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Abstract In this paper we present an anisotropic filter for
speckle reduction in ultrasound images and an adaptation
of the geodesic active contours technique for the segmenta-
tion of breast tumors. The anisotropic diffusion we propose
is based on a texture description provided by a set of Ga-
bor filters and allows reducing speckle noise while preserv-
ing edges. Furthermore, it is used to extract an initial pre-
segmentation of breast tumors which is used as initialization
for the active contours technique. This technique has been
adapted to the characteristics of ultrasonography by adding
certain texture-related terms which provide a better discrim-
ination of the regions inside and outside the nodules. These
terms allow obtaining a more accurate contour when the gra-
dients are not high and uniform.
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1 Introduction

Early diagnosis is a crucial factor in breast cancer treatment,
and medical imaging is a very powerful assessment tool.
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The two main types of images used in this kind of diag-
nosis are mammography and ultrasonography. In this work,
we have focussed on the latter, for which a series of crite-
ria has been described to distinguish benign from malignant
lesions. These criteria include hyperechogenicity (the nod-
ule is brighter in the ultrasound image than the surrounding
breast fat), ellipsoid shape, two or three gentle lobulations
(lobes which form the tumor) and thin echogenic capsule
as benignity criteria. On the other hand, hypoechogenic-
ity (the nodule is darker in the ultrasound image than the
surrounding breast fat), acoustic shadowing (attenuation of
sound behind all or part of the nodule, which appears as
a darker region under the lesion), ramifications, microlob-
ulations (small rounded projections), angular margins, spic-
ulation (alternating hypoechoic and relatively hyperechoic
straight lines radiating out perpendicular from surface of the
nodule), calcifications (punctate bright spots within a solid
nodule) and taller-than-wide shape are considered as malig-
nancy findings [36]. In a computer-aided system, the accu-
rate segmentation of breast nodules in ultrasonography is
a major task for a further analysis of the global shape and
local contour variations of the tumor, on which most criteria
are based. However, this task implies many problems when
automation is intended, since the presence of speckle noise
and shadows, the low or non-uniform contrast of certain
structures, and the variability of the echogenicity of the nod-
ules make it very difficult to obtain a segmentation which
can be useful for the diagnosis. This explains the fact that
most of the results regarding the semiautomatic segmenta-
tion and characterization of breast tumors have been limited
so far [11, 12, 22, 26].

There are many different approaches for the segmen-
tation of breast nodules. Manual delimitation is time-
consuming, tedious and with a considerable inter- and intra-
observer variability. On the other hand, fully automatic
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methods require a priori knowledge of the shape of the nod-
ule, which is not usually available. Between both extremes,
we can find semiautomatic methods, which provide good
results by means of a reduced interaction with the user.

We propose a combination of different techniques to
extract a semiautomatic segmentation of breast nodules.
Firstly, an anisotropic texture-guided diffusion is used to re-
duce speckle. Secondly, a front propagation algorithm is ap-
plied to obtain a pre-segmentation of the nodule. This algo-
rithm starts from an inner point selected by the specialist,
which is the only interaction required to the user. Finally, in
order to refine the pre-segmentation, we use an adaptation
of the geodesic active regions technique (combined with the
classical geodesic active contour term) designed to tackle
the particularities of ultrasound images. In this paper, we
use known techniques, such as anisotropic diffusion, bal-
loon methods, Gabor filters or geodesic active contours. We
combine and refine such techniques with the purpose of ul-
trasound image segmentation. In particular, we propose an
anisotropic texture-guided diffusion and a region based geo-
desic active contour using the response of a set of Gabor
filters.

In the anisotropic diffusion step, we adapt the ideas of
the classical Perona-Malik equation [31] to the diffusion of
ultrasound images. For that, we use a set of texture descrip-
tors R based on Gabor filters and we inhibit the diffusion
across changes in these descriptors (determined by large
values of the modulus of the gradient of R). This filtering
will permit us to obtain a more precise pre-segmentation.
The pre-segmentation is computed with a front propagation
scheme with a speed depending (inversely) on the modu-
lus of the gradient, which is analogous to the inflation force
used in [13]. These balloon forces have traditionally been
included in the level set formulation [29] of active contours
[4–6, 23, 28], but they are used here as a pre-processing step
to get an initial segmentation as close as possible to the con-
tour of the nodule. In the last step, in order to improve the
final segmentation, we use a combination of the geodesic
edge based and region based active contours; the region de-
scriptors being based on the responses of a set of Gabor fil-
ters at several orientations and scales. We explore a local
variant of the model proposed in [8, 34, 35] and we intro-
duce a new variant of it, we test both of them for our set
of images. Many variants of active contours [4–6, 13, 21,
23, 28] have previously been applied to the segmentation
of medical images [10, 20], textured regions [2, 8, 30, 32,
34, 35], and other situations whose conditions are similar to
ours. In particular, the works [8, 9, 15, 30, 34, 35] have also
used region descriptors or statistical information and the last
two ones have used the responses of Gabor filters as texture
descriptors. Finally, let us mention that novel level set meth-
ods for image segmentation include motion-based level set
segmentation [14], segmentation of natural textures [19] and

ultrasound segmentation with non-parametric intensity and
shape models [33].

The rest of the paper is structured as follows: Sect. 2 ex-
plains the texture-based anisotropic filtering process which
allows reducing speckle. Section 3 shows the extraction of
a pre-segmentation by means of a front propagation scheme.
In Sect. 4, we review the basic region based active contours
for scalar and vector features and we propose some exten-
sions. In particular, we describe a region based active con-
tour model based on a set of Gabor filter responses used
as texture descriptors. Section 5 presents some results and
comparisons. Finally, in Sect. 6, we give an account of our
main conclusions.

2 Speckle Reducing Anisotropic Diffusion Based
on Vector Descriptors

Ultrasound images present highly disturbing speckle noise.
Moreover, in many cases, the low contrast between the struc-
tures to be segmented and the background, as well as the
shadows which may appear depending on the properties of
the tissues, make it even harder to locate the edges of the dif-
ferent elements. Figure 1 shows an example of a breast nod-
ule which is very hard to process, since it combines rounded
and angular margins, and present diffuse edges, prolonga-
tions, concavities and non-uniform intensity. It is necessary
to remove speckle before dealing with the problem of seg-
mentation. Classical speckle removing filters include local
statistics and minimum square error schemes [17, 25, 27].
Truncated median [16] has proved very useful in the re-
duction of speckle using an iterative algorithm to approx-
imate the mode using small windows. Isotropic diffusion

Fig. 1 Original ultrasound image of a breast nodule with rounded
and angular margins, diffuse edges, prolongations, concavities and
non-uniform intensity



J Math Imaging Vis (2007) 28: 81–97 83

is not suitable since it should be strong enough to reduce
speckle but low enough to preserve edges. On the other
hand, anisotropic diffusion tries to reduce the noise of the
images preserving the contrast of the edges, in such a way
that the contours of the objects in the scene are not altered by
the diffusion process (see [37] for more details). In this pa-
per � ⊂ R

2 denotes the image domain which we assume to
be a rectangle in R

2 and I0 :� → R denotes a given image.
A typical anisotropic filter applied to I0 is given by the solu-
tion I (t, x, y), t > 0, (x, y) ∈ �, of Perona–Malik equation
[31]:

∂I

∂t
= div(c(‖∇I‖)∇I )

(1)
I (t = 0) = I0

with Neumann boundary conditions, i.e., ∇I · ν� = 0 where
ν� denotes the outer unit normal to the boundary of �.

In this equation, c(r) is a monotonic decreasing function
of r > 0, such as, for example:

c(r) = e−( r
k
)2

, (2)

where k is a constant which determines the contrast of the
edges to preserve.

This kind of filters works properly in many kinds of im-
ages, mainly when the objects are defined by uniform inten-
sity regions. However, in our case, the textures of the regions
make it necessary to express the similarity between different
areas in terms of texture descriptors, instead of intensities.
Speckle reducing anisotropic diffusion has previously been

introduced, mostly in synthetic aperture radar images [38].
We propose to use Gabor filters [18] to characterize the tex-
tures, and the gradient of the filtered images as a texture-
based edge detector. A Gabor filter whose scale and hori-
zontal and vertical frequencies are given by σ > 0, kx and
ky in R, respectively, can be expressed as:

Gσ
kx,ky

(x, y) = e
− x2+y2

2σ2 (cos(kxx + kyy)). (3)

We use a set of S scales, N frequencies within each scale,
and two orientations (horizontal and vertical) for each fre-
quency. Fixed a certain scale σ0 > 0 and a certain frequency
k0 > 0, the outputs of the filters are calculated as the convo-
lution:

F s
nx,ny

= I ∗ G
sσ0
nxk0,nyk0

, (4)

where 1 ≤ s ≤ S, −N ≤ nx ≤ N and 0 ≤ ny ≤ N .
These filters combine orientation and frequency and pro-

vide a description of the distribution of the intensities in the
region where they are applied (see Fig. 2). Due to the high
variability in the aspect of the different tumors, it is difficult
to establish a certain pattern in the response of the filters
which allows identifying all of them.

Taking the Perona–Malik equation (1) as a model, we
propose to penalize the diffusion along high texture gradi-
ents. If R(x, y) denotes the vector formed by the responses
of a family of Gabor filters applied to the image I (0) at point
(x, y), we use the following anisotropic diffusion equation:

∂I

∂t
= div(c(‖∇R‖)∇I ), (5)

Fig. 2 Example of the
application of 8 Gabor filters to
a synthetic textured image
representing well defined
oscillations and an ultrasound
image. For each of the images:
Top row: σ = 5, kx = 7, ky = 0;
σ = 5, kx = 0, ky = 7; σ = 10,
kx = 7, ky = 0; σ = 10, kx = 0,
ky = 7. Bottom row: σ = 5,
kx = 8, ky = 0; σ = 5, kx = 0,
ky = 8; σ = 10, kx = 8, ky = 0;
σ = 10, kx = 0, ky = 8
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Fig. 3 Result of applying the
anisotropic texture-based
diffusion in (5) to an image with
two well defined textures (left)
using σ = 5, k = 0.5 (center)
and σ = 5, k = 1 (right)

where ‖∇R‖2 = trace((∇R)t∇R) (if A is a matrix, At de-
notes the transpose matrix of A). Note that diffusion is in-
hibited at large values of ‖∇R‖, i.e., at points where there is
a rapid transition of the texture characteristics of the image.

We apply an explicit discretization method to discreti-
ze (5). For that we replace the gradients and divergence
in (5) by discrete approximations; for any scalar function
f defined on the grid {1, . . . ,N} × {1, . . . ,M} where the
images are defined we shall use the notation

∇+,+f = (∇+
x f,∇+

y f ), ∇+,−f = (∇+
x f,∇−

y f ),

∇−,+f = (∇−
x f,∇+

y f ), ∇−,−f = (∇−
x f,∇−

y f ),

where

∇+
x f (i, j) = f (i + 1, j) − f (i, j),

∇−
x f (i, j) = f (i, j) − f (i − 1, j),

∇+
y f (i, j) = f (i, j + 1) − f (i, j),

∇−
y f (i, j) = f (i, j) − f (i, j − 1),

for any (i, j) ∈ {1, . . . ,N} × {1, . . . ,M}. Note that the dual
operators to ∇+,+, ∇+,−, ∇−,+, ∇−,− are, respectively, the
operators div−,−, div−,+, div+,−, div+,+ where for a dis-
crete vector field (A,B) we have div−,−(A,B) = ∇−

x A +
∇−

y B and similarly for the other operators. Using �x =
�y = 1, the discretization of (5) :

I t+�t(i, j)

= I t (i, j)

+ �t

4

∑

α,β∈{+,−}
divα∗,β∗(c(‖∇α,βR‖)∇α,βI )(i, j) (6)

for any (i, j) ∈ {1, . . . ,N} × {1, . . . ,M}, where

‖∇α,βR(i, j)‖
=

√ ∑
1≤s≤S

∑
−N≤nx≤N

∑
0≤ny≤N

|∇α,βF s
nx,ny

(i, j)|2.

We apply a wide range of filters varying the scale and fre-
quency. In order to reduce the computational cost, we have
only used horizontally and vertically oriented Gabor filters
and thus, the discretization of gradient magnitude has also

Fig. 4 Result of applying the anisotropic texture-based diffusion in (5)
to the nodule in Fig. 1, using S = 3 (σ0 = 3) and N = 4 (k0 = 0.05)

been performed in these two orientations. Although this is
not rotationally invariant, the filtered image will be used to
obtain the initial pre-segmentation, which will be improved
later using the active contours.

Figure 3 shows the application of this kind of filtering
to well defined textures, and how the variation of the fre-
quencies modifies the results. For that reason, it is neces-
sary to use a wide enough range of values. Figure 4 shows
the result of this kind of anisotropic texture-based diffusion
of ultrasound images. As observed, not only does it reduce
speckle noise, but it also preserves the significant edges, so
that a semiautomatic pre-segmentation of the nodule is more
feasible and trustful.

3 Front Propagation Pre-segmentation

The result of the filter described in the previous section is
much more suitable for a pre-segmentation than the origi-
nal image. A simple approach consists in applying a region-
growing algorithm, which, from an initial inner point, ex-
pands the selected region while the magnitude of the gradi-
ent is lower than a certain threshold. However, ultrasound
images do not always present uniform and well-defined
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edges, which makes it extremely difficult to set a thresh-
old for the gradient magnitude. This causes the selection
to be either limited to the central region of the nodule, or
overflowed towards the outer regions. We propose the use of
a gradient-guided front propagation scheme.

To obtain a robust computation of the modulus of the gra-
dient of the image I (where I denotes the output of the dif-
fusion equation (5)), we compute the structure tensor

Gσ ∗ (∇I ⊗ ∇I ) :=
(

Gσ ∗ I 2
x Gσ ∗ (IxIy)

Gσ ∗ (IxIy) Gσ ∗ I 2
y

)
, (7)

where Gσ is a Gaussian kernel and Ix and Iy are calculated
using the following 3 × 3 masks:

1

4h

⎛

⎝
−b 0 b

−a 0 a

−b 0 b

⎞

⎠ and
1

4h

⎛

⎝
−b −a −b

0 0 0
b a b

⎞

⎠ , (8)

where a = 2(
√

2 − 1) and b = (2 − √
2). The largest eigen-

value gives us an estimate of the square of the modulus gra-
dient and we shall use it as a robust estimation of it. We
denote it by λ+(Gσ ∗ (∇I ⊗ ∇I )) (for more details about
the structure tensor, see [3]).

To obtain a good snake initialization, we use a balloon
force in a level set formulation. Starting with an initial para-
meterized curve C0 : [0,L] → R

2, L > 0, in the image do-
main we use a front which propagates outwards with a speed
depending inversely on the modulus of the gradient:

∂C

∂t
= Fn, (9)

where C(t) : [0,L] → R
2 denotes the evolving curve, t > 0

denotes time parameter of the evolution, and

F(x, y) = 1

1 + Gη ∗ λ+(Gσ ∗ (∇I ⊗ ∇I ))(x, y)
, (10)

Gη being a Gaussian of standard deviation η. To fix ideas,
we assume that C(t) is clockwise oriented and n denotes
the outer unit normal to C. We want the propagation to stop
when the contour of the nodule is reached. For that reason,
the function F is inhibiting the propagation proportionally
to the magnitude of the gradient in the neighborhood of each
pixel, in such a way that when we are far from the contour,
the front propagates faster, but, as we approach the contour,
the speed is reduced. Following Appendix 1 we introduce
a evolving function u(t, x, y) whose zero level set is the
curve C(t) (positive inside and negative outside C(t)) and
we write the geometric evolution for C in terms of u as

∂u

∂t
= F‖∇u‖. (11)

To discretize it, we have used the following numerical
scheme:

un+1
i,j − un

i,j

τ
= Fi,j‖∇uij‖, (12)

where Fi,j is the discretization of F(x, y) given by (10) (us-
ing the approximations of the gradient of I described in (8)
and a suitable discretization of the Gaussian window) and
‖∇uij‖ is calculated as in [29]:

‖∇uij‖ =
(

min

(
un

i,j − un
i−1,j

h1
,0

))2

+
(

max

(
un

i+1,j − un
i,j

h1
,0

))2

+
(

min

(
un

i,j − un
i,j−1

h2
,0

))2

+
(

max

(
un

i,j+1 − un
i,j

h2
,0

))2

. (13)

In these equations, τ represents the time discretization
step and h1, h2 the pixel dimensions (τ,h1, h2 > 0; in our
experiments, we consider h1, h2 = 1). Figure 5 displays the
evolution of the front when I is given in Fig. 4. Figure 6 dis-
plays the pre-segmentation which is obtained. Once a whole
contour with high enough gradients is reached or the maxi-
mum number of iterations have been performed, the process
is stopped and the final front is used as initial approximation
Pi(s̃) for the active contours technique.

Fig. 5 Evolution of the front propagation using the gradient-weighted
propagation scheme
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Fig. 6 Presegmentation obtained using the front propagation scheme
with gradient weighting. A threshold is set on the graylevel to deter-
mine the points which are included in the presegmentation

4 Vector-Based Geodesic Active Contours

The front propagation scheme does not provide satisfactory
results, since its speed of propagation is a function of mag-
nitude of the gradient and we cannot find a single thresh-
old on it to determine the desired contour. The segmentation
which can be obtained through this kind of algorithms in
the case of ultrasound images is often inaccurate. A more
refined contour can be extracted using geodesic active con-
tours [5, 6, 23].

4.1 Classical Geodesic Active Contours

Geodesic active contours are based on the minimization of
the following energy:

Egac(C) =
∫

C

gσ (C(s)) ds, (14)

where C : [0,L] → R
2, L > 0, is a rectifiable curve para-

meterized by arc-length s and ds denotes the arc-length ele-
ment. The function gσ (x, y) is a smooth decreasing function
of the modulus of the gradient of a regularized version of
the image I (x, y) on which the segmentation is performed,
and C is the snake with respect to which the energy is min-
imized. To minimize the energy (14) we use a gradient de-
scent curve evolution written as

Ct = −δEgac(C)

δC
, (15)

where
δEgac(C)

δC
represents the first variation of Egac. Com-

puting the first variation of E we obtain (see [6, 7]) the curve
evolution equation

Ct = −(κgσ − 〈∇gσ ,n〉)n, (16)

where κ denotes the curvature of C. The function gσ (x, y)

acts as an edge detector and, as in [4, 6], we shall use

gσ (I ) = 1√
1 + α‖∇Iσ ‖2

, (17)

where Iσ represents the convolution of the original image
I with a Gaussian kernel with standard deviation σ . The
parameter α controls how contrasted the edges must be to
stop the evolution. On the other hand, σ determines the
amount of smoothing of I , so that a higher value will pro-
duce a more rounded contour but will be able to reach far-
ther edges. For this reason, we use a multiscale implemen-
tation, starting with higher values of σ and reducing it at
each scale. We use the final contour of the previous scale
as initialization, except for the first case, in which the ini-
tialization is provided by the pre-segmentation step. Thus,
given a final standard deviation σ0 and a number of scales Ŝ,
the standard deviations used at the different scales are Ŝσ0,
(Ŝ − 1)σ0, . . . , σ0.

To write the level set formulation of (16) as described in
Appendix 1, we introduce a function u(t, x, y) as an implicit
representation of C(t). Usually, to construct the initial snake
u(0, x, y), the user has to choose a set of points determining
a parameterization of a polygon P0(s̃) = (x0(s̃), y0(s̃)) and
then define u(0, x, y) so that P0(s̃) corresponds to the zero
level set of u(0, x, y). In our case, instead of manually defin-
ing P0(s̃), we take the curve Pi(s̃) computed with the propa-
gation scheme discussed in Sect. 3 and given by the PDE (9).
Then, we define u(0, x, y) as the signed distance function to
Pi(s̃) (positive inside, negative outside), or simply consider
two different values for the inner and outer regions.

As described in Appendix 1, the level set formulation of
the geometric curve evolution (16) is given by the PDE:

∂u

∂t
= ‖∇u‖div

(
gσ (I )

∇u

‖∇u‖
)

. (18)

If we expand this equation, we obtain the following ex-
pression, in which the first term controls the smoothness of
the contour and the second one makes the contour evolve
towards the highest gradients:

∂u

∂t
= ‖∇u‖gσ (I )div

( ∇u

‖∇u‖
)

+ ∇u∇gσ (I ). (19)

It may be desirable in some cases to re-balance the con-
tribution of both terms. For that purpose, we introduce a pa-
rameter λ > 0 which helps us adjust the results to the desired
conditions:

∂u

∂t
= gσ (I )‖∇u‖div

( ∇u

‖∇u‖
)

+ λ∇u∇gσ (I ). (20)

Geodesic active contours permit to improve the pre-
segmentation obtained using (11) since the contour adapts
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Fig. 7 Final contour obtained for the nodule in Fig. 1 using the geo-
desic active contours scheme in (14) from the front propagation pre-
segmentation

Fig. 8 Final contour (white) obtained for the nodule in Fig. 1 using the
geodesic active contours scheme in (14) from the initial curve depicted
in black. This shows the usefulness of a reasonable initial presegmen-
tation

to the minimum of the energy (14). In Fig. 7 we display the
resulting contour obtained using the multiscale implementa-
tion of the geodesic active contours (20) with the value of
λ = 5. The details of the numerical implementation can be
found in Appendix 2.

As mentioned above, it is important to start from a pre-
segmentation which is relatively close to the real contour of
the nodule. Otherwise, the effect of the second term in (20)
(or (19)) is not enough to overcome the regularizing effect
of the first term and instead of approaching the real edges,
the snake will be rounded and tend to reduce, as illustrated
in Fig. 8.

4.2 Region Information in Geodesic Active Contours
Using a Single Feature Descriptor

In the classical active contours technique, only intensity gra-
dient is considered as a descriptor for the limits of the re-
gions, in such a way that the terms in equation (14) guide the
snake towards those points where a high gradient is present.
However, sometimes a region is not clearly identified by
high gradient edges, or these are not uniformly high along
the outline of an object, thus making it difficult to set the
parameters. The intensity of the surrounding area and the
texture described by the gray level pattern play an impor-
tant role in delimiting the inner and outer regions. This often
happens in ultrasound images, and new terms must be added
to provide this technique with the capability of identifying
these low contrast boundaries. If we have a gradual transi-
tion from a region to the other, no high gradient contour will
be found to identify the limits. Geodesic active regions in-
clude region information in the evolution of the snake, so
that the features that describe the inner and outer regions
make the contour evolve [9, 30].

If we consider a single feature to separate two regions,
such as gray level, we can use the distance to the represen-
tative values of the inner and outer regions to make the con-
tour evolve. The purpose consists in finding the curve whose
inner and outer regions are jointly best represented by these
values. If the inner and outer regions are quite homogeneous
and the contour is uniform, we can use the global represen-
tatives of both regions for all the points. If C denotes the
evolving contour, the above considerations lead to the mini-
mization of the energy functional

Es(C, c̃+, c̃−) = Egac(C) + Em(C, c̃+, c̃−), (21)

where

Em(C, c̃+, c̃−) = λ+
∫

�C

|I (x, y) − c̃+|dxdy

+ λ−
∫

�\�C

|I (x, y) − c̃−|dxdy, (22)

where �C denotes the region inside C (that is the com-
plement of the unbounded component of R

2 \ C) and
λ+, λ− > 0 are fixed parameters. The first term is the usual
geodesic active contour term, the second and third terms are
like the so-called piecewise-constant two-phase Mumford–
Shah model and are region based [9, 30]. We notice that
the energy Es(C, c̃+, c̃−) is minimized with respect to the
curve C and the constants c̃+, c̃− which describe the image
I inside and outside C, respectively.

To compute the first variation of (22) we recall the fol-
lowing result [7, 24].
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Lemma 1 Let f : R
2 → R be an integrable function. The

weighted region functional

Ef (C) =
∫∫

�C

f (x, y)dxdy,

yields the first variation

δEf (C)

δC
= −f (x, y)
n.

Using the first variation of the energy (14) and Lemma 1
we compute the first variations of Es(C, c̃+, c̃−):

δEs

δC
= (κgσ − 〈∇gσ ,n〉)n + M(I, c̃+, c̃−)(x, y)n,

where

M(I, c̃+, c̃−)(x, y) = λ−|I (x, y) − c̃−|
− λ+|I (x, y) − c̃+|, (23)

δEs

δc̃+
= λ+

∫

�C

sign(c̃+ − I (x, y)) dxdy,

δEs

δc̃−
= λ−

∫

�\�C

sign(c̃− − I (x, y)) dxdy,

where sign(r) = +1 if r > 0; −1 if r < 0; and it can be any
value in [−1,1] if r = 0.

For fixed C the minimum values of c̃+ and c̃− satisfy

δEs

δc̃+
= 0 and

δEs

δc̃−
= 0.

These equations give the values of c̃+, c̃− explicitly.
Heuristically, the optimal value of c̃+, resp. c̃−, is the value
of I (x, y) in �C , resp. � \ �C , that splits its area into two
equal parts. These values are the median values

c̃+ = median�C
(I), c̃− = median�\�C

(I). (24)

The gradient descent equation for the evolving curve C

is

Ct = −δEs

δC
= −(κgσ − 〈∇gσ ,n〉)n

− M(I,C(t))(x, y)n, (25)

where

M(I,C(t))(x, y) = M(I, c̃+(t), c̃−(t))(x, y),

where c̃+(t), c̃−(t) are the median values given in (24) for
the curve C(t).

However, in the case of ultrasound images we deal with
very variable contours and heterogeneous regions. This is
the reason why we have used, for every point, the medians

of the inner and outer neighborhoods, so that the evolution
of the curve depends on the region where we are located. We
propose to localize the energy (22). For that, for any recti-
fiable curve C and functions c+(x, y), c−(x, y), we define
the energy functional

Esl(C, c+, c−) = Egac(C) + Eml(C, c+, c−), (26)

where

Eml(C, c+, c−)

= λ+
∫

�

(∫

�C∩B(x,y)

|I (x′, y′) − c+(x, y)|dx′dy′
)

dxdy

+ λ−
∫

�

(∫

B(x,y)\�C

|I (x′, y′)

− c−(x, y)|dx′dy′
)

dxdy, (27)

where B(x, y) is a ball around (x, y) of fixed radius, and
λ+, λ− > 0 are fixed parameters.

We denote by χA(x, y) the characteristic function of a set
A ⊂ R

2, i.e., χA(x, y) = 1 if (x, y) ∈ A and 0 otherwise.
To compute the first variations of Es(C, c+, c−) we observe
that χB(x′,y′)(x, y) = χB(x,y)(x

′, y′) and using this we have

∫

�

(∫

�C∩B(x,y)

|I (x′, y′) − c+(x, y)|dx′dy′
)

dxdy

=
∫

�C

(∫

�

χB(x′,y′)(x, y)|I (x′, y′)

− c+(x, y)|dxdy

)
dx′dy′

=
∫

�C

(∫

�∩B(x′,y′)
|I (x′, y′) − c+(x, y)|dxdy

)
dx′dy′.

Using this, the first variation of the energy (14) and
Lemma 1 we compute the first variations of Es(C, c+, c−):

δEsl

δC
= (κgσ − 〈∇gσ ,n〉)n + Ml(I, c+, c−)(x, y)n,

where (changing (x, y) and (x′, y′))

Ml(I, c+, c−)(x, y)

= λ−
∫

�∩B(x,y)

|I (x, y) − c−(x′, y′)|dx′dy′

− λ+
∫

�∩B(x,y)

|I (x, y) − c+(x′, y′)|dx′dy′,
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δEsl

δc+
= λ+

∫

�C∩B(x,y)

sign(c+(x, y) − I (x′, y′)) dx′dy′,

δEsl

δc−
= λ−

∫

B(x,y)\�C

sign(c−(x, y) − I (x′, y′)) dx′dy′.

For fixed C the minimum values of c+(x, y) and c−(x, y)

satisfy δEs

δc+ = 0 and δEs

δc− = 0. Heuristically, the optimal value
of c+(x, y), resp. c−(x, y), is the value of I (x, y) in �C ∩
B(x, y), resp. B(x, y)\�C , that splits its area into two equal
parts. These values are the median values

c+(x, y) = median�C∩B(x,y)(I ),
(28)

c−(x, y) = medianB(x,y)\�C
(I).

The gradient descent equation for the evolving curve C

is

Ct = −δEsl

δC

= −(κgσ − 〈∇gσ ,n〉)n − Ml(I,C(t))(x, y)n, (29)

where

Ml(I,C(t))(x, y) = Ml(I, c+(t), c−(t))(x, y),

where c+(t, x, y), c−(t, x, y) are the median values given in
(28) for the curve C(t).

As described in Appendix 1 the level set formulation of
the gradient descent equation corresponding to (27) is

∂u

∂t
= ‖∇u‖div

(
gσ (I )

∇u

‖∇u‖
)

+ ‖∇u‖Ml(I, [u(t) ≥ 0]). (30)

For computational simplicity, assuming that c+(x′, y′)
and c−(x′, y′) are approximately constant in B(x, y), we
may approximate Ml(C, c+, c−) by

Ml,app(, c+, c−) = λ−V |I (x, y) − c−(x, y)|
− λ+V |I (x, y) − c+(x, y)|,

where V is the area (number of pixels) of the ball B(x, y).
Since V is a constant value, it can be reabsorbed in
the parameters λ+, λ−. In our experiments, we shall use
λ+ = λ− = β . In this case, we use the level set formulation

∂u

∂t
= ‖∇u‖div

(
gσ (I )

∇u

‖∇u‖
)

+ ‖∇u‖Ml,app(I, [u(t) ≥ 0]). (31)

Developing the divergence term we may weight the term
∇gσ (I ) · ∇u with a factor λ as in (20).

An alternative approach could be to use the (local) mean
and the variance of the regions in a similar way as we have
done using the median, by replacing the term Ml by a com-
bination of the following ones

Mm(I,m+,m−)(x, y)

= λm−
∫

�∩B(x,y)

|I (x, y) − m−(x′, y′)|2 dx′dy′

− λm+
∫

�∩B(x,y)

|I (x, y) − m+(x′, y′)|2 dx′dy′, (32)

Mv(I,m+,m−, v+, v−)(x, y)

= λv−
∫

�∩B(x,y)

|(I (x, y) − m−(x′, y′))2

− v−(x′, y′)|dx′dy′

− λv+
∫

�∩B(x,y)

|(I (x, y) − m+(x′, y′))2

− v+(x′, y′)|dx′dy′, (33)

where m−(x, y) is mean of I in B(x, y) \ �C , m+(x, y) is
the mean of I in �C ∩ B(x, y), and v−(x, y) and v+(x, y)

are the corresponding variances in B(x, y) \ �C and �C ∩
B(x, y), respectively.

The median is quite robust to the possible extreme values,
such as those observed when the nodule presents calcifica-
tions. Furthermore, the use of local values allows identify-
ing parts of the contour which present different degrees of
contrast, since the use of global descriptors makes it very
difficult to extract values which allow identifying the whole
contour.

4.2.1 A Variant of Model (31)

We can observe that the last term in (31) is locally isotropic,
since it only depends on the magnitude of ∇u, and not on
its orientation. In order that the behavior of the median in
a neighborhood of the point helps moving the level set in
the right direction in a more explicit way, we have intro-
duced a second alternative, again to be used when our initial
contour is not far from the desired one. We can use the gra-
dient of the distance to guide the evolution of the snake in
order to find those points which are as far from the medi-
ans of such feature in the inner and outer regions. Since we
can be outside or inside the right border, the absolute value
is taken. This alternative considers the variation of the dif-
ference with respect to the medians in the neighborhood of
the points and, consequently, allows tackling the problems
of isolated outlying points and high local variations. If we
consider intensity, this results in the following equation:

∂u

∂t
= ‖∇u‖div

(
gσ (I )

∇u

‖∇u‖
)

+ ∇u · ∇M̂(I,u), (34)

where

M̂(I,u)(x, y) = |λ−|I (x, y) − c−(x, y)|
− λ+|I (x, y) − c+(x, y)||. (35)
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Fig. 9 Example of the use of region information. Left: nodule with diffuse contours. Center: the inner contour is an example of a bad initialization
of the snake. We have computed the values of M for this initialization and we have depicted in dark gray the values which are negative and in light
gray the values which are positive. The outer contour is the validated one provided by the physicians. As observed, the function M changes its sign
very close to the validated contour. Right: we have computed M̂ using the same bad initialization. As observed, the function has a minimum close
to the validated contour provided by the physicians

When M̂(x, y) = 0, the value I (x, y) is equidistant to
the medians of I at the points in the neighborhood of (x, y)

which are outside and inside the snake. On the other hand,
the higher the value of the modulus of ∇M̂ , the farther the
border, and the term ∇u · ∇M̂ will make the contour evolve
towards the border. Figure 9 shows an example with a nod-
ule with diffuse contours for which M and M̂ have been
calculated for a given initialization of the snake which is
far from the validated segmentation provided by the special-
ists. As observed, M changes its sign when approaching the
validated contour, while M̂ has a minimum in that region.
Both, the minimum of M̂ and the sign change of M are much
closer to the right contour (external one) than the initial ap-
proximation for which they have been calculated (internal
one).

4.3 Region Information in Geodesic Active Contours
Using a Vectorial Descriptor

Not only intensity determines the limits of regions. The
texture described by the gray level pattern plays an im-
portant role in delimiting the inner and outer regions, spe-
cially if we work with ultrasound images. As in [8], our
approach considers the responses of a set of Gabor filters
in its vectorial form, and tries to use this information to
obtain a texture-guided segmentation. As in Sect. 4.2, we
have tested two different ways of including this region in-
formation into the active contour equation. The first one
corresponds to the local version of the model introduced
in [8] (see also [10, 34]) (we use a robust term), and aims
at attracting the snakes towards the edges of the texture de-
scription: as in the case of a single feature, we consider,
for every point, the median values of the inner and outer
neighborhoods. For that, for any rectifiable curve C and
functions 
c+(x, y) = (c1+(x, y), . . . , cm+(x, y), 
c−(x, y) =
(c1−(x, y), . . . , cm−(x, y)), we define the energy functional

EG(C, 
c+, 
c−) = Egac(C) + EGml(C, 
c+, 
c−) (36)

where

EGml(C, 
c+, 
c−)

=
∑

1≤i≤m

λi+
∫

�

(∫

�C∩B(x,y)

|I i(x′, y′)

− ci+(x, y)|dx′dy′
)

dxdy

+
∑

1≤i≤m

λi−
∫

�

(∫

B(x,y)\�C

|I i(x′, y′)

− ci−(x, y)|dx′dy′
)

dxdy, (37)

where I i , i = 1, . . . ,m, are the responses to m Gabor filters
of the original image, obtained for different scales, orienta-
tions, and frequencies, and λi+, λi− > 0 are fixed parameters
for each channel. As explained before, the first term is the
usual geodesic active contour term, but here the second and
third terms are region based active contours based on Ga-
bor feature space for the segmentation of textured images
[8, 34]. The energy is minimized with respect to C, 
c+ and

c−. At the minimum, ci+(x, y), ci−(x, y) are the median val-
ues of the Gabor channel I i around (x, y) inside and outside
the curve C, respectively.

As in Sect. 4.2, equating to zero the first variations of
EG(C, 
c+, 
c−) with respect to ci+ and ci−, i = 1, . . . ,m, we
obtain

ci+(x, y) = median�C∩B(x,y)(I
i),

ci−(x, y) = medianB(x,y)\�C
(I i).

Now, computing the first variation of EG(C, 
c+, 
c−) with
respect to C and writing the gradient descent equation for C

Ct = −δE

δC
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in a level set formulation (see Appendix 1) we obtain the
PDE:

∂u

∂t
= ‖∇u‖div

(
gσ (I )

∇u

‖∇u‖
)

+ ‖∇u‖MG(I,u), (38)

where

MG(I,u)(x, y)

=
∑

1≤i≤m

λi−
∫

�∩B(x,y)

|I i(x, y) − ci−(x′, y′)|dx′dy′

−
∑

1≤i≤m

λi+
∫

�∩B(x,y)

|I i(x, y) − ci+(x′, y′)|dx′dy′.

As in Sect. 4.2, if we assume that the functions ci+(x, y),
ci−(x, y), i = 1, . . . ,m, are approximately constant in
B(x, y) we may approximate MG(I,u)(x, y) by

MG,app(I, u)(x, y)

=
∑

1≤i≤m

λi−|I i(x, y) − ci−(x, y)|

−
∑

1≤i≤m

λi+|I i(x, y) − ci+(x, y)|, (39)

where we have normalized the area of B(x, y) to 1 (which
amounts to reabsorb this area in the notation of λi+, λi−)
and consider the PDE (38) with MG(I,u) replaced by
MG,app(I, u). As done with the single feature scheme, we
have also taken λi+ = λi− = β > 0 for any i = 1, . . . ,m.

When MG,app(I, u)(x, y) = 0, the outputs of the Gabor
filters at (x, y) are equidistant from the medians of the out-
puts of the respective filters in the outer and inner regions
of C around (x, y). When MG,app < 0, the outputs at that
point are closer to those outside than to those inside, so that
its value must be decreased. When MG,app > 0, the opposite
occurs and its value must be increased.

4.3.1 A Variant of Model (38)

Recall that our purpose is to identify the contour separating
two regions whose local median responses are different and
separated by a smooth transition of the texture descriptors.
Arguing as in Sect. 4.2.1, if the changes in the texture are
reflected as changes in the filter responses and, if they are
gradual, the contour can be identified as the set of points
where the response is equidistant to the response on both
regions. This leads to the following equation:

∂u

∂t
= ‖∇u‖div

(
gσ (I )

∇u

‖∇u‖
)

+ ∇u · ∇M̂G(I,u0), (40)

where M̂G is given by

M̂G(I,u)x,y = |MG(I,u)(x, y)|. (41)

As in the previous case, when M̂G(I,u)x,y = 0, the out-
puts of the Gabor filters at (x, y) are equidistant to the me-
dians of the outputs of the respective filters in the outer and
inner neighborhoods of (x, y). However, in this case, M̂G

increases as we leave the edges (its gradient points out of
the edges). Consequently, the term ∇u · ∇M̂G(I,u0) moves
the snake towards the edges.

5 Results

The accuracy of the different models which have been pro-
posed has been tested using the manual segmentations car-
ried out by the specialists. The mean distance from the
points in the semi-automatic segmentation to those in the
manual one and vice versa is a suitable measure of the pre-
cision obtained.

Table 1 shows both distances and their mean for the pre-
segmentation schemes proposed above (we have used the
values α = 0.1, λ = 5, σ = 2, β = 0.1, 3 scales and 1000
iterations per scale). The selection of the values for the dif-
ferent parameters depends on the importance that the edge
contrast, the roundness of the contour or the texture pattern
are given. The results of the anisotropic texture-based diffu-
sion (AD) are compared with those of the non-filtered image
(NF) and the truncated median filter (TM) [16] to show the

Table 1 Comparison of the distances to/from the validated manual
segmentation for the presegmentations using different types of filters
(NF = no filtering, TM = truncated median, AD = anisotropic diffu-
sion, RG = region growing, FP = front propagation)

Presegmentation To manual From manual Mean

NF + RG 13.10 10.86 11.98

NF + FP 16.37 14.30 15.34

TM + RG 10.15 10.45 10.30

TM + FP 11.72 7.35 9.53

AD + RG 10.73 10.27 10.50

AD + FP 9.96 4.90 7.43

Table 2 Comparison of the distances to/from the validated manual
segmentation for the geodesic active contours and geodesic active re-
gions (GAC = geodesic active contours, NRI = no region information,
MR = medians of regions, GMR = medians of Gabor features in re-
gions)

Segmentation To manual From manual Mean

Basic GAC 4.10 4.53 4.31

NRI 3.85 4.20 4.03

MR (M(I,u)) 3.85 4.20 4.03

MR (∇M̂(I,u)) 3.92 4.01 3.96

GMR (MG(I,u)) 3.85 4.20 4.03

GMR (∇M̂G(I,u)) 3.85 3.57 3.71
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Fig. 10 Final contour obtained for the nodule in Fig. 1 using the geo-
desic active contours scheme in (41) with Gabor filters from the front
propagation presegmentation (we have used the values α = 0.1, λ = 5,
σ = 2, β = 0.1, 3 scales and 1000 iterations)

accuracy of two types pre-segmentations: a region-growing
algorithm (RG) and the front propagation scheme (FP). On
the other hand, Table 2 compares the same distances once
the geodesic active contours with region information are ap-
plied. The basic geodesic active contours technique (GAC)
is improved by performing more iterations considering dif-

ferent terms. The scheme with no region information (NRI)
is compared with the one described in (27) for median in-
tensity separable regions (MR) using (30) and (34), and with
that described in (38) and (40) for Gabor descriptors medi-
ans (GMR). Figure 10 illustrates the result of applying geo-
desic active regions with Gabor descriptors.

As mentioned above, we have used the local median as
a region descriptor to improve the separation between the
nodule and the surrounding tissues. However, other statis-
tical descriptors could also be used. Figure 11 illustrates
the differences between using the median or a combina-
tion of the mean and the variance as region descriptors. For
that, we extended the terms MG(I,u) or M̂G(I,u) by the
corresponding ones which use the local mean and variance
(see (32) and (33)). The robustness of the median allows
a satisfactory identification of the boundaries, even when
dealing with noisy regions with disturbing values or low
contrast areas. The results obtained using the local mean
and variance are equally satisfactory, though the median was
negligibly better. Furthermore, Fig. 11 shows that the use of
local descriptors, instead of global ones, permits to adjust
the evolution of the snake to the characteristics of the re-
gion, in such a way that those nodules which present a non-
uniform contrast with the surrounding tissues along the con-
tour are also properly delimited. If we use global descriptors,
it is difficult to find representative values which are suitable
for the whole contour, and local descriptors provide better
results.

Fig. 11 Comparison of the use
of the median or the mean and
the variance of the responses of
the Gabor filters as region
descriptors to improve the
location of the edges of the
nodules. From left to right and
top to bottom: local median,
local mean + variance, global
median and global
mean + variance
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Fig. 12 Comparison of the final
segmentations computed using
(40) (white) and the reference
segmentations obtained from the
manually delineated contours
performed by the specialists
(black)

In order to test the accuracy of our results in a large set
of nodules, we have used a set of manually delineated seg-
mentations. We consider a segmentation as the set of 2D
points inside a segmentation curve. Two specialists have
segmented 32 images. Each nodule has been segmented
twice by each specialist in an independent way, i.e., in dif-
ferent days and without considering the first segmentation
when performing the second one, so that 4 manual segmen-
tations are available for each nodule. This allows measur-
ing the intra-observer and inter-observer differences, that is,
the difference between the segmentations performed by the
same physician as well as the difference between segmenta-
tions performed by different physicians.

Furthermore, as we have more than one segmentation to
be considered as our ground truth, a reference segmentation
was extracted by selecting those points which had been in-
cluded in more than two of the four manual segmentations.
Figure 12 shows some examples of the semi-automatic re-
sults and the corresponding reference segmentations. As ob-
served, even if the parameters of the geodesic active con-
tours used for all nodules have been the same, all of them
are result in satisfactory segmentations, which proves the ro-
bustness of these techniques.

Two measures have been used to perform the compar-
isons:

The first one is called coincidence percentage (CP), and
gives us an idea of what proportion of the segmentations is
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Table 3 Results using different semi-automatic approaches: presegmentation, geodesic active contours, geodesic active contours with Gabor-
based texture information and the manual segmentations performed by the physicians are compared with the reference segmentation. The mean,
median and standard deviation for coincidence percentage (CP, see (42)) and proportional distance (PD, see (43)) are shown

CP PD

Median Mean SD Median Mean SD

Presegmentation 83.454 81.615 9.83 6.86 7.85 4.61

Geodesic Active Contours 89.983 87.935 6.93 4.30 5.09 3.08

GAC + Texture 90.445 88.317 6.76 4.24 4.96 2.96

Physicians 94.022 92.897 4.55 2.36 2.91 1.93

Table 4 Intra-observer, inter-observer and system results. In order to compute the intra-observer values, we calculate the mean of the values of CP
and PD when comparing, first, the two segmentations of the first physician, and then, the two segmentations of the second physician. Inter-observer
values are the mean of the comparisons of the segmentations performed by different physicians. The system-physicians values are the mean of the
comparisons of the system’s results with all the manual segmentations. The mean, median ans standard deviation for coincidence percentage (CP,
see (42)) and proportional distance (PD, see (43)) are shown

CP PD

Median Mean SD Median Mean SD

Intra-observer 90.706 89.660 4.30 3.86 4.27 1.75

Inter-observer 89.229 87.774 5.85 4.51 5.12 2.52

System-Physicians 88.849 86.118 8.44 4.95 6.05 4.06

coincident. This is given by the number of pixels in the in-
tersection of both segmentations with respect to the number
of pixels in their union. This is a very intuitive measure, but
does not provide any information about how far the differing
regions are. Thus, a pixel which is in one of the segmenta-
tions and not in the other one, but is very close to it con-
tributes as much as one that is very far from the other seg-
mentation. Let S1 and S2 be two segmentations that we wish
to compare, the percentage of coincidence between both is
given by:

CP(S1, S2) = |S1 ∩ S2|
|S1 ∪ S2| ∗ 100. (42)

The second measure, called proportional distance (PD),
tries to measure, not only if there are differing pixels, but
also how far they are. First, we calculate the mean distance
from the pixels in the contour of one of the segmentations
to the contour of the other one, and vice versa. The mean of
both measures provides an idea of how far both contours are.
However, this is measured in pixels, so that the size of the
nodule and the resolution of the images could affect the re-
sults. That is the reason why we divide it by the square root
of the area of the reference segmentation, so that the distance
is expressed with respect to the size of the nodule. To be able
to express it in a more intuitive way, we introduce the fac-
tor 1/

√
π , since this would be the ratio between the radius

and the square root of the area if the nodule were circular.
This way, the proportional distance reflects what proportion
of the radius of the circle with the same area represents the

distance between both contours. Let S1 and S2 be two seg-
mentations that we wish to compare, let C1 and C2 be their
respective contours, and let RS be the reference segmenta-
tion, the proportional distance between both is given by:

PD(S1, S2) =
∑

xi∈C1
d(xi ,C2)

|C1| +
∑

xi∈C2
d(xi ,C1)

|C2|
2
√

|RS|
π

∗ 100, (43)

where d(x,C) is the distance from the point x to the con-
tour C. As shown, the first measure determines the simi-
larity between both segmentations, whereas the second one
describes the dissimilarity. Consequently, the higher the first
and the lower the second, the more similar the segmentations
are.

Table 3 shows a comparison between the reference
segmentation and three semi-automatic segmentations for
the 32 nodules. Then mean and median of the 32 results
are shown using both measures. The first one is the pre-
segmentation, the second one is the segmentation using
geodesic active contours (20) and the third one is the seg-
mentation using geodesic active regions with texture infor-
mation (see (40)). As observed, the use of GAC provides
a significant improvement with respect to the initial pre-
segmentation. Furthermore, the use of texture information
improves even more the already good results of the GAC.
The last row allows comparing the results for the semiau-
tomatic segmentations with those for the manual segmen-
tations. Of course, as the reference segmentation has been
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extracted from the manual segmentations, the differences
from the latter to the reference one are very small, providing
a measure of the dispersion of the manual results.

Table 4 shows a comparison of the intra-observer and
inter-observer difference with the difference between the
semi-automatic segmentation and all manual segmentations.
As expected, the intra-observer differences are lower than
the intra-observer ones and those are less than the semi-
automatic ones. However, even though the results of the
semi-automatic segmentation are not as good as the man-
ual ones, the differences are small, and we could consider
them as quite satisfactory.

6 Conclusion

We have presented a new approach in the segmentation of
breast tumors in ultrasound images. We use known tech-
niques, such as anisotropic diffusion, balloon methods, Ga-
bor filters or geodesic active contours. The combination of
such techniques, taking advantage of the benefits of each
one, as well as the introduction of certain texture descrip-
tors for a better filtering, pre-segmentation and final seg-
mentation provide quite satisfactory results in the case of
very complex data, such as ultrasound images. First, the pro-
posed anisotropic texture-guided diffusion generates a very
suitable image for the initial segmentation, since diffusion
is performed across the regions which present similar tex-
ture features and inhibited when a change in the descrip-
tors is found. By means of a set of Gabor filters with differ-
ent scales, orientations and frequencies, we obtain a texture-
based region description which allows measuring the simi-
larity between two patterns. The distance in these responses
is used to enhance or inhibit the diffusion.

Secondly, the use of the proposed front propagation
scheme of balloon type, in which gradient information is
used to control the speed of the propagation, produces more
robust initial segmentations. Even if there is no suitable
threshold to identify a closed contour for the nodule, the pos-
sible gaps that may appear do not produce a drastic overflow
in the growing process.

Finally, the use of region information in the evolution of
the snakes allows a more accurate location of the edges of
the tumors. The introduction of texture information in terms
of Gabor filter response allows a more complete descrip-
tion of the regions and, therefore, a more precise location
of their boundaries [34]. The fact that we search for equidis-
tant inner and outer medians, instead of a high gradient in
the edge description, allows locating the edges when they
are blurred, non-uniform or gradual. The numerical experi-
ments are quite promising. The final segmentation obtained
after all proposed phases are very competitive with respect
to the manual segmentation of the nodules performed by the
specialists.

Although these models have been developed for the par-
ticular case of ultrasound images, they could also be ap-
plied to any other type of images. However, the character-
istic speckle noise of these images and the precision nec-
essary for the study of the benign and malignant findings
require a deep texture analysis which could be simplified in
other applications in which textures are more clearly identi-
fied. Thus, the same scheme could be used in many practical
applications for which classical methods do not provide sat-
isfactory results.
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Appendix 1 Level Set Formulation of Geometric Curve
Evolution

Let us briefly recall the implicit level set formulation of the
curve evolution equation

Ct = γ n, (44)

where C(t, s̃) is an evolving curve in R
2, t represents the

time parameter of the evolution, s̃ is a parameterization of C,
n is the outer unit normal to the curve C and γ is the speed
of evolution of the curve which is a function of x (i.e., the
position of the curve) and the geometric quantities n and the
curvature κ of C. We assume that the curve C(t) is a level set
of an evolving function u(t, x, y), (x, y) ∈ R

2. To fix ideas,
let us assume that C(t) is the zero level set of u(t, x, y), and
u(t, x, y) is positive inside the zero level-set, and negative
outside (in some cases, the signed distance function is a pre-
ferred choice). Thus, we have

u(t,C(t)) = 0.

Differentiating the above identity with respect to t we obtain

ut + 〈∇u,Ct 〉 = 0.

Using the relation n = −∇u/‖∇u‖, we have

ut = −〈∇u,Ct 〉 = −〈∇u,γ n〉

= γ

〈
∇u,

∇u

‖∇u‖
〉
= γ ‖∇u‖.

This derivation was the basis of the level set formulation of
geometric curve evolutions and can be found in [29].
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Appendix 2 Numerical Implementation of Active
Contours

Geodesic active contours require a close initialization to
reach the desired contour. Otherwise, the contour would
tend to round and reduce. Many applications ask the user
to manually introduce a set a several dozens of points to
build a polygon which will be used as initial contour. Since
we apply a front propagation algorithm before the snakes,
the pre-segmentation obtained with this technique is used
as initial contour Cinit. Then we define u0 by assigning the
signed distance to the contour Cinit to every point (one could
also simply define a function with two different values inside
and outside Cinit). Then the level set formulation of geo-
desic active contours is used to make the contour evolve.
To discretize (20) we use the explicit discretization scheme
obtained by adapting the standard scheme proposed in [29],
which we simply write as:

un+1
i,j − un

i,j

τ
= gσ (In

ij )div

( ∇un
ij

‖∇un
ij‖

)
‖∇un

ij‖

+ λ∇un
ij · ∇gσ (In

ij ), (45)

where τ > 0.
To obtain gσ (In

ij ), we first use an approximation of the
Gaussian filter, based on the heat equation [1], then we esti-
mate the gradient, and then calculate

gσ (Iij ) = 1√
1 + α‖∇(Iσ )ij‖2

.

For the estimation of the gradients, we use the masks de-
scribed in (8).

As explained in Sect. 4, we use a multiscale implemen-
tation, starting with higher values of σ for the initialization
provided by the pre-segmentation, and reducing it at each
scale. Given a final standard deviation σ0 and a number of
scales Ŝ, the standard deviations used at the different scales
are Ŝσ0, (Ŝ − 1)σ0, . . . , σ0.

In the case of the vectorial descriptor, we compute the
set of Gabor filters by convolving with the corresponding
kernels. From the outputs of these filters, we extract the cor-
responding median values (or mean values when we tested
this case) and compute the term MG,app defined in (39). To
discretize (38) with MG,app in place of MG we adapt again
the standard scheme in [29] and we write:

un+1
i,j − un

i,j

τ

= gσ (In
ij )div

( ∇un
ij

‖∇un
ij‖

)
‖∇un

ij‖

+ λ∇un
ij · ∇gσ (In

ij ) + ‖∇un‖MG,app(In,un),

where τ > 0. We also use the same type of scheme to dis-
cretize (40).
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