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Abstract Image registration is a widely used task in image
analysis, having applications in various fields. Its classical
formulation is usually given in the spatial domain. In this pa-
per, a novel theoretical framework defined in the frequency
domain is proposed for approaching the multidimensional
image registration problem. The variational minimization of
the joint energy functional is performed entirely in the fre-
quency domain, leading to a simple formulation and design,
and offering important computational savings if the multi-
dimensional FFT algorithm is used. Therefore the proposed
framework provides more efficient implementations of the
most common registration methods than already existing ap-
proaches, adding simplicity to the variational image regis-
tration formulation and allowing for an easy extension to
higher dimensions by using the multidimensional Fourier
transform of discrete multidimensional signals. The new for-
mulation also provides an interesting framework to design
tailor-made regularization models apart from the classical,
spatial domain based schemes. Simulation examples vali-
date the theoretical results.
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1 Introduction

Image registration is the process of finding an optimal geo-
metric transformation that aligns points in one view of an
object with corresponding points in another view of the
same object or a similar one. Particularly, in medical imag-
ing there are several applications that require a registration
step (e.g. image fusion, atlas matching, pathological diag-
nosis). For an overview on registration methods, we refer to
e.g. [8, 46], and more precisely to [24, 32, 34], and refer-
ences therein, for medical image registration.

The image registration problem is known to be an ill-
posed one, since it does not satisfy Hadamard’s criterion.
Therefore it becomes necessary to impose a deformation
model to the registration algorithm, otherwise the motion
of a point would be estimated independently of the mo-
tion of neighboring points, thus yielding a very discontinu-
ous and unlikely displacement field. The deformation model
should constrain the estimated transformation as much as
possible using some prior knowledge on the deformation
field [43]. In the literature, we find three major deforma-
tion models: parametric models, which constrain the esti-
mate of the transformation to belong to a low dimensional
transformation space by solving the minimization of some
type of geometrical distance between the images to be regis-
tered [22, 41]; competitive models, which rely on the use of a
regularization energy that depends on the displacement field,
therefore penalizing a transformation proportionally to its ir-
regularity, measured by the regularization energy with even-
tual additional boundary constraints [35]; and incremental
models, which also rely on the use of a regularization energy,
although in this case it does not depend on the transforma-
tion itself, but on its evolution (e.g. viscoelastic approach
presented in [10]). When classified according to the image
features used to recover the transformation, registration al-
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gorithms are usually parted into three groups: geometric fea-
ture based, which rely on the segmentation, done generally
before the registration process itself, of part or all of the im-
ages, therefore obtaining objects that are registered by min-
imizing some geometrical distance between them; intensity
based, which minimize a intensity similarity measure (typ-
ically the sum of squared differences, the mutual informa-
tion or the correlation ratio) computed between points lying
at the same spatial position; and iconic feature based, which
are really intermediate between the two previous categories,
since they use explicitly some type of geometrical distance
in addition to the intensity similarity measure, see [9]. In this
work, we will focus on the intensity based registration with
competitive regularization model, which is one of the most
widely used registration scenarios in the literature, since it
is a highly reliable and flexible one (see e.g. [25, 44]). This
problem can be approached by using a variational principle
which leads to the Euler-Lagrange partial differential equa-
tions (PDEs) [18, 31]. The computation of a numerical so-
lution for the resulting registration scheme in the spatial do-
main is not straightforward, and there is no a simple alterna-
tive formulation. Some attempts to come up with fast algo-
rithms can be found e.g. in [6], where a convolution kernel
in scale-space is used, [16], where an additive operator split-
ting scheme is proposed, [30], where the multiscale nature
of the image registration is exploited, or [11], where steep-
est descent methods are combined with implicit and semi-
implicit iterative schemes. The aim of this work is twofold:
to provide a novel theoretical framework which allows for an
efficient implementation of variational registration methods
in the frequency domain; and to allow for an easy extension
to higher dimensions by using the d-dimensional Fourier
transform of discrete multidimensional signals. The varia-
tional equations are translated into the frequency domain
by means of Parseval’s theorem, thus obtaining the Euler-
Lagrange equations defined in the frequency domain, which
serve as a starting point for all implementations.

The paper is organized as follows: we start out with a
review of the mathematical formulation of the general regis-
tration problem in the spatial domain. In the following sec-
tion, the proposed framework for image registration, defined
entirely in the frequency domain, is presented. Next, the im-
plementation aspects of the resulting registration schemes,
as well as an efficiency comparison, are tackled. In Sect. 5,
the frequency domain based framework is tested on two
medical imaging experiments. Finally, the conclusions close
the paper.

2 Variational Formulation in the Spatial Domain

Let R and T be two data sets, a reference and a template re-
spectively, which represent the same object (or similar ones)
by using the same or different imaging modalities. We as-

sume that the data sets can be represented by compactly sup-
ported functions R, T : � ⊂ R

d → R, where � := ]0,1 [ d

and d denotes the number of spatial dimensions of the data
sets. Usually, these data sets are two- or three-dimensional.
This means, the map associates to each spatial position
x = (x1, . . . , xd)� ∈ � the intensities T (x) and R(x), on a
bounded domain with Lipschitz boundary ∂� . We search
for a displacement field u : R

d → R
d that makes the trans-

formed template data set similar to the reference data set in
the geometrical sense, i.e., Tu(x) := T (x − u(x)) ≈ R(x),
where u(x) = (u1(x), . . . , ud(x))�. This problem can be ap-
proached in terms of the variational calculus [2, 45], by
defining the joint energy functional to be minimized:

J [u] := D[R,T ;u] + αS[u] , (1)

where D is an energy term which measures the disparity be-
tween the transformed data set and the reference data set, S
is a penalty term which measures the roughness of the dis-
placement field and acts as a regularization term, penaliz-
ing unwanted deformations, and α > 0 is a scalar parameter,
usually referred to as the regularization parameter, which is
used to control and weight the influence of the regularization
term versus the distance term.

The choice of the distance measure D depends on the par-
ticular data sets to be registered. When the intensities of the
data sets are similar (i.e., in a monomodal registration sce-
nario), the sum of squared differences (SSD) or the sum of
absolute differences (SAD) of the data sets are commonly
used [8, 36]. When dealing with data sets from different
sources or modalities (i.e., in a multimodal registration sce-
nario), statistical measures such as the mutual information
(MI) [13, 33] or the correlation ratio (CR) [31, 40] are the
most appropriate choices.

The regularization term S is used to circumvent the ill-
posedness of the non-rigid registration problem by adding
some prior knowledge of the deformation, thus prefer-
entially obtaining more likely solutions, and giving the
smoothness characteristics to the displacement field. In the
literature (see e.g. [23]), the most widely used regularization
terms for image registration can be expressed as

S[u] := 1

2
a[u,u] = 1

2

∫
�

〈
B[u],B[u]〉

Rd dx

= 1

2

∫
�

〈
A[u],u

〉
Rd dx, (2)

where a[u,u] ∈ R is a positive bilinear form, B and A are
partial differential operators, and 〈·, ·〉Rd denotes the dot (or
inner) product in R

d . The particular definition of S results
in different registration methods. The most popular are the
following [20]:

1. Elastic registration, where the regularization is based
on the linearized elastic potential of the displacement
field, therefore penalizing the tension or inner stress in
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the transformed template, which is considered a clamped
elastic membrane [3, 7]. The expression for this regular-
izer is

Selas[u] :=
∫

�

μ

4

d∑
l,m=1

(
∂xl

um + ∂xmul

)2

+ λ

2
(div u)2 dx, (3)

where λ ≥ 0 and μ > 0 are the Lamé constants which
reflect material properties.1

2. Fluid registration, where the regularization is based on
the elastic potential of the time derivative of the dis-
placement, i.e., this method is characterized by the spa-
tial smoothing of the velocity field of a fluid model.
Then, in principle, any displacement can be obtained
given enough time: the internal stresses disappear even-
tually [6, 12]. The penalty term for fluid registration is
described by

Sfluid[u] := Selas[v] , (4)

where

v(x, t) := d

dt
u(x, t)

= ∂tu(x, t) + ∇u(x, t)v(x, t) (5)

is the so-called velocity field.
3. Diffusion registration, which is based on the minimiza-

tion of the energy of first-order spatial derivatives of
the displacement field, thus admitting constant displace-
ments, but penalizing oscillating deformations [16, 42].
The equation of this regularizer is

Sdiff[u] := 1

2

d∑
l=1

∫
�

〈∇ul,∇ul

〉
Rd dx

= 1

2

d∑
l=1

∫
�

‖∇ul‖2 dx. (6)

4. Curvature registration, which is based on the minimiza-
tion of an approximation to the energy of curvature of the
displacement field [17, 30], i.e., it is based on second-
order spatial derivatives and therefore the regularization
term can be neutral with respect to affine linear transfor-
mations if appropriate boundary conditions are imposed

1As addressed in [36] or [29], the Lamé constants within the elastic
and fluid registration scenarios are always chosen so that the changes
allowed in the data sets are maximal and the lateral shrink is eliminated,
i.e., by setting λ = 0 and μ > 0.

to the space of possible displacements [27]. The curva-
ture smoother is defined by

Scurv[u] := 1

2

d∑
l=1

∫
�

〈∇2ul,∇2ul

〉
Rd dx

= 1

2

d∑
l=1

∫
�

(�ul)
2 dx, (7)

where � := ∇2 = ∇�∇ is the d-dimensional Laplace op-
erator.

According to the calculus of variations, a displacement
field u which minimizes (1) is necessarily a solution of the
Euler-Lagrange equation

f(x;u) + αA[u](x) = 0 (8)

subject to suitable boundary conditions [5], which are im-
posed in order to overcome the unsolved question of the ex-
istence of minima [30]. The so-called external forces field,
f(x;u), related to the distance measure D, drives the defor-
mation. On the other hand, the partial differential operator
A, related to the regularizer S (see (2)), can be seen as in-
ternal constraints which resist the external forces until the
equilibrium state described by the set of partial differential
equations (8) is achieved. For the registration methods con-
sidered in this work, the operator A is defined as (see [20])

Aelas[u](x) = −μ�u(x) − (λ + μ)∇div u(x) , (9)

Afluid[u](x) = −μ�v(x) − (λ + μ)∇div v(x) , (10)

Adiff[u](x) = −�u(x) , (11)

Acurv[u](x) = �2u(x) . (12)

The resulting non-linear PDEs (8) can be solved numerically
by using a finite difference approximation of A (Appendix
shows the kernels of the discrete approximations used for
the derivatives), and a fixed-point or time-marching semi-
implicit iterative scheme [11]. The solution of (8) is com-
monly accomplished by reshaping the d-dimensional prob-
lem into a one-dimensional scenario (i.e., rearranging each
d-dimensional matrix into a single column vector) [36, 45].
This provides an iterative procedure, characterized by a
highly structured matrix which is large, sparse and often ill-
conditioned, and that has to be inverted with special pro-
cedures [4, 15]. A popular strategy which does not require
matrix inversions at all is to exploit the multiscale and/or
multigrid nature of the registration problem, taking the spa-
tially discretized scenario as a starting point [26, 30]. In
particular, the numerical solution proposed for the latter ap-
proaches demands a preprocessing stage which includes a
Cholesky factorization with high computational complex-
ity (up to O(N3)) [28], and the results it produces are only
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approximations, not the exact ones [36]. Therefore the re-
sulting scenario in the spatial domain implies considerable
computational load and memory requirements.

3 Variational Formulation in the Frequency Domain

In order to overcome the previous drawbacks, this pa-
per proposes a novel mathematical framework for the d-
dimensional image registration scenario. The registration
problem will be approached in terms of a variational for-
mulation in the Fourier domain. As a result, we will be able
to find a minimizer u for the joint energy functional (1) by
using the d-dimensional Fourier transform (d-FT ) over the
spatial variable x, and in an efficient way if the fast algorithm
for its computation (i.e., the d-FFT) is taken into account.

3.1 Application of Parseval’s Theorem to the Joint Energy
Functional

As a starting point, (1) has to be expressed in the frequency
domain by means of Parseval’s theorem, which states that
the total energy contained in a signal summed across all
of space is equal to the total energy of the signal’s Fourier
transform summed across all of its frequency components
[37]. Due to the fact that digital data sets are typically en-
coded by uniformly distributed spatial elements in each di-
mension (e.g. pixels if d = 2, or voxels if d = 3), the dis-
cretization of the spatial variable x becomes a natural ap-
proach, and therefore
∫

�

∣∣y(x)
∣∣2 dx = 1

N

∑
∀nl

∣∣y[n]∣∣2 , (13)

with l = 1, . . . , d , where n = (n1, . . . , nd)� is the index of
the discrete spatial position, and N = N1 N2 · · ·Nd is the
cardinal of the data sets to be registered. The application of
Parseval’s theorem yields the following equation:

1

N

∑
∀nl

∣∣y[n]∣∣2 = ν

∫
�

∣∣ỹ(ω)
∣∣2dω , (14)

where ν = ((2π)dN)−1 is a positive real constant, � :=
] − π,π[ d is the d-dimensional frequency domain, ỹ de-
notes the d-dimensional Fourier transform of a signal y, and
ω = (ω1, . . . ,ωd)� is the d-dimensional variable in the fre-
quency domain corresponding to the discrete spatial variable
n. Then, according to Parseval’s theorem, we can compute
the joint energy functional J [u] in the frequency domain as

J̃ [ũ] := D̃[R̃, T̃ ; ũ] + α S̃[ũ] , (15)

with ũ(ω) = (ũ1(ω), . . . , ũd(ω))�, and where the distance
measure D̃ and the regularization term S̃ are now defined in
the frequency domain.

Taking into account that (·)2 = | · |2 for real numbers,
and assuming that the displacement fields we are looking
for are real (i.e., u(x) ∈ R

d ), we can express all the regular-
izers S considered in the spatial domain in terms of the sum
of squared absolute values. Therefore (13) and (14) can be
applied in order to obtain these regularization terms in the
frequency domain:

1. Elastic registration. For this scheme, (3) can be rewritten
as

Selas[u] = 1

2

∫
�

μ

2

d∑
l,m=1

∣∣∣∂xmul + ∂xl
um

∣∣∣2

+ λ

∣∣∣
d∑

l=1

∂xl
ul

∣∣∣2 dx. (16)

Applying Parseval’s theorem, along with the discrete ap-
proximations of the partial differential operators in the
frequency domain shown in the Appendix, (16) results in

S̃elas[ũ] = ν

2

∫
�

μ

2

d∑
l,m=1

∣∣(1 − e−jωm
)
ũl

+ (
1 − e−jωl

)
ũm

∣∣2

+ λ

∣∣∣∣
d∑

l=1

(
1 − e−jωl

)
ũl

∣∣∣∣
2

dω, (17)

which can be expressed more compactly as

S̃elas[ũ] = ν

2

∫
�

d∑
l,m=1

Ãelas
lm (ω) ũm ũ∗

l dω , (18)

where the operator Ãelas
lm is obtained as

Ãelas
lm (ω) =

⎧⎪⎪⎨
⎪⎪⎩

2((λ + 2μ)(1 − cosωl)

+ μ
∑d

k=1
k �=l

(1 − cosωk)), l = m,

(λ + μ) sinωl sinωm , l �= m.

(19)

Note that the previous operator performs the spatial
derivatives in the frequency domain, allowing for their
calculation by means of products.

2. Fluid registration. The resulting expressions are the same
as for the elastic scheme, but in this case the unknown
variable is the velocity ṽ(ω) instead of the displacement
ũ(ω), i.e.,

S̃fluid[ũ] = S̃elas[ṽ] , (20)

with

Ãfluid
lm (ω) = Ãelas

lm (ω) . (21)
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In this scenario, the computation of u(x) from the veloc-
ity field v(x) is performed more efficiently in the spatial
domain, because translating (5) into the frequency do-
main would involve periodic convolutions when comput-
ing the displacement ũ(ω) from the velocity ṽ(ω) (al-
though the spatial regridding, see [10], would be avoided
in the frequency domain).

3. Diffusion registration. As in the elastic case, (6) can be
rewritten as

Sdiff[u] = 1

2

d∑
l,m=1

∫
�

∣∣∂xmul

∣∣2 dx , (22)

whose expression in terms of Parseval’s theorem is the
following:

S̃diff[ũ] = ν

2

d∑
l,m=1

∫
�

∣∣(1 − e−jωm
)
ũl

∣∣2 dω . (23)

Finally, (23) can be reduced to

S̃diff[ũ] = ν

2

∫
�

Ãdiff
ll (ω)

∥∥ũ
∥∥2

dω, (24)

where the operator Ãdiff
ll is defined as

Ãdiff
ll (ω) = 2

d∑
m=1

(1 − cosωm) . (25)

4. Curvature registration. As for the previous registration
schemes, (7) has to be expressed in terms of sums of
squared absolute values:

Scurv[u] = 1

2

d∑
l=1

∫
�

∣∣∣∣
d∑

m=1

∂xmxmul

∣∣∣∣
2

dx . (26)

After applying Parseval’s theorem, (26) results in

S̃curv[ũ] = ν

2

d∑
l=1

∫
�

∣∣∣∣
d∑

m=1

∣∣1 − e−jωm
∣∣2ũl

∣∣∣∣
2

dω , (27)

which can be rewritten more compactly as

S̃curv[ũ] = ν

2

∫
�

Ãcurv
ll (ω)

∥∥ũ
∥∥2

dω , (28)

where Ãcurv
ll is obtained as

Ãcurv
ll (ω) =

(
2

d∑
m=1

(1 − cosωm)

)2

. (29)

At this point, a general equation in the frequency domain,
valid for every possible regularizing term, can be inferred

from (18), (24) and (28):

S̃[ũ] = ν

2

∫
�

d∑
l,m=1

Ãlm(ω) ũm ũ∗
l dω

= ν

2

∫
�

(
ũ1 · · · ũd

)
⎛
⎜⎝
Ã11(ω) · · · Ãd1(ω)

...
. . .

...

Ã1d(ω) · · · Ãdd(ω)

⎞
⎟⎠

×
⎛
⎜⎝

ũ∗
1
...

ũ∗
d

⎞
⎟⎠ dω. (30)

The previous equation can be expressed more compactly as

S̃[ũ] = ν

2

∫
�

ũ�Ã�(ω) ũ∗ dω

= ν

2

∫
�

〈
Ã(ω) ũ, ũ

〉
Cd dω := 1

2
ã[ũ, ũ], (31)

where 〈r̃, s̃〉Cd = r̃�s̃∗ is the complex inner product in C
d ,

and ã[ũ, ũ] ∈ R is a positive bilinear form in the frequency
domain.

It should be noted that for the diffusion and curvature
cases, the frequency components of the displacement field
are independent and are not coupled, i.e., Ãdiff,curv

lm (ω) = 0
(with l �= m), and therefore

Ãdiff,curv(ω) = Id ⊗ Ãdiff,curv
ll (ω) , (32)

where Id is the d × d identity matrix, and ⊗ denotes the
Kronecker product of matrices.

3.2 Design of Hybrid Diffusion-Curvature Regularizers

In some applications (e.g. in medical imaging, where the
data sets typically represent different tissues), one can be
interested in a registration scheme based on a regulariza-
tion term with gradual stiffness properties, apart from the
classical rigidity (i.e., diffusion) and elasticity (i.e., cur-
vature) models. A composite regularizer as e.g. S[u] =
1
2

∑d
l=1

∫
�

γ ‖∇ul‖2 + (1 − γ )(�ul)
2dx, with γ ∈ [0,1],

cannot accomplish this goal, because the results it pro-
duces are always closer to the diffusion behavior, except if
γ ≈ 0. With the purpose of designing the hybrid registration
scheme, we propose the following smoother:

Shybr[u] := 1

2

d∑
l=1

∫
�

〈∇σ ul,∇σ ul

〉
Rd dx

= 1

2

d∑
l=1

∫
�

∥∥∇σ ul

∥∥2
dx, (33)
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which cannot be implemented in the spatial domain if
σ /∈ N, since the fractional power of the gradient operator
makes no sense. Using the discrete approximations shown
in the Appendix, (33) can be rewritten as

Shybr[u] ≈ 1

2

d∑
l=1

1

N

∑
∀nk

∣∣∣∣
d∑

m=1

σ -times︷ ︸︸ ︷
d−[nm] ∗ · · · ∗ d−[nm] ∗ul

∣∣∣∣
2

.

(34)

Note that the previous equation is once again meaningless in
the spatial domain for non-integer values of σ . However, this
problem can be approached within the proposed framework
(i.e., from a frequency domain point of view). For doing so,
Parseval’s theorem has to be applied to (34), as seen in Sec-
tion 3.1, therefore obtaining

S̃hybr[ũ] = ν

2

d∑
l=1

∫
�

∣∣∣∣
d∑

m=1

∣∣1 − e−jωm
∣∣2
∣∣∣∣
σ ∣∣ũl

∣∣2 dω

= ν

2

∫
�

Ãhybr
ll (ω)

∥∥ũ
∥∥2

dω, (35)

where

Ãhybr
ll (ω) =

(
2

d∑
m=1

(1 − cosωm)

)σ

. (36)

It should be noted that (25) and (29) are particular cases
of (36), and therefore the smoother Shybr can actually be
seen as a generalized regularization term which allows for
a registration technique which is between the diffusion and
curvature cases, because it simultaneously includes partial
features of both schemes if σ ∈]1,2 [ .

Finally, the proposed regularizer can also be expressed
in terms of the equation (31), taking into account that it pro-
duces a displacement field whose components are decoupled
(i.e., Ãhybr

lm (ω) = 0, with l �= m), and therefore

Ãhybr(ω) = Id ⊗ Ãhybr
ll (ω) . (37)

3.3 Minimization of the Joint Energy Functional

According to the variational calculus, a necessary condition
for a minimizer ũ of the joint energy functional (15) is that
the first variation of J̃ [ũ] in any direction (also known as the
Gâteaux derivative) vanishes for all suitable perturbations z̃,
i.e.,

dJ̃ [ũ; z̃] = dD̃[R̃, T̃ ; ũ; z̃] + α dS̃[ũ; z̃] = 0,

∀ z̃ ∈ C
d .

(38)

For the Gâteaux derivative of D̃, we find

dD̃[R̃, T̃ ; ũ; z̃] = lim
ε→0

1

ε

(
D̃[R̃, T̃ ; ũ + ε z̃] − D̃[R̃, T̃ ; ũ])

= ν

∫
�

〈
f̃(ω), z̃

〉
Cd dω, (39)

where the so-called force field in the frequency domain,
f̃(ω), depends on the particular choice of the distance mea-
sure, f̃(ω) = d-FT {∇D[R,T ;u]} ∈ C

d .
For the Gâteaux derivative of S̃ , the following expression

is obtained:

dS̃[ũ; z̃] = lim
ε→0

1

2ε

(
ã[ũ + ε z̃, ũ + ε z̃] − ã[ũ, ũ])

= ã[ũ, z̃] = ν

∫
�

〈
Ã(ω) ũ, z̃

〉
Cd dω , (40)

where (31) has been used. Note that any energy-based
smoother S̃ can be incorporated into this framework, as long
as it can be expressed in terms of (31).

Finally, we can write (38) as

dJ̃ [ũ; z̃] = ν

∫
�

〈
f̃(ω) + α Ã(ω) ũ, z̃

〉
Cd dω

= 0, ∀ z̃ ∈ C
d , (41)

which leads to the Euler-Lagrange equation in the frequency
domain:

f̃(ω) + α Ã(ω) ũ(ω) = 0 . (42)

Solving the previous equation in the frequency domain pro-
vides a stable implementation for the computation of a nu-
merical solution for the displacement field, and in a more ef-
ficient way than existing approaches if the multidimensional
fast Fourier transform (d-FFT) is used. In the following sec-
tion we will also see that the proposed framework allows
to understand the regularization forces as a d-dimensional
low-pass filtering of the displacement field u(x), which can
be obtained as the inverse Fourier transform of ũ(ω).

4 Frequency Implementation of the Euler-Lagrange
Equations

To solve the Euler-Lagrange equations (42) formulated
in the frequency domain, a fixed-point or time-marching
scheme can be employed. The fixed-point scheme yields the
following iteration:

ũ(ξ)(ω) = (
α Ã(ω)

)−1(−f̃(ξ−1)(ω)
)
, (43)

being ξ ∈ N the iteration index. The inversion of matrix
Ã(ω) has to be made carefully because it is ill-conditioned
and in its inversion a division by zero occurs. An alternative
strategy like Moore-Penrose pseudo-inverse (or like Drazin
generalized inverse) has to be taken into account for avoid-
ing an unstable behavior [4].



J Math Imaging Vis (2008) 32: 57–72 63

Using a time-marching scheme to solve (42) gives rise to
the equation

∂t ũ(ω, t) + f̃(ω, t) + α Ã(ω) ũ(ω, t) = 0 , (44)

where ∂t ũ(ω, t) = (∂t ũ1(ω, t), . . . , ∂t ũd (ω, t))� (in the
steady-state ∂t ũ(ω, t) = 0 and (44) holds (42)). In order to
solve (44), the time t is discretized, t := ξ τ , being τ > 0 the
time-step, and the time derivative of ũ(ω, t) is replaced by
its discrete approximation (first backward difference):

∂t ũ(ω, t) ≈ (
ũ(ω, ξ τ ) − ũ(ω, ξ τ − τ)

)
/τ . (45)

Using the notation ũ(ξ)(ω) := ũ(ω, ξτ ), the resulting itera-
tion is the following:

ũ(ξ)(ω) = (
I + τ α Ã(ω)

)−1

× (
ũ(ξ−1)(ω) − τ f̃(ξ−1)(ω)

)
, (46)

where I denotes the identity on the domain �, and where
ũ(ξ)(ω) is usually initialized to zero, ũ(0)(ω) := 0. The pre-
vious scheme can be understood as the (globally convergent)
steepest descent method, where the identity matrix is added
to the Hessian (which is equivalent to α Ã in our implemen-
tation) in order to make it positive definite, and therefore the
existence and uniqueness of the solution is guaranteed.2

4.1 Registration Methods with Decoupled Components

In the case of diffusion, curvature, and the proposed hybrid
approach, the frequency components of the displacement
field are independent (i.e., they are not coupled), and then
matrix Ã(ω) can be written as shown in (32) and (37). In
these cases, the matrix inversion in (46) does disappear due
to the fact that the multiplication of a circulant block matrix
and a column block vector becomes a Hadamard (i.e., point-
wise) product of their respective spectra in the frequency
domain [14]. Then, the iteration for the l-th component is
given by

ũ
(ξ)
l (ω) = 1

1 + τ α Ãll(ω)

(
ũ

(ξ−1)
l (ω) − τ f̃

(ξ−1)
l (ω)

)
. (47)

For the purpose of writing the previous equation more com-
pactly, the following variables are defined:

η := 1/τ,

K(ω) := α Ãll (ω),

H(ω) := η

η + K(ω)
.

(48)

2The addition of a correction matrix is a useful strategy for improving
the stability and computational efficiency of optimization algorithms
such as conjugated gradient (CG) or Newton-type methods.

H(ω) is a d-dimensional low-pass filter, it has its maxi-
mum at the frequencies of the DC component. The values
of H(ω) are less or equal than one and are the reciprocal
of 1 + η−1K(ω), therefore the matrix inversion necessary
for solving (46) has become a pointwise division. H(ω) is
then the pseudo-inverse filter of K(ω), which corresponds to
a d-dimensional high-pass filter that contains the frequency
representation of the spatial derivatives, and the constant η

is related to the width of the transition band of filter H(ω).
Finally, the equation that expresses the evolution of the

l-th component of the displacement field is the following:

ũ
(ξ)
l (ω) = H(ω)

(
ũ

(ξ−1)
l (ω) − η−1 f̃

(ξ−1)
l (ω)

)
. (49)

The frequency point of view allows to understand the inter-
nal forces, with the restrictions imposed on the displacement
field by the regularizer, as a low-pass filtering. In (49), each
component of the displacement field as well as the driving
external forces, weighted by the value η−1, are low-pass fil-
tered. Figure 1 depicts the frequency spectra of filters H(ω)

for the diffusion, curvature and hybrid cases. Filter H(ω)

for curvature registration (Fig. 1(c)) shows a wider pass-
band and a narrower transition band than filter H(ω) for dif-
fusion registration (Fig. 1(a)). As expected, filters obtained
with the hybrid approach show an intermediate behavior be-
tween the diffusion and curvature cases, see Fig. 1(b) and
Fig. 1(d). The smoothness of the resulting displacement
field depends on the pass-bandwidth of the low-pass filter,
which is usually measured by the cut-off frequency (de-
fined as ωc : |H(ω > ωc)| < 1/

√
2) or by Bode’s corner fre-

quency (defined as the frequency where the two asymptotic
lines of the magnitude Bode plot meet). The pass-bandwidth
is higher for curvature than for diffusion and it is related
to the order of the derivative which is being minimized,
see Fig. 1(e) and Fig. 1(f); the cut-off angular frequency
(in radians) can be approximated by means of a quadratic
polynomial fitting as ωc ≈ −0.093σ 2 + 0.45σ + 0.31, and
Bode’s corner angular frequency (in radians) can be com-
puted as ωB ≈ 0.46σ 3 − 2.66σ 2 + 5.4σ − 3.18. More-
over, we can choose the value of the regularization or-
der from a known value of the cut-off frequency or the
corner frequency as σ ≈ 19.43ω2

c − 23.03ωc + 7.76 and
σ ≈ 3.39ω3

B − 1.53ω2
B + ωB + 0.99, respectively. It should

be noted that the latter study, for the case σ /∈ [1,2] (e.g.,
higher-order regularizers), is out of the scope of this paper.

In terms of the registration results, a higher regulariza-
tion order provides a higher pass-bandwidth, and then the
spatial resolution is higher; in other words, a higher σ means
more variations (i.e., higher frequencies) in the displacement
field, therefore obtaining more flexible transformations and
allowing for faster convergence times. On the other hand, a
lower regularization order provides a lower pass-bandwidth,
and then the influence of each computed vector “propagates”
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Fig. 1 Spectra of d-dimensional filters, d = 2, η = 1, α = 1. (a) H(ω)

for diffusion, (b) H(ω) for σ = 1.5, (c) H(ω) for curvature, (d) Com-
parison of the frequency responses, (e) Effect of the regularization

order σ in the cut-off frequency ωc , (f) Effect of the regularization
order σ in Bode’s corner frequency ωB

farther in space; in other words, a lower σ means less varia-
tions in u(x), and therefore the resulting displacement field
is more uniform and it presents less oscillations (although
some transformations, like rotations, would not be allowed
in this case).

4.2 Efficiency Comparison

For the elastic and fluid registration techniques, direct solu-
tion schemes in the spatial domain are available [36]. How-
ever, these schemes require, for N1 × · · · × Nd data sets,
the inversion of an ill-conditioned, sparse matrix of size
d N × d N , where N = N1 N2 · · ·Nd is the cardinal of the
data sets to be registered, and therefore they are not suitable
for typical registration scenarios, since the computer runs
out of memory. Even fast schemes based on a singular value
decomposition (SVD) (see e.g. [15]) require the (pseudo-)
inversion of d2 matrices of size N1 × · · · × Nd , which can
be very time-consuming. For these registration techniques
there is no noticeable improvement in efficiency if the pro-
posed frequency implementation is used.

Direct solution schemes in the spatial domain are also
available for the diffusion and curvature registration tech-
niques [36]. In these cases, a matrix of size N × N has

to be inverted. There exists the possibility of fast imple-
mentations based on a DCT-type factorization [20], with-
out any matrix inversion involved in the procedure. Al-
ternative approaches based on multigrid and/or multiscale
techniques offer stable and robust implementations for all
four considered registration methods, but they demand a
Cholesky factorization with high computational complex-
ity, thus conditioning the overall performance of the result-
ing algorithms, as already commented at the end of Sect. 2.
Particularly, for the diffusion registration technique, an ef-
ficient implementation based on an additive operator split-
ting (AOS) scheme is also available [16], but it is outper-
formed by previously referred DCT-based scheme, which
is faster due to both the complexity of the preprocessing
stage required by the AOS implementation and the excel-
lent implementation of the DCT routine provided by many
programming languages (e.g. MATLAB, C/C++): the DCT
functions are based on the library FFTW [21]. Therefore, in
terms of efficiency, the only relevant comparison is the DCT-
based scheme (which is included e.g. in the FLIRT toolbox
[19, 38]) versus the proposed frequency domain implemen-
tation, for the diffusion or curvature registration scenarios,
since both registration techniques are identical in terms of
complexity (see Sects. 3.1 and 4.1). Finally, it should be
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Table 1 Mean timings in seconds and ratios for one iteration of the
most efficient spatial domain implementation (DCT-based) and the pro-
posed frequency domain implementation

Size of data sets
Spatial domain Frequency domain Actual

implem. timings implem. timings ratio

256 × 256 0.127 0.053 2.39

512 × 512 1.063 0.449 2.37

1024 × 1024 4.303 1.844 2.33

64 × 64 × 64 1.698 0.729 2.33

128 × 128 × 128 15.185 5.959 2.55

noted that the frequency approach is the most straightfor-
ward way for the implementation of the hybrid scheme pro-
posed in Sect. 3.2, because the fractional power of the gra-
dient operator cannot be easily computed in the spatial do-
main.

Table 1 shows the timings for one iteration of the reg-
istration algorithm (i.e., for the solution of one linear sys-
tem of equations arising in a generic variational image
registration scenario), as well as the actual ratios between
the timings of the implementations under discussion (with
d = 2 and d = 3); the proposed frequency domain-based
scheme is more than two times faster than the fastest im-
plementation available in the spatial domain. These tim-
ings were obtained on a PC with Intel Pentium IV, 2.8
GHz, 512 MByte RAM, and the computations were per-
formed under MATLAB 6.5 (R13). Note that the complex-
ity of a d-DCT of size N1 × · · · × Nd is approximately
twice the complexity of a d-FFT of the same size. Then
the estimation of the complexity of one iteration of the
registration algorithm, without considering the warping of
the template image with the computed partial mapping,
is O(4d N log2 N) for the DCT-based scheme (where d

d-DCT, d d-IDCT and dN additional products are per-
formed), and O(2d N log2 N) for the proposed frequency
domain implementation (where d d-FFT, d d-IFFT and dN

additional products are performed), and therefore the the-
oretical ratio between the timings is ρ ≈ 2. It is assumed
that the complexity of a FFT is O(N log2 N) [37], taking
into account that both the d-FFT and the d-DCT are inter-
nally implemented as separable transforms, i.e., the com-
putation of a d-dimensional FFT (DCT) involves Nl (d-1)-
dimensional FFTs (DCTs) and N/Nl one-dimensional FFTs
(DCTs).

In summary, the overall complexity of the proposed reg-
istration method is O(N log2 N). The preprocessing stage
(where the N values of H(ω) are computed) has a com-
plexity of O(N). During each iteration, we can distinguish
three procedures: the computation of the external forces,
f(x;u), which depend on the particular distance term cho-
sen, having in all cases a complexity of O(N); the com-
putation of the displacement field, u(x), which has a com-

plexity of O(2d N log2 N); and the computation of the de-
formed template, Tu, which depends on the particular choice
of the interpolation scheme (in this paper, we make use of
d-linear interpolation [36], since it achieves a good trade-
off between complexity, O(N), and accuracy). Therefore the
global complexity, considering ξmax iterations of the regis-
tration algorithm, is

O(N) + (O(N) +O(2d N log2 N)

+O(N)) ξmax ≈ O(N log2 N). (50)

5 Registration Results

In this section, the proposed frequency domain framework
is tested on two experiments involving three-dimensional
(d = 3) data sets. In both cases, iteration (46) is performed
as long as the distance measure is a decreasing sequence,
i.e., while D̃[R̃, T̃ ; ũ(ξ)] < D̃[R̃, T̃ ; ũ(ξ−1)], or until the
condition f̃(ω; ũ(ξ)) ≈ 0 is satisfied. The distance metric and
the simulation parameters are explicitly specified for each
experiment.

We use simulated deformations over real data to evalu-
ate our method first. A randomly selected magnetic reso-
nance (MR-T1) volume of a human head (109 axial slices
of size 256 × 256 pixels), obtained from [39], is syntheti-
cally warped using a known grid transformation. The grid
transformation is a uniform periodic one in order to com-
pare the recovery over the whole area of the data set. The
deformation we adopt is ul(x) = 5 cos(xl π/32). The ref-
erence and template volumes are shown in the first and
second column, respectively, of Fig. 2. To assess the va-
lidity of the proposed formulation, convenient quantitative
measures are chosen: the peak signal-to-noise ratio (de-
fined as PSNR = 20 log10(255/RMSE), where RMSE is
the root mean squared error between the data sets), the
mutual information (MI) and the correlation ratio (CR).
Before the registration process, the values for these mea-
sures are PSNR = 21.1 dB, MI = 0.43, and CR = 50.3%,
respectively. For the PSNR measure, an improvement of
0.5 dB becomes visible, and a value higher than 30 dB
is usually considered a good match of the data sets; for
the CR, a value of 100% implies a perfect match of
the data sets; for the MI, such thresholds are not avail-
able, and therefore a related measure such as the normal-
ized mutual information (NMI, constrained to the interval
[1,2]) or the entropy correlation coefficient (ECC, con-
strained to the interval [0,1]) should be taken into ac-
count. After the registration procedure, the computed val-
ues are PSNR = 33.3 dB, MI = 0.99, and CR = 96.6%,
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Fig. 2 Registration of a
synthetically warped volume of
a human head. First column:
views of the reference data set.
Second column: views of the
template data set. Third column:
views of the registered template.
First row: 3D views. Second
row: front views. Third row: top
views. Fourth row: side views

respectively. Table 2 shows the values of these measures
for the particular slices displayed in Fig. 3. The dis-

tance measure chosen for the registration is the sum of
squared differences (SSD), the selected smoothing term
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Fig. 3 Registration of a
synthetically warped volume of
a human head. First column:
slices of the reference data set.
Second column: slices of the
template data set. Third column:
slices of the registered template.
First row: coronal slices (slice
#80). Second row: axial slices
(slice #64). Third row: sagittal
slices (slice #28)

is the diffusion regularizer (see (24)), and the simula-
tion parameters are α = 10 (regularization parameter3) and
η = 1 (reciprocal of the time-step, see (48)). If compared

3In the experiments shown in this paper (where a diffusion registration
and a curvature registration are performed), the regularization para-
meter α is obtained in each case empirically, as a high enough value

with the results obtained with the DCT-based spatial do-
main implementation (using the same simulation parame-
ters), we can conclude that the registration results pro-
vided by both schemes are almost identical: the RMSE

which guarantees a reasonable deformation of the template (i.e., not an
arbitrary and unlikely one).
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Table 2 Registration of a synthetically warped volume of a human
head

Slices PSNR MI CR

Coronal (before registration) 18.5 dB 0.65 39.3%

Coronal (after registration) 30.2 dB 1.59 95.1%

Axial (before registration) 17.5 dB 0.71 34.4%

Axial (after registration) 30.6 dB 1.61 96.1%

Sagittal (before registration) 20.2 dB 0.58 46.5%

Sagittal (after registration) 32.5 dB 1.34 96.1%

Table 3 Registration of CT and PET volumes of a human body

Slices PSNR MI CR

Coronal (before registration) N/A 1.13 22.3%

Coronal (after registration) N/A 1.91 60.9%

Axial (before registration) N/A 0.35 32.9%

Axial (after registration) N/A 0.81 70.6%

Sagittal (before registration) N/A 1.12 40.5%

Sagittal (after registration) N/A 1.73 69.3%

and the CR between the registered templates of the con-
sidered implementations are respectively RMSE = 1.534
(i.e., the PSNR is 44.4 dB), and CR = 99.3%. Apart
from the registration timings (the proposed implementa-
tion is two times faster, as discussed in Sect. 4.2), the
only difference can be found in the boundary of the reg-
istered data sets, since spatial domain-based schemes im-
pose Von Neumann boundary conditions, and the frequency
domain-based scheme imposes periodic boundary condi-
tions (actually, due to the use of the d-dimensional discrete
Fourier transform, periodic boundary conditions arise nat-
urally when computing a numerical solution for the dis-
placement field). Anyway, when dealing with medical im-
ages, where the information is typically contained within
a uniform background, this difference is hardly notice-
able, as has been previously stated by other authors, see
e.g. [15].

To demonstrate the performance of the proposed frame-
work in registering actual clinical data, we use a set of 57
corresponding image pairs (axial slices of size 128 × 128
pixels) from a computed tomography (CT) and a positron
emission tomography (PET) of a human body, obtained
from [1]. Due to the differences in acquisition protocols for
CT and PET, there is an inherent non-linear mismatch be-
tween the anatomic and physiologic representations of the
thorax and abdomen seen in these two scans, respectively
(Figs. 4 and 5). As a result, this experiment presents a good
challenge to test the ability of the algorithm to handle ac-
tual multimodal clinical data. The CT volume is considered
the reference data set and the PET volume is treated as the
template data set to be transformed to match the CT volume.

The resulting scenario belongs to the so-called intra-subject
registration case. The chosen distance measure for the regis-
tration is in this case the mutual information (see e.g. [13]),
the considered regularizer is the curvature term (28), and the
simulation parameters are α = 105 and η = 1. In this experi-
ment, the validation is based only on the statistical measures
(MI and CR). The PSNR becomes useless in this case, since
the volumes to be registered do not share the same inten-
sity levels. The mutual information and the correlation ra-
tio computed over the original data sets are MI = 0.21 and
CR = 26.4%, respectively. After the registration procedure,
the new values are MI = 0.51 and CR = 65.4%, respec-
tively. Table 3 shows the values of these quantitative mea-
sures for the particular slices displayed in Fig. 5. It should
be noted that the correlation ratio, although high, cannot
present a value close to 100%, because in this case the
data sets do not contain exactly the same information (since
they are obtained from different modalities), and therefore
achieving a perfect match is not possible. Finally, the nu-
merical difference between the registered templates for the
spatial domain-based and the frequency domain-based im-
plementations is only RMSE = 1.581 (i.e., the PSNR is 44.2
dB). Therefore the results provided by these two schemes
are almost identical: the CR between both registered tem-
plates is CR = 98.7% but, as expected, the proposed FFT-
based implementation allows for (two times) faster registra-
tion timings, see Sect. 4.2.

6 Conclusion

In this paper, a framework defined in the frequency domain
is proposed for approaching the variational image registra-
tion problem. The joint energy functional J is translated
into the frequency domain by means of Parseval’s theorem,
and the minimization of the resulting variational equations is
performed entirely in this domain. This approach allows to
understand the regularization constraints (or internal forces)
as a low-pass filtering of the displacement field. The inter-
nal forces are derived from the regularizer and lead to the
elastic, fluid, diffusion and curvature (or even hybrid) regis-
tration schemes in the frequency domain.

The novel formulation allows for an implementation of
the registration methods more efficient than existing ap-
proaches. The use of the frequency domain (especially if the
d-FFT is taken into account) reduces considerably the nu-
merical complexity and memory requirements of the over-
all iterative schemes. In particular, for the popular diffusion
and curvature registration approaches, the proposed frame-
work provides a O(2d N log2 N) implementation, where N

denotes the cardinal of the data sets to be registered, thus be-
coming efficient and fast variational registration techniques.
Furthermore, the frequency-based implementation could be
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Fig. 4 Registration of CT and PET volumes of a human body. First
column: views of the reference data set. Second column: views of the
template data set. Third column: views of the registered template. First

row: 3D views. Second row: front views. Third row: top views. Fourth
row: side views

easily used in conjunction with a multigrid and/or multiscale
approach to yield an even better convergence rate. As an ex-

ample of the use of the proposed method along with a mul-
tiscale approach, the registration process can be started with
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Fig. 5 Registration of CT and
PET volumes of a human body.
First column: slices of the
reference data set. Second
column: slices of the template
data set. Third column: slices of
the registered template. First
row: coronal slices (slice #64).
Second row: axial slices (slice
#40). Third row: sagittal slices
(slice #69)

a low value of η, thus obtaining a fast but “coarse” registra-
tion (because only low frequencies are allowed in the dis-
placement field), which means an excellent starting point;
after a few iterations (i.e., with each new scale), a higher
value of the parameter η is used (thus allowing higher fre-
quencies), and this way only minimum corrections (which
means a low number of iterations) have to be computed over
the matching vectors obtained in the previous scale. On the
other hand, a multigrid strategy can also be added to the pro-
posed implementation, by performing a previous hierarchi-
cal (or pyramidal) decomposition of the original data sets
and then a coarse-to-fine sequential (or “cascade” computa-
tion of the registration step (with complexity O(N log2 N))
in each image resolution (i.e., the coarse resolution trans-
formation is prolongated onto the next finer grid, where one
expects lower computational costs for corrections).

Appendix

In order to compute the discrete approximations for the par-
tial differential operators arising in a d-dimensional regis-
tration scenario, the following operators are defined:

d−[n] := δ[n] − δ[n − 1],
d+[n] := δ[n + 1] − δ[n],
dc[n] := (

d−[n] + d+[n])/2,

d2[n] := d−[n] ∗ d+[n],

where d−, d+, dc and d2 perform the backward difference,
forward difference, central difference and second order dif-
ference, respectively, δ is the Kronecker delta and ∗ denotes
the linear convolution. Then, the discrete approximations for
the first and second order spatial derivatives are the follow-
ing:

∂xl
u(x) ≈ d−[nl] ∗ u[n],

∂xlxl
u(x) ≈ d2[nl] ∗ u[n],

∂xlxmu(x) ≈ dc[nl] ∗ dc[nm] ∗ u[n].
Using the previous discrete approximations, the partial dif-
ferential operators can be described by the following equa-
tions:

∇u(x) =
(
∂xmul(x)

)
l,m=1,...,d

≈
(

d−[nm] ∗ ul[n]
)

l,m=1,...,d
∈ R

d×d,

div u(x) =
d∑

l=1

∂xl
ul(x) ≈

d∑
l=1

d−[nl] ∗ ul[n] ∈ R,

�u(x) =
(

d∑
m=1

∂xmxmul(x)

)

l=1,...,d

≈
(

d∑
m=1

d2[nm] ∗ ul[n]
)

l=1,...,d

∈ R
d .



J Math Imaging Vis (2008) 32: 57–72 71

At this point, in order to find the expressions for the previ-
ous operators in the frequency domain, it should be noted
that the Fourier transform of the spatial sequence y[n] =
δ[n − n0] is ỹ(ω) = e−jωn0 [37], and therefore the follow-
ing equations are obtained:

FT
{∇u(x)

} ≈ ((
1 − e−jωm

)
ũl(ω)

)
l,m=1,...,d

∈ C
d×d,

FT
{
div u(x)

} ≈
d∑

l=1

(
1 − e−jωl

)
ũl(ω) ∈ C,

FT
{
�u(x)

} ≈
(

−
d∑

m=1

∣∣1 − e−jωm
∣∣2ũl(ω)

)

l=1,...,d

∈ C
d .

These approximations, along with the fact that cosω =
(ejω + e−jω)/2 and sinω = (ejω − e−jω)/2j , are used in
Sect. 3.1 in order to deduce equations (19), (25) and (29).
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