There exists a one-to-one correspondence be-
tween partial connections on P(E) and systems of partial
connection openings on P(E), under which:

– To every partial connection C corresponds the system of
partial connection openings (γp,p ∈ E) given by

∀p ∈ E,∀X ∈P(E),

γp(X) =
⋃

{C ∈ C | p ∈ C,C ⊆ X}, (16)

and in fact

∀p ∈ E,∀X ∈P(E),

either{C ∈ C | p ∈ C,C ⊆ X} = ∅
and γp(X) = ∅,

or γp(X) is the greatest element of

{C ∈ C | p ∈ C, C ⊆ X}. (17)

– To every system of partial connection openings (γp,p ∈ E)

corresponds the partial connection C given by

C = {γp(X) | p ∈ E,X ∈P(E)}. (18)

Furthermore, it induces a one-to-one correspondence be-
tween connections on P(E) and systems of connection op-
enings on P(E).

Proof We have to show that:

– for a partial connection C: (a) (16) gives a system of par-
tial connection openings satisfying (17), (b) for which
(18) gives again C, and (c) if C is a connection, then (16)
gives a system of connection openings.

– for a system of partial connection openings (γp,p ∈ E):
(d) (18) gives a partial connection, (e) for which (16) gives
again (γp,p ∈ E), and (f) if (γp,p ∈ E) is a system of
connection openings, then (18) gives a connection.

(a) Let C be a partial connection, and let (γp,p ∈ E)

be given by (16). For p ∈ E and X ∈ P(E), let
B(p,X) = {C ∈ C | p ∈ C ⊆ X}. If B(p,X) = ∅, then
γp(X) = ⋃

B(p,X) = ∅. If B(p,X) �= ∅, B(p,X) ⊆ C
and p ∈ ⋂

B(p,X), so that γp(X) = ⋃
B(p,X) ∈

C; but then p ∈ γp(X) ⊆ X, so γp(X) is the great-
est element of B(p,X). Hence (17) holds. By con-
struction, γp(X) ⊆ X, so γp is anti-extensive. For
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X ⊆ Y , B(p,X) ⊆ B(p,Y ), so γp(X) = ⋃
B(p,X) ⊆

⋃
B(p,Y ) = γp(Y ); thus γp is increasing. If γp(X) =

∅, by anti-extensivity we have γp(γp(X)) = ∅; oth-
erwise, by (17) γp(X) ∈ C and p ∈ γp(X), but then
γp(X) is the greatest C ∈ C such that p ∈ C ⊆ γp(X),
so γp(X) = ⋃

B(p, γp(X)) = γp(γp(X)). Hence γp is
idempotent, so it is an opening. By construction, p /∈ X

gives B(p,X) = ∅, hence γp(X) = ∅; thus (C1a) holds.
For q ∈ γp(X), γp(X) �= ∅, so by (17) p ∈ γp(X),
γp(X) ⊆ X and γp(X) ∈ C; but then γp(X) ∈ B(q,X),
so γp(X) ⊆ γq(X); thus p ∈ γq(X), and we deduce sim-
ilarly that γq(X) ⊆ γp(X), and the equality follows, in
other words we have (C2a). Therefore (γp,p ∈ E) is a
system of partial connection openings.

(b) By (17), either γp(X) = ∅ ∈ C, or γp(X) ∈ C. Thus
{γp(X) | p ∈ E, X ∈ P(E)} ⊆ C. Now γp(∅) = ∅ for
any p ∈ E, while for C ∈ C such that C �= ∅, by (17) we
have γp(C) = C for p ∈ C. Thus {γp(X) | p ∈ E, X ∈
P(E)} ⊇ C, and we deduce the equality. Hence (18)
gives again C.

(c) If C is a connection, then for every p ∈ E, {p} ∈ C,
so (17) gives γp({p}) = {p}, that is (C0a). Therefore
(γp,p ∈ E) (already a system of partial connection
openings by (a)) is a system of connection openings.

(d) Let (γp,p ∈ E) be a system of partial connection open-
ings, and let C be given by (18). By anti-extensivity,
γp(∅) = ∅, so ∅ ∈ C. Let B ⊆ C with

⋂
B �= ∅, and

let q ∈ ⋂
B. Every element of B is of the form γp(X)

(p ∈ E, X ∈ P(E)), and then q ∈ γp(X); by (C2a),
γp(X) = γq(X). Thus B ⊆ {γq(Z) | Z ∈ P(E)} =
Inv(γq), and as the invariance domain of an opening
is a dual Moore family,

⋃
B ∈ Inv(γq), in other words

⋃
B = γq(Z) for some Z ∈P(E), hence

⋃
B ∈ C. Thus

C is a partial connection.
(e) Let p ∈ E and X ∈ P(E). Suppose first that there ex-

ists C ∈ C such that p ∈ C ⊆ X. By (18) we have
C = γq(Y ) for some q ∈ E and Y ∈ P(E), and as
p ∈ C, (C2a) gives C = γp(Y ); as γp is an opening,
C = γp(Y ) = γp(γp(Y )) = γp(C) ⊆ γp(X). As C ⊆
γp(X) and p ∈ C, we have p ∈ γp(X); now γp(X) ∈ C
by (18). We have thus shown that if {C ∈ C | p ∈ C ⊆
X} �= ∅, then γp(X) is the greatest element of this set,
so γp(X) = ⋃{C ∈ C | p ∈ C ⊆ X}. If {C ∈ C | p ∈
C ⊆ X} = ∅, then as γp(X) ⊆ X and γp(X) ∈ C, we
must have p /∈ γp(X), so (C1b) give γp(X) = ∅; thus
⋃{C ∈ C | p ∈ C ⊆ X} = ⋃∅ = ∅ = γp(X). We have
thus shown that (16) gives again (γp,p ∈ E).

(f) If (γp,p ∈ E) is a system of connection openings, then
by (C0a), for every p ∈ E, we have γp({p}) = {p}; by
(18), this means that {p} ∈ C. Therefore C (already a
partial connection by (d)) is a connection. �

From (17) we deduce that

∀p ∈ E, Inv(γp) = {∅} ∪ {C ∈ C | p ∈ C}. (19)

Definition 22 Let C be a partial connection on P(E). For
any X ∈ P(E), a C-component of X, or connected compo-
nent of X according to C, is any C ∈ C with C �= ∅ and
C ⊆ X, which is maximal for inclusion: ∀C′ ∈ C, C ⊆ C′ ⊆
X ⇒ C′ = C.

Proposition 23 Let C be a partial connection on P(E). For
any X ∈ P(E), the map X → P(X) : p �→ γp(X) is a par-
tial partition class map on X; when C is a connection, this
map is a partition class map on X. The corresponding par-
tial partition is

PCC(X) = {γp(X) | p ∈ X, γp(X) �= ∅}; (20)

it is the set of all C-components of X. Considered as a par-
tial partition of E, PCC(X) is increasing in X: X ⊆ Y ⇒
PCC(X) ≤ PCC(Y ).

Proof As γp is anti-extensive, the map clX : p �→ γp(X)

is indeed X → P(X). Now (C1b) and (C2a) restricted to
p ∈ X mean that this map satisfies (P1b) and (P2a), in other
words clX is a partial partition class map on X. When C
is a connection, the openings γp satisfy also (C0b), which
means that clX satisfies (P1a), so that it is a partition class
map. The corresponding partial partition is given by (3):
{clX(p) | p ∈ E, clX(p) �= ∅}, that is PCC(X).

If γp(X) �= ∅, then by (17) γp(X) is the greatest C ∈ C
such that p ∈ C and C ⊆ X. Thus γp(X) cannot be included
in a larger C ∈ C with C ⊆ X, in other words γp(X) is a
C-component of X. Conversely, given a C-component C of
X, C �= ∅; taking p ∈ C, (17) implies that C ⊆ γp(X) ⊆
X and γp(X) ∈ C; by the maximality of C, we deduce that
γp(X) = C. Thus PCC(X) is the set of C-components of X.

Any partial partition of X ⊆ E is a partial partition of E,
so PCC(X) ∈ �∗(E). If X ⊆ Y , for every p ∈ X we have
γp(X) ⊆ γp(Y ), in other words every block of PCC(X) is
included in a block of PCC(Y ), that is PCC(X) ≤ PCC(Y ). �

Note that PCC(X) is the partial partition spanned by
C ∩ P(X), cf. Definition 12. It is also the greatest partial
partition of X whose blocks belong to C.

In view of Proposition 18, we have the following result,
which is a straightforward consequence of (16):

Proposition 24 Let C be a partial connection on P(E) with
system of partial connection openings (γp,p ∈ E). Then the
connection C ∪ S(E) has its system of connection openings
(γ ′

p,p ∈ E) given by setting for all p ∈ E and X ∈P(E):

γ ′
p(X) = γp(X) ∪ ({p} ∩ X

)
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=
{

γp(X) if p /∈ X or γp(X) �= ∅,

{p} if p ∈ X and γp(X) = ∅.

For any X ∈ P(E), PCC∪S(E)(X) is obtained from PCC(X)

by adding the singletons outside its support:

PCC∪S(E)(X) = PCC(X) ∪ 0X\supp(PCC(X)).

Equivalently, PCC∪S(E)(X) = PCC(X) ∨ 0X , cf. (12).

Remark 25 A counterexample similar to that of Remark 8,
but this time with the partition of C-components, shows that
in a system of partial connection openings we cannot replace
(C2a) by (C2b).

Let E be a finite subset of Z, of size > 3. Choose
A ∈ P(E) of size ≥ 3, and let C = {∅,A}. Then C is a par-
tial connection whose system of partial connection openings
(γp,p ∈ E) is given by

∀p ∈ E,∀X ∈ P(E),

γp(X) =
{

A if p ∈ A and A ⊆ X,

∅ otherwise.

Now let a = minA and b = maxA, and define (βp,p ∈ E)

by

∀p ∈ E,∀X ∈ P(E),

βp(X) =
{

A ifA ⊆ X and p = a or p = b,

∅ otherwise.

Then we can check that the βp , p ∈ E, are openings satis-
fying (C1b) and (C2b), but not (C2a), and that similarly to
(18) we have

{βp(X) | p ∈ E, X ∈P(E)} = {∅,A} = C.

However for p ∈ A \ {a, b} we have βp(A) = ∅ while
γp(A) = A, hence βp �= γp , so (βp,p ∈ E) is not a system
of partial connection openings.

Let us now give some examples of partial connections,
with their systems of partial connection openings. Several
connections were described in [9, 12, 17]; in each of them,
if we remove the requirement that the singletons belong to
the connection, we obtain a partial connection. In Sect. 3,
we will describe some methods for constructing partial con-
nections from other ones.

In Z2, the family of horizontal lines, half-lines or line
segments, in other words, of all sets of the form {a} × C,
where a ∈ Z and C is a connected (equivalently, convex)
subset of Z, is a connection. We call it the horizontal con-
nection and write it Ch. For p ∈ X, γ h

p (X) is the connected
component of the horizontal cross-section of X contain-
ing p. See Fig. 7.

Fig. 7 Consider the horizontal connection Ch on P(Z2), consisting of
all connected subsets of horizontal lines. We show a set, 3 points, and
the connected components marked by the 2 points inside the set (the
point outside the set marks ∅)

Given A ∈ P(E), every partial connection on P(A) (in
particular, every connection on P(A)) is a partial connec-
tion on P(E); if we write (γp,p ∈ A) for the system of
partial connection openings on P(A) and (γ ′

p,p ∈ E) for
the one on P(E), then we have γ ′

p(X) = γp(X ∩ A) for
p ∈ A, and ∅ for p /∈ A. Note that a partial connection on
P(E) is a connection on P(A) for some A ∈ P(E), iff
it contains all singletons in its support: ∀C ∈ C, ∀p ∈ C,
{p} ∈ C.

Given π ∈ �∗(E), let subbl(π) be the family of all sub-
sets of all blocks of π :

subbl(π) =
⋃

C∈π

P(C)

= {X ∈P(E) | ∃C ∈ π, X ⊆ C}. (21)

Then subbl(π) is a connection on P(supp(π)) [17, 23], in
particular a partial connection on P(E). The correspond-
ing partial connection openings are given by γp(X) = X ∩
Clπ (p) for all p ∈ E. In particular, the blocks of π are the
connected components of E.

A wide family of partial connections is provided by dual
Moore families:

Proposition 26 Let M ⊆ P(E). Then M is a dual Moore
family of P(E) iff it is a partial connection such that every
set has at most one M-component. Given the opening α

corresponding to M (that is, Inv(α) = M), for every X ∈
P(E), the unique M-component of X is α(X) if α(X) �= ∅,
while there is none if α(X) = ∅. The corresponding system
of partial connection openings (αp,p ∈ E) is given by

∀p ∈ E,∀X ∈ P(E),

αp(X) =
{

α(X) if p ∈ α(X),

∅ if p /∈ α(X). (22)

Proof If M is a dual Moore family, then it contains ∅ and
it is closed under arbitrary union, so it satisfies the two ax-
ioms of a partial connection. For any X ∈ P(E), α(X) is the
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greatest Y ∈ M such that Y ⊆ X, thus either α(X) = ∅ or
α(X) is the unique M-component of X. Conversely, if M
is a partial connection such that every set has at most one
M-component, let B ⊆ M. If B is empty or B = {∅}, then
⋃

B = ∅ ∈ M, so we can suppose that B has at least one
non-void member. Now every non-void B ∈ B is included
in the unique M-component of

⋃
B, so this M-component

must be
⋃

B, in other words
⋃

B ∈ M, hence M is a dual
Moore family. Now (22) follows from (17) and the fact that
α(X) is the greatest C ∈ Inv(α) = M such that C ⊆ X. �

We give 2 simple examples of dual Moore families:

– The least and greatest dual Moore families, namely {∅}
and P(E), are the least and greatest partial connections
(and P(E) is a connection).

– {∅,A} for A ∈ P(E) \ {∅}. We already considered such a
partial connection in Remark 25. We have γp(X) = A if
p ∈ A and A ⊆ X, and ∅ otherwise.

It is straightforward that an increasing operator α on
P(E), such that for every X ∈ P(E), α(X) ∈ {∅,X}, is an
opening. It is called a trivial opening. We have the following
easily proved result:

Proposition 27 Let U ⊆ P(E), and V = U ∪ {∅}. Then U
is an upper set iff V = Inv(α) for a trivial opening α, iff V
is a partial connection on P(E) such that every set X /∈ V
has no V-component. In particular, V is a dual Moore fam-
ily. The corresponding system of partial connection open-
ings (αp,p ∈ E) is given by

∀p ∈ E,∀X ∈ P(E),

αp(X) =
{

X if p ∈ X and X ∈ U,

∅ otherwise.

Let us give some examples of upper sets; in each, adding
∅ yields a partial connection:

– For an integer n > 1, the set P≥n(E) of all subsets X of E

such that |X| ≥ n. Here αp(X) = X if p ∈ X and |X| ≥ n,
and ∅ otherwise.

– {X ∈ P(E) | X ⊇ A} and {X ∈P(E) | X �⊆ A}, for a fixed
A ∈P(E).

– {X ∈ P(E) | ψ(X) �= ∅} for an increasing operator ψ on
P(E).

– Given a metric on E, the family of all subsets of E whose
diameter exceeds some fixed value.

As a partial generalization of Proposition 27: if C is a
partial connection and U is an upper set, then C ∪ U is a
partial connection; furthermore, if C is a dual Moore family,
then C ∪ U is a dual Moore family. For X /∈ U , the C ∪ U -
components of X are its C-components, while for X ∈ U , X

is its unique C ∪ U -component.

If C1, . . . ,Cn are partial connections such that for 1 ≤ i <

j ≤ n, all X ∈ Ci \Cj and Y ∈ Cj \Ci satisfy X∩Y = ∅, then
C1 ∪ · · · ∪ Cn is a partial connection. A Ci -component and a
Cj -component of a set are either equal or disjoint, so the
C1 ∪ · · · ∪ Cn-components of that set are its Ct -components
for t = 1, . . . , n.

We can also take a union
⋃

i∈I Ci of partial connections
Ci , where for i, j ∈ I such that i �= j , every X ∈ Ci and
Y ∈ Ci satisfy X ∩ Y = ∅. For instance we can take each
Ci to be a partial connection on P(Ai), where the Ai (i ∈ I )
are mutually disjoint subsets of E. The example of Fig. 7
belongs to that category (where the Ci ’s are the connections
on the individual lines {a} × Z).

2.4 The Lattice of Partial Connections

We will generalize some results of [12]. Write �(E) for the
set of all connections on P(E), and �∗(E) for the set of all
partial connections on P(E) (in [12] we wrote ConCl(E)

for �(E)).
It is easily seen that the conditions in Definition 17 are

preserved by intersecting families C ⊆ P(E). Hence:

Proposition 28 An intersection of connections on P(E) is a
connection on P(E); an intersection of partial connections
on P(E) is a partial connection on P(E); P(E) is a con-
nection on P(E). Thus �(E) and �∗(E) are Moore families
of P(P(E)).

We can relate the structure of the Moore family of par-
tial connections to that of the systems of partial connection
openings:

Proposition 29 Given two partial connections C and C′
with systems of partial connection openings (γp,p ∈ E) and
(γ ′

p,p ∈ E),

[C ⊆ C′] ⇐⇒ [∀p ∈ E,γp ≤ γ ′
p

]

⇐⇒ [∀p ∈ E, Inv(γp) ⊆ Inv(γ ′
p)

]
.

Given a non-void family Ci (i ∈ I , I �= ∅) of partial connec-
tions with systems of partial connection openings (γ i

p,p ∈
E), then

⋂
i∈I Ci has the system of partial connection open-

ings (γp,p ∈ E) such that for every p ∈ E, γp is the greatest
opening on P(E) that is ≤ γ i

p for all i ∈ I , in other words

∀p ∈ E, Inv(γp) =
⋂

i∈I

Inv(γ i
p).

The system of connection openings of P(E) is (γ �
p ,p ∈ E)

given by

∀p ∈ E, ∀X ∈P(E), γ �
p (X) =

{
X if p ∈ X,

∅ if p /∈ X.
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Proof By (19), C ⊆ C′ implies that for every p ∈ E we have

Inv(γp) = {∅} ∪ {C ∈ C | p ∈ C}
⊆ {∅} ∪ {C ∈ C′ | p ∈ C} = Inv(γ ′

p).

Conversely, suppose that Inv(γp) ⊆ Inv(γ ′
p) for all p ∈ E.

By definition, ∅ ∈ C′. Now for C ∈ C such that C �= ∅, take
p ∈ C; by (19), C ∈ Inv(γp), hence C ∈ Inv(γ ′

p), so by
(19) again we deduce that C ∈ C′. Thus C ⊆ C′. We have
shown that C ⊆ C′ iff Inv(γp) ⊆ Inv(γ ′

p) for all p ∈ E. By
the isomorphism between openings and dual Moore fami-
lies, γp ≤ γ ′

p ⇔ Inv(γp) ⊆ Inv(γ ′
p).

Take now a non-void family (I �= ∅) of partial connec-
tions Ci (i ∈ I ) with systems of partial connection open-
ings (γ i

p,p ∈ E). For p ∈ E and X ∈ P(E), we have X ∈
⋂

i∈I Inv(γ i
p) iff ∀i ∈ I , X ∈ Inv(γ i

p). By (19) this means
that ∀i ∈ I , X = ∅ or p ∈ X and X ∈ Ci . Since I �= ∅, we
can rewrite this as X = ∅ or p ∈ X and ∀i ∈ I , X ∈ Ci ,
in other words X = ∅ or p ∈ X and X ∈ ⋂

i∈I Ci . By (19)
again, this is equivalent to X ∈ Inv(γp) for the system of
partial connection openings (γp,p ∈ E) corresponding to⋂

i∈I Ci . Thus Inv(γp) = ⋂
i∈I Inv(γ i

p) for all p ∈ E. By
the isomorphism between openings and dual Moore fami-
lies, this means that for all p ∈ E, γp is the infimum, in the
lattice of openings on P(E), of the γ i

p , i ∈ I .
The form taken by (γ �

p ,p ∈ E), the system of connection
openings of P(E), follows from (17). �

Another way of interpreting this result is that the family
of systems (γp,p ∈ E) of increasing and anti-extensive op-
erators γp satisfying (C1a) and (C2a) is closed under “point-
wise” non-void infimum

(γ i
p,p ∈ E) (i ∈ I, I �= ∅) �→

(∧

i∈I

γ i
p,p ∈ E

)

and “pointwise” composition

(γp,p ∈ E), (γ ′
p,p ∈ E) �→ (γpγ ′

p,p ∈ E).

Then the family closed under these two operations generated
by the (γ i

p,p ∈ E) (i ∈ I , I �= ∅) has “pointwise” infimum
(γp,p ∈ E), where for each p ∈ E, γp is the infimum, in the
lattice of openings on P(E), of the γ i

p , i ∈ I .
Having dealt with the intersection of partial connections,

we will now be in position to exhibit the complete lattice
made by partial connections, and in particular consider a
supremum of partial connections.

Definition 30 Given a family B of subsets of E:

– The connection generated by B is the least connection
containing B, it is written Con(B).

– The partial connection generated by B is the least partial
connection containing B, it is written Con∗(B).

By Proposition 18, it is obvious that

Con(B) = Con(Con∗(B)) = Con∗(B) ∪ S(E). (23)

For any B ∈ P(E), let us write Con∗(B) and Con(B) for
Con∗({B}) and Con({B}) respectively. Thus

Con∗(B) = {∅,B} and Con(B) = {∅,B} ∪ S(E).

Proposition 31 �(E) and �∗(E), ordered by inclusion, are
atomic complete lattices, where the infimum operation is the
intersection; they share the same greatest element P(E).
Otherwise:

– In �(E), the least element is {∅} ∪ S(E), and the supre-
mum of a family Ci (i ∈ I ) is Con(

⋃
i∈I Ci ); for a non-

void family (I �= ∅), Con(
⋃

i∈I Ci ) = Con∗(
⋃

i∈I Ci ). The
atoms are {∅}∪ {A}∪S(E) for all A ∈P(E) that have at
least two elements.

– In �∗(E), the least element is {∅}, and the supremum of
a family Ci (i ∈ I ) is Con∗(

⋃
i∈I Ci ). The atoms are {∅} ∪

{A} for all non-void A ∈P(E).

Proof Since �(E) and �∗(E) are Moore families, they are
complete lattices with P(E) as greatest element. The supre-
mum of a family of partial connections Ci (i ∈ I ) is the
least partial connection containing each Ci , that is, contain-
ing their union

⋃
i∈I Ci ; by definition, this is Con∗(

⋃
i∈I Ci ).

Similarly, the supremum of a family Ci (i ∈ I ) of connec-
tions is Con(

⋃
i∈I Ci ); when the family is non-void, each Ci

contains S(E), so S(E) ⊆ ⋃
i∈I Ci ⊆ Con∗(

⋃
i∈I Ci ), hence

(23) gives Con(
⋃

i∈I Ci ) = Con∗(
⋃

i∈I Ci ). Obviously the
least partial connection is {∅}, so the least connection is
{∅} ∪ S(E) (cf. Proposition 18).

We know that for A �= ∅, {∅} ∪ {A} is a dual Moore fam-
ily, hence a partial connection. Since it has exactly one more
element than the least partial connection {∅}, it is an atom in
�∗(E). Now for every partial connection C we have

C =
⋃

A∈C\{∅}
({∅} ∪ {A}) = Con∗

( ⋃

A∈C\{∅}
({∅} ∪ {A})

)

,

so �∗(E) is atomic.
For |A| > 1, A /∈ S(E), so {∅} ∪ {A} ∪ S(E) is a con-

nection (cf. Proposition 18), and it has exactly one more
element than the least connection {∅} ∪ S(E), hence it is
an atom in �(E). Now for every connection C we have for
C′ = C \ (S(E) ∪ {∅}):

C =
⋃

A∈C′

({∅} ∪ {A} ∪ S(E)
)

= Con
( ⋃

A∈C′

({∅} ∪ {A} ∪ S(E)
))

,

so �(E) is atomic. �
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Fig. 8 Consider the horizontal connection Ch of Fig. 7, and the
similar vertical connection Cv . For q ∈ γ v

p (X), we generally have

γ h
q (X) �⊆ γ h

p (X)∪γ v
p (X), so the openings γ h

p ∨γ v
p do not satisfy (C2a)

Proposition 29 does not extend to a supremum of par-
tial connections. Given a non-void family Ci (i ∈ I , I �= ∅)
of partial connections with systems of partial connection
openings (γ i

p,p ∈ E),
∨

i∈I γ i
p will be an opening for every

p ∈ E, but the system (
∨

i∈I γ i
p,p ∈ E) will generally not

satisfy (C2a), as shows Fig. 8.
In fact, a supremum of partial connections can be charac-

terized in terms of the partial partition of connected compo-
nents, cf. (20):

Proposition 32 For any A ∈P(E), the map

�∗(E) → �∗(A) : C �→ PCC(A)

is a dilation. In other words, for a family Ci (i ∈ I ) of partial
connections, and for C = Con∗(

⋃
i∈I Ci ), we have PCC(A)

= ∨
i∈I PCCi (A), and for I empty, PC{∅}(A) = Ø.

The restriction to �(E) of the map C �→ PCC(A) is a di-
lation �(E) → �(A).

Proof For any π ∈ �∗(A), let

F(π) =
[ ⋃

D∈π

P(D)

]

∪ [
P(E) \P(A)

] ∪ {∅},

that is the family of subsets of E that are either included
in a block of π , or not included in A, plus ∅ (for the case
where π = Ø). Clearly ∅ ∈ F(π). Let B ⊆ F(π) such that
⋂

B �= ∅; we can assume that B �= ∅. If there is B ∈ B
such that B �⊆ A, then

⋃
B �⊆ A; otherwise each B ∈ B

is included in a block of π , but as
⋂

B �= ∅, all B ∈ B
are included in the same block D of π , hence

⋃
B ⊆ D;

thus
⋃

B ∈ F(π) in any case. Hence F(π) is a partial
connection. Thus F is �∗(A) → �∗(E), while we have
G : �∗(E) → �∗(A) : C �→ PCC(A).

For any C ∈ �∗(E) and π ∈ �∗(A), G(C) ≤ π means
PCC(A) ≤ π , in other words (cf. Proposition 23) every C-
component of A is included in a block of π . By Defini-
tion 22, the C-components of A are maximal (for inclusion)
among the C ∈ C \ {∅} such that C ⊆ A. Hence G(C) ≤ π

iff every C ∈ C \ {∅} such that C ⊆ A must be included in a

block of π , in other words for every C ∈ C, either C = ∅, C

is included in a block of π , or C �⊆ A. This means exactly
that C ⊆ F(π). Therefore G(C) ≤ π ⇔ C ⊆ F(π), in other
words (F ,G) is an adjunction �∗(A) � �∗(E). As G is the
lower adjoint in an adjunction, it is a dilation, in other words
it transforms the supremum in �∗(E) into the supremum in
�∗(A):

G
(

Con∗
(⋃

i∈I

Ci

))

=
∨

i∈I

G(Ci ).

Note that for π ∈ �(A), F(π) ∈ �(E), while for C ∈
�(E), G(C) ∈ �(A). Thus (F ,G) is also an adjunction
�(A) � �(E). �

In [12] we showed that in the connection generated by
a family, the connected sets are obtained by chaining the
elements of the family. This is in fact a consequence of the
above result:

Corollary 33 Let B ⊆ P(E)\{∅} be non-void. Then for any
X ∈ P(E), X ∈ Con∗(B) iff X is chained by B ∩P(X).

Proof We have Con∗(B) = Con∗(
⋃

B∈B Con∗(B)); Propo-
sition 32 gives then PCCon∗(B)(X) = ∨

B∈B PCCon∗(B). For
B ∈ B, Con∗(B) = {∅,B}. Now PC{∅,B}(X) = {B} if B ⊆
X, and is empty otherwise. Thus

PCCon∗(B)(X) =
∨

B∈B
PCCon∗(B)(X)

=
∨

{1B | B ∈ B, B ⊆ X}.

Now X ∈ Con∗(B) iff PCCon∗(B)(X) = {X}, in other words
1X = ∨{1B | B ∈ B, B ⊆ X}, which means that X is
chained by B ∩P(X). �

This result can also be shown directly (as we did in [12]):
given a partial connection C and blocks B0, . . . ,Bn ∈ C such
that Bt−1 ∩ Bt �= ∅ for t = 1, . . . , n, it is easily seen that
B0 ∪ · · · ∪ Bn ∈ C; then in a set B chained by C, any two
points belong to the same C-component of B , hence B ∈ C.

We have thus an explanation of what appeared before
as a coincidence: that the same operation, chaining, is used
for constructing suprema both for connections and for parti-
tions.

As shown in Fig. 3, Proposition 32 does not extend to
the infimum operation. For a family Ci (i ∈ I ) of partial
connections, and for C = ⋂

i∈I Ci , we have only PCC(A) ≤∧
i∈I PCCi (A), and the inequality is often sharp. Indeed, in

PCC(A), the class of a point p (of E) is γp(A), while in∧
i∈I PCCi (A), by (10) the class of p is

⋂
i∈I γ i

p(A), the in-

tersection of the classes γ i
p(A) in PCCi (A). Now

∧
i∈I γ i

p :
A �→ ⋂

i∈I γ i
p(A) is the infimum of the γ i

p (i ∈ I ) in the
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lattice of operators, so it is not necessarily an opening, and
by Proposition 29, γp is the greatest opening ≤ ∧

i∈I γ i
p , so

γp(A) ⊆ ⋂
i∈I γ i

p(A).

3 Second-Generation Partial Connections

We will describe here methods for constructing a new par-
tial connection from an existing partial connection and an
operator on sets. We will in fact extend two well-known
aproaches:

– In [12] a connection C was restricted to its elements that
are invariant under an opening satisfying some properties
(for example in Rn of Zn: the opening by a structuring el-
ement in C), plus the singletons. In Sect. 3.1 we will study
the partial connection C∩ Inv(α), where C is a partial con-
nection on P(E) and α is an opening on P(E).

– Serra [17] showed that for a connection C on P(E) and
an extensive dilation δ on P(E) such that δ(C) ⊆ C, then
δ−1(C) is a connection containing C. For example in Rn of
Zn, δ can be the dilation by a structuring element in C con-
taining the origin, and this new connection can be used to
cluster neighbouring grains. This construction was mod-
ified [19] to the use of a closing instead of a dilation.
A more general formulation in terms of an extensive op-
erator on P(E) was given by Heijmans in [9]. In Sect. 3.2
we generalize these results to partial connections, and,
given arbitrary spaces E1 and E2, describe new connec-
tions on P(E1) that can be built from a partial connection
on P(E2) and a dilation P(E1) →P(E2).

3.1 Partial Connections by Restriction

As seen above, intersection gives a general method for con-
structing a partial connection from pre-existing partial con-
nections. In [12] we showed that for an opening α on P(E)

and a connection C on P(E), (C ∩ Inv(α)) ∪ S(E) is a con-
nection. More generally, let C be a partial connection; as
Inv(α) is a Moore family, it is a partial connection, so the
intersection C∩ Inv(α) is a partial connection, and by Propo-
sition 18, (C ∩ Inv(α)) ∪ S(E) is a connection. Let us give
some examples of such partial connections:

– Let (E,d) be a metric space; given a partial connection
C and some s > 0, take the set of elements of C whose
diameter is at least s, plus ∅.

– In Zn, given a partial connection C and an integer n >

0, take the set of elements of C whose size at least is n,
plus ∅.

– In Rn, the set of connected open sets. (NB: topological
and arc connectivity are equivalent for open sets.)

Heijmans [9] considered the connection (C ∩ Ext(ψ)) ∪
S(E), where ψ is an increasing operator on P(E) and

Ext(ψ) = {X ∈ P(E) | X ⊆ ψ(X)}. But Ext(ψ) = Inv(id ∧
ψ) = Inv(α), where id is the identity operator and α is the
greatest opening ≤ id ∧ ψ . Thus this example is a particular
case of the above construction.

We showed in [12] that given two openings γ and α, the
three equalities αγα = γ α, γ αγ = γ α and (γ α)2 = γ α are
equivalent. This applies in particular to the connection open-
ings of a partial partition C:

∀p ∈ E, αγpα = γpα ⇐⇒ γpαγp = γpα

⇐⇒ (γpα)2 = γpα. (24)

Taking the leftmost expression of this equation, αγpα =
γpα, the fact that it holds for every point p ∈ E means the
following statement: Every connected component of an in-
variant of α is itself an invariant of α. We have then a very
simple expression for the system of partial connection open-
ings of C ∩ Inv(α):

Proposition 34 Let α be an opening on P(E) such that
αγpα = γpα for every p ∈ E. Then the system of partial
connection openings of C ∩ Inv(α) is (γpα,p ∈ E).

Proof Since γp and α are increasing and anti-extensive, γpα

is increasing and anti-extensive. By (24), we have (γpα)2 =
γpα, so γpα is idempotent. Thus γpα is an opening for every
p ∈ E. The system of partial connection openings of Inv(α)

is (αp,p ∈ E), given by (22). For p ∈ α(X), αp(X) =
α(X) by (22), so γp(αp(X)) = γp(α(X)); for p /∈ α(X),
γp(α(X)) = ∅, and αp(X) = ∅ by (22), so γp(αp(X)) =
γp(∅) = ∅. Thus γp(αp(X)) = γp(α(X)) for any X ∈ P(E),
hence γpαp = γpα. Since γp and αp are anti-extensive,
γpαp ≤ γp and γpαp ≤ αp . Now any opening σ such that
σ ≤ γp and σ ≤ αp satisfies σ = σσ ≤ γpαp . Hence for
every p ∈ E, γpαp = γpα is the greatest opening ≤ γp and
≤ αp . By Proposition 29, (γpα,p ∈ E) is the system of par-
tial connection openings of C ∩ Inv(α). �

For E = Rn or Zn, a well-known example of opening
α satisfying αγpα = γpα, is the opening X �→ X ◦ B =
⋃{Bp | p ∈ E, Bp ⊆ E} by a connected structuring ele-
ment B (assuming a translation-invariant connection C: for
any p ∈ E, B ∈ C ⇒ Bp ∈ C). This example has been used
in Figs. 1, 3 and 4. In [12] we generalized this to any open-
ing based on a subset B of a connection C, associating to
every set the union of all elements of B included in that set.
We have the following:

Proposition 35 Let C be a partial connection. An operator
α on P(E) satisfies

∃B ⊆ C, ∀X ⊆ E, α(X) =
⋃

{B ∈ B | B ⊆ X}, (25)
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iff α is an opening such that αγpα = γpα for every p ∈ E,
and

∀X ∈P(E), α(X) =
⋃

p∈E

γpα(X). (26)

The latter identity is always true if C is a connection.

Proof Let B ⊆ C, and for every X ∈ P(E), let BX = {B ∈
B | B ⊆ X}. If α is given by (25), we have α(X) = ⋃

BX ,
then α is typically an opening. For X ∈ P(E) and p ∈ E,
γpα(X) ∈ C. If γpα(X) = ∅, then αγpα(X) = ∅. Suppose
thus that γpα(X) �= ∅, so p ∈ γpα(X). Let B ∈ BX such
that B ∩ γpα(X) �= ∅; as B,γpα(X) ∈ C, we deduce that
B ∪ γpα(X) ∈ C; now B,γpα(X) ⊆ α(X), so p ∈ B ∪
γpα(X) ⊆ α(X); by the maximality of γpα(X), cf. (17), we
deduce that B ⊆ γpα(X). Hence

γpα(X) = γpα(X) ∩ α(X) = γpα(X) ∩
⋃

BX

=
⋃

{B ∩ γpα(X) | B ∈ BX}
=

⋃
{B ∩ γpα(X) | B ∈ BX, B ∩ γpα(X) �= ∅}

=
⋃

{B ∩ γpα(X) | B ∈ BX, B ⊆ γpα(X)}
=

⋃
{B | B ∈ BX, B ⊆ γpα(X)}

=
⋃

{B | B ∈ B, B ⊆ γpα(X)} = αγpα(X).

Therefore αγpα = γpα for all p ∈ E. For B ∈ BX , B ⊆
α(X); as B ∈ C, B = ⋃

p∈E γp(B) ⊆ ⋃
p∈E γp(α(X)).

Thus α(X) = ⋃
BX ⊆ ⋃

p∈E γp(α(X); now the reciprocal
inequality follows from the anti-extensivity of the γp , so we
have (26).

Let α be an opening such that αγpα = γpα for every
p ∈ E and (26) holds. Let B = C ∩ Inv(α). For any X ∈
P(E), α(X) = ⋃

p∈E γpα(X). For any p ∈ E, γpα(X) ∈ C,
and α(γpα(X)) = γpα(X), that is γpα(X) ∈ Inv(α). Thus
γpα(X) ∈ B, and α(X) is a union of elements of B. We de-
duce then that α(X) = ⋃{B ∈ B | B ⊆ X}.

If C is a connection, every set is the union of its C-
components, so (26) holds. �

For α given by (25), every B ∈ B satisfies B ∈ C ∩
Inv(α), hence we have Con∗(B) ⊆ C ∩ Inv(α). The inclu-
sion is often sharp: an element of Con∗(B) is obtained by
chaining elements of B, while an element of C ∩ Inv(α)

can be a union of disjoint adjacent elements of B, see
Fig. 9.

Now we can invert α and γp in (24):

∀p ∈ E, γpαγp = αγp ⇐⇒ αγpα = αγp

⇐⇒ (αγp)2 = αγp. (27)

Fig. 9 Here E = Z2 and C is the family of all 4-connected sets. Top
left: a 4-connected structuring element B; let B be the set of translates
of B , thus B ⊆ C. Let α be the opening by B , in other words α is
given by (25). Top right: a set X obtained by chaining translates of B ,
so X ∈ Con∗(B). Bottom: a set Y that is the union of two disjoint but
4-adjacent translates of B; thus Y ∈ C ∩ Inv(α) but Y �∈ Con∗(B)

The fact that the leftmost expression γpαγp = αγp holds
for every point p ∈ E means: for every C ∈ C, α(C) = C

or α(C) = ∅. Indeed, as γp(X) ∈ C, if αγp(X) = γp(X),
then γpαγp(X) = γpγp(X) = γp(X) = αγp(X), while if
αγp(X) = ∅, then γpαγp(X) = γp(∅) = ∅, so in any case
γpαγp(X) = αγp(X); conversely, given C ∈ C such that
α(C) ⊂ C, for p ∈ C \ α(C), γpαγp(C) = γpα(C) = ∅, so
γpαγp = αγp gives α(C) = αγp(C) = ∅. We obtain then
the following analogue of Proposition 34:

Proposition 36 Let α be an opening on P(E) such that
γpαγp = αγp for every p ∈ E. Then the system of partial
connection openings of C ∩ Inv(α) is (αγp,p ∈ E).

Proof By (27), αγp is idempotent, hence it is an open-
ing. The system of partial connection openings of Inv(α)

is (αp,p ∈ E), given by (22). If αγp(X) = ∅, then p /∈
αγp(X), hence αpγp(X) = ∅ by (22); if αγp(X) �= ∅, as
γpαγp = αγp , then γpαγp(X) �= ∅, so p ∈ αγp(X), hence
αpγp(X) = αγp(X) by (22). Thus for any p ∈ E and X ∈
P(E) we have αpγp(X) = αγp(X), therefore αpγp = αγp .
The same proof as the one of Proposition 34 shows that
αpγp = αγp is the greatest opening ≤ γp and ≤ αp , so that
(αγp,p ∈ E) is the system of partial connection openings
of C ∩ Inv(α). �

An instance of opening satisfying γpαγp = αγp for every
p ∈ E is a grain opening in the sense of [9]. Let ψ be an
increasing map C → {0,1}, then let α select from a set the
union of all C-components C with ψ(C) = 1:

α(X) =
⋃

{C ∈ PCC(X) | ψ(C) = 1}.

These C ∈ PCC(X) such that ψ(C) = 1 will be the C ∩
Inv(α)-components of X. Two well-known examples in Rn

or Zn are: (1) we choose a non-void structuring element B

and set ψ(C) = 1 ⇔ C�B �= ∅, then α selects all connected
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components wide enough to contain a translate of B; (2) we
set ψ(C) = 1 iff the measure of C exceeds a threshold, and
then α is the area opening.

Although grain openings have up to now been considered
for C being a connection, they can be extended to the case
where C is a partial connection. It is possible to combine
successively Propositions 34 and 36: let α be an opening
satisfying (25), and let β be a grain opening w.r.t. the partial
connection C ∩ Inv(α). Then C ∩ Inv(α) ∩ Inv(β) will have
the system of partial connection openings (βγpα,p ∈ E).

3.2 Partial Connections by Dilation or Closing

Serra [17] considered a connection C on P(E) and an ex-
tensive dilation δ on P(E). He required the condition that
δ(C) ⊆ C (this means: ∀C ∈ C, δ(C) ∈ C); he noted first that
it is equivalent to: for every p ∈ E, δ({p}) ∈ C. He then
showed that under this condition, δ−1(C) = {X ∈ P(E) |
δ(X) ∈ C} is a connection containing C.

Similarly, given a closing ϕ on P(E) such that ϕ(C) ⊆ C,
ϕ−1(C) is a connection containing C, see for instance [19].
Note that [19] also required the condition that ϕ(∅) = ∅, but
this condition is not necessary. Closings ϕ such that ϕ(C) ⊆
C and ϕ(∅) = ∅ were already considered in [10] under the
denomination of connectivity-preserving closings.

Now Heijmans [9] considered a connection C on P(E)

and an increasing operator ψ on P(E), and defined the set

Cψ = {X ∈P(E) | ∃C ∈ C, X ⊆ C ⊆ ψ(X)}. (28)

In order to have S(E) ⊆ Cψ , he postulated that “ψ is ex-
tensive on singletons”, that is, ∀p ∈ E, p ∈ ψ({p}); since ψ

is increasing, this simply means that ψ is extensive. How-
ever this extensivity hypothesis is not necessary to show that
Cψ is a partial connection. When ψ is an extensive dilation
mapping singletons into C (that is, ∀p ∈ E, ψ({p}) ∈ C),
or a closing preserving C (that is, ψ(C) ⊆ C), we obtain
Cψ = ψ−1(C) as above:

Proposition 37 Let C be a partial connection of P(E) and
ψ an increasing operator on P(E). Then Cψ given by (28)
is a partial connection. Furthermore:

1. If ψ is extensive, then C ∪ ψ−1(C) ⊆ Cψ .
2. If ψ is a closing and ψ(C) ⊆ C, then Cψ = ψ−1(C) and

C ⊆ Cψ .
3. If ψ is an extensive dilation and ∀p ∈ E, ψ({p}) ∈ C,

then Cψ is a connection, ψ(C) ⊆ C, Cψ = ψ−1(C) and
C ⊆ Cψ .

Proof Note that in (28) X ∈ Cψ contains as particular cases
first X = C ⊆ ψ(X), that is X ∈ C and X ⊆ ψ(X), second
X ⊆ C = ψ(X), that is ψ(X) ∈ C and X ⊆ ψ(X).

Clearly ∅ ∈ C and ∅ ⊆ ψ(∅); thus (28) gives ∅ ∈ Cψ .
Let B ⊆ Cψ with

⋂
B �= ∅; we can assume that B �= ∅. Let

p ∈ ⋂
B. For any B ∈ B, as B ∈ Cψ , there is some C ∈ C

such that B ⊆ C ⊆ ψ(B); as B �= ∅, B ⊆ ⋃
B, and as ψ is

increasing, ψ(B) ⊆ ψ(
⋃

B). Thus p ∈ C ⊆ ψ(
⋃

B), hence
C ⊆ γp(ψ

(⋃
B

)
) ⊆ ψ(

⋃
B). Then

B ⊆ C ⊆ γp

(

ψ

(⋃
B

))

⊆ ψ

(⋃
B

)

,

so that by taking the union of all such B ∈ B we get
⋃

B ⊆
γp(ψ(

⋃
B)) ⊆ ψ(

⋃
B), where γp(ψ

(⋃
B

)
) ∈ C. Therefore

⋃
B ∈ Cψ , so Cψ is a partial connection.
1. If ψ is extensive, then for every C ∈ C we have

C ⊆ ψ(C), so that C ∈ Cψ ; hence C ⊆ Cψ . Now for X ∈
ψ−1(C), we have ψ(X) ∈ C and X ⊆ ψ(X), so X ∈ Cψ ;
hence ψ−1(C) ⊆ Cψ .

2. Let ψ be a closing such that ψ(C) ⊆ C. For X ∈ Cψ ,
there is C ∈ C with X ⊆ C ⊆ ψ(X). Since ψ is increasing,
we have ψ(X) ⊆ ψ(C) ⊆ ψ(ψ(X)), but as ψ is idempotent,
ψ(ψ(X)) = ψ(X), so ψ(C) = ψ(X); as ψ(C) ⊆ C, we have
ψ(C) ∈ C, thus ψ(X) ∈ C, that is X ∈ ψ−1(C). Hence Cψ ⊆
ψ−1(C). Conversely, as ψ is extensive, ψ−1(C) ⊆ Cψ , and
we deduce the equality. As ψ is extensive, C ⊆ Cψ .

3. Let ψ be an extensive dilation such that ∀p ∈ E,
ψ({p}) ∈ C. As ψ is a dilation, ψ(∅) = ∅ ∈ C, so ∅ ∈
ψ−1(C). Let X ∈ Cψ such that X �= ∅; there is C ∈ C such
that X ⊆ C ⊆ ψ(X). For any p ∈ X, ψ({p}) ∈ C, and as
ψ is extensive, p ∈ ψ({p}); thus ψ({p}),C ∈ C and p ∈
ψ({p}) ∩ C, so that ψ({p}) ∪ C ∈ C; but

⋂
p∈X(ψ({p}) ∪

C) ⊇ X �= ∅, so that
⋃

p∈X(ψ({p}) ∪ C) ∈ C. As ψ is a di-
lation,

⋃

p∈X

(ψ({p}) ∪ C) =
( ⋃

p∈X

ψ({p})
)

∪ C

= ψ(X) ∪ C = ψ(X).

Thus ψ(X) ∈ C, so X ∈ ψ−1(C). Hence Cψ ⊆ ψ−1(C).
Conversely, as ψ is extensive, ψ−1(C) ⊆ Cψ , and we deduce
the equality. As ψ is extensive, C ⊆ Cψ . Thus C ⊆ ψ−1(C),
that is, ψ(C) ⊆ C. For any p ∈ E, ψ({p}) ∈ C, that is,
{p} ∈ ψ−1(C) = Cψ , so the partial connection Cψ contains
all singletons and is thus a connection. �

Concerning item 2, the main question is to guarantee that
the closing ψ satisfies ψ(C) ⊆ C. Characterizing such clos-
ings is a very difficult problem, see for instance [22].

A typical example of item 3 is a dilation by a structur-
ing element B containing the origin, such that B ∈ C (as-
suming that the partial connection C is translation-invariant:
B ∈ C ⇒ Bp ∈ C). For example if B is the closed ball of
radius r > 0 centered about the origin, the Cψ -components
of a set X will be made of clusters of C-components, where
two C-components are clustered together whenever the min-
imum distance between points of the two is ≤ 2r , see [9, 17].
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Fig. 10 Here E = Z2. Top, from left to right: the disk A of radius r

and the square B of side s, where r = 0.85 s, both centered about the
origin (shown as a dot); then B ⊆ A ⊆ B ⊕B; the diamond D inscribed
in B satisfies also D ⊆ A ⊆ D ⊕ B . Let C be partial connection made
of all 4-connected sets that are open by A. Bottom: given X ∈ C, its di-
late X ⊕ B ∈ C, thus δ(C) ⊆ C. Now since A ∈ C and B ⊆ A ⊆ B ⊕ B ,
B ∈ Cδ for the dilation δ by B; but B ⊕ B �∈ C, so B �∈ δ−1(C). Simi-
larly, D ∈ Cδ , but D �∈ δ−1(C)

Remark 38 Note that when C is a connection, every single-
ton belongs to C, so in item 3 the condition ∀p ∈ E, ψ({p})
∈ C, follows from ψ(C) ⊆ C; thus in this case we can take
either condition. However if C is not a connection, we gen-
erally cannot replace the condition ∀p ∈ E, ψ({p}) ∈ C by
ψ(C) ⊆ C, as shows the following example, illustrated in
Fig. 10.

Let E = Z2 and let C0 be the connection consisting of
all 4-connected sets. Take two structuring elements A,B as
follows: A is the disk of radius r > 0 centered about the
origin, while B is the square of side s centered about the
origin, where r ≤ s ≤ r

√
2; thus B ⊕ B is the square of side

2s centered about the origin, and B ⊆ A ⊆ B ⊕ B . Now
A,B ∈ C0. Let α : X �→ X ◦ A be the opening by A and
let δ : X �→ X ⊕ B be the dilation by B; as B contains the
origin, δ is extensive. Then δ(C0) ⊆ C0 (by item 3, in fact
by [17]). Let C = C0 ∩ Inv(α); it is a partial connection, and
A ∈ C. For X ∈ C, as X ∈ C0, we have δ(X) ∈ C0; as X ∈
Inv(α), and δ(X) is the union of translates of X by points of
B , we have δ(X) ∈ Inv(α); thus δ(X) ∈ C. Hence δ(C) ⊆ C.
For p ∈ E, δ({p}) = Bp , where Bp ◦ A = ∅, so there is no
C ∈ C with {p} ⊆ C ⊆ δ({p}), hence {p} /∈ Cδ , and Cδ is
not a connection. We have B ⊆ A ⊆ B ⊕ B = δ(B), where
A ∈ C, so B ∈ Cδ ; however B ⊕ B /∈ Inv(α), so B /∈ δ−1(C).
Therefore δ−1(C) is a proper subset of Cδ .

Let us now investigate partial connections of the form
δ−1(C) for a dilation δ and a partial connection C, but this
time without the requirements that δ is extensive and that

δ({p}) ∈ C for every point p. In fact δ can be a dilation be-
tween two distinct spaces. We require the following prop-
erty:

Lemma 39 Given two spaces E1 and E2 (distinct or equal)
and an adjunction (ε, δ) : P(E2) � P(E1), the following
three properties are equivalent:

1. ε(∅) = ∅.
2. εδ(∅) = ∅.
3. ∀X ∈P(E1), X �= ∅ ⇒ δ(X) �= ∅.

If these properties are not satisfied, setting

E′
1 = E1 \ ε(∅),

δ′ :P(E′
1) →P(E2) : X �→ δ(X) and

ε′ :P(E2) → P(E′
1) : Y �→ ε(Y ) \ ε(∅),

then (ε′, δ′) is an adjunction satisfying these properties.

Proof Since δ(∅) = ∅, 1 ⇔ 2. By adjunction, ε(∅) is the
greatest X ∈P(E1) such that δ(X) = ∅, hence 1 ⇔ 3.

Suppose that ε(∅) �= ∅, and let E′
1, δ′ and ε′ be as above.

For X ∈ P(E′
1) and Y ∈P(E2), δ′(X) ⊆ Y means δ(X) ⊆ Y

(since δ′(X) = δ(X)); by the adjunction (ε, δ), this is equiv-
alent to X ⊆ ε(Y ); but since X ⊆ E′

1 = E \ ε(∅), this is
equivalent to X ⊆ ε(Y )∩ (E1 \ε(∅)) = ε(Y )\ε(∅) = ε′(Y );
therefore (ε′, δ′) is an adjunction. Obviously ε′(∅) = ∅. �

Definition 40 Consider an adjunction (ε, δ) satisfying the
three equivalent properties in Lemma 39. Then the adjunc-
tion (ε, δ), the dilation δ and the erosion ε are called regular.
In other words, an erosion ε is regular iff ε(∅) = ∅, and a di-
lation δ is regular iff X �= ∅ ⇒ δ(X) �= ∅.

Proposition 41 Consider two spaces E1 and E2 (distinct or
equal), a regular dilation δ : P(E1) → P(E2), and a par-
tial connection C on P(E2). Then δ−1(C) = {X ∈ P(E1) |
δ(X) ∈ C} is a partial connection on P(E1).

Proof As δ is a dilation, δ(∅) = ∅ ∈ C, so ∅ ∈ δ−1(C). Let
B ⊆ δ−1(C) such that

⋂
B �= ∅. Let D = {δ(B) | B ∈ B};

then D ⊆ C. As δ is increasing, δ(
⋂

B) ⊆ ⋂
B∈B δ(B) =

⋂
D. As

⋂
B �= ∅ and δ is regular, we have δ(

⋂
B) �= ∅,

hence
⋂

D �= ∅. As D ⊆ C and C is a partial connection, we
deduce that

⋃
D ∈ C. As δ is a dilation, δ(

⋃
B) = ⋃{δ(B) |

B ∈ B} = ⋃
D ∈ C, so

⋃
B ∈ δ−1(C). �

For example, let E1 = Z2, E2 = R2, and let C be the fam-
ily of topologically connected subsets of R2.

– If δ is the dilation by a closed ball of radius 1/2, then
δ−1(C) is the family of 4-connected subsets of Z2.

– If δ is the dilation by a closed square of side 1, then
δ−1(C) is the family of 8-connected subsets of Z2.
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In relation to Proposition 26, note that for a dual Moore
family M of P(E2) and a dilation δ : P(E1) → P(E2),
δ−1(M) will be a dual Moore family of P(E1), even if
δ is not regular. Concerning Proposition 27, for any upper
set U ⊆ P(E2) and any increasing operator ψ : P(E1) →
P(E2), ψ−1(U) will be an upper set.

The problem with the partial connection δ−1(C) is that,
unless δ satisfies all conditions of item 3 of Proposition 37,
it can be very poor, as show the following examples:

– Let E1 = E2 = Z, and C be the usual connection con-
sisting of all connected (equivalently, convex) subsets of
Z (in other words, C arises from the adjacency relation
z ∼ z + 1 on Z). Take the dilation δ by the structur-
ing element {n2 | n ∈ N}; δ is extensive. Then all non-
empty elements of δ−1(C) will be unbounded; indeed, for
X ⊂ Z of width n, there will be a gap between X+n2 and
X + (n + 1)2, so δ(X) /∈ C.

– Let E1 = E2 = Z2 and consider the horizontal connection
Ch of Fig. 7. Let δ be the dilation by a ball of radius r > 0;
δ is extensive. For every non-void X ∈ P(Z2), δ(X) will
not be included in a line, so δ(X) /∈ Ch; hence δ−1(Ch) =
{∅}.
One can always extend δ−1(C) into a connection by

adding to it all singletons of E1. We will give below two
richer constructions. Recall the notion of chaining from De-
finition 12. Instead of requiring δ(X) ∈ C, we will take
δ(X) to be chained by its C-components and by sets δ({p})
(p ∈ E); in the first variant we restrict these δ({p}) to p ∈ X,
while in the second variant the weaker restriction is δ({p})
⊆ δ(X).

Given a set X ∈ P(E1), we can consider S(X) = {{p} |
p ∈ X} and δ(S(X)) = {δ({p}) | p ∈ X}, the family of di-
lates of singletons in X; note that δ(S(E)) ∩ P(δ(X)) =
{δ({p}) | p ∈ E, δ({p}) ⊆ δ(X)}.

Theorem 42 Consider two spaces E1 and E2 (distinct or
equal), a regular adjunction (ε, δ) : P(E2) � P(E1), and a
partial connection C on P(E2). Define

– C1
δ to be the set of all X ∈ P(E1) such that δ(X) is

chained by [C ∩ P(δ(X))] ∪ δ(S(X)), in other words, by
C-components of δ(X) and by sets δ({p}) for p ∈ X.

– C2
δ to be the set of all X ∈ P(E1) such that δ(X) is

chained by [C ∪ δ(S(E))] ∩ P(δ(X)), in other words, by
C-components of δ(X) and by sets δ({p}) for p ∈ E with
δ({p}) ⊆ δ(X).

Then:

1. C1
δ and C2

δ are connections.
2. δ−1(C) ⊆ C1

δ ⊆ C2
δ .

3. (εδ) is a closing such that (εδ)(C1
δ ) ⊆ C1

δ , and C2
δ =

(εδ)−1(C1
δ ) (cf. item 2 of Proposition 37).

4. C2
δ = δ−1(Con∗[C ∪ δ(S(E))]) (cf. Proposition 41).

Proof Trivially, ∅ is chained, so ∅ ∈ C1
δ . For p ∈ E1, δ({p})

is chained by {δ({p})}, hence it is chained by the larger set
[C ∩ P(δ({p}))] ∪ {δ({p})}, so {p} ∈ C1

δ . Let B ⊆ C1
δ such

that
⋂

B �= ∅. Since δ is increasing, δ(
⋂

B) ⊆ ⋂
B∈B δ(B).

As
⋂

B �= ∅ and δ is regular, we get δ(
⋂

B) �= ∅, hence⋂
B∈B δ(B) �= ∅. As δ is a dilation, δ(

⋃
B) = ⋃{δ(B) |

B ∈ B}. Given p,q ∈ δ(
⋃

B), we have p ∈ δ(B) and q ∈
δ(B ′) for B,B ′ ∈ B; let r ∈ ⋂

B∈B δ(B). By definition, p

and r are chained by elements of [C ∩P(δ(B))] ∪ δ(S(B)),
while r and q are chained by elements of [C ∩ P(δ(B ′))] ∪
δ(S(B ′)); hence we can chain p and r , then r and q , by el-
ements of the larger set [C ∩ P(δ(

⋃
B))] ∪ δ(S(

⋃
B)); by

transitivity of chaining, p and q will be chained, where p

and q are arbitrary members of δ(
⋃

B); hence
⋃

B ∈ C1
δ .

Therefore C1
δ is a connection. For X ∈ δ−1(C), δ(X) ∈ C,

so δ(X) is chained by [C ∩ P(δ(X))], that is X ∈ C1
δ ; thus

δ−1(C) ⊆ C1
δ .

For p ∈ E and X ∈ P(E1), by the adjunction (ε, δ) we
have δ({p}) ⊆ δ(X) ⇔ p ∈ εδ(X), and δ(εδ(X)) = δ(X).
Thus

[
C ∪ δ(S(E))

] ∩P(δ(X))

= [
C ∩P(δ(X))

] ∪ [
δ(S(E)) ∩P(δ(X))

]

= [
C ∩P(δ(X))

] ∪ δ(S(εδ(X)))

= [
C ∩P(δ(εδ(X)))

] ∪ δ(S(εδ(X))).

Thus X ∈ C2
δ iff δ(X) is chained by

[
C ∪ δ(S(E))

] ∩P(δ(X)),

iff δ(εδ(X)) is chained by

[
C ∩P(δ(εδ(X)))

] ∪ δ(S(εδ(X))),

that is, εδ(X) ∈ C1
δ ; hence C2

δ = (εδ)−1(C1
δ ). Obviously, εδ

is a closing. As δ(S(X)) ⊆ δ(S(εδ(X))), we have

[
C ∩P(δ(X))

] ∪ δ(S(X))

⊆ [
C ∩P(δ(X))

] ∪ δ(S(εδ(X)));
thus for X ∈ C1

δ , δ(X) is chained by

[
C ∩P(δ(X))

] ∪ δ(S(X)),

hence by the larger

[
C ∩P(δ(X))

] ∪ δ(S(εδ(X))),

and X ∈ C2
δ ; thus C1

δ ⊆ C2
δ = (εδ)−1(C1

δ ), so (εδ)(C1
δ ) ⊆ C1

δ .
By item 2 of Proposition 37, C2

δ is a partial connection
containing C1

δ , but as C1
δ is a connection, C2

δ is a connec-
tion. By Corollary 33 δ(X) ∈ Con∗[C ∪ δ(S(E))] iff δ(X) is
chained by [C ∪ δ(S(E))] ∩P(δ(X)), that is, X ∈ C2

δ ; hence
C2

δ = δ−1(Con∗[C ∪ δ(S(E))]). �
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Fig. 11 Here E1 = E2 = Z2; pixels are shown as disks, black for fore-
ground, hollow for background. (a) The structuring element A is a ver-
tical segment of size n (here n = 5 and the origin is surrounded by
a square); let δ be the dilation by A. (b) Two pixels p and q on the
same column or on two adjacent columns, and whose heights differ by
at most n − 1, form a pair in [Ch]1

δ , because their dilates δ({p}) = Ap

and δ({q}) = Aq overlap or can be joined by a horizontal segment (in
grey). (c) A set in [Ch]1

δ : its dilate is chained by the pixel dilates and by
horizontal segments (in grey). (d) A pair {p,q} of pixels on the same
column whose heights differ by n, belongs to [Ch]2

δ , because there is a
pixel r whose dilate δ({r}) (shown dashed) chains δ({p}) with δ({q})
in δ({p,q})

These two connections are generally much richer than
δ−1(C) ∪ S(E). Let us give here some examples. Consider
a regular dilation δ : P(E) → P(E). Here δ−1({∅}) = {∅},
so δ−1({∅})∪S(E) = {∅}∪S(E) (the least connection), but
{∅}1

δ is the connection on P(E1) arising from the adjacency

relation
δ∼ on E1, where for two points p,q ∈ E1 we have

p
δ∼ q iff δ({p}) ∩ δ({q}) �= ∅. For example let E = R2 and

let δ be the dilation by the closed ball of radius r > 0; then

p
δ∼ q iff d(p,q) ≤ 2r .
Figure 11 illustrates the connections C1

δ and C2
δ in the case

where E1 = E2 = Z2, C is the horizontal connection Ch of
Fig. 7, and δ is the dilation by a vertical structuring element
of size n. Here δ−1(Ch) = {∅}, so δ−1(Ch) ∪ S(E) = {∅} ∪
S(E) (the least connection), while [Ch]1

δ and [Ch]2
δ are the

connections arising from the adjacency relations
1∼ and

2∼,
where

(i, j)
1∼ (i′, j ′) ⇐⇒ |i − i′| ≤ n − 1 and |j − j ′| ≤ 1,

(i, j)
2∼ (i′, j ′) ⇐⇒ (i, j)

1∼ (i′, j ′) or
[|i − i′| = n and j = j ′],

i, i′ being the row numbers, and j, j ′ the columns numbers,
of the two pixels.

We saw that δ−1(C) ⊆ C1
δ ⊆ C2

δ , and that C1
δ and C2

δ are
connections, while δ−1(C) is a partial connection. We can
complement this comparison as follows:

Proposition 43 Let E1, E2, δ and C be as above. Then the
following three statements are equivalent:

1. δ−1(C) is a connection

2. For every p ∈ E1, δ({p}) ∈ C.
3. δ−1(C) = C1

δ = C2
δ .

Proof 1 ⇒ 2 If δ−1(C) is a connection, then it contains
the singletons, in other words {p} ∈ δ−1(C) for each p ∈ E1,
that is, δ({p}) ∈ C.

2 ⇒ 3 If δ({p}) ∈ C for all p ∈ E1, then δ(S(E)) ⊆ C,
and C2

δ is the set of all X ∈P(E1) such that δ(X) is chained
by [C ∪ δ(S(E))] ∩P(δ(X)) = C ∩P(δ(X)), in other words
δ(X) ∈ C. So C2

δ = δ−1(C), and as δ−1(C) ⊆ C1
δ ⊆ C2

δ ,
C1

δ = C2
δ .

3 ⇒ 1 If δ−1(C) = C1
δ = C2

δ , as C2
δ is a connection, so is

δ−1(C). �

Note that if E1 = E2, δ is extensive and for every p ∈ E1,
δ({p}) ∈ C (condition 2 above), then we are in the situation
of item 3 of Proposition 37.

When the adjunction (ε, δ) is not regular, we do as in
Lemma 39: we take E′

1 = E1 \ ε(∅) and the restriction δ′ of

δ to E′
1. Then δ′−1

(C), C1
δ′ and C2

δ′ will be partial connections
on E′

1, hence partial connections on E1.

4 Serra’s Segmentation Theorem and Partial Partitions

When establishing the theory of connective segmentation,
Serra [23] showed that a family C of sets comprising ∅ is
a connection iff the family of all partitions whose blocks
belong to C is a dual Moore family. We generalize this re-
sult to partial partitions and partial connections, and extend
this characterization with two new necessary and sufficient
conditions. As a consequence, we show that for a partial
connection C, the dual Moore family made of all partial
partitions with blocks in C is the invariance domain of the
opening on partial partitions that splits each block into its
C-components.

Then we discuss the relevance of this result to segmenta-
tion, and explain how the theory of partial connections can
be used to enhance segmentation algorithms.

4.1 Characterization of (Partial) Connections

For a family C ⊆ P(E), let

�(E,C) = �(E) ∩P
(
C \ {∅})

and (29)

�∗(E,C) = �∗(E) ∩P
(
C \ {∅}),

be the families respectively of partitions and of partial parti-
tions, whose blocks belong to C (in fact, blocks are non-void,
so they belong to C \ {∅}).

Serra [23] showed that given a family C ⊆ P(E) such
that ∅ ∈ C, �(E,C) is a dual Moore family of �(E) iff C is
a connection. We generalize this result as follows:
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Theorem 44 Let C ⊆ P(E) such that ∅ ∈ C. Then the fol-
lowing four statements are equivalent:

1. C is a partial connection on P(E).
2. �∗(E,C) is a dual Moore family of �∗(E).
3. For every A ∈ P(E), �∗(A,C) is a dual Moore family of

�∗(A).
4. For every A ∈ P(E), �∗(A,C) is non-void and has a

greatest element.

Furthermore, the following four statements are equivalent:

5. C is a connection on P(E).
6. �(E,C) is a dual Moore family of �(E).
7. For every A ∈ P(E), �(A,C) is a dual Moore family of

�(A).
8. For every A ∈ P(E), �(A,C) is non-void and has a

greatest element.

Proof Concerning items 3, 4, 7 and 8, we do not have to con-
sider the specific case where A = ∅. Indeed, for any family
C ⊆ P(E), �∗(∅,C) = �(∅,C) = �∗(∅) = �(∅) = {Ø}.

1 ⇒ 2 In �∗(E), the empty supremum is the least par-
tial partition Ø, having no block, thus Ø ∈ �∗(E,C). Given
a non-empty family {πi | i ∈ I } in �∗(E,C), the blocks of∨

i∈I πi are obtained by chaining blocks of the πi (i ∈ I ),
that are all in C; hence (cf. Corollary 33) the blocks of∨

i∈I πi belong to C, thus
∨

i∈I πi ∈ �∗(E,C). Therefore
�∗(E,C) is a dual Moore family of �∗(E).

2 ⇒ 3 By Proposition 14, the supremum operation in
�∗(A) is the one of �∗(E). Thus �∗(E,C) and �∗(A)

are both dual Moore families in �∗(E), so their intersec-
tion �∗(A,C) is a dual Moore family in �∗(E), hence in
�∗(A).

3 ⇒ 4 A dual Moore family is non-void (it contains the
least element) and it has a greatest element (its supremum).

4 ⇒ 1 By hypothesis, ∅ ∈ C. Let B ⊆ C such that⋂
B �= ∅; we can assume that B �= ∅. Let A = ⋃

B, and
let π be the greatest element of �∗(A,C). For every B ∈ B,
B ⊆ A, so 1B ∈ �∗(A,C), hence 1B ≤ π ; by (15), 1A =∨

B∈B 1B , thus 1A ≤ π , and as π ∈ �∗(A), we deduce that
π = 1A. As 1A ∈ �∗(A,C), A ∈ C. Therefore C is a partial
connection.

5 ⇒ 6 In �(E), the empty supremum is the least par-
tition 0E , made of singletons; as the connection C contains
all singletons, 0E ∈ �(E,C). Consider a non-empty fam-
ily {πi | i ∈ I } in �(E,C); as the connection C is a partial
connection, the equivalence 1 ⇔ 2 implies that

∨
i∈I πi ∈

�∗(E,C); by Proposition 15, this supremum is the same
in �∗(E) and �(E), so

∨
i∈I πi ∈ �(E,C). Therefore

�(E,C) is a dual Moore family of �(E).
6 ⇒ 7 As �(E,C) is a dual Moore family of �(E),

the least partition 0E belongs to �(E,C); as the blocks
of 0E are the singletons, C comprises all singletons. Thus
0A ∈ �(A,C), i.e., �(A,C) contains the least element of

�(A). Consider a non-empty family {πi | i ∈ I } in �(A,C);
by (12), for each i ∈ I , πi ∨ 0E = π ∪ 0E\A ∈ �(E,C).
Now as �(E,C) is a dual Moore family,

∨
i∈I (πi ∨ 0E) ∈

�(E,C). By Propositions 14 and 15, non-empty suprema
in �(A) and �(E) are the same as in �∗(E), where
we have (

∨
i∈I πi) ∨ 0E = ∨

i∈I (πi ∨ 0E) ∈ �∗(E,C);
hence

∨
i∈I πi ∈ �∗(E,C), so

∨
i∈I πi ∈ �(A,C). There-

fore �(A,C) is a dual Moore family of �(A).
7 ⇒ 8 Cf. 3 ⇒ 4.
8 ⇒ 5 For any p ∈ E, �({p},C) is non-void, so it

contains the unique partition of {p}, namely {{p}}, thus
{p} ∈ C, and C comprises all singletons. For A ∈ P(E), let
ξA be the greatest element of �(A,C). For π ∈ �∗(A,C),
π ∪0A\supp(π) ∈ �(A,C), and we have π ≤ π ∪0A\supp(π) ≤
ξA. Thus ξA is the greatest element of �∗(A,C). Thus item 4
holds, hence we have item 1: C is a partial connection. As C
comprises all singletons, it is a connection. �

Let us illustrate with a few counterexamples what this
theorem does not mean:

– A dual Moore family of �(E) is not necessarily of the
form �(E,C) for a connection C. Take E = Z2 or R2,
and let πh be the partition of E into horizontal lines, and
πv the one into vertical lines. Then M = {0E,πh,πv,1E}
is a dual Moore family of �(E), but the family C made
of ∅ and the blocks of these partitions, namely the sin-
gletons, the horizontal and vertical lines, and E, is not a
connection, and �(E,C) is not a dual Moore family. The
Moore family generated by �(E,C) is �(E,Con(C)).
The same can be said for �∗(E), with the dual Moore
family M∪ {Ø}.

– Comparing items 5 and 8 (or 1 and 4), in order for C to
be a (partial) connection, it is not sufficient to require that
�(E,C) (or �∗(E,C)) has a greatest element. Consider
again the previous example with E = Z2 or R2 and C the
family comprising ∅, the singletons, the horizontal and
vertical lines, and E. Then �(E,C) has a greatest ele-
ment, namely 1E , but C is not a connection.

Given a partial connection C, let CSC be the operator on
�∗(E) that splits each block of a partial partition into its
C-components:

∀π ∈ �∗(E),

CSC(π) =
⋃

C∈π

PCC(C)

= {γp(C) | C ∈ π,p ∈ C,γp(C) �= ∅}. (30)

It is known that when C is a connection, CSC is an opening
on partitions. This remains true for a partial connection and
partial partitions:

Proposition 45 For any partial connection C on P(E),
CSC is an opening on �∗(E), whose invariance domain is
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�∗(E,C). When C is a connection, the restriction of CSC to
�(E) is an opening whose invariance domain is �(E,C).

Proof Let π ∈ �∗(E). Consider ξ ∈ �∗(E,C) such that
ξ ≤ π ; for every class C ∈ ξ , we have C �= ∅, C ∈ C and
there is a class D ∈ π such that C ⊆ D, thus C is included
in a C-component of D; hence ξ ≤ CSC(π). Now clearly
CSC(π) ∈ �∗(E,C) and CSC(π) ≤ π . Therefore CSC(π) is
the greatest ξ ∈ �∗(E,C) such that ξ ≤ π . As �∗(E,C) is a
dual Moore family of �∗(E), this implies [2, 8, 15] that CSC

is an opening on �∗(E), with Inv(CSC) = �∗(E,C). When
C is a connection, CSC(π) ∈ �(E) for any π ∈ �(E), so
CSC preserves �(E); then the restriction of CSC to �(E) is
an opening whose invariance domain is �∗(E,C)∩�(E) =
�(E,C). �

A typical example of the opening CSC arises when we
choose for C a usual connection in the Euclidean or digital
space: we split each block into its connected components.
However, we have seen in Sect. 2.3 that there are many more
types of partial connections. Let us describe what some of
them can give:

– Take the partial connection C = Inv(α) for an open-
ing α, cf. Proposition 26. By (22), PCC(X) = {α(X)} if
α(X) �= ∅, and Ø otherwise, so we get

CSC(π) = {α(C) | C ∈ π, α(C) �= ∅}.

In other words, we apply the opening α to each block
of the partial partition, and keep only non-void opened
blocks.

– A particular case is when α is a trivial opening, in other
words C = U ∪ {∅} for an upper set U , cf. Proposition 27.
Here for X �= ∅, PCC(X) = {X} if X ∈ U , and Ø other-
wise, so we get CSC(π) = π ∩P(U). In other words, in a
partial partition we keep only the blocks belonging to U .
For instance, if U = P≥n(E), the set of all X ∈ P(E) such
that |X| ≥ n, this means that we remove all blocks of size
< n.

– For a partial connection C and an upper set U , C ∪ U is a
partial connection where

PCC∪U (X) =
{

X if X ∈ U ,
PCC(X) if X /∈ U .

Thus in a partial partition π , CSC∪U will preserve all
blocks of π belonging to U , and split all other blocks into
their C-components.

– Let C = {∅} ∪ S(E), the least connection. The C-com-
ponents of a set are its singletons, so CSC is the block
grinding opening grind: CSC(π) = 0supp(π).

4.2 Discussion: Relevance to Segmentation

Theorem 44 is at the basis of the theory of connective seg-
mentation [15, 23]. Recall from Sect. 1 that:

– a criterion σ is a Boolean predicate associating to every
function F : E → V and every subset A ⊆ E a value
σ [F,A] that can be 1 or 0;

– we write CF
σ for the set of all A ∈P(E) such that σ [F,A]

= 1;
– σ is connective if for any F : E → V , the set CF

σ is a
connection.

Let us say that:

– given a function F : E → V , a pre-segmentation of F ac-
cording to σ is a partition of E such that each block A

of it satisfies σ [F,A] = 1, in other words an element of
�(E,CF

σ );
– if �(E,CF

σ ) has a greatest element, it is called the seg-
mentation of F according to σ ;

– the criterion segments all functions if for any F : E → V ,
the set �(E,CF

σ ) of pre-segmentations of F according to
σ is a dual Moore family of �(E) [23].

The equivalence 6 ⇔ 5 proved by Serra in [23] means then
that the criterion σ segments all functions iff it is connective.

In [15], the framework of connective segmentation was
extended to partial partitions and partial connections. No
proofs were given then, they appear only here. The above
definitions admit partial counterparts:

– a criterion σ is partially connective if CF
σ is a partial con-

nection;
– a partial pre-segmentation of F according to σ is any el-

ement of �∗(E,CF
σ );

– if �∗(E,CF
σ ) has a greatest element, it is called the partial

segmentation of F according to σ ;
– a criterion σ partially segments all functions if for any F :

E → V , the set �∗(E,CF
σ ) of partial pre-segmentations

of F according to σ is a dual Moore family of �∗(E).

Then the equivalence 2 ⇔ 1 means the following assertion
made in [15]: the criterion σ partially segments all functions
iff it is partially connective.

On the other hand, properties 7 and 8 for a connection (re-
spectively, 3 and 4 for a partial connection), were not consid-
ered by Serra [23]. At first sight, one could think that prop-
erty 7 means “for every A ∈P(E), σ segments all functions
A → V ”, but this is misleading. Indeed, given A ∈ P(E),
F : E → V and FA : A → V the restriction of F to A, for
any B ∈ P(A), whether F satisfies criterion σ on B can de-
pend on the knowledge of the whole of F , and not only on its
restriction FA to A. Thus for B ∈P(A), σ [F,B] is not nec-
essarily equal to σ [FA,B], in other words CF

σ ∩P(A) does
not necessarily coincide with CFA

σ . Later on, we will discuss
further this question of regional and global knowledge.
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Fig. 12 Two ambiguous images: left, the Necker cube; right, a
bench/inverted bench. They both have two incompatible 3D interpreta-
tions

For A ∈ P(E) and F : E → V , let us call segmentation
of F on A according to σ the greatest element of �(A,CF

σ )

(if it exists), that is, the greatest partition of A such that each
block B of it satisfies σ [F,B] = 1. Then property 8 means:
for every A ∈ P(E), every function has a segmentation on
A according to σ . Now property 7 (that �(A,CF

σ ) is a dual
Moore family) can be expressed as: for every A ∈ P(E), σ

segments all functions on A. Both are equivalent to prop-
erty 5 (that σ is connective). We have then similar interpre-
tations of properties 3 and 4 in the partial case.

Why is Theorem 44 important? In a preliminary version
of [23], Serra gave some examples of so-called ambiguous
images; we show two such images in Fig. 12. They have
two incompatible visual interpretations, so their perception
switches back and forth between these two interpretations.
In other words, the two interpretations cannot be unified.

Now turning to image segmentation, if several segmenta-
tion algorithms extract from a function F : E → V distinct
segmentation partitions π1, . . . , πn, how do we unify them?
The answer is that a unification of π1, . . . , πn is a segmen-
tation partition π coarser than each of them, in other words
π ≥ ∨n

i=1 πi . The fact that all segmentations of F accord-
ing to criterion σ can be unified, means that �(E,CF

σ ) has
a greatest element. This is not sufficient for σ to be con-
nective: indeed, take the second counterexample after Theo-
rem 44, that is, E = Z2 and CF

σ comprising ∅, the singletons,
the horizontal and vertical lines, and E, then �(E,CF

σ ) has
a greatest element, namely 1E , but it is not a connection.
On the other hand if for all A ∈ P(E) the segmentations
on A can be unified, in other words �(A,CF

σ ) has a great-
est element, then by 8 ⇔ 5 the criterion σ is connective.
We can say the same for partial segmentations (partial parti-
tions) with the equivalence 4 ⇔ 1.

Therefore connective segmentation corresponds to seg-
mentation by partitioning the space into homogeneous re-
gions according to a criterion, in such a way that inside any
region of the space, any set of partitions can be unified by a
coarser one.

Given a (partially) connective criterion σ , to every func-
tion F : E → V corresponds the (partial) connection CF

σ

made of all A ∈ P(E) such that σ [F,A] = 1. Every (par-
tial) pre-segmentation of F according to σ , i.e., every (par-
tial) partition in with blocks in CF

σ can be considered as a
valid but sub-optimal (partial) segmentation of the function
F induced by the criterion σ ; thus in practice the optimal
one should be the greatest one, that we called the (partial)
segmentation of F according to σ , in other words the (par-
tial) partition PCCF

σ (E) of E into its CF
σ -components. Let

us write segσ (F,E) for this greatest (partial) segmentation.
Why do we need to consider the whole (partial) connection
CF

σ instead of just taking the greatest (partial) segmentation
segσ (F,E)?

One important reason, outlined in Sect. 1, is that we
can combine (partially) connective criteria. In particular a
Boolean conjunction σ1 ∧ · · · ∧ σn of (partially) connective
criteria σ1, . . . , σn, will be (partially) connective; indeed

CF
σ1∧···∧σn

= CF
σ1

∩ · · · ∩ CF
σn

,

which is an intersection of (partial) connections, hence
a (partial) connection. However segσ1∧···∧σn

(F,E) is in
general not obtained as the infimum of the partitions
segσi

(F,E) (i = 1, . . . , n), as we saw in Fig. 3; to be built it
requires the whole (partial) connection CF

σ1
∩ · · · ∩ CF

σn
.

On the other hand the Boolean disjunction σ1 ∨· · ·∨σn is
in general not (partially) connective. Writing con(σ1 ∨ · · · ∨
σn) for the least connective criterion ≥ σ1 ∨ · · · ∨ σn, we
have

CF
con(σ1∨···∨σn) = Con

(
CF

σ1
∪ · · · ∪ CF

σn

)
,

the least connection containing CF
σ1

∪ · · · ∪ CF
σn

. By Proposi-
tion 32, we have then

segcon(σ1∨···∨σn)(F,E) =
n∨

i=1

segσi
(F,E). (31)

In the partially connective case, we have a similar result with
con∗(σ1 ∨ · · · ∨ σn), the least partially connective criterion
≥ σ1 ∨· · ·∨σn, which corresponds to Con∗(CF

σ1
∪· · ·∪CF

σn
),

the least partial connection containing CF
σ1

∪ · · · ∪ CF
σn

.
The consideration of the whole connection CF

σ (instead
of only the greatest partition segσ (F,E)) is also relevant for
the segmentation of F on a subset A of E, that we mentioned
above in relation to properties 3, 4, 7 and 8. Here the fact
that CF

σ is a connection has interesting consequences. If A

is a CF
σ -component of a set Y , then A is a CF

σ -component
of Z for any set Z such that A ⊆ Z ⊆ Y . More generally,
given two sets Y and Z and a point p ∈ Y ∩ Z, if γp(Y ) ⊆
Z and γp(Z) ⊆ Y , then γp(Y ) = γp(Z). For segmentation,
this means that an object extracted in the segmentation of
a function on E, will remain identically segmented if we
segment the function on a bounded mask, provided that the
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mask is large enough. This is called class permanence in
[23].

It is now time to discuss for a connective criterion σ , what
is the information from F needed to determine the value of
σ [F,A] for A ∈P(E) and F : E → V . Is it the whole of F ,
the restriction of F to A, or to an intermediate set? For ex-
ample, in segmentation methods based on the minimization
of a global energy function, the segmentation of an object
changes according to the mask on which the energy is com-
puted (J. Serra, personal communication); in other words,
the segmentation of F on A requires the knowledge of F on
the whole space E.

To make the matter more provocative, let us note that
to every segmentation algorithm one can associate a con-
nective criterion (M. Tajine, personal communication): let
the criterion be satisfied by any connected subset of a seg-
mentation class. More precisely, suppose that an algorithm
associates to a function F its (partial) segmentation on E,
that is a (partial) partition Seg(F,E). We define the crite-
rion σ by σ [F,A] = 1 iff A ∈ subbl(Seg(F,E)), in other
words, CF

σ = subbl(Seg(F,E)), the family of all subsets
of blocks of the partition Seg(F,E). If the algorithm is
designed to produce connected segmentation classes (ac-
cording to a standard connection C0), then one can take
CF

σ = C0 ∩ subbl(Seg(F,E)). Since subbl(Seg(F,E)) is a
connection on the support of Seg(F,E), the criterion σ is
(partially) connective.

Of courses, such a connective criterion is defined a poste-
riori, after the segmentation is effectively realized, and one
is rather interested in the definition of an a priori criterion
that allows to build the segmentation of a function.

Let us examine in this respect the connective segmenta-
tions described in Sect. 1. Let C0 be the standard connection
on P(E), we assume that only segmentations with classes in
C0 are taken into account, in other words CF

σ ⊆ C0; if we do
not make such an assumption, we can put C0 = P(E). In the
segmentation by flat zones, σ [F,A] = 1 iff A ∈ C0 and F is
constant on A. In thresholding of interval U , σ [F,A] = 1
iff A ∈ C0 and F(p) ∈ U for all p ∈ A. Thus in these two
examples, only the set A and the restriction FA of F to A

are needed to determine σ [F,A], so the criterion uses only
local information. In the regional Lipschitz segmentation,
σ [F,A] = 1 iff A ∈ C0 and for all p ∈ A, F is Lipschitz
on the neighbourhood B(p); this requires the knowledge of
the values of F only on the neighbourhood of A given by
⋃

p∈A B(p). Again, the criterion uses only local informa-
tion.

In the jump segmentation of parameter k, the connection
is generated by seeds. Here a seed is a set A ∈ C0 such that
there is a regional minimum M of F intersecting A, and
such that if m is the level of M , then for every p ∈ A, we
have m ≤ F(p) < m + k. Thus the only knowledge neces-
sary to determine σ [F,A] is: (a) whether A is connected,

(b) the restriction FA of F to A, (c) the set of regional min-
ima of F . The latter (c) is the only global information. Let
us note that if A is a seed, the union of all flat zones of the
points of A is also a seed. One can thus take the graph of flat
zones of F [5], where each vertex corresponds to a flat zone,
and an edge links two vertices if the corresponding flat zones
are adjacent; then the function F becomes a function G on
the set V of vertices. Hence the jump segmentation can be
applied to G, but here each regional minimum of F becomes
a local minimum of G (a vertex v such that G(v) < G(w)

for any adjacent vertex w); thus a seed is determined by the
restriction of G to its neighbourhood. Hence at the level of
flat zones, the criterion uses only local information.

These examples constitute indeed instances of a priori
connective criteria based on more or less local information.
Note that the working on the graph of flat zones that we sug-
gested for jump segmentation, can be generalized. Assume
a (partially) connective criterion σ such that for every set A

and function F , the union A′ of flat zones of F containing
points of A satisfies σ [F,A′] ≥ σ [F,A]; then one can apply
the segmentation by σ to the image defined on the graph of
flat zones.

In [23], Serra defined an a posteriori connective segmen-
tation for watershed segmentation: σ [F,A] = 1 iff A is con-
nected and is included in the catchment basin of a single re-
gional minimum of F . To determine σ [F,A], one needs in
practice to determine all paths of steepest descent from A to
minima of F . Said in another way, a catchment basin C is
determined not only by the values of F on C, but also by
those of F on the portion of watershed surrounding it, and
on some parts of the neighbouring catchment basins. This
represents a rather global information, so the construction
of watersheds by an a priori connective criterion is proba-
bly impossible.

Let us end this section by suggesting ways to improve ex-
isting segmentation algorithms with the use of our theory of
partial partitions and partial connections. In [15, 23] several
examples are given of improved segmentations obtained by
an infimum of two or more connective criteria. Since every
segmentation algorithm determines an a posteriori connec-
tive criterion σ , we can combine this criterion with an a pri-
ori connective criterion σ ′ to obtain the segmentation ac-
cording to σ ∧ σ ′ or con(σ ∨ σ ′) (both connective criteria).
One can also modify the underlying standard connection C0

by replacing it with a second-generation partial connection,
cf. Sect. 3, see also Figs. 1 and 3.

If the resulting segmentation is only partial, it can be
completed by a segmentation of the residual, as done in
Figs. 4 and 5. If one wants to limit oversegmentation, one
can do as in Fig. 4: take as markers the classes of the first
segmentation, and regroup the classes of the further seg-
mentations into influence zones of the markers. Note that
Fig. 4 is also an example of a reduction of undersegmenta-
tion: a connected region made of two wide parts separated
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Table 1 Notation (in the order of first appearance)

C0 A standard connection on P(E) (e.g., arc,

topological, 4- or 8-connectivity)

Inv(ψ) Invariance domain of the operator ψ

(α,β) : A � B α : A → B and β : B → A

B A family of subsets of E

supp(R) Support of the binary relation R on E

supp(B) Support of the family B
π A partial partition

PE(π) Partial equivalence corresponding to π

Clπ Partial partition class map associated to π

cl A partial partition class map

PP(cl) Partial partition associated to cl

E∗(E) Set of all partial equivalences on E

�(E) Set of all partitions of E

�∗(E) Set of all partial partitions of E

0A Identity partition of A into its singletons

1A Universal partition of A into a single block

0supp(π) = grind(π), block grinding of π

1supp(π) = blend(π), block blending of π

C A partial connection on P(E)

S(X) Family of all singletons in X

γp Partial connection opening on P(E)

(γp,p ∈ E) System of partial connection openings on P(E)

PCC(X) Partial partition of all C-components of X

subbl(π) partial connection of all subsets of blocks of π

�(E) Set of all connections on P(E)

�∗(E) Set of all partial connections on P(E)

Con(B) Connection generated by the family B
Con∗(B) Partial connection generated by the family B
Cψ {X ∈ P(E) | ∃C ∈ C, X ⊆ C ⊆ ψ(X)}
ψ−1(C) {X ∈ P(E) | ψ(X) ∈ C}
ψ(C) {ψ(X) | X ∈ C}
δ(S(X)) {δ({p}) | p ∈ X}
C1

δ Set of all X with δ(X) chained by

[C ∩P(δ(X))] ∪ δ(S(X))

C2
δ Set of all X with δ(X) chained by

[C ∪ δ(S(E))] ∩P(δ(X))

�(E,C) Set of all partitions of E with blocks in C \ {∅}
�∗(E,C) Set of all partial partitions of E with blocks in

C \ {∅}
CSC Opening on �∗(E) splitting blocks into

C-components

CF
σ {A ∈ P(E) | σ [F,A] = 1}

segσ (F,E) PCCF
σ (E)

by a narrow isthmus is split into two regions, the isthmus
becomes the border between them. This approach could be
used (in combination with other methods, such as the one in

Sect. 8 of [22]) in the design of methods for closing broken
contours.

5 Concluding Remarks

We have recalled the framework of connective segmenta-
tion, and we have argued for the necessity to broaden it to
partial partitions and partial connections. This work is de-
voted to the study of these two concepts.

One of the merits of [23] was to highlight some links
between connections and partitions. We have investigated
further such links, and generalized this analysis to partial
connections and partial partitions. We have studied in depth
the properties of partial connections and partial partitions,
the lattices that they constitute, and the relations between
these two lattices.

Given a supremum of partial connections, it associates
to a set a partial partition of connected components, which
will be the supremum of the partial partitions of the set as-
sociated to each individual partial connection. On the other
hand, for a non-void infimum of partial connections, its par-
tial connection opening at a point will be the infimum, in
the lattice of openings, of the partial connection openings of
each individual partial connection.

We have generalized to partial connections known meth-
ods for generating a new connection from a given connec-
tion and an operator. We have also introduced the two new
connections C1

δ and C2
δ built from a partial connection C and

a regular dilation δ.
Serra’s theorem states that a family of sets is a connection

iff the set of all partitions with blocks belonging to that fam-
ily, is a dual Moore family. We have generalized it to partial
connections and partial partitions. The opening correspond-
ing to that dual Moore family is the operator on partial par-
titions that splits each block into its connected components.

We have argued the relevance of our theory of partial
connections to segmentation. The set of connective segmen-
tation criteria is stable under the infimum operation, while
a supremum of connective criteria generates a connective
criterion for which the standard segmentation is the supre-
mum of the ones of the individual criteria, cf. (31). Partially
connective segmentations can be combined sequentially, cf.
Figs. 4 and 5. Since every segmentation algorithm leads to
an a posteriori connective criterion, this gives various pos-
sibilities for modifying existing algorithms.

In the same way as connections led to a progress in the
processing of binary and grey-level images, thanks to the in-
troduction of connected operators [24], partial connections
can lead to new morphological operations on partial parti-
tions. For example we saw that for any partial connection C,
the operator on partial partitions that splits each block into
its C-components, is an opening. It can be shown that every
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opening on partial partitions that acts by splitting each block
separately, is of this form. Partial connections can also be in-
volved in closings that cluster blocks of a partial partition.

The author has initiated further work on morphological
and geodesic operations on partial partitions. Some prelim-
inary ideas have been presented (without proofs) in [13].
A collaborative research project is planned on connective
segmentation criteria and algorithms, as well as on image
filtering adapted to this framework (see for example [25]).

Acknowledgements The author has for several years discussed with
Jean Serra about connections, partitions and segmentation, and many
ideas in this paper have their roots in this exchange.
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