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Abstract. There are many watershed transform algorithms in literature but most of them do not exactly correspond
to their respective definition. The solution given by such algorithms depends on their implementation. Others fit
with their definition which allows multiple solutions. The solution chosen by such algorithms depends on their
implementation too. It is the case of the watershed by image foresting transform that consists in building a forest
of trees with minimum path-costs. The recently introduced tie-zone watershed (TZW) has the advantage of not
depending on arbitrary implementation choices: it provides a unique and, thereby, unbiased solution. Indeed, the
TZW considers all possible solutions of the watershed transform and keeps only the common parts of them as
catchment basins whereas parts that differ form a tie zone disputed by many solutions. Although the TZW insures
the uniqueness of the solution, it does not prevent from possible large tie zones, sometimes unwanted in segmentation
applications. This paper presents a special thinning of the tie zone that leads to a unique solution. Observing all
the possible solutions of the watershed by image foresting transform, one can deduce the frequency of the labels
associated with each pixel. The thinning consists in assigning the most frequent label while preserving the segmented
region connectivity. We demonstrate that the label frequency can be computed both from an immersion-like recursive
formula and the proposed fragmented drop paradigm. Finally, we propose an algorithm under the IFT framework
that computes the TZW, the label frequency and the thinning simultaneously and without explicit calculation of all
the watershed solutions.
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1. Introduction

The watershed transform (WT)1 is a famous and
powerful segmentation tool in morphological im-
age processing. First introduced by Beucher and
Lantuéjoul [5] for contour detection and applied
in digital image segmentation by Beucher and
Meyer [22], it is inspired from a physical principle
well-known in geography: if a drop of water falls on
a topographic surface, it will follow the greatest slope
until reaching a valley. The set of points which lead to
the same valley is called a catchment basin (CB). The
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watershed lines separate different catchment basins.
In the WT, an image is seen as a topographic surface
where grey-level corresponds to altitude. Generally, to
segment an image by WT, a gradient of the image is
used as topographic surface. In this case, it is expected
that a region with low gradient, a valley, corresponds
to a rather homogeneous region and possibly to the
same object. Ideally, catchment basins correspond to
segmented objects separated by watershed lines.

Many definitions for WT exist in litterature.
Definitions in the continuous space have been pro-
posed [5, 20, 25, 26] and consider the watershed as
a skeleton by influence zones (SKIZ) generalised
to greyscale images. Each proposal gives a unique
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Figure 1. Data processing order introduces a 1-pixel bias. (a)–(d) Input image, WT according to the definition, and two possible labelled WT

outputs (raster or anti-raster scan) of a line-algorithm. W represents the watershed line. (e)–(h) Input image, WT according to the definition, and

two possible labelled WT outputs (raster or anti-raster scan) of a region-algorithm.

solution for the watershed. In the digital space (of
interest in this paper), there are many definitions using
different paradigms. We recall some of them.

The recursive definitions of digital WT by “immers-
ion” [28] or “flooding” [6] and the definition of digital
WT by “topographic distance” [20] can be seen as dig-
ital versions of the generalised SKIZ paradigm. Each
definition, if strictly applied, gives a unique solution.
But the watershed is not necessarily thin [28]. Moreov-
er, not all CBs are separated by watershed lines. Some
can have direct contacts (e.g., see the case of an even
plateau in Fig. 1(a) and (b)). This is due to the discretiz-
ation of a paradigm designed in the continuous space.

The topological watershed proposed by Couprie and
Bertrand [10] cannot be viewed as a generalised SKIZ
but as the ultimate topological thinning that transforms
the image while preserving some topological prop-
erties [4, 24]. Furthermore, the separating watershed
lines are valued such as the saliency between CBs is
preserved [23]. Multiple solutions are allowed by the
topological watershed definition and each CB is nec-
essarily separated from the others by a watershed line
(cf. Fig. 2(a) and (d)–(f)).

Figure 2. Multiple solutions do not contradict the definition but are consequences of specific implementations. (a) Input greyscale image with 3

minima. (b) and (c) Possible label maps of the WT by IFT using 4-adjacency (raster or anti-raster scan respectively). (d)–(f) Possible topological

watersheds for different data processing orders. Minima’s grey-levels are extended in CBs and watershed lines are valued.

The image foresting transform (IFT), a graph-
based framework introduced by Falcão, Lotufo and
Stolfi [15], also defines a digital WT. Yet, this WT
is made of CBs only (no separating watershed line): it
is a “region WT”. In this paradigm, the image is seen
as a graph where pixels are nodes, and the WT seen
as a problem of trees of minimal paths [17]. Indeed,
the WT by IFT consists in creating an optimal forest
from the image-graph, i.e. a set of trees that have min-
imum path-costs. These trees correspond to the CBs.
Multiple solutions (optimal forests) are allowed by the
definition (cf. Fig. 2(a)–(c)).

Next to the many definitions, there are lots of algo-
rithms that compute a digital WT. The WT algorithms
can be classified in two types: (i) line-algorithms that
return watershed lines separating each CB from the
others [11, 12, 28]; (ii) region-algorithms that return
labelled regions (the CBs) which constitute a partition
of the image without any watershed pixel [6–9, 15, 19,
20, 27]

Yet, many algorithms do not correspond to their re-
spective digital definition. For example, the Vincent-
Soille’s algorithm [28] imposes lines between CBs so
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Figure 3. (a) Input greyscale image with 2 minima. (b) Solution given by the strict definition of WT by immersion: watershed line is not

separating. (c) and (d) Possible watershed lines (W) by Vincent and Soille’s algorithm (raster or anti-raster scan respectively) using 4-adjacency.

Multiple solutions are not predicted by the definition but are consequences of the bias introduced by implementation.

that it does not fit with any definition and many solu-
tions are possible depending on the implementation (cf.
Figs. 1(c)–(d) and 3). On the contrary, the algorithms
presented by Meyer in ref. [20] “do not produce water-
shed labels and, therefore, are not exact implementa-
tions of the definition. All pixels are merged with some
basin, so that, dependent on the order in which pixels
are treated, different results may be produced” [27]. It
is clear (see Fig. 1) that, by adapting the definitions
to adequate with the output type constraint (lines or
regions), these algorithms introduce a bias in the out-
put according to the processing order (implementation
choice). There is a lack of robustness of the result due
to the implementation.

Other algorithms, like the topological watershed
(line) and the watershed by IFT (region), fit with their
respective definitions but give only one solution among
the multiple solutions allowed, wich depends on the (ar-
bitrary) implementation. Therefore, they can give dif-
ferent solutions depending on the processing order (cf.
Fig. 2). Again, there is a lack of segmentation robust-
ness due to the implementation but it does not conflict
with the definitions.

In summary, the dichotomy between line and region
algorithms is incompatible with most of the proposed
digital definitions. And when it is compatible, the WT
is not uniquely defined.

In this paper, we focus on the WT by image foresting
transform (IFT). By returning only one of the multi-
ple solutions, the algorithm makes necessarily an arbi-
trary choice. The returned solution is, therefore, biased
by the algorithm implementation. This variation due
to implementation can be insignificant in some cases
(1-pixel bias for the line or region position, see Fig. 1(g)
and (h)) but in other cases, it becomes considerable and
even may be unacceptable for some applications (e.g.,
reliable measures on segmented objects). In some im-
ages an entire region is reached passing by a bottleneck
pixel and consequently included to the first (or other ar-
bitrary) CB that invades the bottleneck (like in Fig. 2(b)
and (c)). Notice that the problem does not occur only
on plateaux but also in the buttonhole configurations:
regions invaded by passing through a bottleneck whose

merging with a CB or a watershed line is affected by
the 1-pixel bias depicted in Fig. 1. It is important to
remark that buttonhole cases “correspond to special
pixel configurations which are not so rare in practice”
as reported by ref. [23, 28].

How to provide a unique solution for the WT by IFT
independent of the implementation? This question mo-
tivated the recent introduction of the tie-zone watershed
(TZW). Roughly speaking, the definition of TZW [2]
takes into account all the possible solutions (optimal
forests) derived from the strict WT definition to gen-
erate a unique solution: when the multiple solutions
disagree with each other on the segmentation result of
a region (i.e., the label to be assigned), the region is
included to the tie-zone (TZ) and a specific tie label
is assigned. The TZ is therefore a litigious zone. The
TZW avoids to make arbitrary decisions.

The size and distribution of the TZ can be used as
a tool that gives a measure of the non-robustness or
unreliability of a segmentation in relation to the results
given by other implementations of IFT-WS. In other
words, the size of the TZ indicates how different could
be the segmentation if another implementation were
used [1].

For a segmentation purpose, the possibly large TZ
may be unwanted. As a large TZ indicates a poor relia-
bility of the segmentation, the user may add some extra
markers (see ref. [6, 22] for the concept of marker) to
modify the segmentation and try to untie the TZ, and
then increase the reliability of the segmentation. Ob-
serve that a reliable or robust solution is not necessarily
a semantically correct solution. It is reliable in relation
to the segmentation paradigm that was defined: in this
case, the optimality of the forest.

An alternative to extra markers is to apply an auto-
matic thinning on the TZ that assigns the TZ to already
segmented regions (CBs). The TZ thinning must be
unique and independent of the implementation, other-
wise it is not worth having firstly applied the TZW.
However, there is still a trade-off between uniqueness
of the solution and thinness of the TZs, so that perhaps
only part of the TZ can be thinned to preserve the
uniqueness of the solution.
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A first proposal of TZ thinning was introduced in
ref. [2]. It consists in applying iteratively the TZW on
a topography whose altitude is the number of different
labels that tied together. Consequently, a distance crite-
rion indirectly unties the TZ. This thinning drastically
simplifies the topography of the original TZ.

In addition, an accidental leak of water in watershed
can create a non-representative TZ. For example, if
almost all the WT solutions agree in assigning a region
to a same CB but only one WT solution assigns it to
another one, the region becomes a TZ, equally disputed
by both CBs. Thus, one solution has as much weight
as all the others. On the contrary, it could be desirable
that all the solutions have the same importance.

We propose in this paper a thinning of the TZ keep-
ing the property of uniqueness and based on the label
frequency: observing all the possible watershed solu-
tions by IFT, the TZ can be untied when a region is
most frequently assigned to a specific CB. Consider-
ing the drop of water paradigm, the TZ corresponds
to regions where a drop of water could fall and follow
several ways and slide down to different valleys. Imag-
ine now that every time the drop of water can follow
several ways, it is split in smaller equal amounts of
water which follow the possible ways. The fractions
of water the valleys receive are evaluated. At the end,
the greatest fraction determines which CB the drop be-
longs to, as long as the CB connectivity is preserved,
i.e., if there exists a path linking the locus the drop fell
to the valley, entirely included in the CB. We demon-
strate that the label frequency used by the thinning of
TZW can be computed both from the fragmented drop
paradigm and an immersion-based formula.

This paper is organised as follows. The notation and
definitions on graphs necessary to understand the IFT
framework are introduced in Section 2. Then, Section 3
gives an overview of TZW and recalls the watermerg-
ing paradigm that sustains the idea of tie-zones. The
multipredecessor optimal graph, a special graph de-
scribing the water flows and mergings, is defined too.
Finally, Section 4 deals with the several ways of de-
termining the label frequency, defines the thinning of
the TZ based on label frequency, and presents an al-
gorithm to compute at the same time the TZW and its
frequency-based thinning.

2. Watershed Transform by Image Foresting
Transform

In this section, the notation and definitions for the wa-
tershed by image foresting transform (IFT) are recalled.

The IFT is a general framework based on graph the-
ory in which an image is interpreted as a graph and
pixels as its nodes. The key idea of this transform is
to obtain, according to a path-cost function, a shortest
path forest from an input image-graph. Depending on
the path-cost function and some other input parame-
ters (adjacency, arc weights), the IFT can compute dif-
ferent image processing operations [14, 15]: distance
transforms, connected filters, interactive object delin-
eation (“live-wire”), segmentation by fuzzy connect-
edness and segmentation by watershed.

2.1. Notation and Definitions

Under the IFT framework, an image is seen as a
weighted graph G = (V, A, I ) where each pixel (or
voxel in 3D) is represented by a node or vertex v ∈ V
with intensity I (v). For digital image, I is a map from
V to Z. An arc 〈u, v〉 ∈ A exists between vertices u and
v when the corresponding pixels are adjacent accord-
ing to the defined adjacency (usually 4- or 8-adjacency
in 2D and 6- or 26-adjacency in 3D). A path π (u, v)
from a node u to a node v in a graph (V, A, I ) is a
sequence 〈u = v1, v2, . . . , vn = v〉 of nodes of V such
that ∀i = 1 . . . n − 1, 〈vi , vi+1〉 ∈ A. A path is said
simple if all its nodes are different from each other. Let
S ⊆ V be a set of particular nodes si called seeds. The
graph G ′ = (V ′, A′) is a subgraph of G if V ′ ⊆ V ,
A′ ⊆ A and A′ ⊆ V ′ × V ′. A directed forest F of G is
a directed acyclic subgraph F of G. A tree of the forest
F is a connected component of F .

For a given weighted graph G = (V, A, I ) and a
set S = {si } of seeds, the image foresting transform
(IFT) returns an optimal forest, i.e. a directed forest F
of G such that (i) there exists for each node v ∈ V
a unique and directed simple path π (si , v) in F from
a seed node si ∈ S to v and (ii) each such path has
a minimum (or “optimum”) cost for linking v to any
seed of S, according to a specified path-cost function
fC .

Assume that the arcs 〈u, v〉 are weighted with the
grey-level I [v] of the pixel corresponding to v. Assume
that the seed nodes correspond to the regional minima
of the image (or to imposed minima, i.e. markers [6]).
If the path-cost function fC is defined as the ‘maximum
arc’ function fmax,

fmax(〈v1, v2, . . . , vn〉)=max {h(v1), I (v2), . . . , I (vn)}

where h is a fixed but arbitrary handicap cost [18], the
IFT returns a region-WT where the trees of the forest
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Figure 4. (a) Input greyscale image I5 with 2 minima is equal to the first component ( fmax) of the lexicographic cost. (b) The second component

( fd ) of the lexicographic cost corresponds to the geodesic distance to the lower border. (c) The lower complete image. Lower completion increases

the image grey-level range.

correspond to the CBs. Note that all vertices (pixels) are
covered by this forest. The handicap cost is generally
set to I (v1) or 0 in case of minima imposition [6].

The IFT can result in many optimal forests because
many paths of (same) minimum cost are sometimes
possible for some nodes. The set of all the optimal
forests F is denoted by �. Observe that a forest can
be simply represented by a predecessor map P where
P[v] denotes the predecessor of node v in the mini-
mum path. In addition, a cost map C can indicate for
each node v the cost C[v] of the minimum path from
the tree root to v. When fC = fmax, it corresponds ex-
actly to the morphological superior-reconstruction [15]
of the input image I from the specified seeds (natural
or imposed minima). For segmentation purpose (WT
by IFT), a label map L is generally associated with the
optimal forest, so that, for each node v, L[v] represents
the label of the corresponding minimum-path root. No-
tice that the final cost map C is unique (values of the
minimum paths are unique) while the predecessor map
P and then the labelling L may be multiple.

In ref. [17], a two-component lexicographic cost
function fLC was proposed to mimic the flooding pro-
cess and handle with plateaux too: fLC = ( fmax, fd ).
The first component, of highest priority, is the max-
arc function and represents the flooding process. The
second one corresponds to the geodesic distance to the
lower boundary of the plateau and makes different wa-
ters propagate on plateau at a same speed rate:

fd (〈v1, v2, . . . , vn〉) = max
k∈[0,n−1]

{k, C[vn] = C[vn−k]}
C[vn] = fmax(〈v1, v2, . . . , vn〉)

The use of the lexicographic cost provides partitions
that seem to be more equitable (on plateaux) than those
obtained with the maximum cost component only. In
fact, the lexicographic cost avoids a prior lower com-
pletion on image with plateaux but has strictly the same
role.

In Fig. 4(a), a greyscale image with two minima and
many plateaux is showed. Figures 4(a) and (b) show the
two cost maps corresponding to the two lexicographic
cost components returned by the IFT. The first compo-
nent ( fmax) always corresponds to the reconstruction
of the input image from the specified seeds (natural or
imposed minima). In this case, all the regional min-
ima are considered seeds, so the reconstruction is the
input image itself. The second component ( fd ) corre-
sponds exactly to the geodesic distance (minus one) to
the lower boundary of the plateau. With these geodesic
distances on plateaux, it is possible to transform (see
Definition 3.4 of ref. [27]) the original input image to
a lower complete image (see Fig. 4(c)), as required in
many algorithms (e.g., hill climbing, topographic dis-
tance).

2.2. Algorithms for IFT

The algorithm for IFT computes three attributes for
each vertex v ∈ V : its predecessor P[v] in the mini-
mum path, the cost C[v] (C[v] = (C1[v], C2[v]) when
the lexicographic cost is used) of that path, and the
corresponding root label L[v].

The efficient ordered queue-based algorithm for IFT
proposed in ref. [15, 17] is essentially Dijkstra’s algo-
rithm [13], extended for multiple sources and a more
general path-cost function. It is denoted Dijkstra-IFT
in this paper. Note that, for the 4- or 8-adjacency in 2D
or 6- or 26-adjacency in 3D, the ordered queue can be
implemented such that the IFT algorithm will run in
time proportional to the number of vertices [15].

The lexicographic path-cost is very simple to com-
pute: only the first component (maximum arc) is ex-
plicitly computed. The second component is implicitly
computed by using a priority first-in-first-out (FIFO)
queue [17]. As we said, the use of this lexicographic
path-cost substitutes the lower completion step. Ob-
serve that the explicit lower completion as presented in
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Fig. 4(c) increases the range of the image grey-levels.
So, in addition to the computation cost of the lower
completion step, there may be, in some images, an ex-
tra storage cost.

Note also that other algorithms are able to compute
the IFT. For example, the ordered queue is not nec-
essary. One can process the image data in raster-scan
and anti raster-scan order alternatively until stability of
the result (algorithm not presented here and based on
Berge’s one [3], cited in Section 4.3 of ref. [20]).

3. Optimal Forest Paradigm and Tie-Zone
Watershed

We recall in this section the main definitions and con-
cepts on tie-zone watershed introduced in ref. [2].

3.1. The Tie-Zone Watershed (TZW) Transform

3.1.1. Definition. As we saw in the previous section,
many optimal forests and so, many partitions may cor-
respond to an input image. We propose then a new
definition of WT in the IFT context which results in a
unique partition, i.e. a unique label map.

A node is included in a specific catchment basin C Bi

when it is linked by a path to a same seed si in all the op-
timal forests, otherwise it is included in the Tie-Zone T :

C Bi = {v ∈ V, ∀F ∈ �, ∃π (si , v) in F}

T = V

∖ ⋃
i

C Bi

If a node is in the tie-zone, it means that it could be
included in different CBs without affecting the forest
optimality. CBs are only the common part of all optimal
solutions whereas differing parts are considered TZ.
Therefore, the tie-zone existence prevents from making
any arbitrary choice between optimal solutions. Con-
sequently, the TZW solution is defined without ambi-
guity.

Note that this definition does not produce watershed
lines but only regions: catchment basins and tie-zone.
They form together a unique optimal partition of the
image. If all pixels are assigned to catchment basins,
the tie-zone will be empty. This situation can occur
when the lexicographic path-cost function unties grow-
ing CBs on plateaux (e.g., Fig. 1(b) also corresponds
to the TZW of image I1 but has no tie-zone). So, this
watershed transform possibly does not contain any tie-
zone. In some cases, the TZ can be quite large (see
Fig. 5).

Figure 5. (a) TZW applied on image I3 of Fig. 2 using 4-adjacency:

3 CBs (grey), TZ (white), a possible forest (black). (b) Result of the

Label Merging algorithm.

Unlike in the WT by IFT where each CB corresponds
to entire trees with same label, in the TZW by IFT, CBs
may correspond to rooted parts of trees while the TZ
is composed of many terminal parts of trees as in the
example of Fig. 5(a).

3.1.2. Dijkstra-Based Algorithm. Now, we tran-
scribe an efficient algorithm that labels the image in
order to obtain a TZW [2]. It is based on Dijkstra’s
shortest path algorithm [13] and utilises an ordered
queue Q where each bucket has a FIFO policy.

The algorithm input is: the image as a weighted
graph G = (V, A, I ), the seed set S with associ-
ated labelling function λ and handicap function h.
We denote the neighbourhood of a node p ∈ V by:
NG(p) = {q ∈ V, 〈p, q〉 ∈ A}.

In the output, we have the label map L corresponding
to the TZW result, map P giving each node’s prede-
cessor in the tree and maps (C1, C2) giving the lexi-
cographic cost of an optimal path from a seed to each
node. Note that, unlike the algorithm for IFT [15], the
second component C2 of the lexicographic cost is not
intrinsically computed by the FIFO policy and must be
explicit in the TZW by IFT in order to prevent 1-pixel
bias.

The priority queue Q is initially empty.
DequeueMin removes from Q the node of minimum
cost and returns it; Enqueue(p, c) inserts node p
in Q at priority (cost) c bucket. QueueNotEmpty
indicates that the queue is not empty. The state flag
done(p) is TRUE when the node has already been
processed, i.e. it has its definitive attributes.

Algorithm 1: Dijkstra-based TZW with lexicographic
path-cost.

Inputs: image (V, A, I ), neighbourhood NG

(derived from A), seeds S, handicap h and

labelling λ functions.
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Outputs: label L , predecessor P and cost (C1, C2)

maps.

Auxiliary Data: empty ordered queue Q, state flag done,

cost variable c.

1. ∀p ∈ V , C2[p] ← 0; done(p) ← FALSE;

2. ∀p /∈ S, C1[p] ← ∞; L[p] ← NIL; P[p] ← NIL;

3. ∀p ∈ S, C1[p] ← h(p); L[p] ← λ(p); P[p] ← p ;

Enqueue(p, h(p));

4. while QueueNotEmpty,

5. v ← DequeueMin; done(v) ← TRUE;

6. ∀p ∈ NG(v) and done(p) = FALSE,

7. c ← max{C1[v], I [p]};
8. if c < C1[p],

9. if p in Q, Dequeue(p);

10. C1[p] ← c; L[p] ← L[v]; P[p] ← v;

11. Enqueue(p, C1[p]);

12. if c = C1[v], C2[p] ← C2[v] + 1;

13. else, if c = C1[p] and L[p] �= L[v],

14. if c = C1[v],

15. if C2[p] = C2[v] + 1, L[p] ← TZ;

16. else L[p] ← TZ;

The beginning of the algorithm (lines 1–11) is identi-
cal to the IFT algorithm in ref. [15] based on Dijkstra’s.
Lines 12–16 are TZW-specific (line numbers are bold-
faced). After cost, label and predecessor initialisations
(l. 1–3), a loop for emptying the priority queue Q starts
(l. 4–16). This ordered queue has firstly been filled with
seed nodes, properly labelled and with their respective
handicap cost (l. 3). The node v of highest priority, i.e.
lowest cost, is removed from Q (l. 5) with its defini-
tive attributes (cost C[v], label L[v], and predecessor
P[v]). This indicates that the minimum path π (si , v)
from some seed si ∈ S to the node v has already be
found. For each node p neighbour of v, such that p has
not been definitively processed, the cost c of a candi-
date path with terminus p passing by v is evaluated (l.
6–7). If c is lower than the already assigned cost C1[p]
(l. 8), then the path to p passing by v is considered
better (cheaper) than the current path that reaches p
and the three attributes of p are updated (l. 10). If p
has never been visited, i.e. p is not in Q, it is inserted
in Q with cost c (l. 11). Otherwise, only its position in
Q is updated (l. 9,11).

In line 12, the second component of lexicographic
cost is incremented, as water propagates on plateau.
Lines 13–16 detect the nodes p where paths from (at
least) two seeds with different labels (L[p] �= L[v])
tie together, i.e. have same costs (C1, C2). The special
label TZ is assigned to such nodes.

Note that the algorithm is efficient because it has
the same complexity as the algorithm of ref. [15] that

computes a simple WT by IFT, and it is not necessary
to compute explicitly all the WT solutions to obtain
the TZW. The solution of TZW, based on IFT, is
optimal because it keeps therefore the optimality of
the shortest-path forest solution as demonstrated in
ref. [15, 17]. In addition, label map L cannot be biased
by arbitrary processing order in queue remotion nor
neighbour selection.

The TZW can also be obtained without using an
ordered queue by processing the image data in an
unordered way, for example by sequential forward
and backward scannings alternatively, until stability of
the result (algorithm not presented here and based on
Berge’s one [3, 20]).

The area of the TZs, their distribution and number
and distribution of their sources, the so-called bot-
tlenecks, can be correlated with the robustness of a
segmentation, i.e. with the degree of confidence a par-
ticular segmentation by WT has [1].

The definition of TZW can be extended to other WT
definitions: similarly, all solutions have to be taken into
account and the regions where labelling differences
occur constitute the tie-zone.

3.2. Watermerging Paradigm

The WT is frequently compared to the flooding of a
topography where dams are built to prevent distinct
coloured waters from merging, supposing a colour is
assigned to each minimum or marker [6, 28]. The wa-
termerging paradigm does not build such dams. For
an intuitive comprehension of this paradigm, flip up-
to-down the topography representing the image like
in Fig. 6. Imagine that each marker (former minimum
that is now regional maximum) is a source of coloured
water. When coloured waters meet together, no dam is

Figure 6. Watermerging paradigm. On the left (right), the arrows

point the 2 minima (maxima) of the topography. The triple line and

the grey zone constitute the tie-zone where waters merged.
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built but the coloured waters naturally merge into a wa-
ter of blended colour. Holes are punched in the regional
minima (former maxima) for draining the water. Sup-
posing waters propagate along all negative slopes (not
only the steepest as occurs in reality), we get coloured
hills and possibly regions with blended colours. The
blended regions correspond to the tie-zone.

This intuitive up-to-down transformation is actually
not used in implementations. When label a and la-
bel b tie together in a region, a merged-label {a, b}
is assigned to this region. The tie-zone is therefore
differentiated in several regions according to the la-
bels that could be assigned to them. The Label Merg-
ing algorithm is a useful variation of the previous
Algorithm 1. Substitute TZ label on lines 15–16 by
MergeLabels(L[p], L[v]) and the simple label map
L by a merged-label map L that returns a set of labels
for each pixel. There is no more one TZ label but so
many as the distinct label mergings (four in example
of Fig. 5(b)).

3.3. Multipredecessor Optimal Graph

We introduce now a special graph, unique for each
image, that will be used in Section 4.

Roughly speaking, the multipredecessor optimal
graph (MOG) � = (V, A∗) of a weighted gaph
G = (V, A, I ) is the “union” of all the optimal forests
F ∈ �. More precisely, it is a directed acyclic subgraph
of G such as its arc set A∗ is the set of the optimal ori-
ented arcs, i.e. the union of the (oriented) arcs of all
optimal forests F ∈ �.

� = (V, A∗) =
(

V,
⋃

∀F=(V,A′)∈�

A′
)

Note that the graph is unique but is not necessarily
a forest. Once we have a lexicographical cost map
of the image, i.e. its reconstruction from the seeds
and the distance to the border of plateaux, the fol-
lowing local property is valid. A node p is prede-
cessor of a node v in the MOG if and only if p
is a neighbour of v such that its lexicographic cost
CL [p] = (C1[p], C2[p]) is strictly lower than the lex-
icographic cost CL [v] = (C1[v], C2[v]) of v:

p ∈ P[v] ⇔ p ∈ N (v), CL [p] ≺ CL [v].

where P[v] denotes the set of predecessors of node v.
The number of predecessors by node is no longer

restricted to one. But it is bounded by the maximum

number of neighbours by node, given by the adjacency
definition (e.g., four in the example of Fig. 7(c)). Fur-
thermore, the number of connected components of the
MOG no longer corresponds to the number of seeds as
in the case of optimal forest of trees.

An analogy can be observed between the MOG and
the ‘lower complete graph’ (Definition 3.5 of ref. [27]).
Both are directed acyclic graphs. In the former case,
the lower neighbours in the lexicographic cost map are
predecessors of the nodes. In the latter case, only the
steepest lower neighbours in the lower complete image
are predecessors of the nodes.

4. Thinning of the Tie-Zone Based on Label
Frequency

As said in Section 1, thin lines (or no line) between
segmented regions can be wished. It is why a thinning
of the TZ can be useful when the user does not want to
add more markers (seeds) to untie a large TZ. Other cri-
teria than path-cost have to untie the TZ to assign this
region to existing CBs while preserving the uniqueness
property of the TZW. Indeed, the TZ thinning must be
unique and independent of the implementation, other-
wise it is not worth having firstly applied the TZW.
However, as we saw in Section 1, there is still a trade-
off between uniqueness of the solution and thinness of
the TZs, so that perhaps only part of the TZ can be
thinned to preserve the uniqueness of the solution.

A first proposal of TZ thinning was introduced in
ref. [2]. It consists in applying iteratively the TZW on
a topography whose altitude is the number of differ-
ent labels that tied together. More labels tied in a re-
gion, more disputed it is and higher its altitude is. The
topography change creates plateaux with altitude pro-
portional to the number of CBs disputing the tie-zone.
By applying such a topography change, the original
image is drastically simplified no matter which labels
tied and how many times they dispute this region. For
example, a CB label may dispute a TZ even if there is
only one path reaching the TZ while labels from other
CBs have much more paths leading to the same TZ.
Consequently, a distance criterion unties the TZ in the
next iteration(s) because of the use of lexicographic
cost on the created plateaux. One can believe that a
unique path to a TZ could be an accidental “leak of
water” creating a non-representative TZ. At least, this
path has certainly not the same weight as the others in
the TZ formation.

This argument motivated the TZ thinning proposed
in this section. Indeed, a TZ is created when at least an
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optimal forest does not assign the same label to a pixel,
no matter how many optimal forests are discording with
this labelling. Thus, one optimal forest might have as
much weight as all the others. We propose to assign the
same importance to each optimal forest and keep the
most frequent labelling.

Remember that any optimal forest is a solution of
the WT by IFT, and is not a biased solution in it-
self. But the arbitrary choice of one optimal forest
would be equivalent to ignoring all the other possi-
bilities of path optimisation in the image-graph. This
simplistic choice constitutes a bias. Similarly, giving
an equal importance to every label responsible for a
TZ would be equivalent to ignoring that perhaps a cer-
tain CB is “more frequently linked” to a TZ than other
CBs. And this fact reflects the specificity of the im-
age topography, information that should be taken into
account.

The TZ thinning proposed here keeps the property
of uniqueness and is based on the label frequency: ob-
serving all the possible watershed solutions, the TZ can
be untied when a region is most frequently assigned to
a specific CB. Each optimal forest has the same rele-
vance. Considering the collection of all these possible
realisations of the WT, one can deduce the relative fre-
quency for a pixel to be included in a particular CB and
finally assign to it the most frequent CB label.

Considering the drop of water paradigm, the TZ cor-
responds to regions where a drop of water could fall
and follow several ways and slide down to different
valleys. Imagine now that every time the drop of wa-
ter can follow several ways, it is split in smaller equal
amounts of water which follow the possible ways. We
demonstrate that the fractions of water the valleys re-
ceive correspond to the respective label frequencies.

Section 4.1 demonstrates how relative label fre-
quencies can be computed, by the fragmented drop
paradigm (Section 4.1.1) or recursively (Section 4.1.2).
Section 4.2 explicits the way the most frequent la-
belling is obtained and special care to take for pre-
serving uniqueness and consistency of the segmenta-
tion. Section 4.3 presents an algorithm derived from
Dijkstra-IFT-TZW algorithm (Algorithm 1) that com-
putes the TZW and the label frequency-based thinning
simultaneously.

4.1. Computing Label Frequency

Let G = (V, A, I ) be the weighted graph correspond-
ing to an image. Let S be the set of seed nodes (pixels).
Let� = (V, A∗) be the multipredecessor optimal graph

(MOG) of G. We denote by P(p) the set of predecessors
of node p in the MOG.

Remember that only one optimal cost map C can
result from the IFT of a weighted graph G = (V, A, I ).
But many predecessor maps, the optimal forests F , can
exist and each one is a support for a (distinct or not)
label map L when labels are associated with seeds. We
wish to find the map of the most frequent labels. We
do not search for the most frequent optimal forest (as
each distinct optimal forest is observed only once), nor
for the forest built with the set of most frequent arcs.

First, we have to compute all the optimal forests
F ∈ � and associate with each pixel the relative fre-
quency of each label. In a final step, the most frequent
label will be assigned to each pixel (Section 4.2). As
we will compute the labels’ relative frequency for each
pixel considering a collection of optimal forests, we
have to know how many optimal forests F exist. Thus,
the problem is to count how many optimal forests can
derive from �. To build an optimal forest from the
MOG, we have to choose one and only one prede-
cessor per node except for the optimal tree roots that
have no predecessor. As setting a specific predecessor
among P(p) for a node p does not discard choices of
predecessor for any other node in the graph, choices of
node predecessor are independent events. Therefore,
we have |�| possible optimal forests:

|�| =
∏

p∈V, |P(p)|�=0

|P(p)|

The condition |P(p)| �= 0 is necessary to exclude the
tree roots.

Notice that in the label frequency-based thinning, we
do not necessarily assign a pixel to the CB from which
there are most optimal paths to this pixel. Because this
would assume that each linking path is equally frequent
for a specific node. But rather, pixel is assigned to the
label it is most frequently associated with, when con-
sidering all the optimal forests. So, it assumes that each
forest is equally frequent, i.e., each possible predeces-
sor arc is equally frequent for a specific node. Figure 7
shows that if in some cases these assumptions lead to
the same result in term of frequency (case of I6), in
general they do not (cases of I7 and I8).

4.1.1. Fragmented Drop Paradigm. Let us determine
the relative frequency f p(λ) of a pixel p being associ-
ated with a label λ using the definition of frequency
normalised by the number of observations (optimal
forests):

f p(λ) = |�π (p , λ)|
|�| (1)
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Figure 7. Difference between frequency of forests (or predecessor arcs) and linking paths. (a)–(c) Images and their respective MOG (minima

are bold-faced). (d)–(f) For each pixel, [x y] are the numbers of optimal forests in which the pixel is labelled with 1 and 2 respectively. (g)–(i)

For each pixel, [x y] are the numbers of paths linking the pixel with the minimum 1 and 2 respectively.

where |�π (p , λ)| corresponds to the number of opti-
mal forests that include a (“descending”) path between
pixel p and a root with label λ (necessary condition for
labelling p with λ).

Let �(p, λ) be the set of the paths π (p, λ) in � that
link p to a root with label λ. Equation (1) is equivalent
to:

f p(λ) =
∑

π∈�(p , λ) |�π |
|�| (2)

A path π can be written in this form: π = 〈qn,

qn−1, . . . , q2, q1〉 where qi−1 is predecessor of qi . Let
π ′ be the set of successor vertices of the arcs contained
in pathπ :π ′ = {qn, qn−1, . . . , q2}. The number of opti-
mal forests that contain a particular path π is given by:

|�π | =
∏

p/∈π ′, |P(p)|�=0

|P(p)| =
∏

p∈V, |P(p)|�=0 |P(p)|
|P(qn)||P(qn−1)| . . . |P(q2)|

= |�|∏
q∈π ′ |P(q)|

because each pixel qi in π ′ must have the specified
predecessor qi−1 whereas all the other pixels p can
have any one of the possible predecessors in |P(p)|.
From (2) it follows that:

f p(λ) =
∑

π∈�(p , λ)
|�|∏

q∈π ′ |P(q)|
|�|

And finally, we obtain:

f p(λ) =
∑

π∈�(p , λ)

1∏
q∈π ′ |P(q)| (3)

Therefore, for each distinct (“descending”) path be-
tween p and a root with label λ, it is necessary to calcu-
late the inverse of the product of predecessor numbers
for each node of the path. After summing all the ob-
tained results, we get the relative frequency of having a
path “between p and label λ”, the whole set of optimal
forests being observed. We saw in the introduction of
this paper (Section 1) that, considering the image as a
topography, a drop of water falling at a locus (pixel) that
belongs to a CB will slide down to the corresponding
valley (minimum). Otherwise, it means that the locus
belongs to the watershed and the drop of water can
slide down to several valleys. Equations (1) and (3)
demonstrate that computing the label frequency for a
pixel when all the optimal forests are observed is equiv-
alent to evaluating the amount of the drop of water that
reaches the respective labelled CB. Indeed, in Eq. (3),
the label frequency is equal to the sum of the drop
fragments considering all the possible paths between
the pixel and the respective CB. Every time the sliding
fragmented drop passes through a pixel with many pre-
decessors, the amount of water at that locus is divided
in equal parts among all the predecessors to continue
the descent until minima (see Fig. 8). For a pixel in CB,
the drop will entirely arrive in the same minimum. For
a pixel in the TZ, the drop of water is broken up into at
least two minima. In Section 4.2, we will see that the
frequency-based thinning assigns the pixel to the label
whose minimum caught the maximum fraction of the
drop of water. And it is equivalent to assigning the most
frequent label after observing all the labelled optimal
forests.
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Figure 8. Drop of water is sliding down from a TZ pixel and broken

up in equal parts whenever it meets an intersection of descending

paths (image I8). (a) Descending paths encountered by the drop

from pixel 7 and respective fractions of water sliding down. Minima

1 and 2 catch respectively 3/8 and 5/8 of the drop. This result fits

with the proportion of optimal forests leading to each labelling (18

and 30, see Fig. 7(f)). (b) Idem for pixel 8: 2/3 and 1/3 are in the

same proportion as 32 and 16.

4.1.2. Recursive Computation by Immersion. We
demonstrate now that Eq. (3) corresponding to the frag-
mented drop paradigm is equivalent to a recursive for-
mula (4) corresponding to an immersion simulation.

In Eq. (3) where it appears a sum in relation to the
different paths π between p and λ, let us group the
paths depending on whether they pass through one or
another of the |P(p)| predecessors v of p —as any
path linking p to λ is necessarily the concatenation of
the arc 〈p, v〉 with a path linking v to λ. So, grouping
according to possible predecessors v and factoring the
sum, we get:

f p(λ) =
∑

v∈P(p)

∑
π∈�(v,λ)

[
1

|P(p)| ∏q ∈ π ′ |P(q)|

]

= 1

|P(p)|
∑

v∈P(p)

[ ∑
π∈�(v,λ)

1∏
q ∈ π ′ |P(q)|

]

Figure 9. Computing the most frequent label. Pixels q1, q2, q3 are possible predecessors of p. Label frequencies f of p are computed according

to the recursive formula. Then, label L and predecessor P are assigned when possible. (a) Most frequent label for p is A and two predecessors

are possible (see Eq. (5)). (b) Isolated (ISO) pixel case. Label C is the most frequent for p but no predecessor has the same label (see Eq. (6)). (c)

Equal frequency (EF) case between labels A and B. No predecessor can be chosen (see Eq. (7)). (d) Other isolated pixel case. Equal frequency

case between labels B and C but no predecessor is labelled with C (see Eq. (8)).

According to (3), replace the expression between
brackets:

f p(λ) = 1

|P(p)|
∑

v∈P(p)

fv(λ) (4)

As we can see, this recursive formula implicitly de-
scribes an immersion process where label frequencies
are first computed at lower levels (predecessors v) and
then at higher levels (p). Note also that the normal-
isation term allows to take into account all the pos-
sible predecessors. In summary, we have three ways
of computing label frequency, as Eq. (4) is equiva-
lent to Eqs. (1) and (3). In practice, Eq. (4) is used
by the frequency-based thinning algorithm proposed
in Section 4.3.

4.2. Computing the Map of Most Frequent Labels

Now we have computed the frequencies of each label
to be assigned to each pixel, we want to choose the
most frequent label for each pixel (see Fig. 9(a)). To
obtain a unique label map, we cannot decide which of
two or more labels is assigned to a pixel in case of
equal frequency (EF). Indeed, there can be many EF
pixels. They are pixels where at least two labels have
the same maximum frequency of being assigned to (see
Fig. 9(c) and (d)). They constitute the first type of pixel
that cannot be thinned with the maximum frequency
criterion.

A second type of pixel cannot be labelled: the iso-
lated (ISO) pixels. To ensure that a segmentation is
achieved, the labelling must admit at least an optimal
forest as its support. And we saw that this forest is
necessarily made of the possible arcs of the MOG. If
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Figure 10. (a) Input greyscale image with 3 minima (in bold). (b) Multipredecessor Optimal Graph (arrows to predecessors) and TZW (label

T is tie-zone). (c) MOG and frequency of label assignments. Each vector represents the frequencies of labelling the pixel with A, B and C

respectively. Maximum frequency is bold-faced. (d): Resulting label map L and one of its supports P . Observe the cases of equal frequency

(EF) and isolated pixel (ISO).

such a support does not exist, it means that the labelling
is not a segmentation because some pixels can be dis-
connected from their seeds. So, the case of isolated
pixel occurs when no arc can link the labelled pixel
with another one of same label (see Fig. 9(b) and (d)).
Figure 10 shows the frequency-based thinning of an
image with EF and ISO cases.

Observe that the frequency of each label assignment
is not a monotonically increasing function. If a label is
most frequently assigned to a pixel, it does not mean
that it is most frequently assigned to its successor in
the path: its frequency may decrease at the expense of
other assignment frequencies.

In conclusion, the result of the frequency-based thin-
ning is a thinning of the TZ consisting of assigning pix-
els of the TZ to the most frequent CB’s label when it is
unique and when there exists a path linking to the re-
spective CB root within the CB. Otherwise, the pixels
have undefined (EF or ISO) labels. Thus, the labelled
pixels have a support made of minimum cost trees while
some pixels (EF and ISO) are disconnected from these
trees. The solution is not necessarily an optimal forest
because of these special cases.

Hereafter are presented the conditions (rules) of the
labelling process for each pixel p, depicted in Fig. 9(a)–
(d) respectively. The most frequent label map is de-
noted by L and the predecessor map by P (it is only
one of its possible supports). To summarise, when the
most frequent label for a node is unique and at least one
of its predecessors is assigned to this label, the label
is propagated from the predecessor to this node (rule
(5)). But if no predecessor is assigned to this most fre-
quent label, the node is isolated (rule (6)). When there
are many most frequent labels for a node and each of

them is assigned to at least one of the predecessors,
the node is an equal frequency case (rule (7)). But if
at least one of the equally most frequent labels is not
present among the predecessors, the node is considered
isolated (rule (8)).

∃λM L , ∀λ �= λM L , f p[λM L ] > f p[λ]
∃q ∈ P[p], L[q] = λM L

}
=⇒

{
L[p] ← λM L

P[p] ← q
(5)

∃λM L , ∀λ �= λM L , f p[λM L ] > f p[λ]
∀q ∈ P[p], L[q] �= λM L

}
=⇒

{
L[p] ← ISO
P[p] ← NIL

(6)

∃�M L , ∀λM L ∈�M L , ∀λ �=λM L , f p[λM L ]≥ f p[λ]
∀λM L ∈ �M L , ∃q ∈ P[p], L[q] = λM L

}
=⇒

{
L[p] ← EF
P[p] ← NIL

(7)

∃�M L , ∀λM L ∈�M L , ∀λ �=λM L , f p[λM L ]≥ f p[λ]
∃λM L ∈ �M L , ∀q ∈ P[p], L[q] �= λM L

}
=⇒

{
L[p] ← ISO
P[p] ← NIL

(8)

Remember that the frequency-based thinning uses
frequencies of label assignment given by the set of op-
timal forests and alternatively, these frequencies can be
viewed as the fractions of a divisible drop of water slid-
ing down from pixel to minima. Under this approach,
the frequency-based thinning assigns to each pixel the
label of the minimum that caught the greatest fraction
of the drop of water if there exists a descending path
from the pixel to the minimum that is entirely included
in the CB.
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4.3. Dijkstra-IFT-Based Algorithm for the
Label-Frequency Thinning of the Tie-Zone

Now the frequency criterion was defined, an algorithm
to thin the TZ is proposed (see Algorithm 2). It is based
on Algorithm 1. It has therefore the same structure and
needs the same input (image-graph (V, A, I ), seeds S,
labelling λ and handicap h functions) and the same
ordered queue and cost maps (C1, C2). Observe that
instead of predecessor and label maps, there are multi-
predecessor set map P and label set map L for internal
processing. Frequencies f , most frequent label map L
(the frequency-based thinning in output) and its sup-
port P (a predecessor map) are computed during the
main loop (i.e. the emptying of the ordered queue).
The lines with bold-faced number are specific of the
frequency-based thinning algorithm and differ from the
Label Merging algorithm mentioned in Section 3.2.

Algorithm 2: Label frequency-based thinning algorithm.

1. ∀p ∈ V , C2[p] ← 0; done(p) ← FALSE; ∀λ ∈ �, f p[λ] ← 0;

2. ∀p /∈ S, C1[p] ← ∞; L[p] ← {}; P[p] ← {};
3. ∀p ∈ S, C1[p] ← h(p); L[p] ← {λ(p)}; P[p] ← {p} ; Enqueue(p, h(p));

4. while QueueNotEmpty,

5. v ← DequeueMin; done(v) ← TRUE; UpdateLabelFreq(v);

6. ∀p ∈ NG(v) and done(p) = FALSE,

7. c ← max{C1[v], I [p]};
8. if c < C1[p],

9. if p in Q, Dequeue(p);

10. C1[p] ← c; L[p] ← L[v]; P[p] ← {v};
11. Enqueue(p, C1[p]);

12. if c = C1[v], C2[p] ← C2[v] + 1;

13. else, if c = C1[p],

14. if L[p] �= L[v],

15. if c = C1[v],

16. if C2[p] = C2[v] + 1, L[p] ← L[p] ∪ L[v]; P[p] ← P[p] ∪ {v};
17. else, L[p] ← L[p] ∪ L[v]; P[p] ← P[p] ∪ {v};
18. else,

19. if c = C1[v],

20. if C2[p] = C2[v] + 1, P[p] ← P[p] ∪ {v};
21. else, P[p] ← P[p] ∪ {v};

UpdateLabelFreq(v):

22. if |L[v]| = 1, ∃λ ∈ L[v], ∃p ∈ P[v], fv[λ] ← 1; L[v] ← λ; P[v] ← p; /* not necessarily unique */

23. else, ∀p ∈ P[v], ∀λ ∈ L[p], fv[λ] ← fv[λ] + 1
|P[v]| f p[λ];

24. if ∃λM L , ∀λ �= λM L , fv[λM L ] > fv[λ],

25. if ∃p ∈ P[v], L[p] = λM L , L[v] ← λM L ; P[v] ← p; /* not necessarily unique */

26. else, L[v] ← ISO; P[v] ← NIL;

27. else, L[v] ← EF; P[v] ← NIL;

28. if ∃λi , fv[λi ] ≥ fv[λ], ∀λ �= λi , ∀p ∈ P[v], L[p] �= λi , L[v] ← ISO;

Let us comment some distinctive particularities of
the frequency-based thinning algorithm. In line 1, the
frequency map is also initialised with 0. In line 5, when-
ever a pixel is removed from the ordered queue, the fre-
quency map has to be updated (UpdateLabelFreq
function). Its definitive frequencies are computed from
the frequencies already assigned to its predecessors
(the already processed neighbours).

The UpdateLabelFreq function (lines 22–28)
corresponds to rules (5)–(8). If only one label can be
assigned to a pixel (line 22), frequency of this labelling
is 1. A predecessor is assigned but is not unique. If
many labels can be assigned (line 23), the frequencies
of each labelling are computed from all the predeces-
sors’ frequencies by using the recursive formula. Lines
24–26 describe the case of one unique label of maxi-
mum frequency. If it has no predecessor with same label
(line 26), it is an isolated pixel. Lines 27–28 describe
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the case of at least two labels of maximum frequency:
equal frequency case EF. But if one of the equally
most frequent label has no predecessor with same la-
bel (line 28), the pixel is considered isolated in some
sense.

Coming back to the main loop of the algorithm, we
analyse the case of cost equality (former TZ case):
when proposed cost is equal to current cost in cost map
(lines 13–21). Notice that whenever the sets of labels
are different (lines 14–17) or equal (lines 18–21), a new
predecessor must be added in the multipredecessor set.
The label merging is actually necessary only when the
propagating label set is not already included to the cur-
rent label set: L[v]∪L[p] �= L[p]. Elsewhere, the label
merging is redundant. And avoiding it is desirable. Ac-
cording to the implementation of these sets, the above
criterion of non-inclusion can be more costly than a
simple inequality operation. The proposed algorithm
uses this alternative criterion (L[v] �= L[p] in line 14)
that can allow unnecessary label merging. This choice
of criterion will depend on the cost of merging, inclu-
sion and equality test operations on label sets. Besides,
observe that the implementation difficulty is with man-
aging the sets L and P. The size of P is variable but
limited by the number of neighbours. Implementation
of set L is more problematic: its size depends on the
number of labels that tied together. The propagation of
the frequencies to the neighbours are another related
problem.

Notice that the computations of frequencies, most
frequent label map and its support could be integrated
in the IFT loop because of the recursive formula for
frequencies and the ordered computing: frequencies
and label assignment of a pixel only depend on its lower
neighbours.

4.4. Illustration

To illustrate the concepts introduced in this paper, we
applied the TZW and the frequency-based thinning
on a rather simple real image of airplane. The gra-
dient image is presented in Fig. 11(a) whereas TZW
is in Fig. 11(b). White areas are the tie-zone and
grey ones are the CBs. Each CB corresponds to a re-
gional minimum. Observe that in practice, the detec-
tion of the markers (set of the seeds with same label)
should be achieved manually or automatically by fil-
tering, for example, the minima according to their dy-
namics [16, 21]. Here, the minima were not filtered
on purpose. This allows to visualise the location of

large TZ and the behaviour of the proposed thinning
in this case. The quite large TZ areas of Fig. 11(b)
desappeared in Fig. 11(c): the frequency-based thin-
ning was applied. We can see that some pixels (in
white) remain undefined (EF or ISO cases). Most of
them are on the frontier between CBs and constitute
thin segments of line. However, two regions are still
thick. They can be visualised in the detailed view of
Fig. 11(d). Grey CBs are constituted of optimal trees
(in black) rooted to regional minima (nodes contoured
by a square) while EF pixels (in white with a central
dot) are disconnected of any tree. Most ISO pixels (in
white with a central black square) occur by transitiv-
ity, because their predecessors are already EF pixels
without defined label. Even if they have a most fre-
quent label, there is no labelled descending path to
the corresponding CB. EF pixels are blocking their
way. Therefore, ISO pixels are also disconnected of any
tree.

Note that there may be cases where the frequency-
based thinning does not thin TZ. For example, sym-
metric images whose topography is similar to pyramid
or cone may contain only EF pixels and ISO pixels (by
transitivity) in their tie-zone.

Figure 12(a) shows one of the optimal forests de-
fined by the WT by IFT. It was randomly obtained
from the multipredecessor optimal graph. If we com-
pare this figure with Fig. 11(b) and (c), the catchment
basins are the same, out of the tie-zone. Variations
occur in the tie-zone: TZW does not make any arbi-
trary decision, the thinning unties the TZ according
to the frequency criteria and the random optimal for-
est makes arbitrary decisions. Observe the important
differences between the thinning and the random IFT
in the tie-zone: e.g. (white) tie-zones in the top right
border, near the bottom left corner, on the contours
of the wings and in the rear and front parts of the
airplane.

Figure 12(b) shows the results given by an imple-
mentation of the Vincent and Soille’s algorithm for
four different image scannings. There are many lit-
tle differences in the segmentations on the contours,
in the wings, and in many other catchment basins of
the background. Note that other implementations could
choose other internal processing orders and possibly
give other solutions than these ones. Observe that the
watershed line becomes thicker in the front regions
of the airplane. The frequency-based thinning returns
EF/ISO labels in these regions. The minima in these
regions should be filtered or redefined to remove the
tie-zone.
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Figure 11. (a) Input gradient image of an airplane. (b) TZW (TZ in white). (c) Frequency-based thinning (EF and ISO pixels in white). (d)

Detail of the frequency-based thinning showing optimal trees in CBs, EF (white with dot) and ISO (white with black square) pixels. The seeds

(nodes contoured by a square) represent the regional minima of the gradient image.

Figure 12. (a) WT corresponding to a random optimal forest (one of the solution of WT by IFT). (b) WT by Vincent-Soille’s algorithm

(watershed lines in black): four different image scannings.
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Table 1. Table of abbreviations

CB catchment basin

EF “equal frequency” label

FIFO first-in-first-out

IFT image foresting transform

ISO “isolated” label

MOG multipredecessor optimal graph

SKIZ skeleton by influence zones

TZ tie-zone

TZW tie-zone watershed

WT watershed transform

5. Conclusion

In this paper, we saw that there are many watershed
transform (WT) definitions in both continuous and dig-
ital spaces and lots of algorithms to compute them.
But there is an inadequacy between some algorithms
and their respective definition because they impose a
watershed solution containing either separating water-
shed lines, or only regions (catchment basins). Con-
sequently, such algorithms may return different solu-
tions depending on the implementation because they
introduce a bias in relation to the definitions. Other
definitions like the WT by image foresting transform
(IFT) admit several solutions. The corresponding algo-
rithms respect their definition but introduce a bias by
choosing one of the multiple solutions. Again, the solu-
tion is not unique and depends on the implementation.
The tie-zone watershed (TZW) returns a unique and
unbiased solution by considering all the possible so-
lutions. As large tie-zones may sometimes appear, we
proposed a label frequency-based thinning that leads
to a unique solution. If we define our space of ob-
servation as the set of the possible solutions (optimal
forests), we can compute the frequency of the labels
associated with each pixel. The thinning consists in as-
signing the most frequent label while preserving the
segmented region connectivity, i.e., each labelled pixel
must be connected to a root by a path whose pixels
are all associated with the same label. Notice that the
thinning does not necessarily correspond to an optimal
forest: some pixels can be simply disconnected from
the trees (i.e., unlabelled) because assigning the most
frequent label to them would violate the segmentated
region connectivity. We demonstrated that the label
frequency computation can also be explained by the
fragmented drop paradigm: a drop of water can be frag-
mented and go on until several minima. The fraction of

water in each minimum corresponds to the frequency
of assigning the corresponding label to the pixel on
which the drop fell down. Alternatively, the label fre-
quency can be computed by a recursive formula that
simulates an immersion. Finally, we proposed an al-
gorithm that computes at the same time the TZW, the
label frequencies and the frequency-based thinning.
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