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Abstract Region merging methods consist of improving an
initial segmentation by merging some pairs of neighboring
regions. In this paper, we consider a segmentation as a set
of connected regions, separated by a frontier. If the frontier
set cannot be reduced without merging some regions then
we call it a cleft, or binary watershed. In a general graph
framework, merging two regions is not straightforward. We
define four classes of graphs for which we prove, thanks to
the notion of cleft, that some of the difficulties for defining
merging procedures are avoided. Our main result is that one
of these classes is the class of graphs in which any cleft is
thin. None of the usual adjacency relations on Z

2 and Z
3

allows a satisfying definition of merging. We introduce the
perfect fusion grid on Z

n, a regular graph in which merg-
ing two neighboring regions can always be performed by
removing from the frontier set all the points adjacent to both
regions.
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Introduction

In the important and difficult task of segmenting an image,
connectivity often plays an essential role: in many cases,
a segmentation can be viewed as a set of connected regions,
separated by a background which constitutes the frontiers
between regions. A popular approach to image segmenta-
tion, called region merging [16, 17], consists of progres-
sively merging pairs of regions until a certain criterion is
satisfied. The criterion which is used to identify the next pair
of regions which will merge, as well as the stopping criterion
are specific to each particular method.

Given a grayscale image, how is it possible to obtain
an initial set of regions for a region merging process? The
watershed transform [6, 14] is a powerful tool for solving
this problem. Let us consider a 2D grayscale image as a
topographical relief, where the dark pixels correspond to
basins and valleys, whereas bright pixels correspond to hills
and crests. Suppose that we are interested in segmenting
“dark” regions. Intuitively, the watersheds of the image are
constituted by the crests which separate the basins corre-
sponding to regional minima (see Fig. 1a,b). Due to noise
and texture, real-world images often have a huge number
of regional minima, hence the “mosaic” aspect of Fig. 1b.
In [4, 7, 8, 15], the authors developed a framework based
on graph theory, in which some important properties of
grayscale watersheds are proved, and efficient algorithms to
compute them are proposed. In the case of a graph (e.g., an
adjacency graph defined on a subset of Z

2), a watershed may
be thought of as a “separating set” of vertices which cannot
be reduced without merging some connected components of
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Fig. 1 a Original image
(cross-section of a brain, after
applying a gradient operator).
b Watershed of (a) with the
4-adjacency (in black). c Inner
points for the previous image (in
black). d A zoom on a part
of (b). The points z and w are
inner points. e Watershed of (a)
with the 8-adjacency (in black).
There are no inner points

its complementary set. In this context, we will use the term
of cleft1 for talking about such a separating set.

A first question arises when dealing with clefts on a
graph. Given a subset E of Z

2 and the graph (E,�1)

which corresponds to the usual 4-adjacency relation, we
observe that a cleft may contain some “inner points”, i.e.,
points which are not adjacent to any point outside the cleft
(see Fig. 1c,d). We can say that a cleft on �1 is not neces-
sarily thin. On the other hand, such inner points do not seem
to appear in any cleft on �2, which corresponds to the 8-
adjacency. Are the clefts on �2 always thin? We will prove
that it is indeed true. More interestingly, we provide in this
paper a framework to study the property of thinness of clefts
in any kind of graph, and we identify the class of graphs in
which any cleft is necessarily thin. This result is one of the
main theorems of the article (Theorem 32).

Let us now turn back to the region merging problem.
What happens if we want to merge a couple of neighbor-
ing regions A and B , and if each pixel adjacent to these
two regions is also adjacent to a third one, which is not
wanted in the merging? Figure 1d illustrates such a situation,
where x is adjacent to regions A, B , C and y to A, B , D.
This problem has been identified in particular by T. Pavlidis
(see [16], Sect. 5.6: “When three regions meet”), and has
been dealt with in some practical ways, but until now a sys-
tematic study of properties related to merging in graphs has

1Notice that, in previous publications [4, 9, 11], we used the term of
(binary) watershed as a synonym of cleft.

not been done. A major contribution of this article is the de-
finition and the study of four classes of graphs, with respect
to the possibility of “getting stuck” in a merging process
(Sects. 3, 4). In particular, we say that a graph is a fusion
graph if any region A in this graph can always be merged
with another region B , while preserving all other regions.
The most striking outcome of this study is that the class
of fusion graphs is precisely the class of graphs in which
any cleft is thin (Theorem 32). We also provide some local
characterizations for two of these four classes of graphs, and
prove that the two other ones cannot be locally characterized
(Sect. 5).

Using this framework, we analyze the status of the graphs
which are the most widely used for image analysis, namely
the graphs corresponding to the 4- and the 8-adjacency in
Z

2 and to the 6- and the 26-adjacency in Z
3 (Sect. 6). In

one of the classes of graphs introduced in Sect. 4, that we
call the class of perfect fusion graphs, any pair of neighbor-
ing regions A,B can always be merged, while preserving all
other regions, by removing all the pixels which are adjacent
to both A and B . We show that none of these classical graphs
is a perfect fusion graph. In Sect. 7, we introduce a graph on
Z

n (for any n) that we call the perfect fusion grid, which is
indeed a perfect fusion graph, and which is “between” the
direct adjacency graph (which generalizes the 4-adjacency
to Z

n) and the indirect adjacency graph (which generalizes
the 8-adjacency).

A part of these results has been presented, without the
proofs, in a conference article [9].
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1 Basic Notions

Let E be a set, we write X ⊆ E if X is a subset of E, we
write X ⊂ E if X is a proper subset of E, i.e., if X is a subset
of E and X �= E. We denote by X the complementary set
of X in E, i.e., X = E \ X.

Let E be a finite set, we denote by |E| the number of
elements of E. We denote by 2E the set composed of all the
subsets of E.

We define a graph as a pair (E,�) where E is a finite set
and � is a binary relation on E (i.e., � ⊆ E × E), which is
reflexive (for all x in E, (x, x) ∈ �) and symmetric (for all
x, y in E, (y, x) ∈ � whenever (x, y) ∈ �). Each element
of E is called a vertex or a point. We will also denote by
� the map from E to 2E such that, for all x ∈ E, �(x) =
{y ∈ E | (x, y) ∈ �}. If y ∈ �(x), we say that y is adjacent
to x. We define also the relation �∗ = � \ {(x, x) | x ∈ E},
and the map �∗ such that for all x ∈ E, �∗(x) = �(x) \ {x}.
Let X ⊆ E, we define �(X) = ⋃

x∈X �(x), and �∗(X) =
�(X) \ X. If y ∈ �(X), we say that y is adjacent to X. If
X,Y ⊆ E and �(X)∩Y �= ∅, we say that Y is adjacent to X

(or that X is adjacent to Y , since � is symmetric). Let G =
(E,�) be a graph and let X ⊆ E, we define the subgraph
of G induced by X as the graph GX = (X,� ∩ [X × X]).
In this case, we also say that GX is a subgraph of G. Let
G = (E,�) and G′ = (E′,�′) be two graphs, we say that G

and G′ are isomorphic if there exists a bijection f from E

to E′ such that, for all x, y ∈ E, y belongs to �(x) if and
only if f (y) belongs to �′(f (x)).

Let (E,�) be a graph, let X ⊆ E, a path in X is a se-
quence π = 〈x0, . . . , xl〉 such that xi ∈ X, i ∈ [0, l], and
xi ∈ �(xi−1), i ∈ [1, . . . , l]. We also say that π is a path
from x0 to xl in X. Let x, y ∈ X. We say that x and y are
linked for X if there exists a path from x to y in X. We say
that X is connected if any x and y in X are linked for X.

Let Y ⊆ X. We say that Y is a connected component of X,
or simply a component of X, if Y is non-empty, connected
and if Y is maximal for this property, i.e., if Z = Y whenever
Y ⊆ Z ⊆ X and Z connected.

We denote by C(X) the set of all the connected compo-
nents of X. Let S ⊆ E, we denote by C(X|S) the subset
of C(X) composed of the components of X which are adja-
cent to S.

Notice that the empty set is connected, and that if X is
non-empty, then the empty set is not a connected component
of X. Notice also that, if Y is a connected component of a
set X, then Y is not adjacent to X \ Y .

Let us consider a subset X of E. We can easily see that, if
X is connected, then any two non-empty subsets A,B of X

such that A ∪ B = X must be adjacent to each other. On the
other hand, if X is not connected, then we have two points x

and y in X which are not linked for X. Considering the set A

of all the points z in X such that x and z are linked for X and

Fig. 2 A graph (a) and its line graph (b)

considering the set B = X \ A, we see that X can be parti-
tioned into two non-empty subsets which are not adjacent to
each other. These observations lead to the following prop-
erty which characterizes connected sets (without the need of
considering paths).

Property 1 [18] Let (E,�) be a graph, let X ⊆ E. The set
X is connected if and only if, for any two distinct non-empty
subsets A,B of X such that A ∪ B = X, the subset A is
adjacent to B .

From Property 1 we can immediately deduce the follow-
ing corollary.

Corollary 2 Let (E,�) be a graph, let X be a non-
empty subset of E. If E is connected and if X �= E, then
�∗(X) �= ∅.

In this paper, we study in particular some thinness prop-
erties of clefts in graphs. The notions of thinness and interior
are closely related.

Definition 3 Let (E,�) be a graph. Let X ⊆ E, the interior
of X is the set int(X) = {x ∈ X | �(x) ⊆ X}. We say that the
set X is thin if int(X) = ∅.

Property 4 Let (E,�) be a graph, let X ⊆ E such that
int(X) �= ∅, let A be a non-empty subset of int(X). We have:
C(X \ A) = C(X) ∪ C(A). Furthermore, if A is connected,
then A is a connected component of X \ A; more precisely
we have C(X \ A) = C(X) ∪ {A}.

The proof of Property 4 is elementary and thus omit-
ted. To conclude this section, we recall the definition of line
graphs. This class of graphs allows to make a strong link
between the framework developed in this paper and the ap-
proaches of watershed and region merging based on edges
rather than vertices, i.e., when regions are separated by a set
of edges.

Let (E,�) be a graph. The line graph of (E,�) is the
graph (E′,�′) such that E′ = �∗ and (u, v) belongs to �′
whenever u ∈ �∗, v ∈ �∗, and u,v share a vertex of E.

We say that a graph (E′,�′) is a line graph if there exists
a graph (E,�) such that (E′,�′) is isomorphic to the line
graph of (E,�).
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In Fig. 2, we show a graph and its line graph. All graphs
are not line graphs, in other words, there exist some graphs
which are not the line graphs of any graph. The following
theorem allows to characterize line graphs.

Theorem 5 [2] A graph G is a line graph if and only if none
of the graphs of Fig. 3 is a subgraph of G.

As an illustration, we can check that the line graph de-
picted in Fig. 2b does not contain any graph of Fig. 3 as
a subgraph. For example, the subgraph induced by the set
{d, e, f, g} of the graph shown in Fig. 2b is not the same as
the graph of Fig. 3a since it contains one more edge.

2 Clefts

Informally, in a graph, a cleft may be thought of as a “sep-
arating set” of vertices which cannot be reduced without
merging some components of its complementary set (see for
example, the set of black vertices in Fig. 4d). We first give
formal definitions of these concepts (see [4, 7]) and related
ones, then we derive some properties which will be used in
the sequel.

Fig. 3 Graphs for a characterization of line graphs (Theorem 5)

Important remark From now, when speaking about a graph
(E,�), we will assume for simplicity that E is non-empty
and connected.

Notice that, nevertheless, the subsequent definitions and
properties may be easily extended to non-connected graphs.

Definition 6 [4] Let (E,�) be a graph. Let X ⊆ E, and let
p ∈ X.

We say that p is a border point (for X) if p is adjacent
to X.

We say that p is an inner point (for X) if p is not a border
point for X, i.e., if p ∈ int(X).

We say that p is W-simple (for X) if p is adjacent to
exactly one connected component of X.

We say that p is separating (for X) if p is adjacent to at
least two connected components of X.

We say that p is a multiple point (for X) if p is adjacent
to at least three connected components of X.

In this definition and the following ones, the prefix “W-”
stands for watershed. In Fig. 4a, x is both a border point and
a W-simple point for the set X constituted by the black ver-
tices, and y is an inner point. In Fig. 5b, z is a border point
and a separating point, and w is a border point, a separating
point and a multiple point.

Definition 7 Let (E,�) be a graph. Let X ⊆ E, and let
S ⊆ X. We say that S is W-simple (for X) if there exists
A ∈ C(X) such that A ∪ S is connected and C(X|S) = {A}.

Obviously, a point p is W-simple if and only if the set
{p} is W-simple. Notice that, in the above definition, S is
not necessarily connected. The following property may be
proved easily.

Property 8 Let (E,�) be a graph. Let X ⊆ E, and let
S ⊆ X. The set S is W-simple (for X) if and only if there ex-
ists A ∈ C(X) such that C(X ∪ S) = [C(X) \ {A}] ∪ {A∪ S}.

Fig. 4 Illustration of W-thinning and cleft. a A graph (E,�) and a
subset X (black points) of E. The point x is a border point which is W-
simple, and y is an inner point. b The set Y = X\{x} (black points) is a
W-thinning of X. c The set Z (black points) is a W-thinning of both X

and Y . The sets Y and Z are not clefts: some W-simple points exist
in both sets. d A cleft of X (black points), which is also a cleft of Y

and of Z. The set of gray points will be used to illustrate the notion of
annexation (Definition 15)
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Fig. 5 Illustration of thin and non-thin clefts. a A graph (E,�) and a
subset X (black points) of E. b A subset Y (black points) of E which
is a thin cleft; it is a cleft of the set X shown in (a). The border points z

and w are both separating for Y , only w is a multiple point. c, d, e The
subset X represented by black and gray points is a cleft which is not
thin: int(X) is depicted by the gray points

We are now ready to define the notion of cleft which is
central to this section.

Definition 9 [4] Let G = (E,�) be a graph. Let X ⊆ E, let
Y ⊆ X. We say that Y is a W-thinning of X, written X ↘W Y ,
if

(i) Y = X or if
(ii) There exists a set Z ⊆ X which is a W-thinning of X

and a point p ∈ Z which is W-simple for Z, such that
Y = Z \ {p}.

A set Y ⊆ X is a cleft (in G) if Y ↘W Z implies Z = Y .
A subset Y of X is a cleft of X if Y is a W-thinning of X

and if Y is a cleft.
A cleft Y is non-trivial if Y �= ∅ and Y �= E.

It can be seen that we can obtain a W-thinning of X by
iteratively removing W-simple points from X, and that Y is
a cleft of X if Y is a W-thinning of X which contains no W-
simple point. Figure 4 shows a set X and some W-thinnings
of X, the last one being a cleft of X. Notice that different
clefts may exist for a same set X. It can be also seen that a
cleft X is non-trivial if and only if |C(X)| ≥ 2.

The following definition and theorem are borrowed
from [4] and will play an important role in some subsequent
proofs.

Definition 10 [4] Let (E,�) be a graph. Let X, Y be subsets
of E. We say that Y is an extension of X if X ⊆ Y and if each
connected component of Y contains exactly one connected
component of X.

Theorem 11 [4] Let X and Y be subsets of E. The subset
Y is a W-thinning of X if and only if Y is an extension of X.

We can see that if a subset S of X is W-simple for X,
then X \ S is an extension of X. From this observation and
Theorem 11, we immediately deduce the following property.

Corollary 12 Let X ⊆ E and S ⊆ X. If the subset S is W-
simple for X, then X \ S is a W-thinning of X.

A cleft is a set which contains no W-simple point, but
some of the examples given below show that such a set is
not always thin (in the sense of Definition 3). Figures 4d
and 5b are two examples of clefts which are thin: in both
cases, the set of black points has no W-simple point and no
inner point. The sets of points which are either black or gray,
in Fig. 5c,d,e are three examples of non-thin clefts. Let us
study what happens if we remove from a non-thin cleft X, a
connected component of int(X).

Property 13 Let (E,�) be a graph, let X ⊆ E be a cleft.
Let A be a connected component of int(X). Then, X \A is a
cleft.

Proof The cases where |C(X)| < 2 or int(X) = ∅ are trivial:
if |C(X)| = 0 then E = X = int(X) = A and X \ A = ∅;
if |C(X)| = 1 then it may be seen that X must be empty
since E is connected, thus X \A = ∅; and if int(X) = ∅ then
A = ∅, thus X \ A = X. Suppose from now that |C(X)| ≥ 2
and int(X) �= ∅. From Property 4, A ∈ C(X \ A). Let x be
a point of X \ A, we have to prove that x cannot be W-
simple for X \ A. If x /∈ �∗(A), we can easily see that the
point x cannot be W-simple for X \ A, otherwise it would
also be W-simple for X. Suppose now that x ∈ �∗(A). The
point x cannot belong to int(X) otherwise A would not be
a connected component of int(X). Thus x must be adjacent
to a component B of C(X), which is also a component of
C(X \ A) (Property 4): hence, x is adjacent to both A and B ,
with A �= B , and is not W-simple for X \ A. �

The following corollary follows straightforwardly.

Corollary 14 Let (E,�) be a graph, let X ⊆ E. The set
X \ int(X) is a cleft.

Let (E,�) be a graph. Let X ⊂ E, let A ∈ C(X). Let us
consider the family WA of all the sets which are W-simple
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for X and adjacent to A. It may be easily seen that the fam-
ily WA is closed by union, i.e., that S ∪ T belongs to WA

whenever S ∈ WA and T ∈ WA. From this observation, we
deduce that there exists a unique element of WA which is
maximal for the inclusion, and this element is the union of
all the elements of the family.

Definition 15 Let (E,�) be a graph. Let X ⊂ E, let A ∈
C(X). We define the annexation of A in X, denoted by
ann(A,X), as the union of all the sets which are W-simple
for X and adjacent to A. When no confusion may occur, we
write ann(A) = ann(A,X).

In Fig. 4c, let A be the (white) component of Z which
“surrounds” the (black) set Z. The set ann(A,Z) is depicted
in light gray in Fig. 4d.

We have seen that, for any S which is W-simple for X

and adjacent to A, the set X ∪ S is an extension of X. In
particular, the set X ∪ ann(A) is an extension of X.

The following properties illustrate the notion of annexa-
tion, which will serve us to prove some of the main results
of this paper.

Property 16 Let (E,�) be a graph, let X ⊂ E such that
|C(X)| ≥ 2. For any A ∈ C(X), there exists B ∈ [C(X)\{A}]
such that �∗(A ∪ ann(A)) ∩ �∗(B) �= ∅.

The proof can be found in the Appendix. We leave the
proof of the following property to the interested reader.

Property 17 Let (E,�) be a graph, let X ⊂ E, let A ∈
C(X). The set A∪ ann(A,X) is equal to the connected com-
ponent of int(X ∪ A) which contains A.

3 Merging

Consider the graph (E,�) depicted in Fig. 6a, where a sub-
set X of E (black vertices) separates its complementary
set X into four connected components. If we replace the
set X by, for instance, the set X \ S where S = {x, y, z}, we
obtain a set which separates its complementary set into three
components, see Fig. 6b: we can also say that we “merged
two components of X through S”. This operation may be
seen as an “elementary merging” in the sense that only two

components of X were merged. On the opposite, replacing
the set X by the set X\S′ where S′ = {w}, see Fig. 6c, would
merge three components of X. We also see that the compo-
nent of X which is below w (in light gray) cannot be merged
by an “elementary merging” since any attempt to merge it
must involve the point w, and thus also the three compo-
nents of X adjacent to this point. In this section, we intro-
duce definitions and basic properties related to such merging
operations in graphs.

Definition 18 Let (E,�) be a graph and X ⊂ E. Let p ∈ X,
let S ⊆ X. We say that p is F-simple (for X) if p is adjacent
to exactly two distinct connected components of X.

We say that S is F-simple (for X) if S is adjacent to
exactly two distinct components A,B ∈ C(X) such that
A ∪ B ∪ S is connected.

In this definition, the prefix “F-” stands for fusion. Ob-
serve that the point p is F-simple if and only if the set {p}
is F-simple. For example, in Fig. 6a, the point z is F-simple
while x, y,w are not. Also, the sets {z}, {x, y}, {x, z}, {y, z},
{x, y, z} are F-simple, but the sets {x}, {y} and {w} are not.

Notice also that the set S is not necessarily connected.
Furthermore, any connected component T of S must be ad-
jacent to either A or B , or both, and cannot be adjacent
to any other element of C(X). Thus we have the following
property.

Property 19 Let (E,�) be a graph, let X ⊂ E, let S ⊆ X

such that S is F-simple for X, and let T ⊆ S. If T ∈ C(S),
then T is either W-simple or F-simple for X.

Definition 20 Let (E,�) be a graph and X ⊂ E. Let A and
B ∈ C(X), with A �= B . We say that A and B can be merged
(for X) if there exists S ⊆ X such that S is F-simple for X

and such that A and B are precisely the two connected com-
ponents of X which are adjacent to S. In this case, we also
say that A and B can be merged through S (for X).

We say that A can be merged (for X) if there exists B ∈
C(X) such that A and B can be merged for X.

For example, in Fig. 6a, the component of X in light gray
cannot be merged, but each of the three white components
can be merged for X.

Fig. 6 Illustration of merging.
a A graph (E,�) and a subset X

of E (black points). b The black
points represent X \ S

with S = {x, y, z}. c The black
points represent X \ S′
with S′ = {w}
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Property 21 Let (E,�) be a graph, let X ⊂ E, let A,B ∈
C(X), A �= B , and let S ⊆ X. The components A and B can
be merged through S if and only if A ∪ B ∪ S is a connected
component of X \ S. More precisely, A and B can be merged
through S if and only if C(X \ S) = [C(X) \ {A,B}] ∪ {A ∪
B ∪ S}.

Property 22 Let (E,�) be a graph, let X ⊂ E, let A,B ∈
C(X) with A �= B . The components A and B can be merged
for X if and only if there exists S ⊆ X such that S is con-
nected and adjacent to only A and B .

The proof of Property 21 can be found in the Appendix,
and the proof of Property 22 is elementary. The following
property will be useful for establishing one of the main re-
sults of this article, namely Theorem 32.

Property 23 Let (E,�) be a graph, let X ⊂ E, and let A ∈
C(X). The three following statements are equivalent:

(i) A can be merged for X;
(ii) [A ∪ ann(A,X)] can be merged for [X \ ann(A,X)];

(iii) There exists an extension Y of X and there exists a ver-
tex x ∈ �∗(A′) which is F-simple, where A′ is the con-
nected component of Y which contains A.

Proof
• [i ⇒ ii] From (i), we know that there exists B ∈ C(X)

and S ⊆ X such that S is F-simple for X and adjacent to
both A and B . Let A′ = A ∪ ann(A,X), and let Y = X \
ann(A,X). From Definition 15 and the observation which
follows this definition, Y is an extension of X and C(Y ) =
[C(X) \ {A}] ∪ {A′}. Let S′ = S ∩ A′, thus S′ ⊆ Y . We have:
A′ ∪S′ ∪B = A∪S ∪B ∪A′. We know that A′ is connected,
that A∪S∪B is connected and that A ⊆ A′, thus A∪S∪B∪
A′ is connected, hence so is A′ ∪ S′ ∪ B . This implies that
S′ is adjacent to both A′ and B . Since the only components
of X adjacent to S are A and B and since S′ ⊆ S, we deduce
that the only components of Y adjacent to S′ are precisely A′
and B , thus S′ is F-simple for Y , hence (ii).

• [ii ⇒ iii] Let A′ = A ∪ ann(A,X), let Y = X \
ann(A,X). We have seen that Y is an extension of X and
that A′ is the element of C(Y ) which contains A. From (ii),
we know that there exists B ∈ C(Y ) and S ⊆ Y such that S

is F-simple for Y and adjacent to both A′ and B . There must
exist some points in S which are adjacent to A′, let x be any
such point. The point x cannot be W-simple for Y , otherwise
the set ann(A,X) ∪ {x} would be W-simple for X and adja-
cent to A, a contradiction with the definition of ann(A,X).
Furthermore, since S is F-simple it cannot contain any mul-
tiple point, thus x is F-simple for Y .

• [iii ⇒ i] Suppose that x is a point of �∗(A′) which
is F-simple. Then, x is adjacent to A′ and to B ′, with B ′ ∈
C(Y ), B ′ �= A′, and A′ ∪ B ′ ∪ {x} is connected. Let B be the

component of C(X) such that B ⊆ B ′. Let us consider S =
[A′ \A]∪[B ′ \B]∪{x}. It can be easily seen that S ⊆ X and
that S is adjacent to both A and B . Since Y is an extension
of X we know that A′ (resp. B ′) cannot be adjacent to any
other connected component of X than A (resp. B). Also, x

cannot be adjacent to any other connected component of X

than A and B , otherwise it could not be F-simple for Y .
Furthermore, we have A ∪ B ∪ S = A′ ∪ B ′ ∪ {x}, thus A ∪
B ∪ S is connected. Thus, since S is adjacent to solely A

and B , S is F-simple for X, and A can be merged for X. �

From Definition 9 and Theorem 11, any extension of a
cleft X is equal to X. Thus, the following corollary is an
immediate consequence of Property 23.

Corollary 24 Let (E,�) be a graph, let X ⊂ E be a cleft
and let A ∈ C(X). The subset A can be merged for X if and
only if there exists a vertex x ∈ �∗(A) which is F-simple
for X.

4 Fusion Graphs

Region merging [16, 17] is a popular approach to image seg-
mentation. Starting with an initial partition of the image pix-
els into connected regions, which can in some cases be sep-
arated by some boundary pixels, the basic idea consists of
progressively merging pairs of regions until a certain crite-
rion is satisfied. The criterion which is used to identify the
next pair of regions which will merge, as well as the stop-
ping criterion are specific to each particular method. Certain
methods do not use graph vertices in order to separate re-
gions, nevertheless even these methods fall in the scope of
this study through the use of line graphs (see Sect. 1).

The preceding section and the present one constitute
a theoretical basis for the study of such methods. The
problems encountered by certain region merging methods
(see [16], Sect. 5.6: “When three regions meet”) can be
avoided by using exclusively the notion of merging intro-
duced in the previous section. In the sequel, we investigate
several classes of graphs with respect to the possibility of
“getting stuck” in a merging process. The most striking re-
sult of this section is a theorem which states the equivalence
between one of these classes and the class of graphs in which
any cleft is thin.

We begin with the definition of four classes of graphs.

Definition 25 We say that a graph (E,�) is a weak fusion
graph if for any X ⊂ E such that |C(X)| ≥ 2, there exist A,
B ∈ C(X) which can be merged.

Definition 26 We say that a graph (E,�) is a fusion graph
if for any X ⊂ E such that |C(X)| ≥ 2, each A ∈ C(X) can
be merged for X.
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Fig. 7 Examples and counter-examples for different classes of graphs.
g A graph which is not a weak fusion graph, w a weak fusion graph
which is not a fusion graph, f a fusion graph which is not a strong fusion
graph, s a strong fusion graph which is not a perfect fusion graph, and
p a perfect fusion graph which is not a line graph. In the graphs (g, w,
f, s), the black vertices constitute a set X which serves to prove that the
graph does not belong to the pre-cited class

Let X ⊂ E, and let A, B ∈ C(X). We set �∗(A,B) =
�∗(A) ∩ �∗(B). We say that A and B are neighbors if A �=
B and �∗(A,B) �= ∅.

Definition 27 We say that the graph (E,�) is a strong fu-
sion graph if, for any X ⊂ E, any A and B ∈ C(X) which
are neighbors can be merged.

Definition 28 We say that the graph (E,�) is a perfect fu-
sion graph if, for any X ⊂ E, any A and B ∈ C(X) which
are neighbors can be merged through �∗(A,B).

Basic examples and counter-examples of weak fusion, fu-
sion, strong fusion and perfect fusion graphs are given in
Fig. 7.

These classes are linked by inclusion relations. The fol-
lowing property clarifies these links, and also position our
four classes of graphs with respect to general graphs and
line graphs. We denote by G (resp. GL, GP , GS , GF , and
GW ) the set of all graphs (resp. line graphs, perfect fusion
graphs, strong fusion graphs, fusion graphs, and weak fu-
sion graphs).

Property 29 Any line graph is a perfect fusion graph.
Any perfect fusion graph is a strong fusion graph.
Any strong fusion graph is a fusion graph.
Any fusion graph is a weak fusion graph.
More precisely, we have the following strict inclusion re-

lations: GL ⊂ GP ⊂ GS ⊂ GF ⊂ GW ⊂ G.

Proof We prove in the Appendix (Lemma 59) that any
strong fusion graph is a fusion graph. The other inclusions
may be proved easily; let us prove that these inclusions are
strict. It may be checked from the definitions that the graphs
(g), (w), (f) and (s) in Fig. 7 are indeed counter-examples for
the corresponding class equalities. It may also be checked
that the graph (p) is a perfect fusion graph, while it is not a
line graph, a consequence of Theorem 5. �

The following property is a consequence of Definition 26,
Corollary 24 and Property 23.

Property 30 The graph G = (E,�) is a fusion graph if and
only if, for any non-trivial cleft X in G and for any A ∈
C(X), there exists x ∈ �∗(A) which is F-simple.

Proof Let (E,�) be a fusion graph, let X be a non-trivial
cleft (thus |C(X)| ≥ 2), and let A ∈ C(X). Since (E,�) is
a fusion graph, we know that A can be merged for X, thus
by Corollary 24, there exists x ∈ �∗(A) which is F-simple.
Suppose now that for any non-trivial cleft X ⊂ E and for
any A′ ∈ C(X), there exists x ∈ �∗(A′) which is F-simple.
Let Y ⊂ E such that |C(Y )| ≥ 2, let A ∈ C(Y ). Let X be a
cleft of Y , and let A′ ∈ C(X) such that A ⊆ A′. By hypoth-
esis, there exists x ∈ �∗(A′) which is F-simple for A′. Fur-
thermore, by Theorem 11 we know that X is an extension
of Y , thus by Property 23, A can be merged for Y . �

From Property 30, we deduce Property 31 which will be
used in the proof of Theorem 41.

Property 31 Let G = (E,�) be a graph. If G is not a fusion
graph, then there exist X ⊂ E and x ∈ X such that x is a
multiple point for X.

Proof If G is not a fusion graph, then by Property 30, there
exists Y ⊂ E such that |C(Y )| ≥ 2, there exists a cleft X

of Y , there exists A ∈ C(X) such that any x ∈ �∗(A) is not
F-simple. For any such x, since x ∈ �∗(A), x is not an inner
point; and since X is a cleft, x is not W-simple; thus x must
be a multiple point. Furthermore, since |C(Y )| ≥ 2 and thus
|C(X)| ≥ 2, we have A �= E, and since E is connected, from
Corollary 2 there must exist a point x in �∗(A). �

Notice that the converse of Property 31 is false, as shown
by the case of Fig. 7f which is a fusion graph, in which a
given subset (black dots) has one multiple point.

Now, we present the main theorem of this section, which
establishes that the class of graphs for which any cleft is
thin is precisely the class of fusion graphs. As an immediate
consequence of this theorem and Property 29, we see that all
clefts in fusion graphs, strong fusion graphs, perfect fusion
graphs and line graphs are thin.

Theorem 32 A graph G is a fusion graph if and only if any
non-trivial cleft in G is thin.

Proof Let (E,�) be a fusion graph, let Y ⊂ E be a non-
trivial cleft. Suppose that int(Y ) �= ∅, and let A ∈ C(int(Y )).
Let Y ′ = Y \ A. By Property 13, Y ′ is a cleft. Since (E,�)

is a fusion graph, from Property 30 we deduce that there
exists a vertex x ∈ �∗(A) which is F-simple for Y ′, i.e.,
x is adjacent to exactly two connected components of Y ′.
Since C(Y ′) = C(Y ) ∪ {A} (Property 4), this means that x is
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only adjacent to one connected component of Y , i.e., x is W-
simple for Y , a contradiction with the fact that Y is a cleft.
Thus, Y is thin.

Suppose now that (E,�) is not a fusion graph, by Prop-
erty 30 there exists a non-trivial cleft Y ⊂ E, and there exists
A ∈ C(Y ) such that any x ∈ �∗(A) cannot be F-simple. Fur-
thermore, since Y is a cleft we know that any x in �∗(A)

cannot be W-simple for Y , thus any point x in �∗(A) is a
multiple point. Consider now the set Y ′ = Y ∪ A, and let y

be a point of Y ′. Only three cases are possible: (1) if y ∈ A,
then we can see that y is an inner point for Y ′, thus y is not
W-simple for Y ′; (2) if y ∈ �∗(A), then as seen before, y is
a multiple point for Y , thus y is adjacent to at least two con-
nected components of Y ′ consequently y is not W-simple
for Y ′; (3) if y /∈ �(A), then y is not W-simple for Y ′, other-
wise Y could not be a cleft. Thus, Y ′ is a cleft. Furthermore,
A ⊆ int(Y ′) and A �= ∅, thus Y ′ is not thin. �

Let us look at some examples to illustrate this property.
The graphs of Fig. 5c and Fig. 5d are not fusion graphs,
in fact they are not even weak fusion graphs; we see that
they may indeed contain a non-thin cleft. On the other hand,
Fig. 5e is an example of a weak fusion graph which is not a
fusion graph (see also Fig. 7w) with a cleft which is not thin.

We conclude this section with two nice properties of per-
fect fusion graphs (Properties 33 and 34), which can be use-
ful to design hierarchical segmentation methods based on
watersheds, and on region merging and splitting operations.
Property 33 follows straightforwardly from the definitions
of cleft and perfect fusion graph.

Property 33 Let G = (E,�) be a perfect fusion graph. Let
X ⊂ E be a cleft and A,B ∈ C(X) such that A and B are
neighbors. Then, X \ �∗(A,B) is a cleft.

Consider now the example of Fig. 8a, where a cleft X

(black points) in the graph G separates X into two compo-
nents. Consider now the set Y (gray points) which is a cleft
in the subgraph of G induced by one of these components.
We can see that the union of the clefts, X ∪ Y , is not a cleft,
since the point x is W-simple for X ∪ Y . Property 34 shows
that this problem cannot occur in any perfect fusion graph.

Property 34 Let G = (E,�) be a graph. If G is a perfect
fusion graph, then for any cleft X ⊂ E in G and for any cleft
Y ⊂ A in GA, where A ∈ C(X) and GA is the subgraph of G

induced by A, the set X ∪ Y is a cleft in G.

The proof may be found in the Appendix. It uses Theo-
rem 32 and a local characterization of perfect fusion graphs
which will be established in the next section. Figure 8b il-
lustrates the property with a perfect fusion graph (the set X

is depicted in black and the set Y in gray).

Fig. 8 Illustrations for Property 34. a The graph is not a perfect fusion
graph (see Sect. 6, Property 45), and the union of the clefts is not a
cleft. b The graph is a perfect fusion graph (see Sect. 7, Property 55),
the property holds

5 Local Characterizations

The definitions of weak fusion, fusion, strong fusion and
perfect fusion graphs are based on conditions that must be
verified for all the subsets of the vertex set. This means, if
we want to check whether a graph is, for instance, a perfect
fusion graph, then using the straightforward method based
on the definition will cost an exponential time with respect
to the number of vertices.

On the other hand, we know that certain classes of graphs
have local characterizations. For example, line graphs may
be recognized thanks to Theorem 5, a condition which can
be checked independently in a limited neighborhood of each
vertex. Do such characterizations exist for the four classes
of fusion graphs? We prove in this section that weak fusion
graphs and fusion graphs cannot be characterized locally,
and we give local conditions for characterizing strong fusion
and perfect fusion graphs.

Let (E,�) be a graph, let x ∈ E and k ∈ N, we denote
by �k(x) the kth order neighborhood of x, that is, �k(x) =
�(�k−1(x)), with �0(x) = {x}.

Property 35 There is no local characterization of weak fu-
sion graphs. More precisely, let k be an arbitrary positive
integer. There is no property P on graphs such that an arbi-
trary graph G = (E,�) is a weak fusion graph if and only if,
for all x ∈ E, P[G(x, k)] is true, G(x, k) being the sub-
graph of G induced by �k(x).

Proof It can be seen that the graphs of Fig. 9a are weak
fusion graphs, while those of Fig. 9b are not. In addition,
for any integer k, the same “k-local configurations” may be
found in both families, for a sufficiently large graph. �

Property 36 There is no local characterization of fusion
graphs. More precisely, let k be an arbitrary positive inte-
ger. There is no property P on graphs such that an arbitrary
graph G = (E,�) is a fusion graph if and only if, for all
x ∈ E, P[G(x, k)] is true, G(x, k) being the subgraph of G

induced by �k(x).
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Fig. 9 Graphs for the proof of
Property 35. In each graph
of (b), the black vertices denote
a set X such that the condition
for a weak fusion graph is not
true

Fig. 10 Graphs for the proof of
Property 36. In each graph
of (b), the black vertices denote
a set X such that the condition
for a fusion graph is not true

Proof It can be seen that the graphs of Fig. 10a are fusion
graphs, while those of Fig. 10b are not. In addition, for any
integer k, the same “k-local configurations” may be found
in both families, for a sufficiently large graph. �

We are now going to prove that strong fusion graphs can
be characterized locally. A few preliminary properties will
help us to organize the proof. The following one states that
in a strong fusion graph, if two neighboring components A

and B can be merged, then they can be merged through a set
S which is “close” to A and B , furthermore (next property),
this set S can be reduced to one or two points.

Property 37 Let G = (E,�) be a graph. The graph G is
a strong fusion graph if and only if for any X ⊆ E, for any
A and B ∈ C(X) such that A,B are neighbors, there exists
S ⊆ [�∗(A) ∪ �∗(B)] such that A and B can be merged
through S.

Proof Suppose that G is a strong fusion graph. Let X ⊆ E,
let A and B ∈ C(X) such that A,B are neighbors. Let
X′ = X \ int(X). Thus, each point of X′ is adjacent to (at
least) one component of C(X′). Obviously, A,B are also
components of C(X′), and �∗(A)∩�∗(B) �= ∅. Since (E,�)

is a strong fusion graph, there exists a subset S of X′ such
that A,B can be merged through S, that is, S is F-simple
for X′ and adjacent to A and B . Since int(X′) = ∅ and
S ⊆ X′, we have int(S) = ∅. Thus, it can be easily seen that
S ⊆ �∗(A) ∪ �∗(B). Since X′ ⊆ X and C(X) ⊆ C(X′) (a
consequence of Property 4), it follows straightforwardly that
S is also F-simple for X. This proves the forward implica-
tion, the converse is immediate. �

Property 38 The graph G = (E,�) is a strong fusion graph
if and only if, for any X ⊆ E, for any A and B ∈ C(X)

such that A,B are neighbors, there exists a ∈ �∗(A) and
b ∈ �∗(B) such that A and B can be merged through {a, b}.

Fig. 11 Illustration of
Properties 37 and 38

Proof Suppose that G is a strong fusion graph, let X ⊆ E,
let A and B ∈ C(X) such that A,B are neighbors. By Prop-
erty 37, there exists S ⊆ [�∗(A) ∪ �∗(B)] such that A

and B can be merged through S. Without loss of general-
ity (by Property 22), we may assume that S is connected.
If S contains a point x ∈ �∗(A) ∩ �∗(B), then the forward
implication is proved with a = b = x. Otherwise, S may
be partitioned into two disjoint sets A′ = S ∩ �∗(A) and
B ′ = S ∩ �∗(B). Since S is connected, by Property 1 the
sets A′ and B ′ must be adjacent, thus there exists a ∈ A′ and
b ∈ B ′ which are adjacent, and since S is F-simple it can
be easily seen that {a, b} is also F-simple. This proves the
forward implication, the converse is immediate. �

Notice that in the two previous properties, the merging set
S (or {a, b}) must belong to the union of �∗(A) and �∗(B),
not to the intersection; more informally it means that A and
B cannot necessarily be merged through a subset of their
common boundary. To show that it is not necessary that S be
included in �∗(A)∩�∗(B) for having a strong fusion graph,
it suffices to consider the graph G depicted in Fig. 11. It may
be checked that G is indeed a strong fusion graph. Consider
the set X of black vertices, A = {x} and B = {y} (which are
neighbors) can only be merged through S = {a, b} which is
included in �∗(A) ∪ �∗(B) but not in �∗(A) ∩ �∗(B).

More generally, if two components A,B of X can only be
merged through a two-element set S = {a, b}, it can be seen
that necessarily both a and b are W-simple. This means in
particular that a configuration like Fig. 11 cannot occur if X

is a cleft. From this remark, we can derive a simpler char-
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acterization of strong fusion graphs, in which we consider
only the subsets X of E which are clefts.

Property 39 The graph (E,�) is a strong fusion graph if
and only if, for any X ⊆ E which is a cleft, for any A and
B ∈ C(X) such that A,B are neighbors, there exists x ∈
[�∗(A) ∩ �∗(B)] which is F-simple for X.

We are now ready to prove the local characterization the-
orem for strong fusion graphs.

Let x and y be two points, we say that x and y are 2-
adjacent if y /∈ �(x) and �∗(x) ∩ �∗(y) �= ∅.

Theorem 40 Let G = (E,�) be a graph. The graph G is a
strong fusion graph if and only if, for any two points x, y ∈ E

which are 2-adjacent, there exists a ∈ �∗(x) and b ∈ �∗(y)

such that b ∈ �(a) and �({a, b}) ⊆ [�(x) ∪ �(y)].

Proof Suppose that G is a strong fusion graph. Let x, y ∈ E

which are 2-adjacent, and consider the set X = �∗(x) ∪
�∗(y). We observe that the sets A = {x} and B = {y} are two
elements of C(X). By Property 38, there exists a ∈ �∗(x)

and b ∈ �∗(y), b ∈ �(a), such that A and B can be merged
through {a, b} for X. Thus a and b must be mutually ad-
jacent, and {a, b} cannot be adjacent to a component of X

which is neither {x} nor {y}, hence �({a, b}) ⊆ [�(x) ∪
�(y)]. Thus the forward implication is proved, and the con-
verse is straightforward. �

We give below seven necessary and sufficient conditions
for perfect fusion graphs. Remind that in perfect fusion
graphs, any two components A, B of C(X) which are neigh-
bors can be merged through �∗(A) ∩ �∗(B). Thus, perfect
fusion graphs constitute an ideal framework for region merg-
ing methods. In the sequel, we will use the symbol G� to
denote the graph of Fig. 3a.

Theorem 41 Let (E,�) be a graph.
The eight following statements are equivalent:

(i) (E,�) is a perfect fusion graph;
(ii) For any x ∈ E, any X ⊆ �(x) contains at most two

connected components;
(iii) For any non-trivial cleft Y in E, each point x in Y is

F-simple;
(iv) For any connected subset A of E, the subgraph of

(E,�) induced by A is a fusion graph;
(v) For any subset X of E, there is no multiple point for

X;
(vi) The graph G� is not a subgraph of G;

(vii) Any vertices x, y, z which are mutually non-adjacent
are such that �(x) ∩ �(y) ∩ �(z) = ∅;

(viii) For any x, y ∈ E which are 2-adjacent, for any z ∈
�∗(x) ∩ �∗(y), we have �(z) ⊆ [�(x) ∪ �(y)].

Proof We will show that [not ii] ⇒ [not iii] ⇒ [not iv] ⇒
[not v] ⇒ [not vi] ⇒ [not vii] ⇒ [not viii] ⇒ [not i] ⇒
[not ii], hence the equivalence of the eight statements.

• [not ii ⇒ not iii] Suppose that there exists x ∈ E and
there exists X ⊆ �(x) which contains three distinct con-
nected components A,B,C. Let Y = E \ (A ∪ B ∪ C), and
let Z be a cleft of Y . Necessarily, x ∈ X and thus x ∈ Y . Fur-
thermore, since x is adjacent to three distinct components
of Y , we know that x ∈ Z and that x is also adjacent to three
distinct components of Z, and thus is not F-simple for Z.

• [not iii ⇒ not iv] Suppose that there exist a non-trivial
cleft Y and a point x ∈ Y which is not F-simple for Y .
Since Y is a cleft, we know that x is not either a W-simple
point. If x is an inner point, by Theorem 32 we deduce that
(E,�) cannot be a fusion graph, and thus condition (iv) does
not hold for A = E. Otherwise, x is a multiple point for Y .
Then, consider the set A = [�(x) \ Y ] ∪ {x}. Let (A,�A)

be the subgraph of (E,�) induced by A, and let X = {x}.
The set A is connected, and since x is a multiple point
for Y , A \ X must contain at least three connected compo-
nents for (A,�A), furthermore these components cannot be
merged for X since x is the only point separating them. Thus
(A,�A) is not a fusion graph.

• [not iv ⇒ not v] Suppose that there exists a connected
subset A of E such that the restriction (A,�′) of (E,�) to A

is not a fusion graph. By Property 31, there exists X ⊂ A and
x ∈ X such that x is a multiple point for X in (A,�′). Obvi-
ously, x is also a multiple point for [E \ A] ∪ X in (E,�).

• [not v ⇒ not vi] Suppose that there exists a subset X

of E and a point x ∈ X which is a multiple point, i.e., x is ad-
jacent to three distinct connected components A,B,C of X.
Let w ∈ �(x) ∩ A, y ∈ �(x) ∩ B , and z ∈ �(x) ∩ C. Since
A,B,C are distinct connected components of X, w,y, z

are mutually non-adjacent, thus the subgraph induced by
{x, y, z,w} is G�.

• [not vi ⇒ not vii] Suppose that the subgraph of G in-
duced by some points {x, y, z,w} is G�, the central point
being x. We have x ∈ �(w) ∩ �(y) ∩ �(z), and w,y, z are
mutually non-adjacent.

• [not vii ⇒ not viii] Let w,y, z be three mutually non-
adjacent points of E such that �(w)∩�(y)∩�(z) �= ∅, and
let x ∈ �(w) ∩ �(y) ∩ �(z). We have y and z which are 2-
adjacent, x ∈ �∗(y) ∩ �∗(z), but �(x) contains w which is
not in �(y) ∪ �(z) by hypothesis.

• [not viii ⇒ not i] Let y, z ∈ E be two points which
are 2-adjacent, and let x ∈ �∗(y) ∩ �∗(z) such that there
exists w ∈ �(x), w /∈ �(y)∪�(z). Let X = E\{y, z,w}. Let
A = {y}, B = {z}, and C = {w}. From our hypothesis, we
know that A,B and C belong to C(X). Let S = �∗(A,B) =
�∗(A)∩�∗(B), clearly x ∈ S. Since x is also adjacent to C,
A and B (which are neighbors) cannot be merged through S,
and the graph is not a perfect fusion graph.

• [not i ⇒ not ii] We will prove in fact that ii ⇒ i. Sup-
pose that ii holds, and let X ⊂ E, let A,B ∈ C(X) such that
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�∗(A,B) �= ∅. For any x in �∗(A,B), from the hypothe-
sis (ii) we deduce that x is only adjacent to A and B . Fur-
thermore A ∪ B ∪ �∗(A,B) is obviously connected, thus
�∗(A,B) is F-simple for X, and A and B can be merged
through �∗(A,B). �

Notice that condition (viii) bears a resemblance with the
local characterization of strong fusion graphs (Theorem 40).

Remind that any line graph is a perfect fusion graph
(Property 29). We can see that, thanks to Theorem 41 (con-
dition (vi)), perfect fusion graphs can be characterized in a
way similar to Theorem 5 which characterizes line graphs,
but with a much simpler condition.

A consequence of Theorem 41 is that all the graphs of
Fig. 3 except graph G� are perfect fusion graphs, since none
of these graphs contains G� as a subgraph. The reader can
also check anyone of the previous eight conditions on these
graphs, as an illustration of Theorem 41.

Corollary 42 Let G = (E,�) be a graph, let X be any con-
nected subset of E. If G is a perfect fusion graph, then the
subgraph of G induced by X is also a perfect fusion graph.

6 Usual Grids

The aim of this section and the following one is to answer
the question: which are the grids that may be used in order
to perform “safe” merging operations on digital images? In
this section, we consider the different grids commonly used
in 2-dimensional and 3-dimensional image processing. Our
major result is that none of these grids is a perfect fusion
graph and several are not even fusion graphs. One of the
consequences is that the most natural merging operation,
which consists in merging two regions through their com-
mon neighborhood, is not a “safe” operation in these grids.

We start with some basic definitions which allow to struc-
ture the pixels of an image. In this section and the following
one, we will assume that n is a strictly positive integer.

Definition 43 Let E be a set and let En be the Cartesian
product of n copies of E. An element x of En may be seen
as a map from {1, . . . , n} to E, for each i ∈ {1, . . . , n}, xi is
the ith coordinate of x.

Let Z be the set of integers. We consider the families of
sets H 1

0 , H 1
1 such that H 1

0 = {{a} | a ∈ Z}, H 1
1 = {{a, a+1} |

a ∈ Z}. A subset S of Z
n which is the Cartesian product of

exactly m ≤ n elements of H 1
1 and (n − m) elements of H 1

0
is called an m-cube.

In order to recover a graph structure for digital images,
adjacency relations are defined on Z

n. The following defin-
ition allows to retrieve the most frequently used adjacency
relations.

Definition 44 Let m ≤ n, we say that x and y in Z
n are

m-adjacent if there exists an m-cube that contains both x

and y. We define �n
m as the binary relation on Z

n such that
for any pair x, y in E, (x, y) ∈ �n

m if and only if x and y are
m-adjacent.

In order to deal with graphs that can be arbitrary large
we define a grid as a pair (E,�) where E is an infinite
set and � is a binary relation on E. Let X ⊆ E, we de-
fine the restriction of (E,�) to X as the pair (X,�X) where
�X = � ∩ (X × X). If X is a finite set (X,�X) is a graph.
In the sequel, to simplify the notations, we will write � as a
shortcut for �X .

6.1 2-Dimensional Usual Grids

Let w, h be two integers strictly greater than 1, called re-
spectively width and height, we set E = {x ∈ Z

2 | 0 ≤ x1 <

w and 0 ≤ x2 < h}. In this section we study the connected
graph (E,�2

1) (resp. (E,�2
2)) which is the restriction of

(Z2,�2
1) (resp. (Z2,�2

2)) to E. Notice that �2
1 (resp. �2

2)
corresponds to the 4 (resp. 8)-adjacency relation commonly
used in the literature.

Property 45 Let w > 2 and h > 2. If {w,h} �= {3,4},
(E,�2

1) is not a weak fusion graph. If {w,h} = {3,4} then
(E,�2

1) is a weak fusion graph but not a fusion graph.

Proof If {w,h} �= {3,4}, let us consider the following set:

(1) If both w and h are odd, X = {(i, j) | i + j is odd };
(2) If only w is odd, X = {(i, j) | i + j is odd } \ {(0, h −

1), (w − 1, h − 1)};
(3) If only h is odd, X = {(i, j) | i + j is odd } \ {(w −

1,0), (w − 1, h − 1)};
(4) If both w and h are even, X = {(i, j) | i + j is odd } \

{(0, h − 1), (w − 1,0)}.
Figure 12a shows the set X for image domains of size 3 × 3,
4 × 4 and 5 × 4.

It may be easily checked that any connected component
of X cannot be merged for X.

Let {w,h} = {3,4}. Then (E,�2
1) is a weak fusion graph

(exhaustive check). The graph of Fig. 12b shows a set X

such that there exists connected components of X which
cannot be merged, hence (E,�2

1) is not a fusion graph. �

Let X ⊆ E, we say that x ∈ X matches C1 (resp. C2) if
the neighborhood of x corresponds to the configuration C1

(resp. C2) depicted in Fig. 13a or to one of its π/2 rotations.
In Fig. 13, points labelled B are in X, points labelled W are
in X, at least one of the points labelled U is in X and the
point I is either in X or in X.
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Fig. 12 a Counter-examples for
the weak fusion property of
(E,�2

1); the black points
represent a set X;
b counter-example for the
fusion property of (E,�2

1) when
{w,h} = {3,4}; the component
of X in gray cannot be merged

Fig. 13 a Local configurations
which are used for proving
Lemma 47; configurations C1
and C2 are the local
configurations of multiple points
in (E,�2

2); b counter-example
for the strong fusion property of
(E,�2

2)

Lemma 46 Let X ⊆ E be a cleft on (E,�2
2). Then any x in

X which is multiple matches either C1 or C2.

Proof Exhaustive check. �

Lemma 47 Let X ⊂ E be a non-trivial cleft on (E,�2
2).

Then any A ∈ C(X) can be merged.

Proof Suppose that A cannot be merged, then any x ∈
X ∩ �2

2(A) is multiple. Since (E,�2
2) is connected and

C(X) > 2, such an x exists. Thus by Lemma 46, x matches
either C1 or C2. Suppose that x matches C1. If the two points
labelled W in C1 belong to the same connected component
of X then the point at the west of x is W-simple, a contra-
diction with the fact that X is a cleft. Thus necessarily these
two points belong to distinct components of X, and the point
at the west of x is F-simple. If A contains one of the these
two points, labelled W in C1, then A is adjacent to an F-
simple point and thus can be merged. Otherwise A contains
one of the points labelled U . In this case the same arguments
can be used to prove that A can be merged, thus x does not
match C1.

Suppose that x matches C2. For the same reasons, A is
the connected component that contains the point at the east
of x. As A cannot be merged, necessarily the point which is
at the north of x is multiple. Then the only possible config-
uration is C3, which is depicted in Fig. 13a. In configuration
C3, it can be verified that the point at the north-east of x is
necessarily F-simple. Thus A can be merged, a contradic-
tion. �

Property 48 Let h > 2 and w > 2, the graph (E,�2
2) is a

fusion graph but is not a strong fusion graph.

Proof The fact that (E,�2
2) is a fusion graph is a direct

corollary of Lemma 47 and Theorem 32. Let us consider
the set X, composed by the black points in Fig. 13b. It can
be seen that this type of “global cross configuration” can be
extended whatever the size of E (with h > 2 and w > 2). In
these cross configurations, the connected components which
are diagonally neighbor to each other cannot be merged.
Thus the graph (E,�2

2) is not a fusion graph. �

6.2 3-Dimensional Usual Grids

Let w, h and d be three integers strictly greater than 1, called
respectively width, height and depth, we set E = {x ∈ Z

3 |
0 ≤ x1 < w,0 ≤ x2 < h and 0 ≤ x3 < d}. In the sequel we
will consider that w > 1, h > 1 and d > 1. In this section
we study the graph (E,�3

1) (resp. (E,�3
3)) which is the re-

striction of (Z3,�3
1) (resp. (Z3,�3

3)) to E. Notice that �3
1

(resp. �3
3) corresponds to the 6 (resp. 26)-adjacency relation

commonly used in the literature.

Property 49 The graph (E,�3
1) is not a weak fusion graph.

Proof Let us consider the set X such that X = {x ∈ E | the
number of odd coordinates of x is equal to 0 or 2} (this
set corresponds to a “3-dimensional chessboard”). Samples
of such a set are shown in Fig. 14. It may be easily seen
that any element of X is a connected component that cannot
be merged without involving at least two other connected
components. Hence the graph is not a weak fusion graph.

�

Property 50 If w ≥ 5, h ≥ 5, d ≥ 5, the graph (E,�3
3) is

not a fusion graph.
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Proof Let us consider the set X of white points depicted
in Fig. 15a. Whatever the size of E and supposing that all
points of E outside the figure are in X, it may be seen that
the central point x is such that {x} is a connected component
of X. Any point 3-adjacent to x (the set of gray points) is ad-
jacent to at least three distinct connected components of X.
Thus any attempt to merge {x} will involve three connected
components of X, hence {x} cannot be merged, (E,�3

3) is
not a fusion graph. �

Remark 51 It is known in digital topology [13], that in
the 2-dimensional case, a skeleton (i.e., a set without any
simple point) does not contain any 3 × 3 square when-
ever �2

2 (resp. �2
1) is used for the background (resp. ob-

ject) [1]. We may wonder if this property can be extended
to the 3-dimensional case. From the characterization of sim-
ple points based on connectivity numbers [5], it can be seen

Fig. 14 Counter-examples for the weak fusion property of (E,�3
1).

The black points represent a set X

that any simple point, when �3
3 (resp. �3

1) is used for the
background (resp. object), is W-simple when using the graph
(E,�3

3). From this we see that any cleft, in this context, is
a skeleton (but the converse is not true). From Property 50
and Theorem 32, we deduce that there exists some clefts
in (E,�3

3) which are not thin (see an example Fig. 15b).
Such a cleft, which is also a skeleton, contains (at least) one
3 × 3 × 3 cube.

7 Perfect Fusion Grid

We introduce a grid for structuring n-dimensional digital im-
ages and prove that it is a perfect fusion graph, whatever the
dimension n. It does thus constitute a structure on which
neighboring regions, in an n-dimensional digital image, can
be merged through their common neighborhood.

Figure 17b gives an intuitive idea of this grid. Figure 16a
shows a cleft of Fig. 1a obtained on this grid. It can be easily
seen that the problems pointed out in the introduction do not
exist in this case. The cleft does not contain any inner point.
Any pair of neighboring regions can be merged by simply
removing from the cleft the points which are adjacent to both
regions (see Fig. 16b,c). Furthermore, the resulting set is still
a cleft.

It may be seen that this grid is “between” the usual grids.
We will prove in a forthcoming paper that this grid is indeed
the unique such graph.

Let Cn be the set of all n-cubes of Z
n, we define the

map B from Cn to Z
n, such that for any c ∈ Cn, B(c)i =

min{xi | x ∈ c}, where B(c)i is the ith coordinate of B(c). It

Fig. 15 a Counter-example (set
of black points) for the fusion
property of (E,�3

3). b Black
and gray points represent a set
X which is a non-thin cleft, and
also a skeleton which includes a
3 × 3 × 3 cube (gray points)
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may be seen that c is equal to the Cartesian product: {B(c)1,

B(c)1 + 1} × · · · × {B(c)n,B(c)n + 1}. Thus clearly B is a
bijection.

We set B = {0,1}. We set 0 = 1 and 1 = 0. A binary
word of length n is an element of B

n. If u is in B
n, we define

the complement of u as the binary word u such that for any
i ∈ {1, . . . , n}, (u)i = (ui).

Fig. 16 a A cleft of Fig. 1 obtained on the perfect fusion grid; b a crop
of (a) where the region A, B , C and D corresponds to the region shown
in Fig. 1d; in gray, the corresponding perfect fusion grid is superim-
posed; c same as (d) after having merged B and C to form a new re-
gion, called E

Fig. 17 Illustration of the two perfect fusions grids over Z
2 (restricted

to subsets of Z
2). a The map f ; b (Z2,�2

11/00); c (Z2,�2
10/01)

Before defining perfect fusion grids, we first recall the
definition of cliques, and a property due to Berge which
uses maximal cliques to characterize some line graphs. This
property will be used in the proof of Property 55.

Let E be a set, let � be a binary relation on E and let
X ⊆ E. We say that X is a clique (for (E,�)) if X ×X ⊆ �.
In other words, X is a clique if any two vertices of X are
adjacent. We say that X is a maximal clique if, for any clique
X′, X ⊆ X′ implies X′ = X.

Property 52 (Property 7 in [3], Chap. 17) Let G = (E,�)

be a graph. If for any x ∈ E, x is in at most two distinct
maximal cliques, then G is a line graph.

Definition 53 Let f be the map from Cn to B
n such that

for any c ∈ Cn, f (c)i is equal to B(c)i mod 2, that is the
remainder in the integer division of B(c)i by 2.

Let u be an element of B
n, we set Cn

u = {c ∈ Cn | f (c) =
u} and Cn

u/u = Cn
u ∪ Cn

u .
We define the binary relation �n

u/u ⊆ Z
n × Z

n as the set
of pairs (x, y) ∈ Z

n ×Z
n such that there exists c ∈ Cn

u/u that
contains both x and y.

We define Pn, the family of perfect fusion grids over Z
n,

as the set Pn = {(Zn,�n
u/u) | u ∈ B

n}.

Figure 17 illustrates the above definitions for the two-
dimensional case. Figure 18 shows a cleft on a 3-dimensional
perfect fusion grid. To clarify the figure, we use the follow-
ing convention: any two points belonging to a same cube
marked by a gray stripe are adjacent to each other.

In the sequel, to simplify the notations, we will write ci

as a shortcut for B(c)i .

Fig. 18 A 3-dimensional
perfect fusion grid. Black points
constitute a set which is a cleft
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Fig. 19 Illustrations of the relation between line graphs of 1-
connected graph and perfect-fusion grids. a A restriction of the 2-
dimensional perfect fusion grid; b a graph (black points and edges)
whose line graph is (a); the gray points indicate corresponding ver-
tices of the line graph (a) of (b); c black points and edges de-

pict a local configuration of the 3-dimensional 1-connected grid;
the gray points indicate corresponding vertices of the line graph
of (c) in which any gray point is adjacent to x; d a local config-
uration of the perfect fusion grid, any black point is adjacent to y

Lemma 54 Let u ∈ B
n and let x ∈ Z

n.

(i) There exists a unique c in Cn
u such that x ∈ c.

(ii) The point x is in exactly two maximal cliques of
(Zn,�n

u/u).

Proof It may be easily seen that any element c of Cn which
contains x is such that for any i ∈ {1, . . . , n}, ci = xi − 1 or
ci = xi , hence (i).

We deduce from (i) that there are exactly two distinct el-
ements c and c′ of Cn

u/u such that c ∈ Cn
u , c′ ∈ Cn

u and such
that x is in both c and c′. Thus any element adjacent to x

is either in c or in c′. From the very definition of �n
u/u, any

pair of elements of c (resp. c′) is in �n
u/u. Thus c and c′ are

cliques of (Zn,�n
u/u), which both contain x. Since any pair

(y, y′) with y ∈ c \ c′, y′ ∈ c′ \ c is not in �n
u/u, we conclude

that x is in exactly two maximal cliques. �

Property 55 Let u ∈ B
n and let X be a finite subset of Z

n

such that (X,�n
u/u) is connected. Then (X,�n

u/u) is a perfect
fusion graph. Furthermore it is a line graph.

Proof From Lemma 54, any x in X is in at most two
maximal cliques. Thus, as a consequence of Property 52,
(Xn,�n

u/u) is a line graph and from Property 29 it is a per-
fect fusion graph. �

The following property shows that the perfect fusion grid
is “between” the usual adjacency relations on Z

n.

Property 56 Let u ∈ B
n. We have: �n

1 ⊆ �n
u/u ⊆ �n

n .

Proof From Lemma 54, we know that for any x ∈ Z
n there

exist exactly two maximal cliques c ∈ Cn
u and c′ ∈ Cn

u that
contain x. Necessarily there exists k such that B(c) = x − k

with k ∈ B
n and B(c′) = x − k. A point x′ is in �n

1 (x) if
there exists a unique j ∈ {1, . . . , n} such that x′

j = xj + 1
or x′

j = xj − 1 and for any i ∈ [{1, . . . , n} \ {j}], x′
i = xi .

Suppose that x′
j = xj − 1. The case where x′

j = xj + 1 is
symmetric to this one and the following arguments hold for
both cases. For any i ∈ [{1, . . . , n} \ {j}], either ki = 0 or
ki = 1. If ki = 0, then x′

i = xi = ci = c′
i + 1. If ki = 1, then

x′
i = xi = c′

i = ci + 1. On the other hand, if kj = 1 then
x′
j = xj − 1 = cj , hence x′ ∈ c. Otherwise, if kj = 0 then

x′
j = xj −1 = c′

j , hence x′ ∈ c′. Whatever the case, (x, x′) ∈
�n

u/u, hence �n
1 ⊆ �n

u/u. The proof of the second inclusion
follows straightforwardly from the definition of �n

u/u. �

Property 57 The family Pn contains 2n−1 distinct perfect
fusion grids.

Proof From the very definition of perfect fusion grids,
we have �n

u/u = �n
u/u. Furthermore, if {u,u} �= {v, v} then

�n
u/u �= �n

v/v . Since the cardinality of B
n is equal to 2n, the

cardinality of Pn is equal to 2n/2 = 2n−1. �

Let X ⊆ Z
n and let t ∈ B

n. We define X + t = {x + t |
x ∈ X}, we say that X + t is a binary translation of X. Let
m be a positive integer such that m ≤ n. Remark that if X is
an m-cube then X + t is also an m-cube.

The following property states that any two n-dimensional
perfect fusion grids are equivalent up to a binary translation.

Property 58 Let u and v in B
n. Let t ∈ B

n such that for
any i ∈ {1, . . . , n}, if ui = vi then ti = 1, otherwise ti = 0.
Then for any (x, y) ∈ Z

n × Z
n, (x, y) ∈ �n

u/u if and only if
(x + t, y + t) ∈ �n

v/v .

Proof It can easily be seen that for any c ∈ Cn, f (c) = u

(resp. f (c) = u) if and only if f (c + t) = v (resp. (f (c + t)

= v)). The result follows from this observation and from the
definition of the perfect fusion grids. �

Let u in B
2. Let X be a finite subset of Z

2. It can be
seen that (E,�2

u/u) is the line graph of a graph (E′,�2
1),

with E′ ⊂ Z
2. For example, Fig. 19a shows a 2-dimensional
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perfect fusion grid, its associated graph (E′,�2
1) is depicted

in Fig. 19b.
Remark that a similar statement is not true in dimen-

sion 3. Local configurations of (Z3,�3
1) and of its line graph

are depicted in Fig. 19c. A local configuration of (Z3,�3
u/u)

is depicted in Fig. 19d. It can be checked that the point x

in Fig. 19c has exactly 10 neighbors whereas the point y in
Fig. 19d has 14 neighbors. Thus those two configurations
cannot be isomorphic.

Conclusion

This article sets up a theoretical framework for the study of
merging properties in graphs. Using this framework, we ob-
tained a necessary and sufficient condition for the thinness
of clefts, we defined four classes of graphs in relation to
these merging properties and gave local characterizations of
these classes whenever possible. We also analyzed the sta-
tus of the graphs which are the most widely used for image
analysis, and proposed a family of graphs on Z

n which con-
stitute an ideal support for region merging.

In [11, 12], we extend this study to the case of weighted
graphs (i.e., graphs with values associated to vertices),
which constitute a model for grayscale images. The no-
tion of topological watershed [4, 7] extends the notion of
cleft to weighted graphs, and possess interesting properties
which are not guaranteed by most popular watershed algo-
rithms [15]. The major outcomes of [11, 12] are:

(i) A proof that any topological watershed on any perfect
fusion graph is thin;

(ii) A new, simple and linear-time algorithm to compute
topological watersheds on perfect fusion graphs.

In a forthcoming article [10], we investigate the case of
graphs with values associated to edges. Contrarily to pre-
vious works, we define the watersheds following the intu-
itive idea of flowing drops of water. We establish the con-
sistency of these watersheds, and prove their optimality in
terms of minimum spanning forests. We introduce a new lo-
cal transformation on maps which equivalently define these
watersheds, and derive two linear-time algorithms. To our
best knowledge, similar properties are not verified in other
frameworks and the two proposed algorithms are the most
efficient existing ones.

Appendix

Proof of Property 16 Since |C(X)| ≥ 2 we have A ∪
ann(A) �= E, and since E is connected, from Corollary 2
there must exist a point x in �∗(A ∪ ann(A)). Furthermore,

x must be adjacent to at least one component B of X distinct
from A, otherwise ann(A) ∪ {x} would be W-simple for X,
a contradiction with the definition of ann(A); and x cannot
belong to B , otherwise ann(A) would not be W-simple for
X, also a contradiction with the definition of ann(A). �

Proof of Property 21 Suppose that A ∪ B ∪ S ∈ C(X \ S).
Let C ∈ C(X|S), then A ∪ B ∪ S ∪ C is connected and A ∪
B∪S ⊆ A∪B∪S∪C ⊆ X \ S. Since X �= ∅, as a connected
component of X the set C cannot be empty, and since A ∪
B ∪ S ∈ C(X \ S), we must have either C = A or C = B .

Suppose now that S is F-simple for X and adjacent to A

and B . Thus, A ∪ B ∪ S is connected, it remains to prove
that it is maximal. Let Z ⊂ E such that A ∪ B ∪ S ⊆ Z ⊆
X \ S, and Z connected. Let Y = Z \[A∪B ∪S]. Since Z ⊆
X \ S, we have Y ⊆ X. Since A (resp. B) belongs to C(X),
Y cannot be adjacent to A (resp. to B), and since C(X|S) =
{A,B}, Y cannot be adjacent to S. Since Z is connected,
by Property 1 we deduce that Y must be empty, thus Z =
A ∪ B ∪ S, and A ∪ B ∪ S is a component of X \ S. The
other components of X \ S are clearly the components of X

which differ from A and B . �

Lemma 59 Any strong fusion graph is a fusion graph.

Proof Let G = (E,�) be a strong fusion graph, let X ⊂ E

such that |C(X)| ≥ 2, and let A ∈ C(X). By Property 16,
there exists B ∈ C(X), B �= A, such that A ∪ ann(A) and B

are neighbors. Since G is a strong fusion graph, there exists
S ⊆ [X\ann(A)] such that A∪ann(A) and B can be merged
through S for X \ ann(A). Consider S′ = S ∪ ann(A), it can
easily be seen that S′ is adjacent to exactly two components
of X, namely A and B , thus A can be merged for X. �

Lemma 60 Let (E,�) be a graph. Let X ⊂ E, let A ∈
C(X), and let Y ⊆ A. Then, we have C(X ∪ Y ) = [C(X) \
{A}] ∪ C(A \ Y).

The proof is elementary. This lemma is useful in the fol-
lowing proof.

Proof of Property 34 We have to prove that any x in X ∪ Y

cannot be W-simple. If Y = ∅ then X ∪ Y = X which is a
cleft. Suppose from now that Y �= ∅.

Let x ∈ Y . Since Y ⊂ A and Y �= ∅ and Y is a cleft,
there exists B,C ∈ C(A \ Y) which are adjacent to x and
by Lemma 60, B and C also belong to C(X ∪ Y ), thus x is
not W-simple for X ∪ Y .

Let x ∈ X. Since X is a cleft for E and G is a perfect
fusion graph, by Theorem 32, X is thin and thus x is adja-
cent to exactly two elements B,C of C(X). If B �= A and
C �= A then from Lemma 60 we deduce that x is also F-
simple for X ∪ Y , suppose now that B = A (the case C = A
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is identical). If �∗(x) ∩ Y = ∅ then x is adjacent to C and
to a component of A \ Y , it is thus not W-simple for X ∪ Y .
Suppose now that there exists y ∈ �∗(x) ∩ Y . Since Y is a
cleft for A there exists two points a, b in �∗(y) which be-
long to distinct components of A \ Y (thus, a and b are not
adjacent). Furthermore, y ∈ �(x) ∩ �(a) ∩ �(b) and since
G is a perfect fusion graph and by the converse of Theo-
rem 41(viii), x must be adjacent to either a or b. Hence, x is
not W-simple. �
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