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Abstract. This paper presents a new active convex hull model with the following advantages: invariant with

respect to the number of pixels to be enveloped; the number of time iterations is invariant, with respect to the

image size; time-cheap for large image regions. The model is based on the geometric heat differential equations,

derived from parabolic equation, and parameterized by arc length. To prevent the active contour from intruding into

concavities and evolve it to the proper convex hull we use a vector field given as a difference between normal and

tangent forces. The vector field is also used to segment an image to shells, such that a single region is present in

each shell. A penalty function is developed to stop evolvement of those arc segments, whose vectors encountered

boundary points of an image region. Based on the model a discrete algorithm is designed and coded by Mathematica
5.2. A condition is developed, with respect to the image size, to guarantee stable convergence of the active contour to

the convex hull of the desired region. To validate the advantages and contributions a set of experiments is performed

using synthetic, groundwater and medical images of different size and modalities. The paper concludes with a

discussion and comparison of the active convex hull model with set of existing convex hull algorithms.

Keywords: heat differential equation, normal and tangent forces, active convex hull model, image processing

1. Introduction

This paper presents a new Active Convex Hull Model

(ACHM), which is based on the geometric heat dif-

ferential equation [12, 20, 29]. The convex hull (CH)

is a fundamental construction for mathematics [6] and

computer science, which has many useful applications

in the practice and science. For instance, the CH lies

behind the basis of many optimizing methods and al-

gorithms including the simplex method. In [7] the CH

is used for analysis of spectrometry data, while in [6] is

applied to determine Delaunay triangulation, Voronoi

Diagrams and power diagrams. Aurenhammer [3] de-

scribes a set of practical problems, that can be reduced

to CH: mesh generation, file searching cluster analysis,

crystallography, metallurgy, urban planning, cartogra-

phy, image processing, and numerical integration.

CH methods and algorithms are reported in [4, 17,

26], and more algorithms can be found in the web site

of Sunday [31]. Some of the most efficient, with respect

to the runtime, CH algorithm is called Quickhull and is

introduced in [6]. It is a variation of the Clarkson Shor’s

algorithm [14], and has successful extension and use-

ful applications to dimensions greater then 3. Recently,

four space efficient CH algorithms, two in-place and

two in-situ, were published in [8]. Also, ConvexHull
operators are provided by Mathematica and Matlab.

The latter is based on the randomized Quickhull algo-

rithm.

A survey of the the CH methods shows that their cal-

culation complexity depends on the number of points

(image pixels) to be enveloped by the CH. Therefore

these algorithms will work relatively slow in process-

ing large image regions. Moreover, image processing is

needed to extract the coordinates of the points (image

pixels) to be enveloped by the CH.

Unlike the above mentioned methods the proposed

ACHM is invariant with respect to the number of points
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(pixels) to be enveloped. The calculation complexity

of ACHM depends on the number of vectors in the

vector field (VF) and the distance to be traveled by

them. In other words, speaking in terms of images,

the calculation complexity (the run time) of the con-

ventional CH algorithms depends on the size of the

foreground whereas ACHM’s calculation complexity

(the run time) depends on the size of the image back-

ground. This feature makes ACHM conceptually new

CH algorithm. To develop ACHM the geometric heat

differential equation (DE) [12, 13, 19–22, 29, 30] is

employed to evolve a closed, smooth curve in the di-

rection of a VF given as a difference between normal

and tangent components (forces). The normal compo-

nent is presented as a derivative of the tangent vector

normalized by the image size. The tangent component

is a product of the tangent vector and the distance be-

tween the ends of the arc segment.

In the past decade applications of DE and variational

methods led to a number of significant results in Image

Processing [29], filtering, interpolation, segmentation

[33, 34], shape smoothing [24], and computer vision

[11]. Also, 2D and 3D active contour models are expe-

riencing successful applications to the emerging area of

content based image retrieval (CBIR) [2, 10, 34]. The

present paper illustrates a new application of the active

contours to find the CHs of the image regions subject

of user interest. The CHs show the objects’ location in

the image and are used for search space partitioning of

the corresponding image database [25, 27].

Two key difficulties one can face when employing

parametric active contours [32]:

• First, the initial contour must be close to the true

boundary, or else it will likely converge to wrong

result;

• Second, the active contours have difficulties pro-

gressing into boundary concavities.

Several methods have been developed to tackle the

above problems [1, 15, 16], but they experience a dis-

advantage of efficiently solving only one of the two

problems. Subsequently, in [32] a model is developed

that provides an elegant solution to both problems.

The proposed ACHM is capable of quickly envelop-

ing the CH of an image region, providing the follow-

ing advantages: time-cheap algorithm; a large capture

range, which could inscribe the entire image; stabil-

ity convergence condition; ability to work with gray

level images of varying sizes, proportionally increas-

ing the speed of stable convergence (the length of the

time step) if the image size increases. Thus, ACHM

provides a solution of the first but does not consider

the second problem at all. As an input information

ACHM requires the gray level difference between fore-

ground and background. The listed features make the

ACHM suitable for the applications mentioned earlier

in this page [25, 27]. The use of CH for image re-

gions/image indexing leads to significant reduction (by

a factor of roughly hundreds) of the number of image

database regions necessary to traverse and compare to

the query region. This advantage is important for ex-

tensive databases because matching the query shape

against every image database region could be infea-

sible even with powerful computers and recognition

engines.

Using Mathematica 5.2 a prototype tool is developed

for implementing ACHM and verifying its advantages.

A set of experiments was performed using groundwa-

ter, medical X-ray, MRI, PET and synthetic gray level

images of varying sizes. Subsequently we began devel-

oping the tool in C++ programming language.

The paper is organized as follows: Section 2 devel-

ops the continuous model, and proves it is a CH model.

In the next section, we provide the discrete model and

algorithm, and determine the maximal error of bound-

ary approximation. Section 4 develops a stability con-

dition that prevents the curve from self-intersecting,

and guides its convergence to the proper CH. The con-

dition also provides a formula for evaluating the max-

imal time step, that will keep the convergence stable,

depending on the image sizes. In Section 5 we pro-

vide the calculation complexity, and the truncation er-

ror of the algorithm. In the next section we describe

a set of experimental results produced by ACHM us-

ing MRI, X-ray, PET and synthetic images. The latter

set is considered also to confirm that ACHM’s time

of convergence (number of time iterations) is invariant

with respect to the image size. The 7th section uses

VF to develop an algorithm capable of segmenting an

image to a set of CHs, if multiple regions are present.

Section 8 discusses the contribution, advantages and

disadvantages of ACHM and compares them with a set

of conventional CH methods from the literature. The

final section marks the future directions of our research.

2. Active Convex Hull Model

This section develops the continuous ACHM starting

with the parabolic DE [5]:

∂u(t, p)

∂t
= α2 ∂2u(t, p)

∂p2
, (1)
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where p is a space parameter, whereas t is a time pa-

rameter. If we replace, in Eq. (1), the function u(t, p)

with a position parametric vector function f (t, p) of a

particle, we will receive ft = α2 f pp, which we can in-

terpret as ft = α2a(p), where a(p) is the acceleration

of the particle with respect to p. Further we present the

acceleration a(p) by using normal and tangent compo-

nents (forces):

∂ f

∂t
= a(p) = k|v(p)|2 �N + |v(p)|′ �T . (2)

In the above equation α = 1, k denotes the curvature,
�T is the tangent vector, whereas �N is the normal vector,

and |v(p)| shows the speed of the particle.

Consider a closed, smooth, and convex curve C pa-

rameterized by C(t, p) = r (t, p) = 〈X (t, p), Y (t, p)〉
in the domain [−1, 1] × [−1, 1], where t ∈ [0, ∞) pa-

rameterizes the family and p ∈ [0, 2π ] parameterizes

the particular curve. If t is fixed, then the particular

curve is described by the following smooth vector func-

tion r (t, p) = r (p) = X (p)i + Y (p) j , and its partial

derivatives rp = X pi+Yp j , rpp = X ppi+Ypp j , where

|rp| =
√

X2
p + Y 2

p . Replacing in Eq. (1) the function

u(t, p) with a C(t, p) = r (t, p), we receive the ge-

ometric heat DE, which presents a vector flow (VF)

[12, 20, 21, 29]:

∂C

∂t
= α2 ∂2r

∂p2
= α2 ∂

∂p

∂r

∂p
= α2 ∂ �T

∂p
, (3)

Further we parameterize the curve C(t, p) with re-

spect to an arc length, since the arc length arises natu-

rally from the shape of the curve and does not depend

on a particular coordinate system. Following this rea-

soning, we compute the length of a curve’s arc segment

s(p) = ∫ p
0

|rp(u)|du and use it to express p in terms

of s, as p = p(s). We then re-parameterize the vector

function r (t, p) with respect to the arc length s and

determine its derivatives:

r (t, s) = r (s) = x(s)i + y(s) j,

rs = xsi + ys j, rss = xssi + yss j.

Taking into account that in case of arc length

parametrization

|rs | =
√

x2
s + y2

s = 1, (4)

we arrive at the following computationally cheaper

form of the well-known curvature formula:

k(s) = |rs(s) × rss(s)| (5)

Now the right side of Eq. (3) is stated in terms of x(s)

and y(s) derivatives:

∂C

∂t
= α2 ∂ �T

∂s
= α2(xssi + yss j). (6)

Equation (6) evolves the curve C according to the

derivative of the unit tangent vector with respect to

arc length. Consider the following lemma:

Lemma 2.1. The product of the curvature and the
normal vector equals the derivative of the tangent vec-
tor: d �T (p(s))/ds = k �N , where �T (p(s)) = xsi+ys j

Proof: Take into account that:

k(p(s)) = |�Tp(p(s))|
|rp(p(s))| ,

�N (p(s)) =
�Tp(p(s))

| �Tp(p(s))| ,

ds

dp
= |rp(p(s))|.

Multiplying the left and right sides of k and �N we

arrive at:

k �N = |�Tp|
|rp|

�Tp

| �Tp|
=

�Tp

|rp| = d �T
dp

/
ds

dp
= d �T

ds
.

Employing the above Lemma to Eq. (3) we receive:

∂C

∂t
= α2k �N . (7)

Taking into account that: k(s) = |xs yss − xss ys |,
and �N (s) = −ysi + xs j , we receive:

α2k �N =α2(−ys |xs yss − xss ys |i +xs |xs yss − xss ys | j),

(8)

which represents a VF [12, 20, 21, 29], and another

form of Eq. (6).

Note that Eq. (8) is computationally cheaper with

respect to the equation, that will be obtained if p
parametrization is used. But comparing Eqs. (8) and

(6), we observe that the latter contains less arithmeti-

cal operations. Therefore, unlike [12, 20, 21, 29] from

now on we will use Eq. (6) instead of Eq. (8).
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Denote by P a penalty function to be used by the

model to stop evolvement of all arc segments whose

normal vectors d �T/ds have reached the boundary of a

region within the image I (x, y). A replacement of α2

with P in Eq. (6) yields:

∂C

∂t
= P

d �T
ds

= Pk �N . (9)

The latter equation represents a centripetal force, be-

cause the VF has only a normal component (force),

which points to the center of the image.

Recall we received Eqs. (2) and 9 from Eq. (1), where

we substituted u(t, p) with f (t, p) and r (t, p) respec-

tively. Therefore they present different forms of the

parabolic DE introduced by Eq. (1), and we can add to

the right side of Eq. (9) a term of the form c �T (where

c is a scalar).

∂C

∂t
= P

d �T
ds

+ c �T . (10)

Also, studying Eqs. (2) and (9) we observe that P =
|v(s)|2 = 1 (see Eq. (4)). It means that P = 1 if a

particle is moving on the curve C(t, s). Conversely,

if the particle hits an obstacle (object) and stops its

motion then |v(s)| = 0 and P = 0. To determine when

the particle (the VF) hits an object (obstacle), we design

P as a cutoff function of the rate of change of the image

function I (x, y) with respect to decreasing s along the

VF at the point r (x(t, s), y(t, s)) on the curve C at time

t :

P = Pε, ε1

(
d I (x, y)

ds

)
(k �N+c �T ).r

→ {0, 1}. (11)

If the rate of change, calculated on an interval �t ∈
(k �N + c �T ) , is between ε and ε1 then P = 0 otherwise

P = 1.

Recall that the tangent vector is given by �T (s) =
xsi + ys j = dr/ds. Therefore dr = (xsds)i + (ysds) j .

Taking into account that dx/ds = xs and dy/ds = ys

we receive dx = xsds and dy = ysds. Replacing them

in the equation for dr we receive:

dr = (dx)i + (dy) j. (12)

In Eq. (12) dr shows how much r changes if a particle

moves a small distance ds along the curve C from a

point to another point nearby. Using Eqs. (12) and (4)

we determine:

|dr | =
√

(dx)2 + (dy)2 = |ds|
√

x2
s + y2

s = |ds|. (13)

Without any restriction of the reasoning we replace

in Eq. (10) the coefficient c with −|dr | and arrive at the

following innovative form of the geometric heat DE:

∂C

∂t
= P

d �T
ds

− |dr | �T . (14)

The tangent vector −|dr | �T prevents the active CH

from intruding into concavities of an image region

when convex portions of its shape are reached. This

property shows that Eq. (14) defines a new Active Con-

vex Hull Model (ACHM). To prove it we consider the

well known CH definition:

Definition 1. CH of a set of points is a polygonal area

of a smallest length, containing the points, so that any

pair of points within the area have the line segment

between them contained entire inside the area.

By definition, an image region is called object, if it

consists of one connected set of pixels (points), whose

gray level does not exceed a given interval [ε, ε1] and

whose dimensions are larger then given thresholds �t

and �s . The latter we call a radial distance, and it

shows the number of vectors which hit a region, while

�t denotes the minimal interval (number of pixels) a

vector should penetrate an image region in order to

stop evolvement of the arc the vector is connected

with. Follows that the CH definition applies to im-

age objects, and denote by d(Pi ) the distance from a

boundary point to the initial active contour C(0, s),

which is large enough to inscribe the entire image

([−1, 1] × [−1, 1]). The distance is employed here-

after to formulate the notion local extreme point, used

in slightly different sense by [6].

Definition 2. A boundary point Ei is a local extreme

point on an arc segment s if d(Pj ) > d(Ei ) holds for

any point Pj , which belongs to s and is different from

Ei .

Consider that E j and Ei are extreme points on a

boundary arc segment bs such that d(E j ) > d(Ei ) (the

reverse case leads to the same reasoning). Follows

from Eq. (14) that the active CH will first hit Ei and

then E j . Also, the active curve segment Cs , between

them, is convex (Fig. 6(b)). Since P = 0 at E j and Ei

the Eq. (14) is of the following form, at these points:

∂C/∂t = −|dr | �T . During the time of further evolution

every point on Cs , except the points which coincide

with E j and Ei , will converge guided by Eq. (14)

(Figs. 6(c–e). Those points on Cs , which coincide with
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E j and Ei , will stay motionless because no normal

force is acting upon them. Thus Cs will converge to

the straight segment between E j and Ei (Fig. 6(f)).

Once the straight segment is reached by Cs the term

k �N = d �T/ds in Eq. (14) will become zero, because the

curvature k = 0 on a straight segment. Therefore no

normal force (component) will be acting at the points

on Cs . Follows that Cs will stop its further evolution,

because the normal force is zero on E j Ei .

Consider consecutive extreme boundary points E1,

E2, . . . , Ek reached by members of the VF. Follows

that every triplet Ei−1, Ei , Ei+1 for i = 2, . . . , k − 1

satisfies the following condition: the number d(Ei ) is

either between d(Ei−1) and d(Ei+1) or grater than both

of them. If Ei does not satisfy the condition, Ei is not

on the CH, because it is behind the straight segment

Ei−1 Ei+1, in the direction of the VF, and can not be

reached by the VF. Follows that the extreme points

E1 E2 . . . Ek constitute a CH. Since they are boundary

point follows that the polygon is the minimal, which

contains the image region (Figs. 1–5).

In order to make the capture range (C(0, s)) of

ACHM large enough to inscribe the entire image we

use the tangent vector normalized with respect to the

image sizes as is given below:

�τ (s) = 2xs

nc
i + 2ys

nr
j. (15)

In Eq. (15) nc denotes the number of columns,

whereas nr denotes the number of rows in the im-

age. Replacing in Eq. (14) the derivative of �T with

the derivative of �τ we obtain the image form of the

ACHM:

∂C

∂t
= P

d�τ
ds

− |dr | �T . (16)

Note that now the penalty function P is defined along

the vector �v = d�τ/ds − |dr | �T . Equation (16) defines

a VF with two forces: normal force of the vector field

(NFVF), determined by Pd�τ/ds; and tangent force of

the vector field (TFVF) determined by −|dr | �T . Thus,

Eq. (16) represents a new innovative ACHM, whose

capture range depends on the image size and can be

set as far as we want from the targeted object. If we

present d�τ/ds and �T in the terms of the derivatives of

x(s) and y(s) we arrive at the following ACHM form:

∂C

∂t
=

(
P

2xss

nc
− |ds|xs

)
i +

(
P

2yss

nr
− |ds|ys

)
j (17)

The next section discusses ACHM implementation by

the Forward Difference Method.

3. The Discrete Model and Algorithm

To implement the ACHM one can use Eq. (17) and

employ first and second finite (central) differences to

approximate the first and second derivatives of x and

y with respect to s. To develop the discrete ACHM

and algorithm, we use Eq. (16), and employ first order

differences to approximate the derivatives:

xt ≈ x(t + δ, s) − x(t, s)

δ
,

yt ≈ y(t + δ, s) − y(t, s)

δ
,

d�τ (s)

ds
≈ �τ (t, s + �s) − �τ (t, s + �s)

�s
.

Also, considering Eq. (13) we receive |�s| = |�r | =
|r (s + �s) − r (s)|, which is the distance between two

points on the active CH. Now we rewrite Eq. (16) in

the form:

〈x(t + δ, s), y(t + δ, s)〉 ≈ 〈x(t, s), y(t, s)〉
+ δ

�s
P〈�τ (x(t, s + �s), y(t, s))

− �τ (x(t, s), y(t, s)), �τ (x(t, s), y(t, s + �s))

− �τ (x(t, s), y(t, s))〉 − δ�s〈xs(t, s), ys(t, s)〉.

The latter equation guides the curve evolvement to the

CH of a desired image region, and leads to the devel-

opment of the following Active Convex Hull Forward

Difference Algorithm:

r j+1

i ≈ r j
i + V j

i , where V j
i = δ j P j

i ∂�τ j
i − δ j s j

i
�T j

i .

(18)

Since δ j < 1, follows that |v j
i | = |δ j P j

i ∂�τ j
i −s j

i
�T j

i | <

|V j
i |. Since v j needs less arithmetic operations and

does not restrict our reasoning we will use it for the

Forward Difference Algorithm (FDA):

r j+1 ≈ r j + v j . (19)

In Eq. (19) we add a shorter vector, but can compen-

sate it by using larger δ j . In the above expressions

we used the same notation as in the continuous case:

r j
i = r j (t j , s j

i ), for i = 1, . . . , n, and r j
0 = r j

n ;

j parameterizes the family, while i parameterizes the

particular curve; s j
i = |r j

i − r j
i−1| is the i-th discrete

space step at time j ; ∂�τ j
i ≈ (�τ j

i − �τ j
(i−1))/s j

i ; and

�T j
i ≈ (r j

i −r j
i−1)/s j

i for i = 1, . . . , n, where �T j
0 = �T j

n ,

and �τ j
0 = �τ j

n .
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The penalty function P j
i is defined by the following

piecewise function:

Pε,ε1
= P j

i (k)=
⎧⎨⎩1 if PS j

i (k) < ε or PS j
i (k) > ε1

0 otherwise,

(20)

where ε < ε1 are thresholds defined by the user and

show the difference between the background and fore-

ground. The penalty sum PS j
i (k) = ∑k+�t

m=k de j
i (m),

for k = 0, . . . , |r j+1

i − r j
i | − �t , and de j

i (m) =
|I j

i (m) − I j
i (m − 1)|. In the latter expression, I j

i (m)

is the gray level value of the mth pixel that lies on the

i th normal vector at time j . It follows from Eq. (20),

that the algorithm is marching |r j+1

i − r j
i | − �t pixels

on each vector, stops at each pixel m and “looks” �t

pixels ahead. If the rate of change on the interval �t

belongs to [ε, ε1], the marching stops and the boundary

approximation is set at the pixel m. Otherwise, go to

pixel m +1 and repeat the algorithm. Follows from the

above concepts that the maximal error of boundary ap-

proximation generated by the VF, defined by Eq. (19),

is �t .

4. The Stability Convergence Condition

In this section we develop a condition that relates the

space step s and time step δ in a way, which ensures

stable convergence of the curve C to the C H of the

desired image region. Consider Eq. (19) to set up the

following inequalities:

∣∣r j+1

i

∣∣ ≈ ∣∣r j
i + δ j P j

i ∂�τ j
i − s j

i
�T j

i

∣∣ <

∣∣∣∣∣r j
i + δ j P j

i ∂ �T j
i

m

∣∣∣∣∣
= ∣∣r j

i + λ2δ j∂ �T j
i

∣∣, (21)

The very right part represents the FDA of the geometric

heat DE in the following form:

dC

dt
= λ2 d �T

ds
= λ2k �N , where λ2 = P/m and

m = min(nc/2, nr/2). (22)

Using a statement from [5] we determine that the FDM

of Eq. (22) stably converges to its solution if:

δ j <
(
s j

ave

)2
2λ2 where

(
n∑

k=1

s j
i

)/
n = s j

avg,

(23)

Thus, we arrive at the following form of the Stability

Convergence Condition (SCC) (23):

δ j < m
(
s j

ave

)/
2. (24)

where we considered that P = 1 at the time of conver-

gence. To compute δ j which will keep stable conver-

gence of the FDA 19 to the CH we use:

δ j = cs j
ave, where c < m/2. (25)

Also, Model 16 together with SCC 24 make the con-

vergence time (number of time iterations j) invariant

with respect to the image size. The latter means that if

we consider an image of size n × n and enlarge it to

a size nk × nk the ACHM will increase the speed of

stable convergence approximately k-times and the run

time to determine the CH for both images is approxi-

mately the same. An experimental verification of this

conclusion is given in Section 6.

5. Calculation Complexity and Truncation Error

Considering the Active Convex Hull Forward Differ-

ence Algorithm 19 and SCC 24, we computed that

the Number of Arithmetical Operations (NAO) that

ACHM takes to determine the CH of an image region is

approximately 50Jn, which is on the order of O(Jn).

The symbol J denotes the number of iterations (the

number of time steps) taken by ACHM to reach the

CH, and n denotes the number of arc segments, or vec-

tors, on the curve.

Consider the ACHM defined by Eq. (17) and finite

differences to approximate the derivatives. Then the

following equations are used to determine the trunca-

tion errors that come from derivatives approximation

[5]: [r (t + δ, s) − r (t, s)]/δ = ∂C/∂t +δ2/rtt (t∗, s),

[x(t, s + �s) − x(t, s)]/�s = xs + �s/2xss(t, s∗),

[x(t, s + �s) − 2x(t, s) + x(t, s − �s)]/(�s)2 = xss

+ (�s)2/12x (I V )(t, s∗).

The valve t∗ is an internal point on the vector, while

s∗ is an internal point on the arc segment. Follows that

the truncation error that will be generated approximat-

ing ∂C/∂t is on order of O(δ); for xs is on order of

O(�s), and for xss is on order of O((�s)2). Analo-

gously, we see that ys has a truncation error O(�s), and

yss has O((�s)2). Follows that the truncation error of

the FDM that implements ACHM is O(δ + �s). The

same truncation error will be generated if Backward

Differences are employed to approximate the deriva-

tives. But if one uses Central Differences the truncation
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Figure 1. (a) A PET image of size 128 × 128, the initial CH, and the NFVF; (b) the initial TFVF; (c) the object, the active CH, and NFVF

after 2000 iteration; (d) The active CH, together with the normal force after 2000 iterations; (e) the tangent force; (f) the CH alone.

error of ACHM is on the order of O(δ2 + (�s)2). It

gives a better approximation, but requires five knots to

approximate the derivatives.

6. Experimental Results

On the basis of the FDA 19 and SCC 24, we developed

a prototype tool (Active Convex Hull Tool-ACHT) us-

ing Mathematica5.2. Recall that given an initial con-

vex curve, Algorithm 19 will evolve it in an inward

direction until the CH of the image region is encoun-

tered. Employing ACHT , experiments were performed

using X-ray, MRI, and PET medical images as well as

a set of synthetic images of varying sizes. We begin

with the following initial parametrization of the con-

vex curve C defined by r (0, p) = 〈R cos p, R sin p〉,
where p ∈ {0, . . . , (2π/n)i, . . . , (2π/n)(n − 1)}, and

R is the radius. Then following the concept from

Section 2 we switch to arc length parametrization. You

can tell from above, a circle is used as an initial curve.

But Fig. 3 shows that ACHM was successfully applied

to rectangular images. Since ACHM defined by Eq.

(16) and SCC 24 allow us to set the initial contour as

far as we want, we used a radius R = √
2 to inscribe

the entire domain [−1, 1] × [−1, 1]. In this case the

area outside the image but in the circle is considered as

background.

Figure 1(a) depicts a PET image of size 128 × 128.

The initial curve has a radius R = √
2 and is divided

to 40 arc segments (the number of inward vectors is

the same) that yields s0
ave = 0.22 in the domain. Em-

ploying SCC 24 and considering that m = 64, we com-

puted that δ0 < 32(0.22)2, and used δ j = 16(0.22)2. In

Fig. 1(a) are shown, also the initial active CH and the

normal force of the vector field (NFVF), whereas the

initial tangent force of the vector field (TFVF) is given

in Fig. 1(b). The image, the active CH together with

the NFVF after 2000 time iterations are shown Fig.

1(c). Figure 1(d) gives the active CH together with the

NFVF after 2000 iterations, while the tangent force

is presented in Fig. 1(e). The CH, of the image ob-

ject is shown in Fig. 1(f). The minimal perimeter of

the CH, in the domain [−1, 1] × [−1, 1], is 3.666,

whereas in the image is 235 pixels, and was obtained

after 2000 iterations, which gives (4)106 arithmetical

operations. It means that performing more iterations

will not lead to any change of the CH length and shape.

Note that in Figs. 1(c) and (d) part of the NFVF van-

ished, because the curvature at straight segments is 0.
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Figure 2. (a) An 256 × 256 MRI image, the active CH, and NFVF after 500 iterations; (b) the active CH, together with NFVF; (c) the TFVF;

(d) the object, the active CH, and NFVF after 1000 iteration; (e) The active CH, and the NFVF after 1000 iterations; (f) the tangent force; (g)

the CH alone.

In the same figures some members of the normal force

stretched, because the curvature at the extreme point is

larger then the curvature at the same curve point before

the “contact” with the extreme point. As you may tell

from Figs. 1(b) and (e) the tangent force did change the

shape and the length but not its dimension. The latter

follows also from Eq. (16).

InFig. 2(a) we show an MRI image of size 256×256

of a Parenchymal Hemorrhage. The initial curve has a

radius R = √
2 and is divided to 100 arc segments that

yields s0
ave = 0.088 in the domain, which equals to ap-

proximatly 12 pixels. Employing SCC 24 and consid-

ering that m = 128, we computed that δ0 <64(0.088)2,

but used δ j = 33(0.088)2. In Fig. 2(a) are shown also

the active CH and NFVF after 500 iterations, while in

Fig. 2(b) they are given alone. The TFVF is presented

after 500 iterations in 2(c), whereas the image, the ac-

tive CH together with the NFVF after 1000 iterations

are shown Fig. 2(d). Figure 2(e) gives the active CH

together with the NFVF, whereas the tangent force is

presented in Fig. 2(f). The CH, of the image object,

alone is shown in Fig. 2(g). The minimal perimeter of

the CH, in the domain [−1, 1] × [−1, 1], is 5.64462,

whereas in the image is 723 pixels, and was obtained

after 1000 iterations, which gives (5)106 arithmetical

operations. Once again in Figs. 2(b) and (e) part of

the NFVF vanished, because the curvature at straight

segments is 0. In the same figures some members of

the normal force stretched, because the curvature at the

extreme point is larger then the curvature at the same

curve point before the “contact” with the extreme point.

As one can tell from Figs. 2(c) and (f) the TFVF did

change the shape but not its dimension.

Figure 3(a) shows an X-ray image of size 301×500.

The initial curve has again a radius R = √
2 but the

VF contains 160 vectors, which yields s0
ave = 0.055 in

the domain, and approximately 14 pixels in the image.

To provide a stable convergence to the CH of the hand

we used δ j = 33(0.055)2. In Fig. 3 we present the

object, the active CH, the NFVF, and the TFVF after

1000 and 7000 iteration, when the active CH reached its

minimal perimeter 5.9938, whose size in the image is

1498 pixels. ACHT performed approximately (56)106

arithmetical operations to determine this CH.
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Figure 3. (a) An X-ray image of size 301 × 500, the active CH, and NFVF after 1000 iterations; (b) the CH, and NFVF from (a); (c) the TFVF

after 1000 iterations; (d) the image, the active CH, and NFVF after 7000 iteration; (e) The active CH, and NFVF; (f) the tangent force; (g) the

CH after 7000 iterations.

Figure 4. (a) An MRI image of size 256 × 256; (b) the active CH, together with NFVF after 3000 iterations; (c) the TFVF after 3000 iterations;

(d) the CH alone.
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Figure 5. (a) A synthetic image of size 128 × 128; (b), (c) and (d) presents the active CH, together with NFVF; the TFVF; and the active CH

alone after 6000 iterations; (e) the image from (a) but enlarged to 3072 × 3072; (f), (g) and (h) presents the active CH, together with NFVF; the

TFVF; and the active CH alone after 6000 iterations.

The last experiment we made with medical image

considers MRI image of size 256 × 256 (Fig. 4(a)). The

minimum perimeter of length 4.43122 (in the domain,

which equals to 568 pixels in the image) was reached

after 3000 iteration, which gives (37.5)106 arithmetic

operations (Fig. 4(d)). The used VF consists of 250

vectors, which yields s0
ave = 0.037. The active CH

together with NFVF is shown in Fig. 4(b), whereas

Fig. 4(c) presents the TFVF.

Further, we performed a set of experiments in or-

der to demonstrate the capability of ACHT to increase

the convergence speed (the time step of convergence)

with the same ratio as the image size increases. For this

purpose we used a synthetic image of size 128 × 128

(see Fig. 5(a)), and its enlarged derivatives 256 × 256,

512×512 , 1024×1024, 2048×2048, and 3072×3072

pixels. Note that enlarging the original image the ob-

ject located there was enlarged with the same ratio.

For all experiments we used a VF containing one and

the same number of vectors equal to 200, and the ini-

tial CH was a circle with a radius R = √
2. For the

first image (128 × 128) we used δ j = 24(0.044)2,

where 0.044 = s0
ave, and 24 = c is the coefficient in

Eq. (25). For the next image whose sizes are twice

larger we used c = 48. The third image has sizes 4

times larger then the first one and the used coefficient

was c = 96. The next image is of size 1024 × 1024

and ACHT used c = 205, which is slightly larger then

8 ∗ 24 = 192. To perform the experiments with the

two largest images 2048 × 2048, and 3072 × 3072 we

increased the VF to n = 300. From SCC 24 we receive

c < 512, but used c = 490 to keep stable convergence

in the image 2048 × 2048. In what concern the image

3072 × 3072 we received c < 768, but used c = 760.

In all experiments ACHT reached the minimal length

of the CH after 6000 iterations. The CHs obtained from

both images 128 × 128, and 3072 × 3072 are shown in

Figs. 5(d) and (h).

The above results verify that ACHT’s number of it-

erations (time of convergence) is invariant with respect

to the image size. In other words, the algorithm per-

forms approximately the same number of arithmetic

operations to determine the CH in a stretched or shrank

images. The maximal step of stable convergence is au-

tomatically computed by Eq. (25), selecting c with re-

spect to the image size.
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Figure 6. (a) Image of size 140 × 140, together with the initial curve and the NFVF; (b) The object from (a) together with the NFVF and the

active CH after 500 iterations; (c) after 1000 iterations; (d) after 2000 iterations; (e) after 3000 iterations; (f) and after 6000 iterations.

In Fig. 6(a) we present a simplified section from

a gravel deposit in an image of size 140 × 140, to-

gether with the initial curve and the NFVF. Figure

6(b) shows the object, the shape of the active CH,

and the NFVF after 500 iterations. The curve evolve-

ment and the corresponding NFVF behavior after 1000,

2000, 3000 and 6000 iterations can be observed in

Figs. 6(c–f). The used VF consists of 140 vectors, and

c = 28. The obtained minimal length of the CH in the

domain is 3.93383, which equals approximately 275

pixels.

The experimental result given in Fig. 7 shows that

ACHM is a model without edges. Figure 7(a) contains

a swarm of points in an image of size 64 × 64. The

initial curve has a R = 1 and is divided into 140 seg-

ments, yielding s0
ave = 0.0634. Using Inequality 24

we computed that δ0 < 16(0.0634)2 and set c = 13

to determine δ j for j = 1, 2, 3, . . . . The active CH
and part of the NFVF are given in Fig. 7(b) after 1000

iterations, while Fig. 7(c) shows the CH together with

the normal force after 2500 iterations. Again the vec-

tors normal to straight segments vanished, and those at

the contact points enlarged. The CH alone is shown in

Fig. 7(d), and has a minimal length 5.07757 that is

equal to 162 pixels.

The following list of features can be derived from the

theoretical concepts and experiments described above.

The ACHM and ACHT are capable of:

• working with gray level images of varying sizes (see

Figs. 1–5);

• increasing the speed of stable convergence with ap-

proximately the same ratio as the image size in-

creases (Indeed for the image 128 × 128 we used

c = 24; for 256 × 256 we used c = 48; for

512 × 512, c = 96 was used; whereas for the im-

age 1024 × 1024 the coefficient was 205, and for

2048 × 2048 c = 490, for 3072 × 3072 c = 760, );

• providing a large capture range that can inscribe the

whole image (see Figs. 1, 3);

• CH modeling of objects without edges (see Fig. 7).

The above listed features show that ACHT is suitable

for applications to automatic image database mining

for regions’ location and CH extraction. Consequently,

the CH was used in [27], for medical image database
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Figure 7. (a) A swarm of points in an image 64 × 64 together with the NFVF, and the initial active CH with a R = 1; (b) The active CH, part

of the NFVF, and the swarm after 1000 iterations; (c) after 2500 iterations; (d) The CH alone.

Figure 8. (a) Four image regions; (b) The shell for each region; (c) The new active contour defined for the first shell.

indexing and search space partitioning. The advantage

obtained, in this work, is a factor of a hundred in the

reduction in the number of image database regions

necessary to traverse and compare to a given query

region.

7. Image Segmentation Using VF

Studying the images used to perform our experiments

one can tell ACHM works if the center of the im-

age is located in the image region under-consideration.

Also, if there are multiple image regions they will be

enveloped by a single CH. To overcome above dis-

advantages and segment an image to multiple convex

hulls we use the notion shell [25]. We define shells
by employing the NFVF (which is centripetal force)

to the initial curve and prolong the vectors all the way

to the center of the domain [−1, 1] × [−1, 1], as is

shown in Fig. 8(a). By definition, we call a shell an im-

age region bounded by peace of the object’s boundary

and two normal vectors (see Fig. 8(a) and (b)) tangent

to other parts of the boundary. Employing it together

with �s and �t , defined in Section 2, the algorithm

can determine whether multiple objects are present in

an image, or there is only one. If the first holds the al-

gorithm computes the mass center of each shell, and

place it in the domain [−1, 1] × [−1, 1], such that the

mass center coincides with the center of the domain

[28]. Then a new initial curve is defined (see Figs. 8(c)

and 9(d)), and the process repeats until a single ob-

ject remains in each shell, where the algorithm runs

ACHT.

Shell algorithm is coded in C++, and we used it

together with ACHT to determine the CH’s of the im-

permeable units (the darkest objects in the image) given

in Fig. 9(a). To determine the CH of each impermeable

unit we first ran the shell tool, which segmented the

image to set of shells (Figs. 9(b) and (c)). The segmen-

tation repeats until a single impermeable unit remains

in each shell, where a circle is defined (Fig. 9(d)) and

ACHT is ran to determine the CH of the impermeable

unit, shown together with the corresponding boundary

in Fig. 9(e).
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Table 1. Shows back to back the time taken by ConvexHull, ACHT , and Convex to obtain the

CH of the objects in the images with sizes given in the first column. The shape of the object

under-consideration is shown in Figs. 5(a) and (e).

Image size Mathematica-ConvexHull ACHT- notebook Convex-notebook

128 × 128 0.55 seconds 254 seconds 0.6 seconds

256 × 256 17.2 seconds 254 seconds 3.25 seconds

512 × 512 441 seconds 254 seconds 13 seconds

1024 × 1024 over 1 hour 254 seconds 51.64 seconds

2048 × 2048 over 1 hour 261 seconds 209 seconds

3072 × 3072 over 1 hour 261 seconds Run out of memory after

approximately 30 min

8. Advantages and Contributions

The main contributions of this paper are as follows:

• a new time-cheap active convex hull model is devel-

oped on the base of parabolic Eq. (1) and using VF

with normal and tangent components (forces);

• a condition is developed to guarantee stable conver-

gence of the ACHM;

• ACHM’s time of stable convergence (number of it-

erations) to the CH is invariant with respect to the

image size, and the number of points (pixels) to be

enveloped;

• the number of arithmetic operations taken by ACHT

to find a CH is estimated;

• the truncation error and the error of boundary ap-

proximation are determined;

• the model uses a new penalty function and provides

a large capture range;

• an image segmentation to set of convex hulls is avail-

able.

Recall that we used Eq. (19) to implement the

ACHM. But one can also use r j+1 = r j + V j , whose

SCC and truncation error are the same, but the NAO is

greater by an order of n J , where n denotes the num-

ber of normal vectors in the VF, while J denotes the

number of time iterations.

One can find a number of 2D CH algorithms in the

literature. For example, Bentley-Faust-Preparata [4]

sought a calculation complexity on order of O(n log n),

where n defines the number of the plane points to

be enveloped by the CH. Another basic algorithm is

Grahams scan algorithm [17, 26], whose calculation

complexity is also on order of O(n log n). A number of

CH algorithms together with their run time are listed

in the web site of Sunday [31].

Four space-efficient algorithms are discussed in [8],

and they have several advantages over the traditional

approaches. The first one is that space-efficient algo-

rithms allow for processing a larger data sets. Any

algorithm that uses separate input and output arrays will

require enough memory to store 2n points. In contrast,

space-efficient algorithms will require enough memory

to store n points plus O(logn) working space [8]. This

property makes them less prone to failure, because they

do not require a large amount of memory, that may not

be available at runtime.

Regarding space efficiency ACHM works in the do-

main [−1, 1] × [−1, 1], where the image is consid-

ered. Follows that if the input image is of size k × m
ACHM needs a memory of size 3km bytes. Follows

that comparing with the methods given above ACHM

is more efficient for large images, where the foreground

is larger than the background (Table 1).

The first algorithm, described in [8], is based on

Graham’s scan in combination with an in-space sorting

algorithm, and runs in O(n log n) time. The second and

third are running at O(n log h), where h is the number

of points in the upper “hull”. Both are based on al-

gorithms described in [10] and [23] respectively. The

forth algorithm is an improvement of the work given in

[9], and runs in O(n log h) time, where h denotes the

output size. Recall that ACHM runtime is on order of

O(u J ), where u shows the size of the VF, while J gives

the number of time iterations.

Some of the most efficient CH algorithms, with re-

spect to the runtime, is called Quickhull [6], which

lies in the bases of the Convhull operator provided

by MatLab. Quickhull is an empirical algorithm simi-

lar to randomized algorithms and Delaunay triangula-

tions, but an advantage of Quickhull over randomized

algorithms is in the use of less space. An advantage

of Quickhull over ACHM is that the first one is suc-

cessfully working in dimensions grater than 3, while

ACHM could be extended to maximum 3.

If works in dimension less then or equal to three the

runtime of Quickhull is O(n log r ), where n shows the
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Figure 9. (a) Ground water section, the darkest regions present impermeable units; (b) The VF together with the shells; (c) The shells alone;

(d) The circles defined by the shells; (e) the CH together with the boundary of each impermeable unit.

Figure 10. (a) The image from Fig. 2(a); (b) the contour of the parenchyma with a hemorrhage obtained by an active contour; (c) the CH of

the parenchyma determined by ACHT; (d) The shape of the extracted hemorrhage and four small concavities.
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number of the input points, whereas r gives the number

of processed points. For dimensions greater than 3 the

runtime is O(n fr/r ), where fr is the maximum number

of facets of r points.

A ConvexHull operator is provided also by Math-

ematica. To run the operator a list of input points is

required. To make ConvexHull working with images

an image processing notebook was developed to ex-

tract the objects’ points (pixels), whose CH is to be

determined, and create the list needed by ConvexHull.
A set of experiments was performed using the synthetic

image of size 128 × 128 (shown in Fig. 5(a)) and its

derivatives of sizes 256×256, 512×512, 1024×1024,

2048 × 2048, and 3072 × 3072. Recall, enlarging the

original image the object located there was enlarged

with the same ratio. The above mentioned image pro-

cessing notebook was used to generate a list of pixels

from the object located in each image. The runtime of

ConvexHull to determine the CH of each object, using

the corresponding list, is given in Table 1. In the same

table, in column 3, is shown also the runtime taken by

ACHM to determine the CH of the same objects. In

Table 1 we give also the runtime of an algorithm called

Convex and posted on the Web page [18] in March

2005. All experiments are made with a Lap Top with

CPU 1.8 GHz, and RAM 1 GB.

Studding Table 1, one can tell ConvexHull is 500

times faster then ACHM if dealing with the image of

size 128×128, but more then 1.7 times slower if dealing

with the image of size 512×512. Convex is faster then

ACHT for all sets of points (pixels) from the images

up to 2048 × 2048, but with the set of points (pixels)

from the image 3072×3072 it ran out of memory after

approximately 30 minutes. Unlike Convex, ACHT took

261 seconds to determine the CH of the object in this

image. Note that the number of object’s points (pixels)

in the image of size 3072 × 3072 is 576 times larger

then the number of object’s points (pixels) in the image

of size 128 × 128. Despite of the vast size difference,

ACHM took approximately (there is a slight time dif-

ference for the very large images) one and the same

runtime (number of iterations) to find the CH in all

images. This property is a great advantage of ACHM

over the CH algorithms discussed above. The advan-

tage comes from the fact that Eq. (16) together with

the SCC 24 make the ACHM capable of increasing the

convergence speed (the time step) with the same ratio

as the image size increases. This property states that the

time of stable convergence (number of time iterations)

is invariant with respect to the image size (Table 1). The

CHs obtained by ACHM from the image 128×128 and

3072 × 3072 are shown in Figs. 5(d) and (h).

A conclusion one can derive from the above discus-

sion is that ACHT is faster than ConvexHull, Convex
and the other CH algorithms from the literaature, if they

process large images, where the number of the points

(pixels) to be enveloped is larger than the number of

the background points (pixels). In the other cases, the

conventional CH methods may be faster than ACHT.

The conclusion holds because the NAO taken by ACHT
depends on the size of the VF, and the number of time

iterations. In other words, the run time depends on the

distance traveled by the active CH. Roughly speaking

the NAO taken by ACHT to determine the CH depends

on the background. On the other hand, the NAO taken

by the above listed conventional algorithms depend on

the foreground, the number of points (pixels) to be en-

veloped by the CH.

Another ACHM’s advantage over the conventional

methods listed above is in the provided image seg-

mentation to set of convex hulls, if multiple objects

are present in the image (see Figs. 8 and 9). Unlike

shell-ACHM algorithm the conventional methods will

envelop the whole set of objects with a single CH.

The next advantage of ACHM over the conventional

CH algorithms is that it could be used together with

active contours to automatically determine the shape

of objects’ concavities [28]. To validate this concept

an experiment was performed using the image shown

in Fig. 2(a). To automatically detect object concavi-

ties we employed an active contour based on the geo-

metric heat differential equation in combination with

ACHM. The obtained results are shown in Fig. 10. The

provided opportunity for automatic extraction of the

objects’ concavities is an important property with ap-

plication to Image Database indexing.

Finally we would like to notice that the penalty func-

tion defined by Eq. (11) and implemented by Eq. (20), is

designed to work with gray level images (see Figs. 1–4)

and can be extended to noise cleaning. In this case, the

information needed by the function is the gray level

intervals, which describe the background, and the min-

imal sizes �s and �t of the objects under consideration.

A disadvantage ACHM possesses is that it can not

be used to determine Delaunay Triangulations and

Voronoi Diagrams of the set of foreground points as

most of the conventional CH algorithms can do [3, 6, 8].

9. Further Directions

A C++ version of ACHT is to be released. An ap-

proach capable of automatic concavities extraction

is under-consideration [28]. A work is underway to
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extend the penalty function and make it working with

color images and noise cleaning. A model is under-

development to extend the 2D ACHM to the 3D case

using level sets.
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