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Abstract Many combinatorial structures have been de-
signed to represent the topology of space subdivisions and
images. We focus here on two particular models, namely
the n-G-maps used in geometric modeling and computa-
tional geometry and the n-surfaces used in discrete imagery.
We show that a subclass of n-G-maps is equivalent to n-
surfaces. To achieve this, we provide several characteriza-
tions of n-surfaces. Finally, the proofs being constructive,
we show how to switch from one representation to another
effectively.
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1 Introduction

The representation of space subdivisions and the study of
their topological properties are significant topics in various
fields of research such as geometric modeling, computa-
tional geometry and discrete imagery. A lot of combinato-
rial structures have already been defined to represent such
topologies and specific tools have been developed on each
of them to perform operations on the subdivisions they rep-
resent (see for instance [8, 11, 14, 17, 25]). Although most of
them aim at representing the same underlying space (gener-
ally manifold-like), they have very variable definitions. This
variety mainly comes from the way they represent the topol-
ogy (e.g., point-set topology, cellular decomposition, map-
pings defining relations). Moreover each model is equipped
with a set of operations which is essentially determined by
the field of applications where the structure is used (e.g.
modeling, image analysis).

Comparing these structures, and highlighting their simi-
larities or specificities are important for several reasons. It
can first create bridges between them and offer the possi-
bility to switch from one framework to another according
to the needs of a given application. It may also lead to a
more general framework which unifies most of these struc-
tures. Theoretical results and practical algorithms can also
be transferred from one to another. However, these struc-
tures are most likely not interchangeable. Indeed, there is
no complete combinatorial characterization of manifolds.
The structures found in the literature generally propose lo-
cal combinatorial properties that can approach the proper-
ties of space subdivisions but without capturing their com-
plete nature. In designing algorithms involving topological
and geometric models, it is therefore extremely important
to know precisely what class of objects is associated with
each structure. Several studies have already been carried out
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in this direction. Quad-edge, facet-edge and cell-tuples were
compared by Brisson in [6]. Lienhardt [21] studied their re-
lations with several structures used in geometric modeling
like the n-dimensional (generalized or not) map. The rela-
tion between a subclass of orders [3] and cell complexes was
also studied in [2]. A similar work was done on dual graphs
and maps by Brun and Kropatsch in [7].

We focus here mainly on two structures: the n-surface
and the n-dimensional generalized map. The n-surface is a
specific subclass of orders defined by Bertrand and Couprie
in [4] which is equivalent to the notion previously defined
by Evako et al. on graphs in [16]. It is essentially an order
relation over a set together with a finite recursive property.
It is designed to represent the topology of images and ob-
jects within. The generalized map introduced by Lienhardt
in [21] is an effective tool in geometric modeling and is also
used in computational geometry. It is defined by a set of
n+ 1 involutions joining elements dimension by dimension.
Although the definitions of these two structures are very dif-
ferent, we manage to show that a subclass of generalized
maps, namely closed connected n-G-maps without multi-
incidence, is equivalent to n-surfaces. This may have various
nice consequences. From a theoretical point of view, some
proofs may be simplified by expressing them rather on a
model than on the other, some notions can also be extended.
Moreover the operators defined on each model may be trans-
lated onto the other. A possible application would consist
in using the tools defined on orders: homotopic thinning,
marching chains using frontier orders [11, 12] to obtain
n-surfaces. They can then be transformed into n-G-maps
which can easily be handled with their associated construc-
tion operators, e.g. identification, extrusion, split, merge.

In a previous work [1], we used an intermediary model,
a subclass of incidence graphs, to achieve this comparison.
In order to clarify the proof and highlight intrinsic properties
of n-surfaces, we only deal here with subclasses of orders.
We first give a static characterization of n-surfaces, which
we use then to distinguish such orders through properties
of their maximal chains. The latter characterization is the
key point towards the expression of the equivalence between
n-surfaces and closed connected n-G-maps without multi-
incidence.

The paper is organized as follows. In Sect. 2, we de-
fine some essential notions1 related to the models we in-
tend to compare (orders, n-surfaces and closed connected
n-G-maps). We present and prove then two characteriza-
tions of n-surfaces (Sect. 3, Theorem 9 and Theorem 19).
The first characterization is required to prove the second
characterization, which in turns is used to prove the equiv-

1An index gathering most notations and notions used in this paper and
referring the pages of the corresponding definitions has been inserted
at the end of the article, after the bibliographical references.

alence of models. We go on with defining and characteriz-
ing the class of closed connected n-G-maps without multi-
incidence (Sect. 4, Theorem 21) that will be proved to be
equivalent to n-surfaces. We detail then the whole demon-
stration (Sect. 5). We first show how to construct an n-G-
map from an n-surface (Sect. 5.1, Theorem 22). We then
exhibit the construction of an n-surface from an n-G-map
(Sect. 5.2, Theorem 23). We finally prove that both op-
erations are inverse to each other up to an isomorphism
(Sect. 5.3, Theorem 24) and hence prove the isomorphism
between the set of n-surfaces and the set of closed connected
n-G-maps without multi-incidence.

2 Model Description

This section begins with a slight introduction about the rep-
resentation of subdivided objects with combinatorial models
in an image context. It focuses then on the structures we are
more precisely interested in, orders and n-G-maps, and re-
calls the main notions related to them. It also describes the
simplicial interpretations associated with each model which
helps visualizing their relationship.

2.1 Combinatorial Models for Image Representation2

Many image applications in geometric modeling or image
analysis require to represent subdivided objects, i.e. objects
partitioned in cells of different dimensions (e.g. vertices,
edges, faces, volumes). Such a representation is necessary,
either to represent an object naturally made of elements of
different dimensions (e.g. a building is made of rooms (3D-
volume) separated by walls (2D-faces)) or to discretize an
object while keeping its structure (e.g. triangulation of an
object). In both cases, relations between cells have to be kept
to grant the integrity of the subdivided object. Neighbor-
hood relations between cells of same dimension (adjacency
relations) as well as hierarchical relations between cells of
different dimensions (incidence relations) have to be pre-
served.

Many combinatorial models have been designed to en-
code such subdivisions. Each model is adapted to a given
context of application (geometric modeling, image analysis,
computational geometry. . .) and optimized for the associ-
ated set of operations. These models mainly differ on two
aspects. They can first be made of different kinds of cells:
regular cells (e.g. simplices, cubical simplices, simploids),
or more general cells. Their second difference lies on the
way these cells are glued together. Some models are not
able for instance to encode non “manifold”3 subdivisions.

2A more detailed description can be found in [25].
3“Manifold” has to be understood here, according to the terminology
often used in geometric modeling, as a generalization of the notion of
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Other models forbid some cell configurations, such as an
edge looping on a single vertex.

Brisson [6] suggests to classify these models into two cat-
egories: incidence-graph-like models and models contain-
ing ordering information. n-surfaces (see Sect. 2.2) and n-
G-maps (see Sect. 2.3), which are the main subject of this
paper, respectively belong to the first and second class of
models.

Incidence-graph-like models explicitly encode the set of
cells of the subdivision and the incidence relations between
them. Adjacency relations are implicit and can be deduced
from the incidence relations.4 These models are able to rep-
resent cellular subdivision that does not contain multiply in-
cident cells. But this limitation is not the main drawback
of such structures. Indeed, their genericity makes it hard to
define accurate consistency constraints that grant the preser-
vation of the topological properties characterizing the sub-
division. For instance, the definition of such models do not
prevent a 1-cell to be incident to more than two 0-cells. Not
many solutions have been proposed yet to overcome this
problem. An option is to deal with subclasses of such mod-
els verifying additional properties and representing hence a
more limited set of subdivisions. The set of n-surfaces is an
example of such a subclass. But the difficulty is then to grant
that the subclass is stable under the operations applied on it.

Models containing ordering information overcome most
problems of incidence-graph-like models. They rely on an
implicit representation of cells, adjacency relations and inci-
dence relations. The basic elements encoded by these mod-
els are not the cells themselves but more elementary objects.
Combinatorial maps and generalized maps belong to this
class of models. Their basic elements are called darts. In-
formally a dart can be seen as a vertex of the subdivision
“viewed” from an edge incident to this vertex, “viewed”
from a face incident to this edge. . . The structure of the sub-
division is encoded with applications (e.g. permutations or
involutions) that glue the darts together. In 2D for instance,
gluing two darts that share a vertex and an edge implies glu-
ing two faces of the subdivision along a common edge and a
common vertex. Subdivisions encoded by such models can
contain multiply incident cells. Moreover consistency con-
straints can be easily added on the applications linking the
darts to avoid incorrect configurations of cells (e.g. a 1-cell
being incident to more than two 0-cells).

This article shows how to build a link between both
classes of models by explicitly constructing conversion op-
erators and showing the equivalence of two subclasses of
incidence-graph-like models and models containing order-
ing information.

surface to any dimension. It is different from the topological notion of
manifold which cannot be combinatorially characterized.
4Cells of a same dimension are adjacent if they share at least a common
incident face.

2.2 Orders and n-Surfaces

Orders are used by Bertrand et al. [3] to study topological
properties of images. The main advantages of this model are
its genericity and its simplicity. Orders can be used to rep-
resent images of any dimension, whether they are regularly
sampled or not.

Definition 1 (CF -order) An order is a pair |X| = (X,α),
where X is a set and α a reflexive, antisymmetric, and tran-
sitive binary relation. We denote β the inverse of α and θ the
union of α and β . CF orders are orders which are countable,
i.e. X is countable, and locally finite, i.e. ∀x ∈ X,θ(x) =
{x′ ∈ X, x′ ∈ α(x) or x′ ∈ β(x)} is finite.

There are many ways to represent such orders. We choose
here to represent them as simple directed acyclic graphs
(DAG), where each node is associated with an element of
the order and the transitive closure of the incidence relation
between nodes is α (see Fig. 1(a)). This notion is formalized
below.

The following notions are illustrated on Fig. 1. The set
α(x) is called the α-adherence of x (see Fig. 1(a) and 1(f)).
We denote respectively by α�(x), β�(x) and θ�(x) the sets
α(x)\{x}, β(x)\{x} and θ(x)\{x} (see Fig. 1(e)). Moreover
we call α-closeness of an element x the set α•(x) = {y ∈
α�(x), α�(x) ∩ β�(y) = ∅}. Intuitively this set contains
the elements that are the “closest” to x with respect to the
relation α. It is represented by the set of children of its as-
sociated node (see Fig. 1(g)). The DAG representing the or-
der |X| is simply the graph (X,α•). And α can be seen as
the transitive closure of α• for the set of nodes associated
with X. Finally we call path or θ -chain of length n (often
abbreviated as n-θ -chain), on an order, any sequence x0, x1,
. . . , xn such that xk+1 ∈ θ�(xk). An order is connected if
it is path-connected. α-chains, β-chains, α•-chains and β•-
chains are defined in a similar way. Such a chain is said to
be maximal if no other element of the order may be included
in or added to it. There exists of course an isomorphism be-
tween the set of α-chains and the set of β-chains, and an
isomorphism between the set of α•-chains and the set of β•-
chains.

An implicit dimension may be associated with each ele-
ment of an order [2, 16]. It is generally called the rank of the
element. The rank of an element x in an order |X| = (X,α),
denoted by ρ(x, |X|) is the length of the longest α•-chain
beginning at it. In the following, an element of rank k is
called a k-element, and its name is often followed by the
superscript k. By extension, the rank of an order is the max-
imal rank of its elements, maxx∈X(ρ(x, |X|)), i.e. the length
of the longest α•-chain of the order.

If S is a subset of X, we denote by |S| = (S,α|S) the
suborder of |X| relative to S where α|S is the restriction of α
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Fig. 1 Representation of an
order with a DAG and
illustration of the notions of α-,
β-, θ -adherences and
α-closeness

on the elements of S, i.e. α|S = α∩(S ×S). In the following,
we will often study suborders built on the θ�-adherence of
some element x. We note that the rank of any element in
such a suborder may be easily deduced from the rank of the
same element in the original order. Actually if the element
belongs to the α�-adherence of x then its rank remains the
same. But if it belongs to the β�-adherence of x then its
rank is equal to its rank in the original order minus one.

We introduce below two particular kinds of orders de-
fined in [10], namely pure orders and closed orders. An or-
der which is both pure and closed is depicted on Fig. 1(a).
Three other orders which lacks at least one of these proper-
ties are displayed on Fig. 2.

Informally, a pure order is such that any of its elements
belongs to the α-adherence of at least one element of rank n.

Definition 2 (Pure order) Let |X| be an order of rank n, |X|
is said to be pure if each of its elements belongs to an n-β•-
chain.

A closed order is such that between an element of rank k

and an element of rank l which are related by α there are at
least l − k − 1 elements of rank k + 1 . . . l − 1. Informally,
there is no “dimensional gap” between two elements related
by α.

Definition 3 (Closed order) Let |X| = (X,α) be an order,
|X| is said to be closed if for any x ∈ X and y ∈ α�(x):

∀i ∈]ρ(y, |X|), ρ(x, |X|)[, ∃z ∈ α�(x) ∩ β�(y),

ρ(z, |X|) = i.
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Fig. 2 Counter-examples of
purity and closeness properties

The closure property may equivalently be expressed as a
property on maximal chains of the order.

Proposition 4 Let |X| = (X,α) be an order, |X| is closed if
and only if for any x ∈ X whose rank is equal to k ≥ 0, x has
position k + 1 in any maximal β•-chain of |X| containing it.

From here we focus on a subclass of orders first defined
by Evako [16] and brought to image analysis by Bertrand et
al. [4] which is close to the notion of manifold proposed by
Kovalevsky [19]. Such objects are called n-surfaces and are
recursively defined. They form a subclass of the well-known
closed pseudo-manifolds (Theorem 17 of [13]).

Definition 5 (n-surface) Let |X| = (X,α) be a non-empty
CF -order.

• The order |X| is a 0-surface if X is composed exactly of
two elements x and y such that y 	∈ α(x) and x 	∈ α(y).

• The order |X| is an n-surface, n > 0, if |X| is connected
and if, for each x ∈ X, the order |θ�(x)| is an (n − 1)-
surface.

The order depicted on Fig. 1(a) is a 2-surface. The recur-
sion relation is illustrated on Fig. 3.

For convenience we consider from here that any or-
der |X| = (X,α) of rank n has two additional virtual ele-
ments x−1 of rank −1 and xn+1 of rank (n + 1), such that
β�

X (x−1) = X ∪ {xn+1} and α�
X (xn+1) = X ∪ {x−1} (see

Fig. 4). They are useful to avoid side effects problems in
the statement of some definitions and properties (e.g. see
Def 15). But they have no other function. For instance, none
of them are taken into account when studying the connect-
edness of an order. This trick is similar to the one used by
Brisson in [6] to deal with n-dimensional augmented inci-
dence graphs.

2.3 n-G-Maps

The n-dimensional generalized maps or n-G-maps defined
by Lienhardt [21, 22] are used to represent the topology
of subdivisions of topological spaces. Similarly to orders
they are general enough to deal with spaces of any dimen-
sion. However they can only represent quasi-manifolds (see
Sect. 2.4 and [22]), orientable or not, with or without bound-
ary. We may note here that as n-surfaces, quasi-manifolds
are a subset of pseudo-manifolds (see §2.1.5 of [22]). The
n-G-map combinatorial structure is particularly adapted to
geometric modeling since many basic and advanced model-
ing operators have been designed for it: merge, split, extru-
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Fig. 3 The θ�-adherence of
any element of a 2-surface must
be a 1-surface. For instance,
|θ�(F1)| and |θ�(a)| are
1-surfaces, because each
element of them has a
θ�-adherence made of two
disconnected elements

Fig. 4 An order of rank 2
represented with its two fictive
elements x−1 and x3

sion, chamfering, Cartesian product. . . (see for instance [8,
9, 20, 23]).

We begin with the general definition of n-G-maps.

Definition 6 (n-G-map) Let n ≥ 0, an n-G-map is an (n +
2)-tuple G = (D,α0, . . . , αn) such that:

• D is a finite set of darts
• αi , i ∈ {0, . . . , n} are permutations on D such that:

• ∀i ∈ {0, . . . , n}, αi is an involution.5

If D = ∅, αi is not defined.
• ∀i, j such that 0 ≤ i < i + 2 ≤ j ≤ n, αiαj is an invo-

lution.

An example of a 2-G-map is given in Fig. 5(a). This
map is made of 24 darts and α0, α1, α2 are defined as fol-

5A permutation π on the domain set D is an involution if and only if
π ◦ π is the identity map on D. In the following, we use the notation
dαiαj for αj ◦ αi(d).

lows:

α0 = {(1, 2), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12),

(13, 14), (15, 16), (17, 18), (19, 20), (21, 22),

(23, 24)},
α1 = {(1, 8), (2, 3), (4, 5), (6, 7), (9, 14), (10, 11),

(12, 13), (15, 24), (16, 17), (18, 19), (20, 21),

(22, 23)},
α2 = {(1, 15), (2, 16), (3, 9), (4, 10), (5, 21), (6, 22),

(7, 23), (8, 24), (11, 20), (12, 19), (13, 18),

(14, 17)}.
An n-G-map represents a subdivision of a topological

space, otherwise said a set of i-cells, i ∈ {0, . . . , n}. Each
i-cell of this subdivision is represented by a particular sub-
set of D. To express this formally, we recall now the notion
of orbit.

Definition 7 (Orbit) Let Φ = {π0, . . . , πn} be a set of per-
mutations over a set of elements D. Let 〈Φ〉 = 〈π0, . . . , πn〉
be the group of permutations of D generated by Φ . The or-
bit of an element d of D related to the group 〈Φ〉, denoted
by 〈Φ〉(d) is the set {φ(d),φ ∈ 〈Φ〉}.

Informally the orbit of an element d related to a group
of permutations is the set of elements which are images of d

by a composition of permutations that belong to Φ . When no
confusion may arise 〈π0, . . . , πn〉(d) is denoted by 〈π〉N(d)

with N = {0, . . . , n}. More generally, given a list of permu-
tations, the orbit related to a subgroup of these permutations
is denoted by 〈π〉 indexed by the set of indices of the in-
volved permutations.

The i-cells of the subdivision represented by an n-G-map
are hence determined by the orbits of the darts of D. Exam-
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Fig. 5 A 2-G-map together
with the subdivision it
represents. An explicit
description of the cells of the
subdivision based on the orbits
of the 2-G-map is depicted on
Fig. 6

Fig. 6 Illustration of the link
between orbits of a 2-G-map
and the cells of the
corresponding subdivision
(depicted on Fig. 5(b))

ples of orbits and of the cells they represent are displayed on
Figs. 5(b), 6(a) and 6(b).

Definition 8 (i-cell) Let G = (D,α0, . . . , αn) be an n-G-
map. Each i-cell of the associated subdivision corresponds
to a connected component of the (n − 1)-generalized map:
(D,α0, . . . , αi−1, αi+1, . . . , αn).6

The set of i-cells is hence a partition of the darts of the
n-G-map, for each i between 0 and n. Each i-cell is asso-
ciated to an orbit 〈α〉N−{i}(d), where d is a dart of G. All
darts belonging to such an orbit are said to be incident to
the corresponding i-cell. The incidence relations between

6See [22] for more details.

the cells of the subdivision can be easily computed. A cell
cj = 〈α〉N−{j}(d) is a face of a cell ci = 〈α〉N−{i}(d) if j ≤ i

and 〈α〉N−{j}(d) ∩〈α〉N−{i}(d) 	= ∅ [21]. Two such cells are
said to be consecutive if i = j + 1. Therefore an incidence
graph or incidence multigraph can easily be associated with
any n-G-map.

Most classical properties that may be attached to subdi-
visions have an interpretation in terms of involutions and
orbits. We give below the expression of two of them.

i. connectedness: ∀d ∈ D, 〈α〉N(d) = D

ii. closeness or without boundaries: ∀i ∈ N = {0, . . . , n}, αi

is without fixed point7

7αi is without fixed point if ∀d ∈ D,αi(d) 	= d .
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Fig. 7 Example of an order
(which is a suborder of
Fig. 1(a)) and its associated
abstract simplicial complex

A n-G-map fulfilling both properties is called a closed
connected n-G-map.

Contrary to orders, n-G-maps may represent unambigu-
ously subdivisions with multi-incidence, that is subdivisions
containing cells multiply incident to some other cell. Orders
fail to characterize such subdivisions because they cannot
provide information on how the different cells are glued to-
gether unless there exists explicit cells between them. A sim-
ple example is the torus made from a single square with
opposite borders glued together. We propose and justify in
Sect. 4 a characterization of n-G-maps that represent only
subdivisions without multi-incidence.

2.4 Simplicial Interpretation

Traditionally both orders and generalized maps have been
associated with a particular kind of abstract simplicial set.

The simplicial set usually built on orders is an abstract
simplicial complex: it is a set V of vertices and a family Δ

of finite subsets of V , called simplices and such that ∅ 	=
σ ⊆ τ ∈ Δ ⇒ σ ∈ Δ. The dimension of a simplex is equal
to the number of its elements less one.

More precisely the order complex (see [5]) Δ(|X|) of an
order |X| is the abstract simplicial complex induced by the
chain order associated with |X|. The vertices of this complex
are exactly the elements of X, and the k-simplices are the k-
α-chains on |X|. The incidence relations between the sim-
plices correspond to the inclusion relations between chains,
as shown in Fig. 7.

As orders, each n-G-map may be associated to a semi-
simplicial set [24], where each dart is represented by an n-
dimensional simplex. More precisely, the numbered semi-
simplicial set associated to an n-G-map is defined as fol-
lows. Each 0-simplex numbered by i corresponds to an orbit
〈α〉N−{i}(d). Each k-simplex represents an orbit 〈α〉N−I (d)

where I is a subset of N made of k + 1 elements. And an
i-simplex, si , is a face of a j -simplex, sj , j > i, if there ex-
ists a dart d such that si and sj are respectively associated to
〈α〉N−I (d) and 〈α〉N−J (d) with I ⊂ J (see Fig. 8). The set
of n-G-maps is precisely equivalent to the set of numbered
simplicial quasi-manifolds (see [21]). Quasi-manifolds are

Fig. 8 Numbered simplicial set associated to the submap
G′ = (D′, α0|D′ , α1|D′ , α2|D′ ) with D′ = {1, . . . ,14} of the 2-G-map

displayed on Fig. 5.
Vertices: 〈α〉N−{2}(9) ⇔ F2, 〈α〉N−{2}(1) ⇔ F1, 〈α〉N−{1}(1) ⇔ a,
〈α〉N−{1}(13) ⇔ b, 〈α〉N−{1}(11) ⇔ c, 〈α〉N−{1}(5) ⇔ d ,
〈α〉N−{1}(7) ⇔ e, 〈α〉N−{1}(3) ⇔ f , 〈α〉N−{0}(1) ⇔ A,
〈α〉N−{0}(2) ⇔ B , 〈α〉N−{0}(12) ⇔ C, 〈α〉N−{0}(4) ⇔ D,
〈α〉N−{0}(6) ⇔ E.
Edges: 〈α〉N−{0,1}(1) ⇔ Aa, 〈α〉N−{0,1}(2) ⇔ Ba,
〈α〉N−{0,1}(3) ⇔ Bf , 〈α〉N−{0,1}(4) ⇔ Df , 〈α〉N−{0,1}(5) ⇔ Dd ,
〈α〉N−{0,1}(6) ⇔ Ed , 〈α〉N−{0,1}(7) ⇔ Ee, 〈α〉N−{0,1}(8) ⇔ Ae,
〈α〉N−{0,1}(11) ⇔ Dc, 〈α〉N−{0,1}(12) ⇔ Cc, 〈α〉N−{0,1}(13) ⇔ Cb,
〈α〉N−{0,1}(14) ⇔ Bb, 〈α〉N−{0,2}(2) ⇔ F1B , 〈α〉N−{0,2}(4) ⇔ F1D,
〈α〉N−{0,2}(6) ⇔ F1E, 〈α〉N−{0,2}(8) ⇔ F1A, 〈α〉N−{0,2}(10) ⇔ F2D,
〈α〉N−{0,2}(12) ⇔ F2C, 〈α〉N−{0,2}(14) ⇔ F2B ,
〈α〉N−{1,2}(2) ⇔ F1a, 〈α〉N−{1,2}(4) ⇔ F1f , 〈α〉N−{1,2}(6) ⇔ F1d ,
〈α〉N−{1,2}(8) ⇔ F1e, 〈α〉N−{1,2}(10) ⇔ F2f , 〈α〉N−{1,2}(12) ⇔ F2c,
〈α〉N−{1,2}(14) ⇔ F2b.
Faces: 〈α〉N−{0,1,2}(1) ⇔ F1aA, 〈α〉N−{0,1,2}(2) ⇔ F1aB ,
〈α〉N−{0,1,2}(3) ⇔ F1f B , 〈α〉N−{0,1,2}(4) ⇔ F1f D,
〈α〉N−{0,1,2}(5) ⇔ F1dD, 〈α〉N−{0,1,2}(6) ⇔ F1dE,
〈α〉N−{0,1,2}(7) ⇔ F1eE, 〈α〉N−{0,1,2}(8) ⇔ F1eA,
〈α〉N−{0,1,2}(9) ⇔ F2f B , 〈α〉N−{0,1,2}(10) ⇔ F2f D,
〈α〉N−{0,1,2}(11) ⇔ F2cD, 〈α〉N−{0,1,2}(12) ⇔ F2cC,
〈α〉N−{0,1,2}(13) ⇔ F2bC, 〈α〉N−{0,1,2}(14) ⇔ F2bB

a special kind of numbered simplicial sets that can be con-
structively defined as a set of n-dimensional cells, glued to-
gether along their (n − 1)-faces such that each (n − 1)-cell
is incident to at most two n-cells.8

Semi-simplicial sets are a more general structure than ab-

8Note that this notion of quasi-manifold is different from the definition
proposed by Kovalevsky in [18].
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stract simplical complexes because several simplices may
share exactly the same faces or be multiply incident. When
such a configuration occurs, the associated cellular subdi-
vision contains multi-incident cells. Examples of subdivi-
sions containing multi-incidence are depicted on Figs. 14,
15, and Fig. 18(a). For instance, the 2-G-map depicted on
Fig. 14(a) encodes the minimal subdivision of a sphere
(see Fig. 14(b)). This subdivision is made of one vertex,
one edge and one face, where the vertex is multiply in-
cident to the edge and the edge multiply-incident to the
face. The corresponding 2-G-map has 2 darts. The asso-
ciated semi-simplicial set has hence two 2-simplices (see
Fig. 14(c)). Moreover both darts belong to the same orbits:
〈α〉N−{0,1}, 〈α〉N−{0,2}, 〈α〉N−{1,2},〈α〉N−{0}, 〈α〉N−{1} and
〈α〉N−{2}. The two associated 2-simplices share hence three
edges and three vertices, which means, as we deal with sim-
plices, that both simplices share exactly the same faces.

A subdivision without multi-incidence is displayed on
Fig. 5(b). An n-G-map associated to such a subdivision is
said to be without multi-incidence. This notion will be for-
mally defined and characterized in Sect. 4.

3 Characterizations of n-Surfaces

3.1 Static Characterization of n-Surfaces

This section contains the proof of the following theorem
which may be understood as a static characterization of n-
surfaces. The point 9 of Theorem 9 is illustrated on Fig. 9.

Theorem 9 An order |X| = (X,α) of rank n is an n-surface
if and only if:

i. |X| is pure and closed,
ii. The intersection of the θ�-adherences of the elements of

every β-chain C ∪ {x−1} ∪ {xn+1} of |X| (with C eventu-
ally empty)9 is
(a) empty if card(C) = n + 1,10

(b) made of two elements having the same rank if
card(C) = n,

(c) connected if card(C) ≤ n − 1.
We note that case iic may occur only if n ≥ 1. From here,
Properties i, iia, iib and iic are called static surface prop-
erties.

We just note here that the point 9 guarantees that when-
ever the rank of an order fulfilling static surface properties is
strictly greater than 0 then it is connected. Similarly point 9

9As θ�(x−1) ∩ θ�(xn+1) is, by definition, the set X, adding x−1 and
xn+1 to any β-chain C does not modify the intersection if C is not
empty and makes the intersection equal to X if card(C) is equal to 0,
i.e. if the chain is reduced to {x−1, xn+1}.
10iia is actually true for every order.

Fig. 9 The static surface properties of the 2-surface shown on Fig.
1(a). The θ�-adherences of three elements, F2,c and D are depicted
on (a), (b), (c). Three β-chains containing some of these elements are
displayed on (d), (e), and (f)

implies that an order of rank 0 having static surface proper-
ties is made of two distinct elements of rank 0 and is hence
a 0-surface.

The proof essentially relies on two lemmas: Lemma 13
and Lemma 14. Lemmas 11 and 12 are used to prove Lemma
13 whereas Lemma 10 is used to prove Lemma 11.

We first give a useful characterization of pure and closed
orders.

Lemma 10 |X| = (X,α) is a pure and closed order of rank
n if and only if any maximal β•-chain of |X| has length n.

Proof Let |X| be an order of rank n.

⇒ if |X| is pure and closed, then any element of X belongs
to at least one n-β•-chain (purity), otherwise said to at
least one maximal β•-chain. Moreover let C be a maxi-
mal β•-chain of |X|. Let xk be the greatest element of C
according to β•. As the order is closed, xk has position
k + 1 in the chain, otherwise said C has length k. If k

is strictly less than n, then the purity of the order would
imply that C is not maximal. C has hence length n.

⇐ By definition of maximal chains, any element of X be-
longs to at least one maximal β•-chain. If |X| is such that
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Fig. 10 |X| is the order
depicted on Fig. 1(a).
θ�|X(F3) ∩ θ�|X(A) =
θ�
|θ�|X (F3)

(A) = θ�
|θ�|X (A)

(F3) =
{a, e}

any maximal β•-chain has length n, then |X| is pure. Let
us show that it is also closed. Let x be an element of X

of rank k. Assume that x belongs to at least two maximal
β•-chains C and C′ such that x has position l and m re-
spectively in C and C′. Let us assume without loss of gen-
erality that l ≤ m. Then there exists a β•-chain containing
the m elements of C′ strictly lower than x (according to
β•), x and the n − l elements of C strictly greater than x

(according to β•). Such a chain has length n + m − l. As
no β•-chain has length strictly greater than n then m = l.
Moreover by definition of the rank, there exists at least
one β•-chain of |X| of length k ending at x. From it, it
is possible to build a maximal β•-chain where x has po-
sition k + 1. x has hence position k + 1 in any maximal
β•-chain of |X| containing it. �

We state below two properties related to such orders that
are straightforward consequences of the characterization of
pure and closed orders. The second property is simply a gen-
eralization of the first property.

The first lemma is illustrated on Fig. 10. Informally it
simply means that an element of an order which is in the
neighborhood of two others, is also a neighbor of each of
them in the subgraph built on the neighborhood of the other.
It also says that closure and purity properties are passed from
an order to any suborder built on some neighborhood.

These properties are used to prove Lemma 13 and
Lemma 16.

Lemma 11 Let |X| = (X,α) be a pure and closed order of
rank n and x be an element of X then (θ�(x),α|θ�(x)) is a
pure and closed order of rank n − 1 and:

∀x′ ∈ θ�(x), θ�
|θ�(x)

(x′) = θ�(x′) ∩ θ�(x).

Proof By definition of suborders, θ�
|θ�(x)

= θ�|X ∩ (θ�(x) ×
θ�(x)), where θ�(x) is a simplified notation for θ�|X(x). Let

x′ be any element of θ�(x). Then:

θ�
|θ�(x)

(x′)

= {y ∈ θ�(x), (x′, y) ∈ θ�|X ∩ θ�(x) × θ�(x)}
x′∈θ�(x)= {y ∈ θ�(x), (x′, y) ∈ θ�|X}

θ�(x)⊆X= {y ∈ X, (x′, y) ∈ θ�|X} ∩ θ�(x)

= θ�(x′) ∩ θ�(x).

Let us now prove that |θ�(x)| = (θ�(x),α|θ�(x)) is pure

and closed. By definition of θ , the suborder |θ�(x)| has
rank n − 1. By Lemma 10, it is necessary and sufficient to
prove that any maximal β•

|θ�(x)|-chain of |θ�(x)| has length

(n − 1).
Let C be a maximal β•

|θ�(x)|-chain of |θ�(x)|. The length

of C is at most n−1. By definition of θ�(x), C∪{x} is a β•-
chain of |X|. Let us suppose that the length of C is strictly
less than n− 1. Then C ∪{x} has a length strictly less than n

and hence is not a maximal β•-chain of |X|. Let us complete
this chain with elements y1, . . . , yk of X to obtain a maximal
β•-chain. By definition of θ�(x), y1 . . . yk also belong to
θ�(x). Moreover C ∪ {y1} ∪ . . . ∪ {yk} is a β•

|θ�(x)|-chain of

|θ�(x)|. It contradicts the assumption that C is a maximal
β•

|θ�(x)|-chain. Hence, C has length n − 1. �

Lemma 12 Let |X| = (X,α) be a pure and closed order
of rank n. Let {xij }j∈{0,...,p} be an α-chain of |X|, then α

induces a relation α|X′ on X′ = ⋂
j∈{0,...,p} θ�(xij ), such

that (X′, α|X′) is a pure and closed order of rank (n − (p +
1)) and:

∀x ∈ X′, θ�
|X′(x) = X′ ∩ θ�(x).

Proof This proof can be achieved by induction on p. The
case p = 0 comes from Lemma 11. The proof of the validity
of the induction hypothesis is very similar to the proof for
the case p = 0. It is left to the reader. �

We need two more lemmas to effectively show that an or-
der verifying all static surface properties may be recursively
defined in the same way as n-surfaces.

The first lemma expresses that the “neighbourhood” of
any cell of an order with surface properties also has the same
properties. Informally this means that the neighborhood of a
cell of a surface is also a surface.

Lemma 13 Let |X| be an order of rank n ≥ 1 fulfilling the
static surface properties then ∀x ∈ X,θ�(x) is an order of
rank n − 1 that fulfills the static surface properties too.
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Fig. 11 Illustration of the
isomorphism between the
maximal α•|X-chains of |X|
(depicted on Fig. 1(a))
containing some element x

(here F2) and the maximal
α•

|θ�(x)
-chains of |θ�(x)| (here

|θ�(F2)| depicted on Fig. 9(a))

Proof Let xi be an element of X of rank i, i ∈ {0, . . . , n}.
We consider (θ�(xi), α|θ�(xi )) which is an order of rank
(n − 1) (see Lemma 11). We must prove that each surface
property holds for |θ�(xi)|. Property 9 is guaranteed by
Lemma 11. Now, let Ci be some β|θ�(xi )-chain of |θ�(xi)|.
To prove 9, we need to study the properties of the set⋂

x∈Ci∪{x−1}∪{xn+1} θ�
|θ�(xi )

(x) according to the cardinal of

Ci .
By definition of θ�, Ci ∪{xi} is a β|X-chain of |X|. More-

over, by Lemma 11 and classical properties of intersection,
we have:

⋂

x∈Ci∪{xi }∪{x−1}∪{xn+1}
θ�|X(x)

=
⋂

x∈Ci∪{x−1∪{xn+1}}
(θ�|X(x)) ∩ θ�|X(xi)

Lemma 11=
⋂

x∈Ci∪{x−1∪{xn+1}}
θ�
|θ�|X(xi )

(x).

And as |X| fulfills the static surface properties, we know
the properties of

⋂
x∈Ci∪{xi }∪{x−1}∪{xn+1}θ�|X(x) according to

the cardinal of Ci ∪ {xi}, i.e. card(Ci )+ 1. We can therefore
deduce that

⋂
x∈Ci∪{x−1}∪{xn+1}θ�

|θ�|X(xi )
(x) is:

• empty if card(Ci ) + 1 = n + 1, i.e. card(Ci ) = n

• made of two elements having the same rank if card(Ci )+
1 = n, i.e. card(Ci ) = n − 1

• connected if card(Ci )+1 ≤ n−1, i.e. card(Ci ) ≤ n−2

The static surface property ii hence holds for the order
(θ�(xi), α|θ�(xi )) of rank (n − 1).

�

The next lemma shows that a connected order with di-
mension at least 1, which is locally everywhere an order
fulfilling the static surface properties, is also itself an order
fulfilling the static surface properties.

Lemma 14 Let |X| be an order of rank n ≥ 1, such that

∀x ∈ X, θ�(x) is an order of rank (n − 1) fulfilling the sta-

tic surface properties then |X| also fulfills the static surface

properties.

Proof We successively prove property i and ii:
Property (i). Let x be an element of |X| with rank k. As

|θ�(x)| is a pure and closed order of rank n − 1, all of its
maximal α•

|θ�(x)
-chains have length (n − 1). Let C be such

a maximal chain of θ�(x). Then there exists an α•-chain in
|X| containing all the elements of C plus x. Hence x belongs
to a chain with length n. Moreover by definition of θ�, it is
clear that there exists a bijection between the set of maximal
α•-chains of |X| containing some element x and the set of
maximal α•

|θ�(x)
-chains of |θ�(x)| (an illustration is given

on Fig. 11). Any maximal α•-chain of X containing x may
be obtained from some maximal α•

|θ�(x)
-chain of |θ�(x)| by

inserting the element x. All maximal α•-chains of X have
hence length n.

Property (ii). Let CI be a β-chain of |X|, CI = {xi}i∈I

where I ⊂ {0, . . . , n}, card(I ) ≥ 1. Let us choose some
j ∈ I . We have naturally:

⋂
i∈I\{j}(θ�(xi) ∩ θ�(xj )) =

⋂
i∈I θ�(xi). From Lemma 11, ∀i ∈ I\{j}, θ�(xi) ∩

θ�(xj ) = θ�
|θ�(xj )

(xi). Otherwise said
⋂

i∈I θ�(xi) =
⋂

i∈I\{j} θ�
|θ�(xj )

(xi). And as |θ�(xj )| verifies all static

surface properties, this intersection has the expected prop-
erty. �

Last two lemmas imply that an order equipped with static
surface properties may be recursively defined with the same
recursive property as n-surfaces. Moreover an order of rank
equal to 0 fulfilling static surface properties is clearly a 0-
surface. Hence Theorem 9 holds.
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Fig. 12 The order of (a) is an example of a switch-order which
is not an n-surface. It fulfills properties iia, iib but not property iic.
θ�(F1) displayed on (b) is not connected

3.2 Characterization of an n-Surface through Properties of
Its Maximal β•-Chains

The purpose of this section is to prove that n-surfaces can
be characterized by transformations on their maximal β•-
chains (Theorem 19). We need further definitions to achieve
this goal.

We define first the notion of switch-orders. It can be
easily proved that the set of switch-orders is isomorphic
to the set of augmented incidence graphs defined by Brisson
in [6] and used in the first attempts to prove the isomorphism
between the set of n-surfaces and a subset of generalized
maps [1].

Definition 15 (Switch-order) A pure and closed order |X|
is a switch-order if

∀(xi−1, xi, xi+1) ∈ X × X × X,

such that {xi−1, xi, xi+1} is a β•-chain of |X|,
∃!x ′i ∈ X, α�

X (xi+1) ∩ β�
X (xi−1) = {xi, x

′i}.

The property characterizing switch-orders is called
switch-property. We note here that the static surface prop-
erties i and iib guarantee that n-surfaces are switch-
orders. The converse is generally not true (see Fig. 12).
Nevertheless such orders have a common characteristic with
n-surfaces, they are locally everywhere switch-orders.

Lemma 16 Let |X| be a switch-order of rank n ≥ 1 then
∀x ∈ X,θ�(x) is a switch-order of rank n − 1.

Moreover let {xij }j∈{0,...,p} be an α-chain of |X|, then
the suborder induced on

⋂
j∈{0,...,p} θ�(xij ) is a switch-

order of rank (n − (p + 1)).

This lemma is a straightforward consequence of Lem-
mas 11 and 12, and of the intrinsic properties of θ�.

Moreover (n + 1) involutions may be straightforwardly
defined on the n-β•-chains of a switch-order of rank n.

Proposition 17 (switchi -operators) Let |X| be a switch-
order of rank n. The switch property induces (n + 1) in-
volutions without fixed point switchi , i ∈ {0, . . . , n} on the
set of the n-β•-chains of |X|, (x0, . . . , xi, . . . , xn), defined
by:

switchi ((x
0, . . . , xi−1, xi, xi+1, . . . , xn))

= (x0, . . . , xi−1, x
′i , xi+1, . . . , xn)

where α�
X (xi+1) ∩ β�

X (xi−1) = {xi, x
′i}.

We also note that any pure and closed order that may be
equipped with such a set of operators is a switch-order.
We remark here that any order built on a non empty sub-
set

⋂
i∈I θ�(xi) is a switch-order with rank n − card(I )

(Lemma 16). It may hence be equipped with n − card(I ) +
1 switchi -operators naturally deduced from the opera-
tors defined on the whole order. In the following, in or-
der to avoid any ambiguity, we subscript the operators
of such suborders with their index in the original order:
{switchk}k∈N\I .

Definition 18 (Chain connected order) A switch-order |X|
of rank n is a chain connected order if for any β-chain
(eventually empty) of X, {xij }j∈{0,...,k}, 0 ≤ k ≤ n, any n-
β•-chain of X containing these k elements is the image of
any other n-β•-chain containing the k-elements by a com-
position of switchi , i ∈ N − {i0, . . . , ik}.

The order depicted in Fig. 12 is not chain connected as
there is for instance no composition of switch-operators
transforming the chain AaF1 into the chain CcF1.

We prove below that any n-surface is a chain connected
order which is also pure and closed and that the converse
is also true. In order to obtain this result we use both the
recursive and static characterization of n-surfaces.

Theorem 19 Let |X| be an order then the following state-
ments are equivalent:

i. |X| is an n-surface,
ii. |X| is a chain connected order of rank n.

Proof The proof is achieved in two steps. The first step
mainly uses the recursive definition of n-surfaces whereas
the second step is based on their static characterization. As
the proof is quite tricky, we first give the main underlying
ideas.

Proving that n-surfaces are chain connected ((i) ⇒ (ii))
is essentially achieved through a recursive proof. 1-surfaces
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are first proved to be chain-connected. Then a sequence
of switch-operators connecting any two chains of an
n-surface is deduced from the switch-operators of well-
chosen suborders of lower rank.

Proving that chain-connected orders of rank n are n-
surfaces ((ii) ⇒ (i)) mainly requires to check point iic of
the static characterization of n-surfaces. In other words, each
suborder built on the intersection of θ�-adherences of a fi-
nite set of elements must be connected. The proof exhibits
how to construct a path between any two elements of such a
suborder.

(i) ⇒ (ii). |X| is an n-surface first implies that |X| is pure
and closed (see static surface property i in Theorem 9). We
have also already remarked that any n-surface is a switch-
order. In order to prove that it is chain connected we use the
static surface property ii.

Let {xij }j∈{1,...,p} be p elements of |X|. And let Up be
the set of n-β•-chains of |X| containing these p elements.11

We note that U0 is simply the set made of all n-β•-chains
of |X|. We have to prove that two n-β•-chains of Up can
be related by a composition of involutions switchi , i ∈
N − {i0, . . . , ip}.
• If p = n + 1, Up contains only one element.
• For p ≤ n, we proceed by complete induction on the rank

n of the order.
If the rank of |X| is equal to 0, p ≤ n implies p = 0.

U0 is the set of all 0-β•-chains of the order, and contains
hence two elements related by switch0.

Let us suppose the property true for all n-surfaces,
n ≤ k. What happens for a (k + 1)-surface ? In this
case, p is lower than or equal to k + 1 and elements
of Up are (k + 1)-β•-chains. Let us consider two el-
ements of Up . By definition, each of them contains
the elements {xij }j∈{1,...,p}. Let us denote respectively
{eij }j∈{p+1,...,k+2} and {e′ij }j∈{p+1,...,k+2} the k − p + 2
cells completing these (k + 1)-β•-chains.

The recursive definition of n-surfaces and the defini-
tion of θ� imply that the suborder built on

⋂
j∈{1,...,p} θ�(xij )

has rank k + 1 − p and is a (k − p + 1)-surface.
(eip+1 , . . . , eik+2) and (e

′ip+1 , . . . , e
′ik+2) are (k − p + 1)-

β•-chains of this order. As p ≤ k + 1, k + 1 − p ≥ 0
and the suborder has a dimension greater than or equal
to 0. Moreover as it is a suborder of |X|, its rank is at
most k. The recursion hypothesis hence holds. Hence,
there exists a composition of operators switchij , ij ∈
{ip+1, . . . , ik+2} relating both (k−p+1)-β•-chains. This
same composition of involutions, whose indices belong to
N −{i1, . . . , ip}, relates the corresponding k-β•-chains in
the whole order.

11To be more formal, we should denote Up by Up({xij }j∈{1,...,p})

This process is illustrated in Fig. 13 where the rank of the
order is equal to 2 and p to 1. Let us study the link be-
tween 2-β•-chains (B,a,F1) and (B,b,F3). The rank of
the fixed element B is 0. We aim hence at proving that
there is a composition of switch1 and switch2 that
links (B,a,F1) and (B,b,F3). Let us consider the sub-
order built on θ�(B). (a,F1) and (b,F3) are both 1-β•-
chains of this order. The recursion hypothesis holds for
them. There exists an alternative sequence of switch1

and switch2 relating both 1-β•-chains: (a,F1), (f,F1),
(f,F2), (b,F2), (b,F3). This same sequence applied on
(B,a,F1) leads to (B,b,F3).

(B,a,F1)
switch1−→ (B,f,F1)

switch2−→ (B,f,F2)

switch1−→ (B,b,F2)
switch2−→ (B,b,F3).

(ii) ⇒ (i). |X| is a chain connected order. As |X| is pure
and closed, we only need to prove that |X| fulfills static sur-
face property i of Theorem 9.

iia holds for any order.
iib is a direct consequence of the switch-property of

chain connected orders.
In order to prove iic, we consider a k-β-chain {xij }j∈{0,...,k}

of |X| with k + 1 ≤ n − 1. Let y and y′ be two distinct ele-
ments of the suborder |X′| built on

⋂
j∈{0,...,k} θ�(xij ). This

suborder is a switch-order with rank n − k − 1 which is
strictly greater than 0. We have to show that there exists a
θ|X′ -chain between y and y′. We explain below how to con-
struct such a path.

Let Cy and Cy′ be two n-β•-chains of |X| respectively
containing y and y′. There exists a finite sequence of
switchj -operators, j ∈ N −{i0, . . . , ik}, relating Cy to Cy′ .
If no operator is indexed by the rank of y then it is obvious
that y belongs to Cy′ , which means that y belongs to θ�(y′).
Otherwise let us traverse the sequence of operators until the
first one indexed by the rank of y. Let Cp and Cp+1 be the
two n-β•-chains related by this operator. The element y be-
longs to Cp but not to Cp+1 and all other elements of Cp and
Cp+1 are identical. Let us choose one of these elements such
that its rank does not belong to {i0, . . . , ik}, and call it y0.
The element y0 belongs to |X′| and {y, y0} is hence a θ|X′ -
chain. If y0 belongs to θ�(y′), we have just exhibited a path
between y and y′. Otherwise we continue moving on along
the sequence until finding an operator indexed by the rank
of y0 and we add another element to the path in the same
way as previously. We iterate the process until finding an el-
ement which is in the θ�-adherence of y′. The termination
of the process is guaranteed by the definition of the involved
sequence of operators. �
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Fig. 13 Illustration of part one
of the proof of Theorem 19 for a
2-surface. The 2-β•-chain
(B,a,F1) may be related to the
2-β•-chain (B,b,F3) (BaF1,
Bf F1, Bf F2, BbF2, BbF3) by
using a composition of operators
switch1 and switch2

4 Definition and Characterization of n-G-Maps
without Multi-Incidence

As previously said, orders can only represent subdivisions
without multi-incidence. In this section, we characterize the
class of generalized maps that also represent such subdivi-
sions.

The most intuitive characterization of generalized maps
without multi-incidence is simply a translation in terms of
orbits that its associated simplicial object is an abstract sim-
plicial complex.

This characterization is a consequence of the link be-
tween the cellular subdivision represented by a generalized
map and the associated semi-simplicial set. Let us remind
that an i-cell of the cellular subdivision is associated to an
orbit 〈α〉N−{i}(d) which also corresponds to a 0-simplex (i.e.
a vertex) of the associated semi-simplicial set. More gen-
erally, each i-simplex is related to an orbit 〈α〉N−I (d) for
some dart d where I has cardinality i + 1. This connection
leads to a duality between multi-incidence in the cellular
subdivision and identifications in the semi-simplicial set. An
identification occurs if two k-simplices are incident to pre-
cisely the same set of (k + 1) vertices. As each vertex of the

semi-simplicial set corresponds to a cell of the associated
cellular subdivision, the (k + 1) cells of the cellular subdi-
vision associated to these (k + 1) vertices are incident in at
least two ways (each one corresponding to a k-simplex).

The classical characterization of n-G-maps without
multi-incidence simply says that a given set of k + 1 ver-
tices of the associated numbered semi-simplicial set defines
a unique k-simplex.

Theorem 20 (Classical characterization of n-G-maps with-
out multi-incidence) An n-G-map is without multi-
incidence if and only if

∀d ∈ D, ∀I ⊆ N, 〈α〉N−I (d) =
⋂

i∈I

〈α〉N−{i}(d). (1)

The previous theorem is not very useful in practice as de-
ciding whether an n-G-map contains multi-incident cells re-
quires a lot of tests. Actually, for each dart of an n-G-map,
nearly 2n+1 orbits have to be computed to ensure that the
generalized map is without multi-incidence. We give below
a simpler characterization which requires around n2 com-
putations of orbits per dart, and prove that both characteri-
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zations are equivalent. This new characterization only relies
on the observation of the 1-simplices and of the n-simplices.
It says that whenever there are no identification in dimen-
sions 1 and n, there are no identification at all in the semi-
simplicial set. We first prove this theorem. Then we show
through counter-examples that both conditions are necessary
to ensure the absence of multi-incidence. We call hence this
characterization “optimal”.

Theorem 21 (Optimal characterization of n-G-maps with-
out multi-incidence) An n-G-map G = (D,α0, . . . , αn) is
without multi-incidence if:

∀d ∈ D,
⋂

i∈N

〈α〉N−{i}(d) = {d}, (2)

∀i, j ∈ N,∀d ∈ D,

〈α〉N−{i}(d) ∩ 〈α〉N−{j}(d) = 〈α〉N−{i,j}(d). (3)

Conditions (2) and (3) are respectively called maximal sim-
plicity and minimal simplicity.

Proof We prove below the equivalence between (2) and (3)
of Theorem 21 and (1) of Theorem 20.

i. (1) ⇒ (2 and 3): is straightforward ((2) and (3) are par-
ticular cases of (1)),

ii. (2 and 3) ⇒ (1): is recursively proved.

To prove ii, we first note that the following property is
always true:

∀d ∈ D,∀I ⊆ N, 〈α〉N−I (d) ⊂
⋂

i∈I

〈α〉N−{i}(d). (4)

Hence the condition (1) is equivalent to:

∀d ∈ D,∀I ⊆ N, 〈α〉N−I (d) ⊃
⋂

i∈I

〈α〉N−{i}(d). (5)

We shall therefore prove that: (2 and 3) ⇒ (5).
The property holds for card(I ) = 2 (see property (3)).

Let us suppose it true for any I such that card(I ) ≤ k and
observe what happens if card(I ) = k + 1.

Let I = {i0, . . . , ik} be a subset of N ,
Let d and d ′ be elements of D such that

d ′ ∈
⋂

i∈I

〈α〉N−{i}(d),

does d ′ belong to 〈α〉N−I (d)?
d ′ ∈ ⋂

i∈I 〈α〉N−{i}(d), then

d ′ ∈
⋂

i∈I−{ik}
〈α〉N−{i}(d) =

⋂

i∈{i0,...,ik−1}
〈α〉N−{i}(d) (6)

and

d ′ ∈
⋂

i∈I−{i0}
〈α〉N−{i}(d) =

⋂

i∈{i1,...,ik}
〈α〉N−{i}(d). (7)

As card({i0, . . . , ik−1}) = card({i1, . . . , ik}) = k, recur-
sion hypothesis holds and:

d ′ ∈ 〈α〉N−{i0,...,ik−1}(d) (8)

and

d ′ ∈ 〈α〉N−{i1,...,ik−1,ik}(d), (9)

(8) ⇒ d ′ = d αj1 · · ·αjm︸ ︷︷ ︸

js<ik−1
and

js 	∈{i0,...,ik−1}

αjm+1 · · ·αjp
︸ ︷︷ ︸

js>ik−1

, (10)

(9) ⇒ d ′ = d αl1 . . . αlq
︸ ︷︷ ︸

ls<ik−1
and

ls 	∈{i1,...,ik−1}

αlq+1 . . . αlr
︸ ︷︷ ︸

ls>ik−1
and

ls 	=ik

. (11)

Equations (10) and (11) imply that:

(d ′ =)d αj1 · · ·αjm︸ ︷︷ ︸

js<ik−1
and

js 	∈{i0,...,ik−1}

αjm+1 · · ·αjp
︸ ︷︷ ︸

js>ik−1

= d αl1 · · ·αlq
︸ ︷︷ ︸

ls<ik−1
and

ls 	∈{i1,...,ik−1}

αlq+1 . . . αlr
︸ ︷︷ ︸

ls>ik−1
and

ls 	=ik

. (12)

Let d ′′ = dαj1 · · ·αjm . As no j1 · · · jm belongs to I , d ′′ ∈
〈α〉N−I (d). By letting d ′′ appear on both sides of (12), we
have:

(d ′ =)d ′′ αjm+1 · · ·αjp
︸ ︷︷ ︸

js>ik−1

= d ′′αjm · · ·αj1︸ ︷︷ ︸

=d

and
js<ik−1 and js 	∈{i0,...,ik−1}

αl1 · · ·αlq
︸ ︷︷ ︸

ls<ik−1
and

ls 	∈{i1,...,ik−1}

αlq+1 · · ·αls
︸ ︷︷ ︸

ls>ik−1
and

ls 	=ik

. (13)

Equation (13) is equivalent to:

d ′′ αjm+1 · · ·αjp
︸ ︷︷ ︸

js>ik−1

αlr · · ·αlq+1
︸ ︷︷ ︸

ls>ik−1
and

ls 	=ik
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Fig. 14 A closed 2-G-map containing multiply incident cells
which encodes the topology of a minimal subdivision of a sphere.
〈α〉N−{0}(d1)={d1,d2}, 〈α〉N−{1}(d1) = {d1, d2}, 〈α〉N−{2}(d1) = {d1, d2},⋂

i∈{0,1,2}〈α〉N−{i}(d1)={d1,d2} 	= 〈α〉N−{0,1,2}(d1) = {d1}

= d ′′ αjm · · ·αj1︸ ︷︷ ︸

js<ik−1
and

js 	∈{i0,...,ik−1}

αl1 · · ·αlq
︸ ︷︷ ︸

ls<ik−1
and

ls 	∈{i1,...,ik−1}

. (14)

Let

d3 = d ′′ αjm+1 · · ·αjp
︸ ︷︷ ︸

js>ik−1

αlr · · ·αlq+1
︸ ︷︷ ︸

ls>ik−1
and

ls 	=ik

.

By construction, d3 ∈ 〈α〉N−{j}(d ′′) for all j ≤ ik−1.
Equation (14) also implies that d3 ∈ 〈α〉N−{j}(d ′′) for all
j ≥ ik−1. Then d3 ∈ ⋂

i∈N 〈α〉N−{i}(d ′′). By property 2, we
have hence: d3 = d ′′.

Construction of d3 and (14) lead to:

d ′′ = d ′′ αjm · · ·αj1︸ ︷︷ ︸

js<ik−1
and

js 	∈{i0,...,ik−1}

αl1 · · ·αlq
︸ ︷︷ ︸

ls<ik−1
and

ls 	∈{i1,...,ik−1}

. (15)

Fig. 15 A closed 2-G-map containing multiply incident
cells, which represents the topology of a minimal subdi-
vision of a projective plane (see Fig. 17 for an illustra-
tion of the construction process of such a subdivision).
〈α〉N−{0}(d1) = {d1, d2, d3, d4}, 〈α〉N−{2}(d1) = {d1, d2, d3, d4},⋂

i∈{0,2}〈α〉N−{i}(d1) = {d1, d2, d3, d4} 	= 〈α〉N−{0,2}(d1) = {d1, d2}

Fig. 16 Order representing
both subdivisions of Figs. 14
and 15. Two different
subdivisions are represented by
a single order: in both cases the
pair (a, b) is twice incident to
face c and in both cases the
condition of maximal simplicity
is not fulfilled

Let us now replace d ′′αjm · · ·αj1αl1 · · ·αlq by d ′′ (accord-
ing to (15)) in the right side of (13):

d ′ = d ′′ αlq+1 · · ·αlr
︸ ︷︷ ︸

ls>ik−1
and

ls 	=ik

. (16)

Finally we have d ′ ∈ 〈α〉N−I (d
′′) = 〈α〉N−I (d). �

The need for maximal simplicity to avoid multi-incidence
is illustrated on Figs. 14, 15 and 16. And despite what have
been conjectured in [21], this sole condition is not sufficient
as depicted on Figs. 18 and 19.

5 Statement and Proof of the Isomorphism

We shall prove in this section the following theorem: the
set of n-surfaces and the set of closed connected n-G-maps
without multi-incidence are equivalent. The proof is con-
ducted as follows. With the characterization of n-surfaces
through properties of their maximal β•-chains, we are able
to prove that a closed n-G-map without multi-incidence may
be built from any n-surface (Theorem 22). Reciprocally we
also use it to show that an n-surface may be obtained from
any n-G-map (Theorem 23). We conclude by proving that
both transformations are inverse to each other up to isomor-
phism (Theorem 24).
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Fig. 17 Construction process of
a subdivision of the projective
plane made of 1 vertex, 1 edge
and 1 face

Fig. 18 Example of a
subdivision with
multi-incidence whose
associated order does not fulfill
the switch-property. There are
indeed four 1-elements (instead
of the required two) between the
0-element D and the 2-element
F2 (see (c)). As the construction
process of an n-G-map
essentially relies on the
switch-operator (see
Theorem 22), the information
carried by the order alone is not
sufficient to construct the
2-G-map corresponding to the
subdivision. Figure 19 shows
indeed how two different
2-G-maps may be constructed
from this order by arbitrarily
defining two switch-operators
on it

Figure 20 exhibits a 2-G-map and an equivalent 2-
surface.

5.1 Construction and Characterization of the n-G-Map
Associated to an n-Surface

We show now that it is possible to build a closed connected
n-G-map without multi-incidence from a chain connected
order, otherwise said an n-surface.

We both exhibit a construction process of an n-G-map
from any n-surface and prove that the resulting n-G-map is
closed, connected and without multi-incidence.

Theorem 22 (Construction of a closed connected n-G-map
without multi-incidence from an n-surface) Let |X| be an
n-surface. Let us define

• D as the set of n-β•-chains of |X|
• ∀i ∈ {0, . . . , n}, αi = switchi

Then (D,α0, . . . , αn) is a closed connected n-G-map with-
out multi-incidence.

Proof The proof is decomposed in four parts. We first prove
that αi are involutions without fixed points. We then show
that ∀0 ≤ i < i+2 ≤ j ≤ n, αiαj is an involution. These two
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Fig. 19 Construction of two
2-G-maps from the order
depicted on Fig. 18(b). On this
order, two different
switch-operators may be
arbitrarily defined. One
switch-operator leads to the
2-G-map representing the initial
subdivision (see (a)). The
2-G-map constructed with the
second operator (see (b))
encodes a completely different
subdivision

Fig. 20 a 2-G-map and a
2-surface, that encode
isomorphic subdivisions

steps prove that (D,α0, . . . , αn) is a closed n-G-map. More-
over as any n-surface is connected we can also deduce that
this n-G-map is connected. The third step shows that it ful-
fills the minimal simplicity requirement. We finish by prov-
ing that it also has the maximal simplicity property. We note
first that any element of D may be written as (x0, . . . , xn).

i. closeness: by construction, ∀i ∈ {0, . . . , n}, αi =
switchi and is hence an involution without fixed point.

ii. commutativity: we shall prove now that αiαj is also
an involution for i < j − 1 or i > j + 1. As αi and αj

are involutions, this is equivalent to prove that αiαj =
αjαi . The condition on i and j guarantees that αi will
not modify any of the xj−1, xj , xj+1 and that αj will
also not change any of the xi−1, xi, xi+1.

This implies that αiαj is equal to αjαi .

iii. maximal simplicity: we prove that:

∀d ∈ D,

i=n⋂

i=0

〈α〉N−{i}(d) = {d}.

Let d = (x0, . . . , xn) and d ′ = (x
′0, . . . , x

′n) be two
elements of D such that:

d ′ ∈
i=n⋂

i=0

〈α〉N−{i}(d). (17)

From (17), for all j ∈ N , d and d ′ belong both to
〈α〉N−{j}(d), which means that d and d ′ agree on their
j th element: ∀j ∈ N , xj = x

′j and hence d = d ′.
iv. minimal simplicity: Let xi and xj be two cells of

the subdivision and d a dart associated to a maximal
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Fig. 21 Illustration of
bijections b and f

β-chain, i.e. an n-β-chain, containing both xi and xj .
The property of chain connectedness of an n-surface
states that any two n-β-chains containing both xi and
xj are connected by a composition of switchk , k ∈
N − {i, j}. In terms of orbits this simply means that:
〈α〉N−{i}(d) ∩ 〈α〉N−{j}(d) = 〈α〉N−{i,j}(d).

�

5.2 Characterization of the Order Associated to a Closed
Connected n-G-Map without Multi-Incidence

We show now that a natural order may be associated to any
n-G-map and prove that it is an n-surface. Let us first denote
{〈α〉N−{i}}D the set of i-cells of the subdivision associated
to any n-G-map (D,α0, . . . , αn). And let us denote <G the
incidence relations between the cells of this subdivision.

Theorem 23 Let G be a closed connected n-G-map without
multi-incidence. Let us define:

• X as the set
⋃

i∈N {〈α〉N−{i}}D ,
• α� =<G

Then |X| = (X,α) is an n-surface.

Proof |X| is obviously an order. We prove below that
it is a chain connected one and hence an n-surface. By
construction, for any element x of X, there exists at
least one dart d and one integer i ∈ N , such that x =
〈α〉N−{i}(d). x belongs hence to at least one n-β•-chain:
(〈α〉N−{0}(d), 〈α〉N−{1}(d), . . . , 〈α〉N−{n}(d)). Moreover all
maximal chains of |X| have obviously length n. |X| is hence
a pure and closed order.

We also remark that there exists a link between the darts
of the n-G-map and the n-β•-chains of the associated or-
der. Any dart is by construction associated to a unique n-
β•-chain of the order.

Moreover the definition of <G implies that any n-β•-
chain C corresponds to at least one dart of G. Let d be
such a dart. The set of darts that may be associated to C is⋂

i∈N 〈α〉N−{i}(d). As G is without multi-incidence this set
only contains d itself.

There is hence a bijection between the set of darts of G

and the set of n-β•-chains of |X|.
This bijection implies that each αi induces an operator

switchi on the set of n-β•-chains of |X|. |X| is hence a
switch-order.

Finally let {xij }j∈{0,...,k}, 0 ≤ k ≤ n, be a β-chain of |X|.
And let C be an n-β•-chain containing it. There exists a
unique dart d corresponding to C. And the set of n-β•-
chains containing these (k + 1) elements corresponds to the
set of darts

⋂
j∈{0,...,k}〈α〉N−{ij }(d). Non multi-incidence

implies that it is equal to 〈α〉N−{i0,i1,...,ik}(d). This simply
means that there exists a sequence of switchi -operators,
i ∈ N − {i0, i1, . . . , ik} relating any two n-β•-chains con-
taining {xij }j∈{0,...,k}.

Theorem 19 concludes. �

5.3 Stability

We call respectively nGMnS-conversion and nSnGM-
conversion the construction of an n-surface from a closed
connected n-G-map without multi-incidence and the con-
struction of an n-G-map from an n-surface, which have been
previously described (Theorem 23 and Theorem 22 respec-
tively).

Let us first recall that two generalized maps are said to
be isomorphic if there exists a bijection between their sets
of darts that preserves the αi involutions for i in {0, . . . , n}.
Two orders are said to be isomorphic if there exists a bijec-
tion between their sets of elements that preserves the order
relation α.

Theorem 24 nGMnS-conversion and nSnGM-conversion
are inverse to each other up to an isomorphism.12

Proof The proof is done in two steps. The first step is illus-
trated by Fig. 21,13 the second step by Fig. 22.

i. Let |X| = (X,α) be an n-surface and |X′| = (X′, α′) the
image of |X| by an nSnGM-conversion followed by a
nGMnS-conversion. By construction, Theorem 22 and
Theorem 23, |X′| also is an n-surface. Let us denote by
G = (D,α0, . . . , αn) the intermediary closed connected
n-G-map without multi-incidence.

We only need to prove that there exists an isomor-
phism between X and X′ because there is a natural mor-
phism between (X,α�) and (X′, α′�).

12By this we mean that an nGMnS-conversion followed by nSnGM-
conversion gives an n-G-map isomorphic to the initial n-G-map. And
reciprocally an nSnGM-conversion followed by nGMnS-conversion
produces an n-surface isomorphic to the initial n-surface.
13P(D) is the power set of D



20 J Math Imaging Vis (2008) 32: 1–22

Fig. 23 Overview of the
correspondence between notions
defined on n-surfaces and
notions defined on closed
connected n-G-maps without
multi-incidence

Fig. 22 Illustration of bijection g

Let x be an element of X. We denote by Cx the set
of the n-β•-chains of |X| that contain x. There exists
a bijection, b, between X and the set {Cx, x ∈ X}. The
characterization of n-surfaces through properties of their
maximal β•-chains (see Theorem 19 and Definition 18)
implies that any element of Cx may be obtained from
any other element of Cx by a composition of switchi ,
where each index i belongs to N\{dimα(x)}. Let x1 be
an element of Cx , there exists d1 image of x1 in D such
that the image of Cx in G is the orbit 〈α〉N−{dimα(x)}(d1).

Moreover if 〈α〉N−{dimα(x)}(d1) 	= 〈α〉N−{dimα(x)}(d2),
then the antecedents of d1 and d2, respectively x1 and
x2 are not connected by a composition of switchi,
i 	= dimα(x). Hence x2 does not belong to Cx . The set
{Cx, x ∈ X} is hence in bijection with {{〈α〉N−{i}}D, i ∈
{0, . . . , n}}. We note f this bijection. The construction of
X′ implies that there is a bijection between {Cx, x ∈ X}
and {Cx, x ∈ X′}, and hence a one-to-one correspondence
between X and X′.

ii. Let G = (D,α0, . . . , αn) be a closed connected n-G-map
without multi-incidence and G′ = (D′, α′

0, . . . , α
′
n) the

image of G by an nGMnS-conversion followed by an
nSnGM-conversion. By construction G′ also is a closed
connected n-G-map without multi-incidence. Let us de-
note |X| the intermediary n-surface.

Theorem 22 implies that there is a bijection between
the set of darts of G and the set of n-β•-chains of |X|.
Moreover we have shown when proving Theorem 23 that
there is also a bijection between the set of n-β•-chains of
|X| and the set of darts of G′. There is hence a bijection,
g, between D and D′. Moreover for any i ∈ {0, . . . , n},
the involution αi on the darts of D corresponds to the

involution switchi on the n-β•-chains of |X| (Theo-
rem 22). And we saw during the proof of Theorem 23
that each switchi -operator corresponds to α′

i .
�

This last theorem concludes the proof of the equivalence
between n-surfaces and closed connected n-G-maps with-
out multi-incidence. Links between notions defined on these
two models are summarized on Fig. 23.

To conclude, this work has to be related to a previous
study achieved by Brisson in [6] which has inspired part of
our approach. Both studies deal indeed with data structures
used to represent n-dimensional objects. Brisson investi-
gates a class of d-dimensional “geometrical” objects (the so-
called subdivided d-manifolds), which cannot be fully char-
acterized through their combinatorial properties. Neverthe-
less he provides a new structure, called the cell-tuple struc-
ture to encode the combinatorial properties of such objects.
This structure is conceptually very close to the generalized
maps as it is made of elements (tuples of d + 1 consecutive
cells) related by involutions (switch operators). Moreover
the link between this structure and two classical representa-
tions of cellular subdivisions (the associated incidence graph
and the simplicial complex obtained by barycentric subdivi-
sion) is exhibited.

In the present work we deal with purely combinatorial
objects, which are hence more general than those studied
by Brisson, even if their combinatorial properties are very
similar (e.g. switch-property). Besides, by focusing on
combinatorial properties, we gain a deeper understanding
of them and show how they can be differently expressed.
We also achieve to formalize some properties that were
most likely implicit on the structure proposed by Brisson
such as the static surface properties, or the notion of chain-
connectedness. Finally, although it is impossible to charac-
terize manifolds purely combinatorially, this works high-
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lights that some combinatorial properties are particularly
well-suited to characterize n-dimensional “surface-like” ob-
jects. The structures studied in this paper have indeed been
used in very different contexts: image analysis (n-surfaces
[4, 10, 11]) and topological modeling (n-G-maps [8, 21]).

6 Conclusion and Future Works

After having proposed two original characterizations of n-
surfaces, we proved the equivalence between n-surfaces and
n-G-maps without multi-incidence. We also provide a sim-
pler characterization of n-G-maps without multi-incidence.
Besides we exhibited conversion operators between both
models and proved their stability.

From this equivalence, interesting properties of both gen-
eralized maps and n-surfaces may be guessed and studied.
The recursive definition of n-surfaces implies for instance
that there is also a recursive decomposition of generalized
maps without multi-incidence. The neighborhood of any cell
of a subdivision represented by a generalized map can in-
deed be encoded by a generalized map. And join operators
used to construct n-surfaces [10] may be adapted to n-G-
maps. Moreover generalized maps are able to encode open
surfaces and they are well adapted to detect whether the sur-
faces they represent are orientable or not. Such capabilities
may be transferred on orders through the equivalence.

Finally this equivalence could be a good starting point to
study more general structures such as chains of maps [15],
which represent less constrained subdivisions.
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