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Abstract. Dilation and erosion are the fundamental operations in morphological image processing. Algorithms
that exploit the formulation of these processes in terms of partial differential equations offer advantages for non-
digitally scalable structuring elements and allow sub-pixel accuracy. However, the widely-used schemes from the
literature suffer from significant blurring at discontinuities. We address this problem by developing a novel, flux
corrected transport (FCT) type algorithm for morphological dilation/erosion with a flat disc. It uses the viscosity
form of an upwind scheme in order to quantify the undesired diffusive effects. In a subsequent corrector step we
compensate for these artifacts by means of a stabilised inverse diffusion process that requires a specific nonlinear
multidimensional formulation. We prove a discrete maximum–minimum principle in this multidimensional frame-
work. Our experiments show that the method gives a very sharp resolution of moving fronts, and it approximates
rotation invariance very well.
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1. Introduction

Mathematical morphology is concerned with image
analysis of shapes. It is one of the oldest and most suc-
cessful areas of digital image processing; see e.g. the
textbooks [12, 17, 24, 30–32, 37] and the proceedings
volumes [16, 18, 23, 27, 33, 34, 39] for an overview. Its
fundamental operations are called dilation and erosion.
For some greyscale image f : IR2 → IR and a so-called
structuring element B ⊂ IR2, dilation and erosion are
defined by

dilation: ( f ⊕ B) (x) := sup { f (x−z), z∈ B}, (1)

erosion: ( f � B) (x) := inf { f (x+z), z∈ B}. (2)

They form the basis of many other morphological
processes such as openings, closings, top hats and mor-
phological derivative operators.

While dilation and erosion are frequently imple-
mented by algebraic set operations, for convex struc-

turing elements there is also an alternative formula-
tion in terms of partial differential equations (PDEs)
[1, 2, 8, 40]. Let us consider a convex structuring ele-
ment t B with a scaling parameter t >0. Then, it can be
shown that the calculation of u(x, t) = f ⊕ t B and
u(x, t) = f � t B is equivalent to solving the PDEs

∂t u(x, t) = sup
z∈B

〈z, ∇u(x, t)〉, (3)

∂t u(x, t) = inf
z∈B

〈z, ∇u(x, t)〉, (4)

with f as initial condition [1, 29], respectively. Here,
∇ = (∂x , ∂y)
 denotes the spatial nabla operator, and
〈·, ·〉 is the Euclidean inner product. By choosing, e.g.,
a disc

B := {z ∈ IR2, ‖z‖2 ≤ 1},
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one obtains

dilation: ∂t u = ‖∇u‖2, (5)

erosion: ∂t u = −‖∇u‖2. (6)

The solution at “time” t is the dilation (resp. erosion)
of f with a disc of radius t and center 0 as structuring
element. The Eqs. (5)–(6) need to be supplemented by
an initial condition f with f ∈ L∞(IR2).

The dilation/erosion PDEs (5)–(6) belong to the
class of so-called hyperbolic PDEs, see e.g. [13, 14]
to learn more about partial differential equations. Hy-
perbolic processes decribe evolutions that propagate
information with finite speed, similar as wave prop-
agation. They may create shocks even if the initial
data are smooth, and they require specific numeri-
cal schemes that take into account the propagation
direction and handle shock-like discontinuities in a
graceful manner [21]. Since many hyperbolic PDEs
arise in computational fluid dynamics, it is natural
to derive numerical methods for the dilation/erosion
equations from techniques for hyperbolic conserva-
tion laws. In particular, finite difference methods such
as the Osher–Sethian schemes [25, 26, 35] and the
Rouy–Tourin method [28, 41] are widely-used in this
context.

PDE-based algorithms for dilation/erosion offer two
advantages over classical set-theoretic schemes [2,10,
29]: first of all, they give excellent results for non-
digitally scalable structuring elements whose shapes
cannot be represented correctly on a discrete grid, for
instance discs or ellipses. Secondly, the time t plays the
role of a continuous scale parameter. Therefore, the size
of a structuring element does not need to be multiples
of the pixel size, and it is possible to get results with
sub-pixel accuracy.

On the other hand, the main disadvantage of typi-
cal PDE-based algorithms for mathematical morphol-
ogy consists of the fact that dissipative effects such as
blurring of discontinuities occur. Apart from an inves-
tigation on the usefulness of high-order ENO1 schemes
[36,38], we are not aware of attempts in the literature to
deal with these undesired numerical diffusion artifacts
in PDE schemes for mathematical morphology.

It is the goal of the present paper to address this prob-
lem. For the development of our algorithm, we focus
on the dilation process (5) since the erosion process
can be treated analogously. We develop a new vari-
ant of the flux corrected transport (FCT) technique of
Boris and Book [3–5,19,43] introduced in the context
of fluid flow simulation. Our FCT scheme is used for

approximating one- and two-dimensional morphologi-
cal processes in an accurate and rotationally invariant
fashion, an extension of the formulae we use to higher
dimensions is straightforward. The aim of this paper
is especially to give a detailed derivation and a sound
mathematical basis for the general n-dimensional al-
gorithm.

Related Work. The general idea behind the FCT tech-
nique is to compute in a first step the evolution with
a scheme that may incorporate much numerical dif-
fusion. Afterwards, this diffusion is annihilated in a
proper fashion by applying a stabilised inverse diffu-
sion step, sometimes also named antidiffusion. In con-
ventional FCT methods, see especially [5], the amount
of antidiffusion which is to be applied is basically de-
termined by means of the so-called modified equation
of the diffusive basis methods, see for instance [15,21]
for details concerning this notion. In some newer works
mainly concerned with finite element schemes, anti-
diffusion fluxes are computed by algebraic properties
of the entries of corresponding stiffness matrices, see
e.g. [20] and the references therein. We employ a dif-
ferent approach motivated by the theory of numerical
methods for conservation laws, compare e.g. [15]: we
construct our FCT scheme considering the viscosity
form of the underlying method. By the use of this form
we can effectively eliminate the influence of the numer-
ical viscosity due to the spatial derivative. It turns out
that our scheme provides a much sharper resolution in
comparison with the schemes proposed by Osher and
Sethian [26]. Let us note that in contrast to the classi-
cal works of Boris, Book and their collaborators, we
derive the essential information for our algorithms on
the discrete basis, while compared to the approach of
Kuzmin and Turek [20] our proceeding is technically
relatively simple.

Furthermore, both mentioned FCT approaches rely
on an underlying additive splitting of the backward
diffusion into fluxes between computational nodes: es-
pecially in the multidimensional case, the mentioned
works proceed along the considerations of Zalesak
[42]. In contrast, our genuinely multidimensional ap-
proach yielding directly the desired rotational invari-
ance uses the dimensional dependent nonlinear form
of the numerical viscosity. This proceeding is to our
knowledge not explored up to now within the literature.
However, its usefulness and simplicity is immediately
evident in the image processing context presented here.

The algorithm we develop in our paper is close
in spirit to a recent conference contribution by us,
where we developed a FCT approach for three
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one-dimensional model equations for numerical con-
servation laws [7]. However, it should be noted that
the dilation/erosion PDEs we are investigating in our
present paper cannot be written in conservation form,
and that we do not restrict ourselves to the 1–D case.

Organisation of the Paper. Our paper is organised as
follows. In the next section we introduce our novel FCT
scheme for the dilation process in the 1-D case, where
we describe the upwind scheme as predictor, and in-
troduce an inverse diffusion algorithm as corrector. We
illustrate its behaviour by an experiment and establish
stability results in terms of a maximum principle. Sec-
tion 4 extends these investigations to the 2-D case, and
we consider some 2-D numerical tests. The paper is
concluded with a summary in Section 5.

2. Existing Algorithms

As already meantioned, prominent PDE-based algo-
rithms for the dilation equation are the first- and
second-order methods of Osher and Sethian [25, 26,
35], and the first-order scheme of Rouy and Tourin
[28, 41], see also [9, 22] for related work and discus-
sions.

For the dilation equation

∂t u = ‖∇u‖2 = (
(∂x u)2 + (∂yu)2)1/2

(7)

the Rouy–Tourin scheme is given by

U n+1
i, j

= U n
i, j + λ

((
max

(
0, U n

i+1, j −U n
i, j , U n

i−1, j −U n
i, j

))2

+ (
max

(
0, U n

i, j+1−U n
i, j , U n

i, j−1−U n
i, j

))2)1/2
,

(8)

and the first-order Osher–Sethian upwind scheme can
be written as

U n+1
i, j = U n

i, j + λ
((

max
(
0, U n

i+1, j − U n
i, j

))2

+(
max

(
0, U n

i−1, j − U n
i, j

))2

+(
max

(
0, U n

i, j+1 − U n
i, j

))2

+(
max

(
0, U n

i, j−1 − U n
i, j

))2)1/2
. (9)

Thereby, we use as in the following the notation U for
discrete data, in contrast to the analytical solution u,

Table 1. Average L1-errors of numerical solutions approx-
imating the true solution given in Fig. 1(b). The grey value
range is from 0 to 255.

Average L1-error
Scheme per pixel

Osher–Sethian 1st order 4.66
Osher–Sethian 2nd order 4.76

new FCT 0.96

and we denote the ratio of mesh sizes �t and �x in
t and x direction by λ = �t/�x . We assume that
�x = �y. The upper index k in U k

l,m denotes as
usual the temporal level k�t while, analogously, the
lower indices l, m ∈ Z specify the spatial mesh point
(l�x, m�y).

As indicated, the mentioned work of Osher and
Sethian does not only deal with first-order upwind-
ing, it also allows high-order variations. However,
computational results are in the dilation/erosion case in
practice comparable to the results of first-order integra-
tion, see Table 1, and thus we do not discuss high-order
variants here.

We test the mentioned approaches comparing al-
ready with the scheme developed in this paper by use
of a scenario that is sensitive to failures in the rota-
tional invariance of a method, namely the dilation of
a disc. Figure 1(a) shows the initial value of the di-
lation process, given by a representation of an exact
circle with a radius corresponding to exactly 25 pixels
(computed by subdividing each pixel into 100 × 100
subpixels and integrating the arising contributions).
The circle is supposed to grow in a uniform fashion
while the circular shape is preserved; the exact solu-
tion where the radius has grown by 10 pixels is shown in
Fig. 1(b). In Fig. 1(c) we see the initial image evolved
by the Osher–Sethian algorithm yielding a rotation-
ally invariant, but somewhat blurred solution. The re-
sult of the Rouy–Tourin method is identical for this
case (they are both identical in this test case to first-
order upwinding). By Fig. 1(d) we give in comparison
the result from the new FCT method we describe in
this work. In order to assess the quality of the meth-
ods, we also give in Table 1 the L1-errors between
exact and computed solutions, including the one we
obtain by use of the second-order scheme of Osher and
Sethian (not displayed here as it is not substantially dif-
ferent than the first-order solution) where we have used
for time integration as proposed in [26] the method of
Heun.
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Figure 1. (a) Top left: Initial image, 128×128 pixels. (b) Top right: Dilated image. (c) Bottom left: Dilation by the first-order upwind scheme
(�x = �y = 1, �t = 0.5, 20 iteration). (d) Bottom right: Dilation by the new FCT scheme developed in the following (same parameters).

3. The One-Dimensional FCT Algorithm

We start our one-dimensional investigations in this sec-
tion with a review of the essential properties of an
upwind scheme for a general hyperbolic first-order
PDE. Afterwards, we derive its specific structure for
the case of a dilation equation and identify it with the
Rouy–Tourin scheme. This scheme serves as first step
in our FCT algorithm. In a second step we construct a
suitable inverse diffusion step in order to compensate
for the numerical viscosity that has been introduced by
the upwind scheme. Finally we prove a discrete maxi-
mum principle for the FCT scheme.

3.1. The General Upwind Scheme in 1-D

The underlying method for our new FCT technique
is the classical upwind scheme. For a general one-
dimensional hyperbolic first-order PDE ut +( f (u))x =
0 with f ′(.) ≥ 0 it can be written as

U n+1
j = U n

j − λ
(

f
(
U n

j

) − f
(
U n

j−1

) )
(10)

with the notations from the previous section. If f ′(.) <

0 the upwind scheme is given by

U n+1
j = U n

j − λ
(

f
(
U n

j+1

) − f
(
U n

j

) )
. (11)

The upwind scheme has a number of favourable stabil-
ity properties, i.e., the scheme mimics important prop-
erties of the underlying PDE on the discrete level. They
can be summarised as follows:

Proposition 3.1 (Stability Properties of the Upwind
Scheme). Under the usual CFL stability condition,2 the
upwind scheme is a local extremum diminishing (LED)
scheme. It does not introduce new extrema during a
computation, i.e., it diminishes also the number of ex-
trema (NED property). Moreover, the upwind scheme
satisfies a discrete maximum–minimum principle: for
all indices j and n in use holds

min
i

(
U 0

i

) ≤ U n
j ≤ max

i

(
U 0

i

)
.
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Let us note, that stability in terms of a minimum-
maximum principle is strongly linked to stability in
the L∞-norm. It is a useful concept in the nonlinear
setting, which we need to address in the case of the
PDEs of dilation/erosion, where classical stability no-
tions as von Neumann-stability are no longer appli-
cable. Moreover, in the context of image analysis, it
implies that no over- and undershoots can occur. The
proofs of the validity of the mentioned properties of
the upwind scheme are simple, see for instance [7,15]
in the context of numerical schemes for conservation
laws.

While the upwind scheme can also be shown to ap-
proximate the entropy solution3 of the underlying PDE,
it has a severe disadvantage: it suffers from undesirable
blurring effects aka numerical viscosity. To quantify
these viscous artifacts we write the scheme (10) in its
viscosity form, i.e.,

U n+1
j = U n

j − λ

2

(
f
(
U n

j+1

) − f
(
U n

j−1

))
(12)

+ Qn
j+1/2

2

(
U n

j+1 − U n
j

) − Qn
j−1/2

2

(
U n

j − U n
j−1

)
.

(13)

The basic idea behind this decomposition is to con-
sider the part (12) of the method as a second-order
approximation in space (and first order in time) of the
underlying process, while part (13) is (in leading or-
der) the discrete counterpart of the numerical diffusion
incorporated in the scheme introduced by the spatial
approximation.

One easily verifies that (10), (12) and (13) can
be made identical by choosing viscosity coefficients
Qn

j+1/2 and Qn
j−1/2 that satisfy

Qn
j+1/2 = λ

f n
j+1 − f n

j

U n
j+1 − U n

j

and

Qn
j−1/2 = λ

f n
j − f n

j−1

U n
j − U n

j−1

(14)

for U n
k+1 �= U n

k , k ∈ { j, j − 1}, and f l
i := f (Ul

i ). By
the prerequisite f ′(.) ≥ 0 necessary to apply an up-
winding in the fashion (10), it is ensured that the vis-
cosities Qn

j±1/2 are nonnegative. The resulting numer-
ical diffusion is responsible for undesirable blurring
effects that are observed with this first-order method.
Exactly the terms corresponding to (13), (14) will be
negated in a suitable way during a subsequent, sta-
bilised inverse diffusion step of the FCT routine.

Let us note that, although the viscosities Qn
j±1/2 in

(14) are nonlinear for general f , we will see that in
the case of dilation and erosion processes they are in
fact simply constants determined by the chosen space-
time mesh. Nonlinear effects arise due to the required
invariance under rotations as will be discussed in the
section on the 2-D model.

3.2. The FCT Scheme for 1-D Dilation

We now derive the 1-D algorithm for dilation. The cor-
responding scheme for erosion can be constructed and
discussed analogously.

3.2.1. The Formulation of the 1-D Upwind Basis
Scheme. Let us define abbreviate notions for the one-
sided discrete differences

�U k
j+1/2 := U k

j+1 − U k
j (15)

and for the centered discrete differences

�U k
j := U k

j+1 − U k
j−1. (16)

In order to clarify the basic idea, let us point out ex-
plicitly, that a proper scheme describing the dilation
process (5) satisfies the following

Principle 3.1 (Discrete Evolution Principle of the
Dilation Process). In order to reflect the proper-
ties of the analytical dilation operator, the follow-
ing properties need to be satisfied on the discrete
level:

• In regions of (strictly) monotone data, the flow is
directed from lower to higher grey values.

• Local minima are increased, while local maxima are
maintained.

For the development of our 1-D algorithm, it is useful
to fix the attention to a particular spatial index j and to
consider a diversion of cases with respect to the data
situations one may encounter.

Case 1. �U n
j−1/2 ≥ 0 and �U n

j+1/2 > 0.
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For this case, the upwind scheme and its viscosity
form read

U n+1
j = U n

j + λ
(
U n

j+1 − U n
j

)
= U n

j + λ

2

(
U n

j+1 − U n
j−1

)
︸ ︷︷ ︸

(a)

+ λ

2

(
U n

j+1 − U n
j

) − λ

2

(
U n

j − U n
j−1

)
︸ ︷︷ ︸

(b)

. (17)

As indicated, (17)(a) is a second-order accurate approx-
imation of �t |ux |, while (17)(b) implies Qn

j±1/2 = λ

in the investigated case.

Case 2. �U n
j−1/2 < 0 and �U n

j+1/2 ≤ 0.
Here the upwind scheme and its viscosity form read

U n+1
j = U n

j + λ
(
U n

j−1 − U n
j

)
= U n

j + λ

2

(
U n

j−1 − U n
j+1

)
+ λ

2

(
U n

j+1 − U n
j

) − λ

2

(
U n

j − U n
j−1

)
, (18)

revealing the same structure as in (17), but the approx-
imation of �t |ux | is different here.

Case 3. �U n
j−1/2 < 0 and �U n

j+1/2 ≥ 0.
The investigated case especially incorporates the sit-

uation

�U n
j−1/2 < 0 and �U n

j+1/2 > 0,

i.e., a local minimum is located at the index j . Analo-
gously to the proceeding within the Rouy–Tourin algo-
rithm [28, 41], we choose the direction of the dilation
flow according to the largest gradient, i.e.,

U n+1
j = U n

j + λ max
(
U n

j+1 − U n
j , U n

j−1 − U n
j

)︸ ︷︷ ︸
:=�̃U n

j

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
U n

j + λ
2 �U n

j + λ
2 �U n

j+1/2 − λ
2 �U n

j−1/2

if �̃U n
j = U n

j+1 − U n
j ,

U n
j − λ

2 �U n
j + λ

2 �U n
j+1/2 − λ

2 �U n
j−1/2

if �̃U n
j = U n

j−1 − U n
j .

(19)

Note that this choice is not simply a matter of discrete
modeling, it is also perfectly reasonable since

±λ

2
�U n

j = λ

2

(
U n

j±1 − U n
j∓1

) ≈ �t |ux |
for �̃U n

j = U n
j±1 − U n

j

is also a second-order accurate approximation of the
dilation process at a local minimum of the data.

Case 4. �U n
j−1/2 ≥ 0 and �U n

j+1/2 ≤ 0.
Here, according to the formulated Principle 3.1, we

set

U n+1
j := U n

j . (20)

Summary of Cases I to IV: Having finished the con-
sideration of all possible cases, we can formulate the
upwind scheme as follows:

U n+1
j

=
⎧⎨⎩U n

j for �U n
j−1/2 ≥ 0, �U n

j+1/2 ≤ 0,

U n
j + λ

2

∣∣�U n
j

∣∣ + λ
2 �U n

j+1/2 − λ
2 �U n

j−1/2, else.

(21)

The scheme (21) is, because of its treatment of local
minima, identical with the 1-D version of the already
mentioned Rouy–Tourin method, which is derived in a
completely different fashion for the 2-D case. Thereby,
for the 1-D case, the CFL stability condition reads�t ≤
�x .

By the form (21) we have gained that we can iden-
tify the incorporated numerical viscosity arising by our
approximation of the spatial derivative. Neglecting the
influence of the first-order temporal approximation, we
refer to the viscosity identified in the above fashion as
the numerical viscosity of our scheme.

In order to illuminate the properties of the method
(21), we apply it without further modification at a sim-
ple 1-D test problem depicted in Fig. 2. We clearly
observe the desired dilation process, however, the nu-
merical solution is fairly blurry.

3.2.2. The 1-D FCT Step. Now we turn to the FCT
methodology. For this, we use in the following the data
notions:

• U n+1/2
j for the data obtained by the upwind scheme

starting from U n
j ,

• U n+1
j for the data obtained after the inverse diffusion

step.
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Figure 2. Oscillatory initial data and its dilation computed using
the described first-order upwind scheme (21) (�x = 1, �t = 0.4,
15 iterations).

When applying an inverse diffusion algorithm, it is evi-
dent that one has to incorporate a means of stabilisation.
We would like to mention the

Principle 3.2 (of Boris and Book [3]). No antidiffu-
sive flux transfer of mass can push the density value
at any grid point beyond the density value at neighbor-
ing points.

The traditional FCT scheme realises this principle
by computing antidiffusive fluxes g̃ j±1/2, so that

U n+1
j = U n+1/2

j − g̃ j+1/2 + g̃ j−1/2 (22)

follows. Thereby, Boris and Book use

g̃ j+1/2

:= minmod
(
�U n+1/2

j−1/2 , η j+1/2�U n+1/2
j+1/2 ,�U n+1/2

j+3/2

)
,

(23)

minmod(a, b, c)

:= sign (b) max(0, min(sign (b)a, |b|, sign (b)c)),

(24)

where η j+1/2 is obtained by an analysis of the modified
equation, i.e., it is determined on the differential level;
see especially [5].

In 1-D, our proceeding is similar. However, we
negate as indicated the diffusion computed by the dis-
crete viscosity form introduced before.

Thus, we realize Principle 3.2 ensuring the stability
of the backward diffusion step by introducing stabilised
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Figure 3. Oscillatory initial data together with (continuous line)
the exact solution of the dilation process and (boxes) the new FCT
scheme (�x = 1, �t = 0.4, 15 iterations).

inverse diffusion terms of type

g j+1/2

:= minmod
(
�U n+1/2

j−1/2 ,
λ

2
�U n+1/2

j+1/2 , �U n+1/2
j+3/2

)
(25)

leading here, i.e., in 1-D, to the correction formula

U n+1
j = U n+1/2

j − g j+1/2 + g j−1/2. (26)

Thereby, in (25), as the index of g indicates, the middle
argument of the minmod-function corresponds to the
viscous flux between the cells j and j + 1 as identi-
fied by our previous analysis, while the left and right
arguments are responsible for stabilisation. For a more
detailed analysis of the role of the minmod-function,
see [6].

We can apply our FCT algorithm incorporating (i)
the evolution step performed by the method (21) and (ii)
the correction step (26) again at our 1-D test case. For
the same computational parameters as before, we see in
Fig. 3 the initial data together with the solution obtained
using the new FCT scheme. Note the sharp profiles of
discontinuities obtained using the latter method while
the location of fronts is captured correctly due to the
properties of the underlying upwind scheme.

Let us remark, that due to the use of the upwind
scheme as basis method, some viscous arefacts in-
evitably survive, e.g., in the presence of gaps, see Fig. 4.
The gap displayed there has a width of 11 pixels, and
thus the exact solution at t = 5 features a gap of exactly
one pixel. However, at t = 5 the computed solution has
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Figure 4. Initial data describing a gap, together with computed
results using the new FCT scheme at (squares) t = 4 and (stars)
t = 5, respectively (�x = 1, �t = 0.5).

already closed it to some degree. This is the price one
has to pay for the correct propagation described by up-
winding.

3.2.3. Stability of the 1-D FCT Scheme. In the con-
text of morphological dilation processes, useful stabil-
ity notions are a global discrete maximum principle as
well as a local discrete extremum principle. We do not
deal explicitly with minima since these are treated by
the construction of the method in the usual fashion,
increasing them. We proceed with the

Proposition 3.2 (Local Extremum Principle).
Let

sign
(
�U n+1/2

k+1/2

)
= sign

(
�U n+1/2

k−1/2

)
�= 0 (27)

hold. Then the FCT scheme defined by

U n+1
j = U n+1/2

j − g j+1/2 + g j−1/2 (28)

using g from (25) satisfies locally a discrete maximum–
minimum principle:

U n+1
j ≥ min

(
U n

j−2, U n
j−1, U n

j , U n
j+1, U n

j+2

)
(29)

and

U n+1
j ≤ max

(
U n

j−2, U n
j−1, U n

j , U n
j+1, U n

j+2

)
. (30)

Proof: Since the upwind basic scheme satisfies a dis-
crete maximum–minimum principle, is is sufficient to

show the validity of

U n+1
k ∈ conv

(
U n+1/2

k−1 , U n+1/2
k , U n+1/2

k+1

)
where the convex hull conv denotes the set of all convex
combinations:

U n+1
k ∈

1∑
i=−1

αiU
n+1/2
k+i ,

1∑
i=−1

αi = 1 , αi ≥ 0.

The crucial observation is, that for the assumption (27)
the flux contributions

−g j+1/2 and + g j−1/2

defined by (25) have opposite sign, i.e., even if, for
instance, in the case U n+1/2

j > U n+1/2
j−1 , we have within

the estimation

U n+1/2
j − g j+1/2 ≥ U n+1/2

j − �U n+1/2
j−1/2

= U n+1/2
j − (

U n+1/2
j − U n+1/2

j−1

) = U n+1/2
j−1

in the worst case the validity of the exact equality

U n+1/2
j − g j+1/2 = U n+1/2

j−1 .

In any case, the contribution due to +g j−1/2 pushes the
resulting value back into the interior of the convex hull
of the values U n+1/2

j , U n+1/2
j−1 :

U n+1
j = U n+1/2

j − g j+1/2 + g j−1/2

worst case= U n+1/2
j−1 + g j−1/2︸ ︷︷ ︸

≥0︸ ︷︷ ︸
∈conv

(
U n+1/2

j−1 , U n+1/2
j

)
≤ U n+1/2

j−1 + λ

2

(
U n+1/2

j − U n+1/2
j−1

)
=

(
1 − λ

2

)
U n+1/2

j−1 + λ

2
U n+1/2

j ,

imposing the stability condition λ ≤ 2 which is sat-
isfied for the upwind scheme anyway. The other pos-
sible cases can be treated analogously, concluding the
proof.

Because of the properties of the minmod function,
the core of the proof also works without the assumption
(27). Thus we can give directly the desired
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Corollary 3.1 (Global Maximum Principle) . The in-
vestigated scheme satisfies globally a discrete maxi-
mum principle.

As indicated, the erosion process can be investigated
analogously, yielding a global discrete minimum prin-
ciple and a local discrete extremum principle.

4. The Two-Dimensional FCT Algorithm

Let us now extend the one-dimensional analysis of the
preceding section to the two-dimensional case. Also
here, we only discuss the dilation process in detail.

4.1. The General Upwind Scheme in 2-D

The basis of the 2-D algorithm is a straightforward
extension of the 1-D scheme. Since the underlying PDE
reads as

∂t u = ‖∇u‖2 =
√

|∂x u|2 + ∣∣∂yu
∣∣2

, (31)

which, notably, incorporates an additive splitting of the
terms constituted solely on ux and uy , respectively,
we can simply employ the corresponding 1-D upwind
expressions to obtain the basic 2-D upwind scheme for
dilation processes with a disc.

In order to define this scheme, let us give the abbre-
viations

dU n
i := λ

2

∣∣U n
i+1, j − U n

i−1, j

∣∣ + λ

2

(
U n

i+1, j − U n
i j

)
−λ

2

(
U n

i j − U n
i−1, j

)
, (32)

dU n
j := λ

2

∣∣U n
i, j+1 − U n

i, j−1

∣∣ + λ

2

(
U n

i, j+1 − U n
i j

)
−λ

2

(
U n

i j − U n
i, j−1

)
, (33)

�U k
i, j+1/2 := U n

i, j+1 − U k
i j and

�U k
i+1/2, j := U n

i+1, j − U k
i j . (34)

Introducing then also

DU n
i :=

{
0 for �U n

i−1/2, j ≥0 and �U n
i+1/2, j ≤0,

dU n
i else,

(35)

DU n
j :=

{
0 for �U n

i, j−1/2 ≥0 and �U n
i, j+1/2 ≤0,

dU n
j else,

(36)

then the scheme reads

U n+1
i j = U n

i j +
√(

DU n
i

)2 + (
DU n

j

)2
. (37)

For the scheme (37) again Proposition 3.1 holds, en-
suring reasonable properties of the method.

As in the 1-D case, one can apply the method (37)
without further modification, compare Fig. 1. However,
as already indicated, any numerical solution is fairly
blurred at the edges incorporated in an image. Note, that
the rotational invariance of the scheme (37) is obvious
due to the consideration of the 2-norm.

For the application of a FCT strategy, it is crucial
to observe that there is no general way to extract the
discrete viscosity terms out of the square root in (37).
This is exactly the reason why we have to go a different
way which distinguishes our scheme from other FCT
schemes in the multidimensional setting. Note also,
that we can now understand that our proceeding in the
1-D case has the character of the treatment of a special
case: in 1-D, the ∂yu-type terms in (37) can be omit-
ted, so that finally—after taking

√
(·)2—the discrete

viscosity terms can be separated directly in an additive
fashion from the second-order discretisation of |∂x u|.

4.2. The FCT Formulation

For the derivation of the FCT formulation it is only
necessary to consider the non-maximum case of (37) as
extrema will be detected automatically by the minmod-
stabilisation, i.e., we have to treat

U n+1
i j = U n

i j +
√(

dU n
i

)2 + (
dU n

j

)2
, (38)

in order to derive our 2-D FCT scheme for dilation.
Essential for the definition of our FCT procedure is

to split a viscous part from a second-order part. Thus,
we add zero in (38) obtaining

U n+1
i j

= U n
i j +

√(
dU n

i

)2 + (
dU n

j

)2

+
√(

λ

2

∣∣U n
i+1, j − U n

i−1, j

∣∣)2

+
(

λ

2

∣∣U n
i, j+1 − U n

i, j−1

∣∣)2

−
√(

λ

2

∣∣U n
i+1, j − U n

i−1, j

∣∣)2

+
(

λ

2

∣∣U n
i, j+1 − U n

i, j−1

∣∣)2

.

(39)
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Consequently, we now identify the viscous part as

−
√(

λ

2

∣∣U n
i+1, j − U n

i−1, j

∣∣)2

+
(

λ

2

∣∣U n
i, j+1− U n

i, j−1

∣∣)2

+
√(

dU n
i

)2+(
dU n

j

)2
,

while

U n+1
i j

= U n
i j +

√(
λ

2

∣∣U n
i+1, j − U n

i−1, j

∣∣)2

+
(
λ

2

∣∣U n
i, j+1− U n

i, j−1

∣∣)2

defines the separated (spatial) second-order part.
Note that the viscous part is now nonlinear and it

cannot be split up additively further into viscous fluxes
due to the dimensional influence. For the FCT proce-
dure, it must be handled as one block.

Analogously to (32), (33), we now introduce the ab-
breviations

gi+1/2, j

:= minmod

(
�U n+1/2

i−1/2, j ,
λ

2
�U n+1/2

i+1/2, j , �U n+1/2
i+3/2, j

)
,

(40)

gi, j+1/2

:= minmod

(
�U n+1/2

i, j−1/2,
λ

2
�U n+1/2

i, j+1/2, �U n+1/2
i, j+3/2

)
.

(41)

Following then consequently the FCT strategy, we de-
fine

Qn+1/2
h

:=
√(

λ

2

∣∣U n+1/2
i+1, j − U n+1/2

i−1, j

∣∣)2

+
(

λ

2

∣∣U n+1/2
i, j+1 − U n+1/2

i, j−1

∣∣)2

,

(42)

Qn+1/2
l

:=
√(

δU n+1/2
i

)2 + (
δU n+1/2

j

)2
, (43)

where the stabilised backward diffusive fluxes are in-

corporated by

δU n+1/2
i := λ

2

∣∣U n+1/2
i+1, j − U n+1/2

i−1, j

∣∣+ gi+1/2, j − gi−1/2, j ,

(44)

δU n+1/2
j := λ

2

∣∣U n+1/2
i, j+1 − U n+1/2

i, j−1

∣∣+ gi, j+1/2− gi, j−1/2,

(45)

and we correct the 2-D viscous basis scheme (37) by

U n+1
i j = U n+1/2

i j + Qn+1/2
h − Qn+1/2

l (46)

using a notation analogously to the one in the preceding
section.

We test our new FCT dilation scheme by considering
the real-world test image from Fig. 5. As in the case
documented by Fig. 1(d) the FCT dilation algorithm
gives the desired sharp resolution.

4.3. Stability in 2-D

We now investigate the crucial stability properties of
the method, meaning the validity of a local extremum
principle and a global discrete maximum principle,
respectively. As indicated, the major difficulty in the
2-D case is imposed by the nonlinearities due to the
dimensional influence in (42)–(45).

Theorem 4.1 (Local Extremum Principle). The de-
scribed FCT dilation scheme (46) satisfies locally a
discrete maximum–minimum principle.

Proof: It is useful to introduce the abbreviations

αi := λ

2

∣∣∣U n+1/2
i+1, j − U n+1/2

i−1, j

∣∣∣ ,

α j := λ

2

∣∣∣U n+1/2
i, j+1 − U n+1/2

i, j−1

∣∣∣ , (47)

βi := gi+1/2, j − gi−1/2, j , β j := gi, j+1/2 − gi, j−1/2,

(48)

for defining the vectors

�α := (
αi , α j

)T
and �β := (

βi , β j
)T

. (49)

Using (48)–(49), we can rewrite Qn+1/2
h and Qn+1/2

l
from (42) and (43) as:

Qn+1/2
h = ‖�α‖2, Qn+1/2

l = ‖�α + �β‖2, (50)
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Figure 5. (a) Left: Initial image, 256 × 256 pixels. (b) Right: Dilation computed by our new FCT scheme (�x = �y = 1, �t = 0.5, 30
iterations).

and the updated formula (46) reads

U n+1
i j = U n+1/2

i j + ‖�α‖2 − ‖�α + �β‖2. (51)

Concerning a further analysis of (51), let us point out
that we have on the one hand

‖�α‖2 − ‖�α + �β‖2 = ‖�α + �β − �β‖2 − ‖�α + �β‖2

≤ ‖�α + �β‖2 + ‖�β‖2 − ‖�α + �β‖2

= ‖�β‖2, (52)

while we can also easily deduce

‖�α‖2 − ‖�α + �β‖2 ≥ ‖�α‖2 − (‖�α‖2 + ‖�β‖2) = −‖�β‖2.

(53)
Assembling (52) and (53), we obtain∣∣‖�α‖2 − ‖�α + �β‖2

∣∣ ≤ ‖�β‖2. (54)

For convenience, let us for the moment assume that

sign
(
�U n+1/2

i+1/2, j

) = sign
(
�U n+1/2

i−1/2, j

) �= 0, (55)

sign
(
�U n+1/2

i, j+1/2

) = sign
(
�U n+1/2

i, j−1/2

) �= 0 (56)

hold. Furthermore, let us consider local data maxima

U n+1/2
i+1, j > U n+1/2

i j > U n+1/2
i−1, j and

U n+1/2
i, j+1 > U n+1/2

i j > U n+1/2
i, j−1 . (57)

By the construction of the flux function g, see (40)
and (41), we can transfer directly the argument of the

proof of Lemma 3.2 in order to see that ‖�β‖2 is limited
by

λ

2

√(
U n+1/2

i+1, j − U n+1/2
i j

)2 + (
U n+1/2

i, j+1 − U n+1/2
i j

)2
.

(58)
Taking the maximum out of the differences �U n+1/2

i+1/2, j

and �U n+1/2
i, j+1/2 occuring in (58), it follows that the an-

tidiffusive flux contributions can be estimated via

λ

2

√
2 max

(
U n+1/2

i+1, j −U n+1/2
i j , U n+1/2

i, j+1 −U n+1/2
i j

)
, (59)

i.e., we obtain the validity of a local discrete maximum
principle under the condition

λ

2

√
2 ≤ 1 ⇔ λ ≤

√
2

which is satisfied anyway by the CFL condition of the
upwind scheme which reads in 2-D as λ ≤ 1/

√
2.

Remarks

(a) Let us note that, by construction, the proof of The-
orem 4.1 can easily be extended to higher dimen-
sions.

(b) By our derivation of the algorithm and by the proof
of Theorem 4.1, it is clear that the crucial restriction
imposed on the time step size is due to the CFL
condition for the upwind scheme, and not due to
the antidiffusion step.

(c) The above procedure can easily be employed ana-
logously for the erosion process, see Fig. 6 where
we used the resulting 2-D FCT erosion scheme.
Thus, for both dilation and erosion we obtain a
discrete maximum–minimum principle as well as
a global extremum principle, respectively.
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Figure 6. Initial image (left) together with a snapshot of the erosion process with our FCT scheme, here with �x = �y = 1, �t = 0.5, and
10 iterations.

Within Fig. 7 we demonstrate the convergence prop-
erties of the erosion scheme. We observe that the nu-
merical errors vanish when refining the grid. Espe-
cially, the shape of the circle becomes more rotational
invariant during the refinement process: this shows the
consistency of the method to the underlying rotational
invariant PDE.

We now test both the dilation/erosion schemes by
means of two additional synthetical examples, see
Figs. 8 and 9. By the square test we especially observe
the role of the structure element, also, we see that the
borders between different regions of grey values are
very sharp.

The triangle experiment employs an integration up
to t = 2.5, i.e., the result is a result where sub-pixel
accuracy is mandatory. Also here, we see the influence
of the structure element and the sharp resolution of our
method.

5. Summary and Conclusions

We have presented a novel FCT type algorithm for
morphological dilation and erosion processes with a
disc as structuring element. It features the desirable
properties of rotational invariance and sharp resolu-
tion. Moreover, the algorithm can easily be extended
to a higher-dimensional setting while retaining these
qualities. Technically, we have employed an unconven-
tional nonlinear genuinely multidimensional formula-
tion of antidiffusive fluxes in order to achieve these
goals. The resolution of the new method outperforms
the Rouy-Tourin and Osher-Sethian schemes that are
frequently used in PDE-based mathematical morphol-
ogy. Compared to other FCT approaches the scheme
is competitive, while we rely on the discretisation of

Figure 7. Top row: Exact erosion solution (left) of the disc dis-
played in Fig. 1 (a), together with (right) numerically eroded disc
by our FCT scheme with �x = �y = 1, �t = 0.5, and 20 itera-
tions. Middle row: Rescaled difference mappings. (Left) Between
the above figures. (Right) Between corresponding figures where the
solution is computed on a finer grid, �x = �y = 0.25. Bottom
row: Rescaled difference mappings of further refinements. (Left)
For �x = �y = 0.125. (Right) For �x = �y = 0.03125.

the underlying PDE. Our work has addressed the main
shortcoming of PDE-based morphological algorithms
and makes their resolution at shock fronts comparable
to set-based morphological schemes.
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Figure 8. Top: Initial image, 120×360 pixels. 2nd from top: Dila-
tion computed by our new FCT scheme (�x = �y = 1, �t = 0.5,
10 iterations). 3rd from top: Erosion computed using the dilated
image as initial condition (same parameters). Bottom left: Zoom into
2nd image from top. Bottom right: Zoom into 3rd image from top.

In our ongoing research we study extensions of
this FCT appoach to morphological PDEs with other
non-digitally scalable structuring elements such as
ellipses.

Appendix

For the convenience of the interested reader, we
give a brief compilation of the 2-D dilation/erosion
algorithms.

The Dilation Algorithm

1. Predictor step with upwind scheme. Compute
U n+1/2 from U n according to (37) with �t ≤ 1/

√
2.

2. Corrector step with stabilised inverse diffusion
scheme. Compute U k+1 from U k+1/2 by (46),
thereby assembling the ingredients (40), (41), (44),

Figure 9. Top: Initial image, 120 × 360 pixels. 2nd from top:
Dilation computed by our new FCT scheme (�x = �y = 1, �t =
0.5, 5 iterations). 3rd from top: Erosion computed using the dilated
image as initial condition (same parameters). Bottom left: Zoom
into 2nd image from top. Bottom right: Zoom into 3rd image from
top.

(45) within (42) and (43).

The Erosion Algorithm

1. Predictor step with upwind scheme, using instead
of (37) but by the same stability condition as for the
dilation scheme:

DU n
i :=

{
0 for �U n

i−1/2, j ≤0 and �U n
i+1/2, j ≥0,

dU n
i else,

DU n
j :=

{
0 for �U n

i, j−1/2 ≤0 and �U n
i, j+1/2 ≥0,

dU n
j else,
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dU n
i := λ

2

∣∣U n
i+1, j − U n

i−1, j

∣∣ − λ

2

(
U n

i+1, j − U n
i j

)
+λ

2

(
U n

i j − U n
i−1, j

)
,

dU n
j := λ

2

∣∣U n
i, j+1 − U n

i, j−1

∣∣ − λ

2

(
U n

i, j+1 − U n
i j

)
+λ

2

(
U n

i j − U n
i, j−1

)
.

U n+1
i j = U n

i j −
√(

DU n
i

)2 + (
DU n

j

)2
.

2. Corrector step with stabilised inverse diffusion
scheme. Compute U k+1 from U k+1/2 by (46), using
the definitions

Qn+1/2
h :=

−
√(

λ

2

∣∣U n+1/2
i+1, j − U n+1/2

i−1, j

∣∣)2

+
(

λ

2

∣∣U n+1/2
i, j+1 − U n+1/2

i, j−1

∣∣)2

,

Qn+1/2
l := −

√(
δU n+1/2

i

)2 + (
δU n+1/2

j

)2
,

δU n+1/2
i

:= λ

2

∣∣∣U n+1/2
i+1, j − U n+1/2

i−1, j

∣∣∣ − gi+1/2, j + gi−1/2, j ,

δU n+1/2
j

:= λ

2

∣∣∣U n+1/2
i, j+1 − U n+1/2

i, j−1

∣∣∣ − gi, j+1/2 + gi, j−1/2.

Acknowledgments

The authors gratefully acknowledge the financial sup-
port of their work by the Deutsche Forschungsgemein-
schaft (DFG) under the grants SO 363/9-1 and WE
2602/1-2.

Notes

1. ENO means essentially non-oscillatory. By adapting the stencil
for derivative approximations to the local smoothness of the so-
lution, ENO schemes obtain both high-order accuracy in smooth
regions and sharp shock transitions.

2. The Courant–Friedrichs–Lewy (CFL) condition is the fundamen-
tal stability criterion for numerical schemes for hyperbolic PDEs.
It requires that the numerical domain of dependence is included
in the analytical domain of dependence of the PDE [11, 21]. For
the case of the uwind schemes (10) and (11) introduced above,
the CFL condition reads �t max | f ′(U n

j )| ≤ �x , where the max-
imum is computed over the set{U n

j } of all given data.
3. An entropy solution is a specific generalised solution, since clas-

sical, differentiable solutions are inappropriate to admit disconti-
nuities that are characteristic for hyperbolic conservation laws.
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