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Abstract. In this paper we investigate the structure and motion problem for calibrated one-dimensional projections
of a two-dimensional environment. The theory of one-dimensional cameras are useful in several areas, e.g. within
robotics, autonomous guided vehicles, projection of lines in ordinary vision and vision of vehicles undergoing so
called planar motion. In a previous paper the structure and motion problem for all cases with non-missing data was
classified and solved. Our aim is here to classify all structure and motion problems, even those with missing data,
and to solve them. In the classification we introduce the notion of a prime problem. A prime problem is a minimal
problem that does not contain a minimal problem as a sub-problem. We further show that there are infinitely many
such prime problems. We give solutions to four prime problems, and using the duality of Carlsson these can be
extended to solutions of seven prime problems. Finally we give some experimental results based on synthetic data.

1. Introduction

Understanding of one-dimensional cameras is impor-
tant in several applications. In [18] it was shown that
the structure and motion problem using line features in
the special case of affine cameras can be reduced to the
structure and motion problem for points in one dimen-
sion less, i.e. one-dimensional cameras. Thus solution
to 1D structure and motion problems have been used to
solve structure and motion problems for lines, [5, 18].

Another area of application is vision for planar mo-
tion. It is shown that ordinary vision (two-dimensional

retina) can be reduced to that of one-dimensional cam-
eras if the motion is planar, i.e. if the camera is rotat-
ing and translating in one specific plane only, cf. [11].
In another paper the planar motion is used for auto-
calibration [1]. A typical example is the case where a
camera is mounted on a vehicle or car that moves on a
flat plane or flat road.

Our personal motivation, however, stems from the
autonomous guided vehicles, called AGV, which are
important components for factory automation. The
navigation system uses strips of inexpensive reflector
tape which are put on walls or objects along the route
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of the vehicle, cf. [14]. The laser scanner measures the
direction from the vehicle to the beacons, but not the
distance. This is the information used to calculate the
position of the vehicle.

One of the primary vision problems (both 1D and
2D retina) is the so called structure and motion prob-
lem. For AGV’s this is the procedure to obtain a map
of the unknown positions of the beacons using images
at unknown positions and orientations, cf. [2]. This is
usually done off-line, once and for all, when the system
is installed and then occasionally if there are changes
in the environment. High-accuracy is needed, since the
map has to be hard-coded in the system. The perfor-
mance of the navigation routines depends on the preci-
sion of the reconstructed map. Note that the discussion
here is focused on finding initial estimates of structure
and motion. In practice it is necessary to refine these
estimates using non-linear optimization or bundle ad-
justment, cf. [3, 19]. Minimal cases are also useful in
robust estimation algorithms like RANSAC [20] for
finding correspondences.

Part of this work has been presented in [4, 16, 17].
The overall goal of this work is to solve all solvable
structure and motion problems. The purpose of this
paper is twofold. Firstly, tools are developed to clas-
sify the minimal structure and motion problems with
missing data. Secondly, solutions to the structure and
motion problem are given for some of these minimal
problems.

The paper is organized as follows. In Section 2 a
background to the problem is given, describing the
geometry of the problem. In Section 3 the structure
and motion problem with missing data is formulated.
In Section 4 the basis for classification of structure and
motion problems with missing data is given, describing
that the problems may belong to one or two of four
different classes of problems. The actual classification
is done in the following Section 5. Both algorithms for
finding the number of members of the different classes
and for actually finding out which class a structure
and motion problem belongs to are given. In Section 6
we solve seven different prime problems. In Section 7
we give some experimental results based on synthetic
data, and finally some conclusions are given in
Section 8.

2. Background

A laser navigated vehicle is shown inFigure 1.a. The
laser scanner, which is shown in detail in Figure 1.b, is
mounted on the top of the vehicle. A laser beam gen-

Figure 1. a: A laser guided vehicle. b: A laser scanner or angle
meter.

erated by a vertical laser in the scanner, is deflected
by a rotating mirror, at the top of the scanner. Thus,
the laser beam scans the room at a fixed height. When
the laser beam hits a beacon (a retroreflective tape,
also shown in Figure 1.a), a large part of the light
is reflected back to the scanner. The reflected light
is processed to find sharp intensity changes. When
this happens the bearing α of the laser beam rel-
ative to a fixed direction of the scanner is stored.
All beacons are identical. This means that the iden-
tity of a beacon cannot be determined from a single
measurement.

Introduce an object coordinate system which will
be held fixed with respect to the scene. The bearing α

defined above, depends on the position of the beacon
(Ux , Uy) and of the position (Px , Py) and orientation
Pθ of the scanner, cf. Figure 2,according to

α(P, U ) = arg(Ux − Px + i(Uy − Py)) − Pθ , (1)

wherearg is the complex argument (the angle of the
vector (Ux − Px , Uy − Py) relative to the positive x-
axis). The vector (Px , Py, Pθ ) is called the camera
state.

The above equation (1) for the measured bearing is
non-linear. A somewhat simpler representation of the
same equation can be obtained as follows. The vec-
tor between the camera center and the beacon can be
written as

λ

[
cos(α + Pθ )

sin(α + Pθ )

]
=

[
Ux − Px

Uy − Py

]

=
[

1 0 −Px

0 1 −Py

] ⎡⎢⎣Ux

Uy

1

⎤⎥⎦ . (2)
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Figure 2. The Figure illustrates the measured angle α as a func-
tion of scanner position (Px , Py ), scanner orientation Pθ and beacon
position (Ux , Uy ).

By multiplying each side with a rotation matrix we
obtain

λ

[
cos(α)

sin(α)

]
︸ ︷︷ ︸

u

=
[

cos(Pθ ) sin(Pθ )

− sin(Pθ ) cos(Pθ )

] [
1 0 −Px

0 1 −Py

]
︸ ︷︷ ︸

P

⎡⎢⎣Ux

Uy

1

⎤⎥⎦
︸ ︷︷ ︸

U

.

(3)
Thus the sensor follows the well known projection
equation:

λu = PU . (4)

Here the camera matrix is calibrated, i.e. it has the
following form:

P =
[

a b c
−b a d

]
, (5)

It is sometimes useful to consider dual image coordi-
nates

α ←→ v = [− sin(α) cos(α)
]

, (6)

so that vu = 0. This is particularly useful since it sim-
plifies the camera constraint (4) to vPU = 0. Notice
that the constraint above is linear in the camera matrix.
Denote by p the vector containing the four parameters
of the camera matrix p = (a b c d)T . Introduce
the operator D : R3 → R2×4 according to

D

⎛⎝⎛⎝ X
Y
Z

⎞⎠⎞⎠ =
(

X Y Z 0
Y −X 0 Z

)

Observe that PU = D(U)p. Thus it is possible to rear-
range the equations so to obtain a linear constraint of

the following type.

0 = vPU = vD(U)p . (7)

We will often use capital I to denote image number and
capital J to denote point number. Thus uI,J denotes
the image direction for point J in image I , PI denotes
camera matrix for image I and UJ denotes object point
number J .

3. Problem Formulation

Motivated by the previous sections the structure and
motion problem will now be defined.

Problem 3.1 Given some of the bearings to n beacons
from m different positions uI,J , (I, J ) ∈ I, where I is
an index set representing which beacons J are visi-
ble from image number I . The structure and motion
problem is to find the depths λI,J > 0, the recon-
structed points UJ and the camera matrices PI such
that

λI,J uI,J = PI UJ , ∀(I, J ) ∈ I .

We will in general let m denote the total number of
images/cameras and n the total number of points, for
a given problem. In this paper the interest lies in clas-
sifying and solving such problems. As such we will
consider the problem with both beacons and cameras
in general positions. As in ordinary vision there exist
so-called critical configurations where there is an in-
herent ambiguity of the solutions to the structure and
motion problem irrespective of the number cameras
and points. In this paper we assume un-critical configu-
rations. For non-missing data and 1D retina the issue of
critical configurations was completely resolved in [6].
For missing data it is not known what the critical con-
figurations are, but in order to understand which they
are an understanding of the minimal cases for missing
data is desirable.

The question whether a structure and motion prob-
lem is well-defined or perhaps even over-constrained
depends on the structure of the index set I.

In a previous paper [7] we considered only the cases
where all beacons are visible in all views. The conclu-
sion there is that the structure and motion problem is
well-defined if and only if there are at least 3 views of
at least 4 beacons, excluding the case m = 3, n = 4.

If it is possible to solve a case with a subset of cam-
eras and beacons, then it is relatively easy to extend that
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solution to other cameras and points by well known
techniques called resection and intersection, [7]. Thus
the solution of any well-defined case above is based on
the only two minimal cases with non-missing data, i.e.
4 views of 4 beacons and 3 views of 5 beacons.

The goal of this paper is to repeat this for the case of
missing data. Depending on the index set I a structure
and motion problem can be either

• ill-defined, if there is not, in general, enough data to
constrain all unknown variables.

• well-defined and minimal, if there is exactly enough
data to constrain the unknown variables (up to a dis-
crete number of solutions).

• well-defined but over-constrained, if there is more
than enough data to constrain the unknown variables.

One of the goals of this research is to classify the pos-
sible index sets I into these three categories, and if
possible to design algorithms for solving the structure
and motion problem in those cases where the problem
is well defined.

Some of the minimal cases contain a minimal case
as a subproblem. An example of this is the case with
four points seen in five images, but where the fourth
point is missing from the fifth image. It is minimal,
but contains a subproblem (the problem with the first
four views only) which is well defined and minimal.
We will use the notation prime problem for a min-
imal problem which does not contain a well defined
minimal problem as a subproblem. A minimal but not
prime problem may in some cases be solved by first
solving the contained prime problem and then extend
the solution using resection and intersection. In other
cases the prime problem may be embedded in the min-
imal problem in a more complicated manner. We first
observe that similar to the case of non-missing data a
well-defined but over-constrained problem contains as
a subset a problem which is well-defined but minimal.
Thus by finding the minimal cases and solving them,
we should be able to solve all well-defined problems
by the following algorithm:

1. Find whether a problem contains a well-defined
minimal problem as a subset.

2. Solve the structure and motion problem for this sub-
set.

3. Extend the solution to the original problem.

As the classification is based on the index set I alone,
it is interesting to study these sets. In this paper we

consider these sets as binary matrices, visibility ma-
trices, A of size m × n where black denotes missing
data and white denotes a measurement beacon which
is present. Another way of viewing these index sets
is as bi-partite graphs with m + n nodes. There is an
edge between node I in the first set and the node J
in the second set if the point J is visible in image I .
Thus a well-defined minimal case can be considered to
be a sub-graph of a well-defined but over-constrained
problem.

In the paper we will use the notation |I| to denote
the number of elements in the set I.

4. Classification of Structure and
Motion Problems

The goal of this section is to give some conditions on
what constitutes a well defined minimal problem. From
these minimal problems the prime problems can be
determined.

4.1. Equivalence Classes of Index Sets

The labeling of the cameras and of the beacons are
of no consequence to the structure of the problem un-
der study. Two index sets are considered equivalent
if one results from the other by suitable relabelings.
This means that there are many structure and motion
problems that have different I but that correspond in
principle to the same problem.

Definition 4.1. An index set I is said to be of type
(m, n, l) if it represents a situation with m images and
n points, in which exactly l points are not visible in all
of the images, that is, if |I| = mn − l.

From this definition it is clear that an index set I of
type (m, n, l) can be represented by a binary m × n–
matrix A = (aI J ) with aI J = 1 if (I, J ) ∈ I, and
aI J = 0 otherwise, and such that

∑
I J aI J = mn − l.

The possible index sets of type (m, n, l) are thus in
one–to–one correspondence with the set

M(m, n, l) = {A ∈ Matm×n(Z2) :
∑

I J aI J = mn − l}.

Let Sk denote the group of permutations on k symbols.
With each permutationσ ∈ Sk is associated a k×k–per-
mutation matrix (δiσ ( j)), which will be denoted simply
by σ .
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Figure 3. A number of permutation equivalent configurations

Definition 4.2. Two m ×n–matrices A and B are said
to be permutation equivalent, if there exist permuta-
tions σ ∈ Sm and τ ∈ Sn such that B = σ T Aτ . If A
and B are permutation equivalent then we write A ∼ B.

The notion of equivalence of index sets can now be
given a formal definition

Definition 4.3. Two index sets I and I′ are called
equivalent, and we write I ∼ I′, if their correspond-
ing matrix representations are permutation equivalent.

In Figure 3a number of permutation equivalent con-
figurations is shown. The relation ∼ is easily seen to
be an equivalence relation. It follows that M(m, n, l)
(or the corresponding index sets) can be partitioned
into equivalence classes M1, . . . , Mω of matrices (or
index sets). The number of essentially different index
sets is thus seen to be exactly the same as the number
ω = ω(m, n, l) of equivalence classes. This is the num-
ber of principally different problems of type (m, n, l).

4.2. The Germs

A first characterization of a well defined minimal struc-
ture and motions problem is that it contains exactly the
same number of equations as unknowns. Each object
point has two degrees of freedom and each camera state
has three. The solution is only defined up to a similarity
transformation. This manifold has dimension 4. Using
n points and m cameras we thus have 2n + 3m − 4
degrees of freedom in the parameters. Each measured
bearing gives one constraint on the estimated parame-
ters. Thus for a problem with visibility index set I we
have |I| equations. This means that minimal problems
have |I| = 2n + 3m − 4. Since the maximum number
of equations with m views of n points is mn it is easy to
see how many measurements l that have to be occluded
to obtain minimal problems, l = mn − (2n + 3m − 4).
This number is shown in Table 1.

In order to find the minimal problems we concentrate
our efforts on problems of type (m, n, mn−(2n+3m−
4)).

Definition 4.4. A structure and motion problem of
type (m, n, mn − (2n + 3m − 4)) is said to be a germ
of a minimal problem.

For a structure and motion problem to be minimal
and/or prime the condition of being a germ is of course
only a necessary condition.

4.3. The Prime Condition

For a given germ the corresponding structure and mo-
tion problem can be minimal or ill-posed. If it is mini-
mal it may or may not be prime. The question of which
class a germ belongs to can be categorized in terms of
the graph of the index set. We will use the following
intuitive assumption.

Conjecture 4.1. For a given germ with index set
I, the corresponding structure and motion problem is
minimal iff no sub-graph of I is over determined.

An empirical method for determining whether a prob-
lem is minimal and well defined is to calculate the
Jacobian of the bundle adjustment problem and study
its singular values. We have used this technique to em-
pirically check our conjecture.

It is clear that if a sub-graph of a germ with index set
I is over determined then there has to be a part of the
problem that is under determined and hence the whole
problem is ill-posed.

Table 1. The number of excess constraints l = mn − (2n +3m −4)
for the structure and motion problem with m images of n points.

l n

m 4 5 6 7 8 9

3 -1 0 1 2 3 4
4 0 2 4 6 8
5 1 4 7 10
6 2 6 10
7 3 8
8 4
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Theorem 4.1. Given a germ with index set I; At least
one sub-graph of I is over determined ⇒ the corre-
sponding structure and motion problem is ill-posed

We will henceforth identify the class of minimal
problems with those that fulfill conjecture 4.1. Under
this assumption the notion of being a prime problem
can be given the following formal definition,

Definition 4.5. A prime problem is a germ with in-
dex set I such that all strict sub-graphs of I are under
determined.

A minimal problem which is not prime is an exten-
sion of a prime problem. The extended minimal prob-
lem can in many cases be solved by a succession of
resections and intersections based on the solution to
the prime case. In other cases the extension can be
more complicated. In Figure 5a minimal problem of
type (4,7,6) is shown. This can be shown to be an ex-
tension of a prime problem of type (4,6,4), which is
shown in Figure 5b. If one has a solution to the prime
problem the final point of the first problem can be found
by intersection by the two first cameras.

Definition 4.6. An extension of type (m, n) is an ex-
tension with m extra cameras and n extra points of a
prime problem.

5. Finding and Classifying Germs

We now concentrate our efforts on finding out how
many germs there are for different number of cameras
and points. From these germs we then determine which
are minimal and which are prime.

5.1. Equivalence Classes of Germs

Let the type (m, n, l) be fixed throughout the remainder
of the discussion. To compute ω = ω(m, n, l), notions

Figure 4. A germ of type (4,7,6).

Figure 5. (a) A minimal problem of type (4,7,6) which is an exten-
sion of (b) a prime problem of type (4,6,4).

and results from group theory will be used. Our refer-
ence here is to Section 3.6 of Fraleigh’s text [12].

First, denote the product group Sm × Sn by G. Sec-
ondly, if g = (σ, τ ) ∈ G and A ∈ M = M(m, n, l),
then a group action of G on M is defined by the formula

g · A = σ T Aτ. (8)

Thus two matrices A, B ∈ M satisfy A ∼ B if and
only if there exists g ∈ G such that g · A = B. The
equivalence classes M1, . . . , Mω of ∼ correspond to
the orbits in M under the action of G. Therefore ω

can be computed by the following well–known formula
of Burnside; For any g ∈ G let Mg = {A ∈ M : g · A =
A} denote the set of matrices which are fix-points under
action by g. Then

ω = 1

|G|
∑
g∈G

|Mg|. (9)

While (9) solves our problem in theory, there are
still some practical problems to overcome. First, given
g ∈ G, how do we compute |Mg|? Secondly, the sum∑

g∈G |Mg| must be evaluated, but as |G| = m!n! be-
comes very large very quickly, the shear size of G may
become an obstacle, unless the evaluation is performed
cleverly.

A permutation g = (σ, τ ) ∈ G may be regarded as
an element of Smn , as A 	→ σ T Aτ permutes the mn
entries of A. Let g = g1g2 · · · gs be the factorization
in Smn of g into a product of commuting (or disjoint)
cyclic permutations. It is now easy to see that A ∈
Mg if and only if, the entries in A, which equal zero,
are arranged in such a manner, that any cycle gi is
either completely occupied by entries equal to zero, or
contains no such entry at all. It follows that |Mg| equals
the number of ways in which l zeros can be allocated to
m × n entries, such that the condition just described is
satisfied. It is clear from this discussion that |Mg| only
depends on g’s cycle structure (the number of cycles
and their lengths).
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Definition 5.1. If σ ∈ Sk is a permutation in k sym-
bols, let ni (σ ), i = 1, . . . , k, denote the number of i–
cycles in the factorization of σ into commuting cycles.
The cycle index of σ is the polynomial

Pσ (x1, x2, . . . , xk) = xn1(σ )
1 xn2(σ )

2 · · · xnk (σ )
k . (10)

If H < Sk is a (sub–)group of permutations, then the
cycle index of H is the polynomial

PH (x1, x2, . . . , xk) = |H |−1
∑
h∈H

Ph(x1, x2, . . . , xk).

It follows from the theory developed in [22] that
|Mg| = (l!)−1(d/dx)l Pg(1 + x, 1 + x2, . . . , 1 +
xmn)|x=0, for any g ∈ G. This formula solves the first of
our two problems. Furthermore, it follows from Burn-
side’s formula (9) that

ω = 1

l!

(
d

dx

)l

PG(1 + x, 1 + x2, . . . , 1 + xmn)
∣∣∣
x=0
(11)

It turns out that the cycle index PH is reasonably easy
to compute when H is all of Sk . Now, G = Sm × Sn is a
proper subgroup of Smn , so in view of (11) our second
problem above becomes: How do we compute PG when
the cycle indices of Sm and Sn are known? Again the au-
thors of [22] provide the answer; They introduce a new
operation beside the usual addition and multiplication,
denoted ∗, on the ring of polynomials in the infinitely
many variables x1, x2, x3, . . ., and with rational coeffi-
cients. The “product” is associative, commutative and
distributive over both + and; so it suffices to describe
∗ on monomial factors xm

i and xn
j , in which case

xm
i ∗ xn

j = ximjn/[i, j]
[i, j] , (12)

where [i, j] is the least common multiple of i and j .
The authors of [22] then proceed to prove the following
beautiful result, which we have used to compute PG :

Theorem 5.1. (Wei and Xu). If H < Sm and K <

Sn are (sub–)groups, then H × K < Smn, and PH×K =
PH ∗ PK .

Example The cycle index of S3 is 1
6 (x3

1 +3x1x2 +2x3)
so if G = S3 × S3 then

PG = 1

6
(x3

1 + 3x1x2 + 2x3) ∗ 1

6
(x3

1 + 3x1x2 + 2x3)

= 1

36
(x9

1 + 6x3
1 x3

2 + 9x1x4
2 + 12x3x6 + 8x3

3 )

and it follows from (11) that ω(3, 3, 3) = 6.

The procedure for calculating ω, described above,
was implemented in Maple. Using this program we
are able to compute ω for any given (m, n, l) and in
particular for the germs. Table 2 contains ω for the first
few types (m, n, l), with l given by Table 1.

5.2. Finding germs

When solving the different minimal cases it is impor-
tant to have representatives for the different equiv-
alence classes of one minimal case, in order to be
able to determine which are prime, and also in the
actual solving of the underlying structure and motion
problem.

When finding the equivalence classes for diff-
erent (m, n, l) it is enough to investigate configurations
of type (n, n, n) from which other configuration easily
can be derived. In the light of this we will concentrate
our efforts on such configurations.

If one were to generate all index sets of type (n, n, n)
there are

(n2

n

)
such configurations. This is a very large

number as n increases. If one has already calculated
the equivalence classes for the configurations of type
(n −1, n −1, n −1) the number of possible candidates
for (n, n, n) can be reduced substantially.

Lemma 5.1. Given A and B two n × n matrices that
are permutation equivalent; If C is given by the (n +
1)× (n +1)-matrix that is A extended one row and one
column with ones, and where one non-zero element is
set to zero, then there exists a matrix D that is given
by the (n + 1) × (n + 1)-matrix that is B extended
one row and one column with ones, and where one
non-zero element is set to zero, such that C and D are
permutation equivalent.

Proof: The proof is obvious.

This leads to algorithm 5.1.

Algorithm 5.1 (Finding Possible Candidates for
Equivalence Classes).

1. Given a representative of each equivalence class of
type (n − 1, n − 1, n − 1), Xi , i = 1 . . . N .

2. For each Xi construct Yi , i = 1 . . . N where Yi is
the n × n-matrix that is Xi extended one row and
one column with ones.
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3. In Yi there are n2 − (n − 1) non-zero elements. Yi j

is given by setting the j-th nonzero element of Yi to
zero.

This gives a number of possible candidates from
which representatives of the equivalence classes can be
selected. Using algorithm 5.1 the number of possible
candidates has been reduced from

(n2

n

)
to (n2−n+1)·N .

For instance if n = 10, then N = 1430 and this leads
to a reduction from 1.7 · 1013 to 1.3 · 105.

Short of trying all permutations there is no easy way
of establishing if two index sets are permutation equiv-
alent. If one is to check all possible permutations of a
n × n matrix there are (n!)2 such possibilities. This is
rather undoable even for moderate n. In this section we
propose an algorithm that uses a different approach.

If we have a set of matrices we try to permute each
matrix to a standard form. This is done by solving the
minimization problem stated in (13) for each Y in our
set of matrices.

X̂ = arg min
X∼Y

f (X ). (13)

Here f is given by

f (X ) =
∑
i, j

2ai j xi j , ai j = n(i − 1) + j − 1, (14)

and xi j are the entries in X . For each n × n-matrix,
with zero and one entries, f is injective since f (X )
represents the binary number with the n2 entries of X
as its digits. This means that X̂ in (13) exists uniquely
for every Y .

This leads to the following algorithm;

Algorithm 5.2 (Comparing matrices).

1. Given a number of matrices Xi , i = 1 . . . N ,

2. Find X̂i by solving X̂i = arg minX∼Xi f (X ).
3. Xi ∼ X j if X̂i = X̂ j .

The problematic part of algorithm 5.2 is finding the
global minimum. We have used a local search method
when we do the minimization, and inevitably we end
up with not finding the global minimum for every ma-
trix in our list. This means that in most cases we will
have to do something extra in order to find the distinct
equivalence classes. One way of getting away from a
local minimum is to start the minimization again from
a position away from the starting position. This can be

done by randomly permuting the given matrix and then
use the minimization routines on the new matrix. The
steps are described in algorithm 5.3.

Algorithm 5.3 (Comparing matrices again).

1. Given a number of matrices Xi , i = 1 . . . N
2. For each Xi create M random permutations

Xi j , j = 1 . . . M of Xi .
3. For every Xi j find X̂i j by solving X̂i j =

arg loc minX∼Xi j f (X ).
4. Xi ∼ Xk if X̂i j = X̂kl for some j and l.

Since we for every given configuration (m, n, l) can
calculate the number of equivalence classes according
to section 5.1 we can use algorithm 5.3 until we have
found the right number of distinct matrices.

The motivation for the success of algorithm 5.3 is
the following; Let’s say that we have two matrices that
are permutation equivalent, but that have ended up in
different minima after the use of algorithm 5.2, and for
simplicity assume that these are the only two minima
that we may end up with, from different starting points,
after our minimization. If minimum one attracts a of
all starting matrices and minimum two attracts (1 −
a) then the probability that the two matrices stay in
their respective minima after the use of algorithm 5.3
is aM (1 − a)M . This is maximized for a = 0.5 with
probability equal to 2−2M which tends rapidly towards
zero as M increases.

Due to the fact that ω(l + a, l + b, l) =
ω(l, l, l) ∀ a, b ∈ Z+ sought germs of type (m, n, l)
with m and n larger than l correspond to germs of type
(l, l, l). Germs of type (m, n, l) with m or n smaller
than l can be chosen from the equivalence classes for
(l, l, l) where configurations that can not be contained
in a m × n matrix have been removed.

We have calculated the equivalence classes for some
of the first germs using the algorithms described in this
section. In Table 2 the number of distinct germs for
these cases are given.

5.3. Classifying Germs

From a number of germs the object is to classify them
first of all as minimal or ill-defined. Then from the
minimal germs we determine which are prime. A first
condition that roots out many ill-defined germs is that
to every camera there has to be at least three measure-
ments in total otherwise it is impossible to determine
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Table 2. The number ω of different germs for different m and n.

ω n

m 4 5 6 7 8 9

3 – 1 1 3 6 11
4 1 3 16 62 225
5 1 16 155 1402
6 3 79 1799
7 6 361
8 16

the camera uniquely. Similarly there has to be at least
two measurements to every point in order to uniquely
be able to determine the position of the point. From the
germs that fulfill these criteria we try to evaluate which
are minimal. The reason that some germs are ill-posed
is that there are sub-problems that are over determined
and sub-problems that are under determined but in to-
tal the number of measurements match the number of
unknowns. This was described in section 4.3. So one
way of determining which of the germs are minimal
is to for every sub-graph of the given I check whether
the sub-graph represents a well posed problem or not.
For a graph with m cameras and n points there are
2m+n sub-graphs so for larger m and n it may take a
while to check all sub-graphs. Another way is to use
the following algorithm:

Algorithm 5.4 (Classifying germs)

1. Given the matrix representation A of an index set
I of type (m, n, l), for all 3 ≤ m̃ ≤ m, and for all
possible ways choose m̃ rows from A.

2. From the m̃ rows of A choose the ñ points that are
seen in at least 3 of the m̃ chosen cameras.

3. The total number of measurements in the chosen m̃
cameras and ñ points is N . If N > 3m̃ + 2ñ − 4
then I is ill-defined. If N = 3m̃ +2ñ−4 and m̃ < m
or ñ < n then I is not prime.

Using algorithm 5.4 we have calculated the number
of minimal and prime configurations for some differ-
ent values of m and n. The results are shown in Ta-
ble 3, where the number of minimal configurations are
shown, and in Table 4, wherethe number of prime con-
figurations are shown.

In Figure 7 the prime problems for the configurations
of type (5, 5, 4) and (4, 6, 4) are given. The configura-
tions in Figure 7a–c seem to be connected to configu-
rations in Figure 7d–f. The similarity can be explained
using a technique that Carlsson developed in [8, 9].

Table 3. The number of minimal configurations for different m and
n.

n

m 4 5 6 7 8 9

3 – 1 1 2 3 4
4 1 3 12 41 118
5 1 12 110 876
6 2 48 1050
7 3 159
8 5

Theorem 5.2. The calibrated structure and motion
problem with n points and m images is equivalent to the
calibrated structure and motion problem with (m + 1)
points and (n − 1) images.

The theorem is based on singling out one special
point, which must be visible in all views. By using this
point as a reference point (origo). It is possible to ex-
change the cameras for beacons and vice versa. Thus
a structure and motion problem with visibility matrix
[Am×n−1 0m×1] is dual to one with visibility matrix
[AT

n−1×m 0n−1×1]. Using this duality one can see that
the configurations in Figure 7a–c are dual to the con-
figurations in Figure 7d–f. If one has the solution to
one structure and motion problem the solution to its
dual problem can easily be calculated.

The transformation between cameras and beacons
in the two problems are given by a special Cremona
transformation, described in the following lemma:

Lemma 5.2. Consider the calibrated Cremona trans-
formation

(u, v, w) 	→ (uw, −vw, (u2 + v2)) . (15)

The transformation has the property that from every
point A the angle measured to an arbitrary point B

Table 4. The number of prime configurations for different m and n.

n

m 4 5 6 7 8 9

3 – 1 0 0 0 0
4 1 1 3 5 8
5 0 3 22 145
6 0 6 136
7 0 0
8 0



336 Oskarsson, Åström and Overgaard

Figure 6. Example of Calibrated Cremona transformation.

relative to the origin is the same as the angle from the
dual point B ′ to the point A′.

The lemma is illustrated by Figure 6.Notice that the
triangle O AB is congruent to O B ′ A′, the triangles
OC D is congruent to O D′C ′ and similarly for any
triangle with O as one of the vertices. This means that
if we measure bearings from any set of camera posi-
tions (C1, . . . , Cm) to the points (X1, . . . , Xn) we will
get the same angles as we would if we measured from
the points (X ′

1, . . . , X ′
n) to the points (C ′

1, . . . , C ′
m).

If one looks at Table 4 the number of prime con-
figurations seem to increase quickly as both m and n
increase. This leads to the question whether this is true
or if the number of prime cases after some time stop
growing. One can at least give the following result,

Figure 7. The three distinct configurations for prime cases of type (5, 5, 4), (a–c), and the three distinct configurations for prime cases of type
(4, 6, 4), (d–f).

Theorem 5.3. There are infinitely many prime con-
figurations.

Proof: Given a germ of type (m, m, m2 − 5m + 4)
one can construct the following prime configuration;
the first point is seen in all images. The remaining
m − 1 points are seen in exactly 4 images each. Of
these m − 1 points, the first 4 cameras see exactly
3 points and the remaining m − 4 cameras see ex-
actly 4 points. The construction is illustrated in Fig-
ure 8. We will use algorithm 5.4 to show that this
construction is prime. For m̃ ≤ m − 2: In order
to use as much information as possible one should
choose the m̃ cameras close together. This gives in
the best case 3m̃ + 2m̃ − 4 = 5m̃ − 4 unknowns and
m̃+4(m̃−3)+3·2 = 5m̃−6 constraints, so in this case
it is always under-determined. For m̃ = m−1 the same
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Figure 8. A prime configuration of type (10, 10, 54).

reasoning gives at best: 3m̃ + 2(m̃ + 1) − 4 = 5m̃ − 2
unknowns and m̃+4(m̃−3)+3·3 = 5m̃−3 constraints.
So also in this case it is always under-determined. Fi-
nally for m̃ = m we have 3m̃ + 2m̃ − 4 = 5m̃ − 4
unknowns matching the m̃ + 4(m̃ − 1) = 5m̃ − 4
constraints.

Comparing Table 3 with Table 4 we see that there
is only one prime case for four points. Similarly there
is only one prime case for three cameras. The exten-
sions in these cases are of type (m, 0) and (0, n). These
type of extensions can always be solved using resection
and intersection respectively. Extensions of type (1, n)
and (m, 1) can always also be solved using only com-
binations of resection and intersection. The first more
complicated extension occurs for the type (2, 2). In or-
der for the extension not to be able to be solved with
intersection and resection all cameras and points must
be under-determined with respect to the prime config-
uration. And all cameras and points should be exactly
determined with the information contained in the re-
maining four measurements. For an extension of type

Figure 9. Extensions of type (2,2) from prime (m, n) problems to minimal (m + 2, n + 2). In (a) the problem can be solved by a succession
of resections and intersections. In (b) the only extension of type (2,2) not directly solvable by intersections and resections is shown.

(2, 2) this can essentially only be done in one way. This
extension is shown in Figure 9b. Other minimal exten-
sions of type (2,2) can either not be solved or can be
solved using resection and intersection. For example,
consider Figure 9a with (m + 2) cameras and (n + 2)
points. Point (n + 2) can be intersected using cameras
(m − 1) and m. Camera (m + 1) can then be estimated
with resection using the n first points and point (n +2).
Point (n + 1) is then given by cameras m and (m + 1).
This finally gives camera (m +2) by resection of points
{(n − 1) . . . (n + 1)}.

6. Solution of Some Minimal Cases

In section 5 we determined exactly which the prime
problems are. In this section we turn our attention to
the task of solving some of these prime problems. We
also saw that some minimal problems can be solved
by extending a prime problem. One such case of an
add-on is also considered in this section.

6.1. The Case of Five Points in Four Images

There is only one prime configuration for the case of
five points in four images. This is the case where one
sees five points in two images. In image three, one
point is occluded and in image four another point is
occluded. We will start by finding the solutions to this
case.

Theorem 6.1. The structure and motion problem
with four views of five points

λI,J uI,J = PI UJ , ∀(I, J ) ∈ I .

with I such that point 1 is missing in view 3 and point 2



338 Oskarsson, Åström and Overgaard

is missing in view 4 (see Table ??) has in general three
solutions.

Proof: We introduce a coordinate system such that
the first camera is given by

P1 =
[

1 0 0
0 1 0

]
.

Then we can parameterize the structure with the depths
in the first image,

UJ = [
λ1,J cos(α1,J ) λ1,J sin(α1,J ) 1

]T
.

Using equation (7) we can write the projections in the
remaining three images as

vI,J

[
λ1,J cos(α1,J ) λ1,J sin(α1,J ) 1 0
λ1,J sin(α1,J ) −λ1,J cos(α1,J ) 0 1

]
pI = 0

If we write this as

M2
5×4p2 = 0, M3

4×4p3 = 0, M4
4×4p4 = 0

we see that all 4×4-determinants of Mi have to be zero
since pi �= 0. This leads to seven two-degree polyno-
mials in λ1i . All seven are not linearly independent.
Points are only determined up to scale so we can set
λ15 = 1 in our calculations and then choose four of the
polynomials and solve for λ1i . If

p11 = aλ12λ13 + bλ13λ14 + cλ14 + dλ12λ14 + eλ13 + f λ12

p12 = gλ12λ13 + hλ13λ14 + iλ14 + jλ12λ14 + kλ13 + lλ12

p13 = mλ11λ13 + nλ13λ14 + oλ14 + pλ11λ14 + qλ13 + rλ11

p14 = sλ11λ13 + tλ13λ14 + uλ14 + vλ11λ14 + wλ13 + xλ11,

then we want to solve the equations

p1i = 0, i = 1 . . . 4. (16)

Taking the resultant, cf. [10], of p11 and p12 with re-
spect to λ12 and of p13 and p14 with respect to λ11 gives
respectively polynomials p21 and p22 of total degree
three,

p21 = a′λ2
13λ14 + b′λ13λ

2
14 + c′λ2

13 + d ′λ2
14 + e′λ13λ14 + f ′λ13 + g′λ14

p22 = h′λ2
13λ14 + i ′λ13λ

2
14 + j ′λ2

13 + k ′λ2
14 + l ′λ13λ14 + m ′λ13 + n′λ14.

Taking the resultant of p21 and p22 with respect to
λ13 gives a homogeneous polynomial in λ14 of de-
gree seven. One of the seven solutions is created from

the resultant calculations, and will not fulfill the origi-
nal polynomial equations. This gives six solutions for
λ1i , i = 1 . . . 5 including λ1i = 0, i = 1 . . . 5 . Of
the five non-zero solutions, two are complex and are a
result of our parameterization,

(λ11, λ12, λ13 , λ14, λ15) ∼ (e±iα11 , e±iα12 , e±iα13 , e±iα14 , e±iα15 ).

This leaves three non-trivial solutions.

6.2. The Case of Five Points in Five Images

There are three prime problems for the case of five
points in five images. We will now solve these three
prime problems and their three dual cases.

Theorem 6.2. The structure and motion problem for
five images of five points,

λI,J uI,J = PI UJ , ∀(I, J ) ∈ I .

with I given by Figure 7a has in general three solutions.

Proof: As in the case with four images of five points
we can use the first image to parameterize the structure.
The remaining four images are then used to solve the
problem. This gives four second degree polynomial
equations in λ1i , i = 1 . . . 4. These polynomials have
the exact same structure as those in the case of five
points in four images, and hence the solutions have the
same structure. This leads to that the problem of five
points in five views has three non-trivial solutions.

The dual to this case of five points in five images is the
case of six points in four images given by Figure 7d.
This means that there are three solutions to this case of
six points in four images.

Corollary 6.1. The structure and motion problem for
four images of six points,

λI,J uI,J = PI UJ , ∀(I, J ) ∈ I .

with I given by Figure 7d has in general three solutions.

Using the same kind of parameterization as in the pre-
vious cases, we can solve the prime problem given by
Figure 7b.

Theorem 6.3. The structure and motion problem for
five images of five points,

λI,J uI,J = PI UJ , ∀(I, J ) ∈ I .
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with I given by Figure 7b has in general four solutions.

Proof: We parameterize the structure with image
one, which leads to the following system of equations:

p11 ≡ aλ12λ13 + bλ13λ14 + cλ14 + dλ12λ14 + eλ13 + f λ12 = 0

p12 ≡ gλ12λ13 + hλ13λ14 + iλ14 + jλ12λ14 + kλ13 + lλ12 = 0

p13 ≡ mλ11λ13 + nλ13λ14 + oλ14 + pλ11λ14 + qλ13 + rλ11 = 0

p14 ≡ sλ11λ12 + tλ12λ14 + uλ14 + vλ11λ14 + wλ12 + xλ11 = 0.

Taking the resultant of p13 and p14 with respect to
λ11 gives a polynomial in λ12, λ13 and λ14. Taking the
resultant of this polynomial and p11 with respect to λ12

gives the following polynomial of degree four in λ13

and λ14,

p22 = h′λ13λ
3
14+i ′λ14+ j ′λ13+k ′λ2

14+l ′λ13λ14+m ′λ2
13

λ14 + n′λ2
13 + o′λ3

14 + p′λ2
13λ

2
14.

Taking the resultant of p11 and p12 with respect to
λ12 gives the following polynomial in λ13 and λ14,

p21 = a′λ2
13λ14 + b′λ13λ

2
14 + c′λ2

13 + d ′λ2
14 + e′λ13λ14

+ f ′λ13 + g′λ14.

Taking the resultant of p21 and p22 with respect to
λ13 gives a homogeneous polynomial in λ14 of degree
nine. Two of the nine solutions are created from the
resultant calculations, and will not fulfill the original
polynomial equations. This gives seven solutions for
λ1i , i = 1 . . . 5 including the trivial one. Of these, two
are complex and are a result of our parameterization,

(λ11, λ12, λ13 , λ14, λ15) ∼ (e±iα11 , e±iα12 , e±iα13 , e±iα14 , e±iα15 ).

This leaves four non-trivial solutions.

The dual to this case of five points in five images is
the case of six points in four images given by Figure 7e.
This means that there are three solutions to this case of
six points in four images.

Corollary 6.2. The structure and motion problem for
four images of six points,

λI,J uI,J = PI UJ , ∀(I, J ) ∈ I .

with I given by Figure 7e has in general four solutions.

Finally the last prime case of five images of five points
can be shown to have five solutions.

Theorem 6.4. The structure and motion problem for
five images of five points,

λI,J uI,J = PI UJ , ∀(I, J ) ∈ I .

with I given by Figure 7c has in general five solutions.

Proof: We parameterize the structure with image
one, which leads to the following system of equations:

p11 ≡ aλ12λ13 + bλ13λ14 + cλ14 + dλ12λ14 + eλ13 + f λ12 = 0

p12 ≡ gλ12λ13 + hλ13λ14 + iλ14 + jλ12λ14 + kλ13 + lλ12 = 0

p13 ≡ mλ11λ13 + nλ13λ14 + oλ14 + pλ11λ14 + qλ13 + rλ11 = 0

p14 ≡ sλ11λ13 + tλ13λ14 + uλ14 + vλ11λ14 + wλ13 + xλ11 = 0.

Taking the resultant of p12 and p13 with respect to λ11

and the resultant of p12 and p14 with respect to λ11 gives
respectively the following polynomials in λ12, λ13 and
λ14 :

p21 = a′λ12λ13 +b′λ13λ14 +c′λ12λ14 +d ′λ12 +e′λ13 + f ′λ14

+g′λ2
14 + h′λ12λ13λ14 + i ′λ13λ

2
14 + j ′λ12λ

2
14

p22 = k ′λ12λ14 + l ′λ14λ13 +m ′λ12λ13 +n′λ12 +o′λ14 + p′λ13

+q ′λ2
13 + r ′λ12λ14λ13 + s ′λ14λ

2
13 + t ′λ12λ

2
13.

Taking the resultants of p11 and p21 and of p11 and p22

with respect to λ12 gives the following two polynomials
in λ13 and λ14 :

p31 = a′′λ13 + b′′λ14 + c′′λ13λ14 + d ′′λ2
13 + e′′λ2

14

+ f ′′λ13λ
2
14 + g′′λ2

13λ14 +h′′λ3
14 + i ′′λ2

13λ
2
14 + j ′′λ13λ

3
14

p32 = k ′′λ13 + l ′′λ14 + m ′′λ13λ14 + n′′λ2
13 + o′′λ2

14

+p′′λ13λ
2
14 +q ′′λ2

13λ14 +r ′′λ3
13 + s ′′λ2

13λ
2
14 + t ′′λ3

13λ14.

Taking the resultant of p31 and p32 with respect to
λ13 gives a homogeneous polynomial in λ14 of degree
twelve. Four of the twelve solutions are created from
the resultant calculations, and will not fulfill the orig-
inal polynomial equations. This leaves eight solutions
for λ1i , i = 1 . . . 5 including the trivial one. Of these,
two are complex and are a result of our parameteriza-
tion,

(λ11, λ12, λ13 , λ14, λ15) ∼ (e±iα11 , e±iα12 , e±iα13 , e±iα14 , e±iα15 ).

This leaves five non-trivial solutions.
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Table 5. Some bearing measurements

0.6929 −0.7825 −1.9347 0.3263 −0.6421
0.3206 −0.9479 −1.8732 −0.0041 −0.8289

– −2.5202 2.4474 −0.9746 −2.3323
2.3024 – −1.0540 1.8991 0.6499

The dual to this case of five points in five images is
the case of six points in four images given by Figure 7f.
This means that there are five solutions to this case of
six points in four images.

Corollary 6.3. The structure and motion problem for
four images of six points,

λI,J uI,J = PI UJ , ∀(I, J ) ∈ I .

with I given by Figure 7f has in general five solutions.

6.3. The Two-by-Two Extension

In section 5.3 we saw that apart from simple extensions
based on intersection and resection the first extension
of a prime problem is the extension by two cameras
and two points. This type of extension is shown in Fig-
ure 9b. We assume that we have a solution to a prime
problem with m cameras and n points. The task is then
to extend this solution to the solution of the extended
problem with m + 2 cameras and n + 2 points. Two
extra cameras and two extra points means that we have
2 · 3 + 2 · 2 = 10 unknowns to solve for. Using in-
tersection, the known cameras give 2 linear constraints
on the unknown points. And using resection the known
points give 4 linear constraints on the unknown cam-
eras. This leaves 4 parameters, one for each camera
(Ai , i = 1, 2) and one for each point (Xi , i = 1, 2), to
solve for. The two new points are seen in both the two

Figure 10. Three solutions to the minimal case of five points in four images. Beacons are indicated by ’+’.

new views. This gives four quadratic constraints on the
four parameters,

ai j Xi A j +bi j Xi +ci j A j +di j = 0, i = 1, 2, j = 1, 2

with the coefficients (ai j , bi j , ci j , di j ) only depending
on the images. This means that there could be up to
24 = 16 solutions according to Bezout’s theorem. But
due to the sparseness of the polynomials this is not the
case. Taking resultants pairwise we can eliminate Xi .
This leaves two polynomial equations in Ai ,

a′
i A1 A2 + b′

i A1 + c′
i A2 + d ′

i = 0, i = 1, 2.

Taking the resultant of the two polynomials with re-
spect to A2 leaves the following quadratic equation in
A1

a′′ A2
1 + b′′ A1 + c′′ = 0.

This discussion leads to the following result:

Theorem 6.5. Given an extension of type (2, 2) to a
structure and motion problem with m cameras and n
points (as depicted in Figure 9b), the number of solu-
tions are in general 2 × N, where N is the number of
solutions of the original problem with m cameras and
n points.

7. Some Experimental Results

The methods described in the proof of theorem 6.1
can easily be implemented. In Table 5 bearings for an
example of the minimal case described in theorem 6.1 is
shown. The resulting solutions are given in Figure 10.
In this case there were three real solutions with all
depths positive.
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Table 6. Some bearing measurements

−1.9786 −0.5736 0.8046 −1.0507 0.5931 – –
−2.5202 −1.1710 1.5796 −1.8684 1.2136 – –
−0.8188 0.6134 3.0339 -0.0885 2.6759 −0.1730 −2.4311
−2.2663 −0.6898 – – – −1.3617 1.5151
−1.8792 −0.3047 – – – −1.1115 2.5170

Figure 11. Four solutions to one minimal case of seven points in
five images. Beacons are indicated by ’+’.

In Table 6 a setting with five cameras and seven
points is shown.

This is a minimal problem but not a prime one. The
sub-problem of the first three cameras and the first five
points is a prime problem which can be solved using
the methods in [7]. This gives two solutions. The so-
lution of the whole problem can then be found by the
(2, 2) extension described in section 6.3. This gives
two solutions for each of the original solutions, in total
four solutions. In this case the solutions had all positive
depths. The resulting solutions are shown in Figure 11.

8. Conclusions

In this paper we have begun to classify and solve struc-
ture and motion problems for calibrated 1D retina vi-
sion with missing data. We have introduced a nota-
tion on so called prime structure and motion problems.
These are the problems that if solved will allow solu-
tions to all structure and motion problems. Similar to
the prime numbers there are infinitely many such prime
problems.

Figure 12. Solved prime problems.

In the paper we have given methods for calculating
the number of such problems with a given size and
also methods for finding representatives of each such
problem. We have also begun our work on actually de-
signing algorithms that solve the structure and motion
problems for some of these instances. In Figure 12 all
solved prime problems are shown.

More work is however needed in order to understand
and solve these problems. We hope to be able to give
more results in this direction in a near future.
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