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Abstract. In [2], Chambolle proposed an algorithm for minimizing the total variation of an image. In this short
note, based on the theory on semismooth operators, we study semismooth Newton’s methods for total variation
minimization. The convergence and numerical results are also presented to show the effectiveness of the proposed
algorithms.
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1. Introduction

Recently, Chambolle [2] studied the following total
variation denoising model [1, 3, 10]:

min
u

TV(u) + 1

2λ
‖u − g‖2

2, (1)
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where

T V (u) ≡
∫

�

|∇u(x, y)|dxdy,

g is the observed image in �, ‖ · ‖2 denotes the norm
in L2(�), and 2λ is the regularization parameter. He
developed a semi-implicit gradient descent algorithm
to solve (1) and also presented the convergence results
for the descent algorithm.

In this note, based on the theory on semismooth oper-
ators, we further develop semismooth Newton’s meth-
ods for total variation denoising algorithm for (1). The
main contribution of this note is to show the conver-
gence of the proposed method (see Section 2). Numer-
ical results are presented in Section 3 to demonstrate
the effectiveness of the proposed method.
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In the subsequent analysis, if G : Rn → Rm is
differentiable at x ∈ Rn then ∇G(x) denotes the trans-
posed Jacobian of G at x . If G : Rn → Rm is locally
Lipschitz at x ∈ Rn then ∂G(x) indicates the Clarke
generalized Jacobian [4] of G at x , which is the convex
hull of the following set

∂B G(x)

:=
{

lim
xk→x

∇G(xk)T | G is differentiable at xk ∈ Rn

}
.

If G : Rn → Rm is locally Lipschitz at x ∈ Rn and
for any h ∈ Rn ,

lim
V ∈∂G(x+th′ )

h′→h, t↓0

{V h′} (2)

exists, then we say that G is semismooth at x . It follows
from Theorem 2.3 in [9] that: if G : Rn → Rm is
locally Lipschitz at x ∈ Rn , then G is semismooth at
x if and only if for any V ∈ ∂G(x + h), h → 0, we
have

V h − G ′(x ; h) = o(‖h‖),

where ‖ · ‖ is the Euclidean norm. This property mo-
tivates the concept of the strong semismoothness: if
G is locally Lipschitz at x ∈ Rn and for any V ∈
∂G(x + h), h → 0, we have

V h − G ′(x ; h) = O(‖h‖2),

then we call G is strongly semismooth at x .

2. The Main Results

2.1. Background Material

We first review some definitions and basic results from
[2]. Then we introduce the concept of the semismooth
operator, we refer reader to [8, 9] for details about its
properties.

We assume that our images are matrices of size N ×
N . Following the notations in [2], we let X = R(N×N )

and Y = X × X . In X and Y , we use the Euclidean
scalar product, defined in the standard way respectively
by

〈s, t〉X =
∑

1≤i, j≤N

si, j ti, j , s, t ∈ X

and

〈p, q〉Y =
∑

1≤i, j≤N

(
p1

i, j q
1
i, j + p2

i, j q
2
i, j

)
,

p = (p1, p2), q = (q1, q2) ∈ Y .

The discrete gradient operator ∇ : X → Y is defined
by

(∇u)i, j = (
(∇u)1

i, j , (∇u)2
i, j

)
with

(∇u)1
i, j =

{
ui+1, j − ui, j if i < N ,

0 if i = N ,

(∇u)2
i, j =

{
ui, j+1 − ui, j if i < N ,

0 if i = N

for i, j = 1, . . . , N . The discrete total variation is
defined by

J (u) =
∑

1≤i, j≤N

|(∇u)i, j |.

Therefore, the discretization of minimization problem
(1) is given by

min
u∈X

J (u) + 1

2λ
‖u − g‖2

X , (3)

where u, g ∈ X are discretization vectors of related
continuous variables, λ > 0 and ‖ ·‖X is the Euclidean
norm in X , given by ‖u‖X = 〈u, u〉X .

It is shown in [2] that the solution u of problem (3)
is given by

u = g − πλK(g), (4)

where πλK is the orthogonal projection of g onto the
convex set λK,

K := {divp : p ∈ Y, |pi, j | ≤ 1 ∀i, j = 1, . . . , N }

and the discrete divergence operator div : Y → X is
defined by div = −∇∗, that is, for any p ∈ Y and
u ∈ X , 〈−div p, u〉X = 〈p, ∇u〉Y . It is clear that div
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is given by

(div p)i j =

⎧⎪⎪⎨⎪⎪⎩
p1

i, j − p1
i−1, j if 1 < i < N ,

p1
i, j if i = 1,

−p1
i−1, j if i = N ,

+

⎧⎪⎨⎪⎩
p2

i, j − p2
i, j−1 if 1 < j < N ,

p2
i, j if j = 1,

−p2
i, j−1 if j = N ,

for any p ∈ Y . Hence, computing the solution of (3)
hinges on computing the nonlinear projection πλK. The
latter amounts to solving the constrained minimization
problem

min ‖λdiv p − g‖2
X subject to p ∈ Y, and

|pi, j |2 − 1 ≤ 0 ∀i, j = 1, . . . , N . (5)

By the optimal condition of the above problem, there
exists a Lagrange multiplier η ∈ X such that the fol-
lowing KKT system holds:

For each i, j = 1, . . . , N

−(∇(λdiv p − g))i, j + ηi, j pi, j = 0, (6)

|pi, j |2 − 1 ≤ 0, ηi, j ≥ 0, and ηi, j (|pi, j |2 − 1) = 0.

Let us set M := N 2. For the sake of convenience, for
a vector p = (p1, p2) ∈ Y , we array first p1 then p2

row-wise in a vector v ∈ R2M . Similarly, for a vector
η ∈ X , we array it row-wise in a vector ξ ∈ RM . In this
way, we can equivalently rewrite (6) as the following
system:

For each k = 1, . . . , M

− ( fk(v), fM+k(v)) + ξk(vk, vM+k) = 0,

1 − |(vk, vM+k)|2 ≥ 0, ξk ≥ 0, and (7)

ξk(1 − |(vk, vM+k)|2) = 0,

where f : R2M → R2M is defined by

fk(v) : = (∇(λdiv p − g))1
i, j and

fM+k(v) : = (∇(λdiv p − g))2
i, j

for 1 ≤ k ≤ M with k = N (i − 1) + j and 1 ≤ i, j ≤
N .

It is well known that the Fisher-Burmeister function
φ : R2 → R, defined by

φ(a, b) =
√

a2 + b2 − a − b,

possesses the following characterization:

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0 and ab = 0.

By using the above property, it is easy to deduce that
solving the system (7) is equivalent to solving the sys-
tem of nonsmooth equations

	(z) = 0,

where z := (v, ξ ) ∈ R2M ×RM and 	 : R3M → R3M

is defined by

	k(z) : = − fk(v) + ξkvk,

	M+k(z) : = − fM+k(v) + ξkvM+k, (8)

	2M+k(z) : = φ
(
1 − v2

k − v2
M+k, ξk

)
for 1 ≤ k ≤ M .

On the other hand, it is easy to deduce from (7) that

ξk = |( fk(v), fM+k(v))| ∀ k = 1, . . . , M.

Therefore, (7) can be rewritten equivalently as the non-
smooth overdetermined system

H (v) = 0,

where H : R2M → R3M is defined by

Hk(v) : = − fk(v) + |( fk(v), fM+k(v))|vk,

HM+k(v) : = − fM+k(v) + |( fk(v), fM+k(v))|vM+k,

H2M+k(v) : = φ
(
1 − v2

k − v2
M+k,

∣∣( fk(v), fM+k(v))
∣∣2)
(9)

for 1 ≤ k ≤ M . Note that in the definition of H2M+k ,
|( fk(v), fM+k(v))|2, instead of |( fk(v), fM+k(v))|, is
used to replace ξk in 	2M+k .

Here we give two remarks of the above formulation.
The detailed explanation will be given in the next sub-
section.

Remark 1. If a function ϕ : R2 → R possesses the
following property:

ϕ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0 and ab = 0,

then ϕ is called a NCP function. In fact, any NCP func-
tion can reformulate the complementarity condition in
(5) as a system of nonsmooth equations.
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The Fisher-Burmeister function φ is a NCP function
and is strongly semismooth, this property can guaran-
tee the functions 	 and H to be strongly semismooth
so that the generalized Newton methods for solving
nonsmooth systems 	(z) = 0 and H (v) = 0 possess
fast locally (quadratically) convergent rate.

Remark 2. Another important property of the Fisher-
Burmeister function φ is that φ2 is continuously dif-
ferentiable on the whole space R, this property can
guarantee 1

2
‖	‖2 and 1

2
‖H‖2 to be continuously dif-

ferentiable so that the damped modified Gauss-Newton
methods for solving nonsmooth systems 	(z) = 0 and
H (v) = 0 are globally convergent. However, not every
one of NCP functions possesses this property. For ex-
ample, the function ϕmin(a, b) := min{a, b} is a NCP
function and is strongly semismooth, but it is easy to
prove that ϕ2

min(a, b) is not continuously differentiable
whenever a = b �= 0.

2.2. Semismooth Newton-Type Methods

In this subsection, we first prove that 	 and H are
strongly semismooth with smooth least squares formu-
lation, and then give an approach to estimate their gen-
eralized Jacobians. Finally we present two semismooth
Newton-type methods for the solution of total varia-
tion minimization problem (1) and give their conver-
gence properties. Our methods are based on the mod-
ified Gauss-Newton methods for solving nonsmooth
systems 	(z) = 0 and H (v) = 0.

Proposition 1. 	 and H are strongly semismooth
on R3M and R2M respectively.

Proof: Since φ is strongly semismooth, the result fol-
lows from the fact that composite functions of strongly
semismooth functions are also strongly semismooth.

Next we give an approach to compute the expression
of elements in ∂	(z)T and ∂ H (v)T . By using the rules
on the evaluation of the generalized Jacobian, we have

∂	(z)T ⊆ ∂	1(z)T × · · · × ∂	3M (z)T .

Therefore, we are only required to compute ∂	l(z)T

and ∂ Hl(v)T for each l. It is obvious that ∂	l(z)T =
∇	l(z) whenever 	l(z) is differentiable.

Let us consider how to compute ∂	l(z)T . For each
k = 1, . . . , M , 	k(z) and 	M+k(z) are obviously

differentiable and

∇	k(z) = −∇z fk(v) + ξkek + vke2M+k,

∇	M+k(z) = −∇z fM+k(v) + ξkeM+k + vM+ke2M+k,

where el indicates the l-th column of the 3M × 3M
identity matrix, and

∇z fl(v) := (∇ fl(v)T , 0T
M

)T

where 0M is the zero vector in RM . If k ∈ {1, . . . , M}
is such that |(vk, vM+k)| �= 1 or ξk �= 0, then 	2M+k(z)
is also differentiable and

∇	2M+k(z) = −2(ρ2M+k − 1)(vkek + vM+keM+k)

+ (γ2M+k − 1)e2M+k

with

ρ2M+k = 1 − v2
k − v2

M+k√(
1 − v2

k − v2
M+k

)2 + ξ 2
k

and

γ2M+k = ξk√(
1 − v2

k − v2
M+k

)2 + ξ 2
k

.

If k ∈ {1, . . . , M} is such that |(vk, vM+k)| = 1 and
ξk = 0, by using the theorem on the generalized gradi-
ent of a composite function, we deduce

∂	2M+k(z)T = {−2(ρ2M+k − 1)(vkek + vM+keM+k)

+ (γ2M+k − 1)e2M+k

: |(ρ2M+k, γ2M+k)| ≤ 1}.

Now we compute ∂ Hl(v)T . If k ∈ {1, . . . , M}
is such that |( fk(v), fM+k(v))| �= 0, then Hk(v) and
HM+k(v) are obviously differentiable and

∇ Hk(v)=−∇ fk(v)+(ρk∇ fk(v)+γk∇ fM+k(v))vk

+ |( fk(v), fM+k(v))|êk,

∇ HM+k(v) = −∇ fM+k(v) + (ρM+k∇ fk(v)

+ γM+k∇ fM+k(v))vM+k

+ |( fk(v), fM+k(v))|êM+k

with

ρk = ρM+k = fk(v)

|( fk(v), fM+k(v))| and

γk = γM+k = fM+k(v)

|( fk(v), fM+k(v))| ,
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where êl indicates the l-th column of the 2M × 2M
identity matrix. If k ∈ {1, . . . , M} is such that
|( fk(v), fM+k(v))| = 0, we deduce

∂ Hk(v)T = {−∇ fk(v) + (ρk∇ fk(v) + γk∇ fM+k(v))vk

+ |( fk(v), fM+k(v))|êk : |(ρk, γk)| ≤ 1},
∂ HM+k(v)T = {−∇ fM+k(v) + (ρM+k∇ fk(v)

+ γM+k∇ fM+k(v))vM+k

+ |( fk(v), fM+k(v))|êM+k :

|(ρM+k, γM+k)| ≤ 1}.

If k ∈ {1, . . . , M} is such that |(vk, vM+k)| �= 1 or
|( fk(v), fM+k(v))| �= 0, then H2M+k(v) is also differ-
entiable and

∇ H2M+k(v) = −2(ρ2M+k − 1)(vk êk + vM+k êM+k)

+ 2(γ2M+k − 1)( fk(v)∇ fk(v)

+ fM+k(v)∇ fM+k(v))

with

ρ2M+k = 1 − v2
k − v2

M+k√(
1 − v2

k − v2
M+k

)2 + |( fk(v), fM+k(v))|4

and

γ2M+k = |( fk(v), fM+k(v))|2√(
1 − v2

k − v2
M+k

)2 + |( fk(v), fM+k(v))|4
.

If k ∈ {1, . . . , M} is such that |(vk, vM+k)| = 1 and
|( fk(v), fM+k(v))| = 0, we have

∂ H2M+k(v)T = {−2(ρ2M+k − 1)(vk êk + vM+k êM+k)

+ 2(γ2M+k − 1)( fk(v)∇ fk(v)

+ fM+k(v)∇ fM+k(v))

: |(ρ2M+k, γ2M+k)| ≤ 1}.

Based on the above analysis, the semismooth Newton
method developed in [8] can be applied to the system
of semismooth equations 	(z) = 0: Given an iterate
zk , one can compute a direction dk by solving the gen-
eralized Newton equation

V T
k d + 	(zk) = 0, (10)

where Vk ∈ ∂B	(zk)T ; then let zk+1 = zk + dk . In
order to globalize this method, a line search technique

is used to achieve a sufficient decrease of the natural
merit function

(z) := 1

2
‖	(z)‖2.

Notice that the generalized Newton Eq. (10) is required
to be solvable. To overcome this drawback, the mod-
ified Gauss-Newton method used in solving systems
of smooth equations can be generalized to 	(z) = 0:
Given an iterate zk , one can compute a direction dk by
solving the modified Gauss-Newton equation

Vk	(zk) + (
Vk V T

k + νk I
)
d = 0, (11)

where νk > 0 is a fixed constant.
The next proposition plays a crucial role in conver-

gence analysis of algorithms presented subsequently.

Proposition 2. The following statements hold. (i) 

is continuously differentiable on R3M and ∇(z) =
∂	(z)T 	(z). (ii) Let θ : R2M → R be defined by
θ (v) = 1

2
‖H (v)‖2. Then θ is continuously differen-

tiable on R2M and ∇θ (v) = ∂ H (v)T H (v).

Proof: (i) By using the calculus of generalized gra-
dients, we have

∂(z) = ∂	(z)T 	(z) =
3M∑
l=1

∂	l(z)T 	l(z).

It follows from the above analysis that: if l is such that
	l is not differentiable at z ∈ R3M , then it holds that
	l(z) = 0 and hence ∂	l(z)T 	l(z) = 0. Therefore,
∂(z) is single valued everywhere. The assertion then
follows from the corollary to Theorem 2.2.4 in [4].

Figure 1. The original image.
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(ii) Similarly, we have

∂θ (v) = ∂ H (v)T H (v) =
3M∑
l=1

∂ Hl(v)T Hl(v).

If l is such that Hl is not differentiable at v ∈ R2M , then
Hl(v) = 0 and hence we obtain ∂ Hl(v)T Hl(v) = 0.
Therefore, ∂θ (v) is single valued everywhere, which
implies that the assertion holds.

Now we explain why we use |( fk(v), fM+k(v))|2 in
the definition of H2M+k in (9). Assume that we use
|( fk(v), fM+k(v))| as usual, i.e., we define

Ĥ2M+k(v) : = φ
(
1 − v2

k − v2
M+k, |( fk(v), fM+k(v))|)

∀ k = 1, . . . , M.

If k ∈ {1, . . . , M} is such that |( fk(v), fM+k(v))| =
0, then Ĥ2M+k must be not differentiable at v ∈
R2M . However, when |( fk(v), fM+k(v))| = 0 but

Figure 2. (a) The noisy image; (b) the denoised image by the Chambolle algorithm, (c) Algorithm 1 and (d) Algorithm 2 for a uniform noise

with σ = 70 and ε = 0.001. Here the chosen regularization parameter λ is 18.

|(vk, vM+k)| > 1, Ĥ2M+k(v) = 2|(vk, vM+k)|2 − 2 > 0
such that ∂ Ĥ2M+k(v)T Ĥ2M+k(v) is not single valued,
which implies that one cannot guarantee that the least
squares of the function defined above is continuously
differentiable everywhere.

In the following we summarize the damped modified
Gauss-Newton method for solving 	(z) = 0.

Algorithm 1. (Damped Modified Gauss-Newton
Method I)

Step 0. Choose σ, ρ ∈ (0, 1), ν0 > 0, and a starting
point z0 ∈ R3M . Set k := 0.

Step 1. Choose Vk ∈ ∂B	(zk)T and solve the modified
Gauss-Newton Eq. (11). Let dk be the solution of
(11). If dk = 0, the algorithm terminates.

Step 2. Let λk = ρik where ik is the smallest nonnega-
tive integer i such that

(zk + ρi dk) − (zk) ≤ σρi∇(zk)T dk .
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Figure 3. (a) The noisy image; (b) the denoised image by the Chambolle algorithm, (c) Algorithm 1 and (d) Algorithm 2 for a Gaussian white

noise with σ = 12 and ε = 0.001. Here the chosen regularization parameter λ is 8.

Step 3. Choose νk+1 > 0. Let zk+1 := zk + λkdk and
k := k + 1. Go to Step 1.

It is obvious that: if dk = 0, then zk must be a station-
ary point of . Therefore, we assume that Algorithm 1
does not terminate in finitely many steps. Based on
Propositions 1 and 2, we have the following conver-
gence results whose proof can be referred to [6].

Theorem 1. Assume that z∗ is an accumulation point
of {zk} generated by Algorithm 1. Then the following
assertions hold.

(i) z∗ is a stationary point of  if both {νk} and {dk}
are bounded. Moreover, z∗ is a solution of 	(z) =
0 if there exists a nonsingular element in ∂	(z∗).

(ii) z∗ is a stationary point of  if ν̄ > νk > ν for
some ν̄ > ν > 0.

(iii) Let νk = min{(zk), ‖∇(zk)‖}. Then z∗ is a
stationary point of ; furthermore, z∗ is a so-
lution of 	(z) = 0 and {zk} converges to z∗ Q-
quadratically if σ ∈ (0, 1

2
) and any element in

∂B	(z∗) is nonsingular.

As was shown in the previous section, solving (7)
is also equivalent to solving the nonsmooth overdeter-
mined system H (v) = 0. Similar to that in solving
	(z) = 0, we can also state a damped modified
Gauss-Newton method for solving H (v) = 0 as
follows.

Algorithm 2. (Damped Modified Gauss-Newton
Method II)

Step 0. Choose σ, ρ ∈ (0, 1), ν0 > 0, and a starting
point v0 ∈ R2M . Set k := 0.
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Figure 4. The denoised images when (a) λ = 10, (b) λ = 18, (c) λ = 25 and (d) λ = 30 for the case of uniform noise in Fig. 2.

Step 1. Choose Uk ∈ ∂B H (vk)T and solve the modified
Gauss-Newton equation

Uk H (vk) + (
UkU T

k + νk Î
)
s = 0. (12)

Let sk be the solution of (12). If sk = 0, the algorithm
terminates.

Step 2. Let λk = ρik where ik is the smallest nonnega-
tive integer i such that

θ (vk + ρi sk) − θ (vk) ≤ σρi∇θ (vk)T sk .

Step 3. Choose νk+1 > 0. Let vk+1 := vk + λksk and
k := k + 1. Go to Step 1.

The main difference between Algorithms 1 and 2
lies in that: at each iteration, Algorithm 2 only requires
to solve a system of linear equations of dimension 2M
instead of dimension 3M in Algorithm 1 so that the

computational amount in Algorithm 2 is smaller than
that in Algorithm 1. Similarly, we have also the follow-
ing convergence results.

Theorem 2. Assume that v∗ is an accumulation point
of {vk} generated by Algorithm 2. Then the following
assertions hold.

(i) v∗ is a stationary point of θ if both {νk} and {sk}
are bounded.

(ii) v∗ is a stationary point of θ if ν̄ > νk > ν for
some ν̄ > ν > 0.

(iii) Let νk = min{θ (vk), ‖∇θ (vk)‖}. Then v∗ is a sta-
tionary point of θ ; furthermore, {vk} converges to
v∗ Q-quadratically if v∗ is a solution of H (v) = 0,
σ ∈ (0, 1

2
) and every element in ∂B H (v∗) has full

column rank.

Similar to the proof of Theorem 3.1 in [2], we deduce
the following results.
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Figure 5. The convergence curves of different algorithms for the case of uniform noise in Fig. 2.

Theorem 3. The following statements hold.

(i) Let z∗ be an accumulation point of {zk} and
{pk} ⊂ Y be the sequence corresponding to the
v-component of {zk}. Assume 	(z∗) = 0. Then
λ div pk converges to πλK(g) as k → ∞.

(ii) Let v∗ be an accumulation point of {vk} and {pk} ⊂
Y be the sequence corresponding to {vk}. Assume
H (v∗) = 0. Then λ div pk converges to πλK(g) as
k → ∞.

3. Numerical Results

In this section, we illustrate the effectiveness of the pro-
posed algorithms for total variation minimization. In
the computer simulation, a 128×128 image was taken
to be the original image (see Fig. 1). A Gaussian white
noise with MATLAB command “σ∗randn(128,128)”
or a uniform noise with MATLAB command
“σ∗rand(128,128)” is added to the original image.

Figures 2 and 3 show the noisy images and their
denoised images using the Chambolle algorithm, our
Algorithms 1 and 2 respectively. The criterion for stop-
ping the iteration of all three algorithms consists in
checking that the maximum variation between p(n)

i, j

and p(n+1)
i, j is less than ε. According to the figures, the

denoised images look alike. We also see from the fig-
ures that the total variation minimization is quite effec-
tive in image denoising. For the selection of regular-
ization parameter λ, it is chosen (by trial and error) to
minimize the relative error between the denoised im-
age and the original image. We show in Fig. 4 for the
case of uniform noise that the chosen regularization pa-
rameter also gives a denoised image with good visual
quality.

Figures 5 and 6 show the convergence of the Cham-
bolle algorithm, our Algorithms 1 and 2 corresponding
to the denoised images in Figs. 2 and 3 respectively. All
the algorithms use the zero vector as an initial guess.
According to Figs. 5 and 6, it is clear that the proposed
algorithm converges much faster. For instance, within
first 500 iterations, the Chambolle algorithm can re-
duce the value of the merit function from about 108 to
about 100, but Algorithms 1 and 2 can reduce the value
from about 108 to about 10−4. We further check that
the Chambolle algorithm needs about 18000 iterations
in order to reduce the value to 10−4. In Fig. 7, we also
test the convergence performance of Algorithm 2 for
different parameters λ as we showed in Fig. 4. When λ

is large, the total variation term is dominant. It implies
the denosing problem is more ill-conditioned and there-
fore the number of iterations required for convergence
would be more. We remark that Algorithm 1 has the
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Figure 6. The convergence curves of different algorithms for the case of Gaussian noise in Fig. 3.
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Figure 7. The convergence curves of different λ in Algorithm 2 for the case of uniform noise in Fig. 2.

similar convergence performance for different values
of λ.

Next we test the convergence performance of differ-
ent algorithms when a good initial guess is used. Here

we set the initial guess to be the sum of the solution
of Chambolle algorithm in Fig. 2 and a noise where
it is given by 0.05 × sin(rand(128,128)). We see from
Fig. 8 that the convergence of our Algorithms 1 and 2
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Figure 8. The convergence curves of different algorithms for the case of uniform noise in Fig. 2 when a better initial guess is used.

(Newton’s methods) is much faster, while the conver-
gence performance of Chambolle algorithm is not im-
proved significantly.

Finally, we consider the computational cost of our
method. The sizes of the linear systems required to be
solved in (10) and (11) are 32768-by-32768 and 49152-
by-49152 respectively. However, both coefficient ma-
trices are sparse matrices. In our experiments, we check
that the percentage of the number of nonzero entries is
about 0.13%. By using sparse solvers in MATLAB under
Intel Pentium IV 3.2GHz, the computational time for
solving (10) (or (11)) is about 2.9 (or 3.2) seconds. We
also remark that the computational time of the Cham-
bolle algorithm per iteration is about 0.05 seconds. The
cost per iteration of the Chambolle algorithm is less ex-
pensive than that of our method. In order to reduce the
computational time of each iteration of our method, we
consider and study preconditioning techniques [7] for
the linear systems in (10) and (11). With the use of
effective preconditioning techniques, the Newton
method will be more competitive with the Chambolle
algorithm.

Finally, we summarize this short note that semis-
mooth Newton’s methods for total variation minimiza-
tion are studied and their convergence results are also
presented. Numerical results show that the proposed
methods are quite competitive.
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