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Abstract. This paper deals with the total variation minimization problem in image restoration for convex data
fidelity functionals. We propose a new and fast algorithm which computes an exact solution in the discrete framework.
Our method relies on the decomposition of an image into its level sets. It maps the original problems into independent
binary Markov Random Field optimization problems at each level. Exact solutions of these binary problems are found
thanks to minimum cost cut techniques in graphs. These binary solutions are proved to be monotone increasing with
levels and yield thus an exact solution of the discrete original problem. Furthermore we show that minimization of
total variation under L1 data fidelity term yields a self-dual contrast invariant filter. Finally we present some results.
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1. Introduction

Minimization of the total variation (TV) for image re-
construction is of great importance for image process-
ing applications [1, 36, 38, 40, 41]. It has been shown
that these minimizers live in the space of bounded
variation [23] which preserves edges and allows for
sharp boundaries. In this paper we propose a new and
fast algorithm which computes an exact solution of
discrete TV minimization-based problems along with
some new theoretical results.

Assume u is an image defined on � then its total
variation is T V (u) = ∫

�
|∇u|, where the gradient is

taken in the distributional sense. In this paper, we as-
sume v is an observed image defined on �. We are
interested in minimizing the following functional:

Ev(u) =
∫

�

f (u(x), v(x)) dx + β

∫
�

|∇u| . (1)

We assume that the attachment to data term is a convex
function of u(·), such as: f (u(x), v(x))) = |u(x) −
v(x)|p for the L p case (p = 1, 2), and that the regular-
ization parameter β is a positive constant. In sequel the
total variation model with L2 (L1) data fidelity terms
are referred to as L2 + T V (L1 + T V ).

A classical approach to minimize TV is achieved by
a gradient descent [44] which yields the following evo-
lution equation ∂u

∂t = div( ∇u
|∇u|+ε

). To avoid division by
zero, ε is set to a small positive value. In [9], Chambolle
reformulates TV minimization problem using duality
which enables him to propose a fast algorithm. Pollak et
al. present a fast algorithm providing the exact solution
in one dimension [38]. However only an approximation
is available in higher dimensions. After a discretiza-
tion, TV minimization can be reformulated as a min-
imization problem involving a Markov Random Field
(MRF). Boykov et al. present a fast approximation
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minimization algorithm based on graph cuts for MRFs
[7]. Ishikawa presents an exact minimization algorithm
also based on graph cuts for convex priors [30].

Our minimization algorithm presents some advan-
tages compared to other algorithms which also com-
pute an exact minimizer. The method proposed by Pol-
lak et al. [38] only works for one dimensional signal.
The minimum cost approach of Ishikawa [30] requires
a lot of memory to construct the graph and is time
consuming. Compared to this latter approach, our al-
gorithm requires much less memory and is quite faster
because the graph we build are by far smaller. How-
ever the Ishikawa’s approach deal with non convex data
fidelity. In [29], Hochbaum originally reformulates
the energy (1) with binary variables. She shows essen-
tially the same results as ours. It includes, in particular
our Lemma 1. However, the proof is rather different
since she is considering the minimum s-excess prob-
lem while we make use of stochastic arguments. In [10],
Chambolle also proposed a similar approach for total
variation minimization (including Lemma 1). His proof
relies on submodular functions. During the revised ver-
sion of this paper, we also became aware of the pioneer
work of Zalesky [47] which also presents a proof of our
Lemma 1. Both works propose algorithms to perform
exact optimization. The one proposed by Zalesky [47]
is similar to our sequential one described in Subsec-
tion 4.1. A faster algorithm based on a dichotomic ap-
proach, that we present in Subsection 4.2, is also pro-
posed by Chambolle in [10]. These two works present
some numerical results. Contrary to Chambolle’s algo-
rithm we further improve performance using a divide-
and-conquer approach. The latter is similar to the work
of Hochbaum in [29]. However she goes further since
she is able to give the complexity of her algorithm.
However, she does not present numerical results.

The contributions of this paper are the following.
We propose a fast algorithm which computes an ex-
act minimizer of problem 1. It relies on reformulating
this problem into independent binary MRFs attached to
each level set of an image. Exact minimization is per-
formed thanks to a minimum cost cut algorithm. We
also prove that minimization of the model L1 + T V
yields a contrast invariant and self-dual filter. The rest
of this paper is organized as follows. In section 2 we
map the original problem 1 into independent binary
Markov Random Field optimizations. In section 3 we
shed new lights on TV minimization under the L1-norm
as fidelity term. In section 4, a fast algorithm based on
graph cuts is presented. Some numerical results are pre-
sented in section 5. Finally we draw some conclusions
in section 6.

2. Formulation Using Level Sets and MRF

For the rest of this paper, we assume that u takes val-
ues in the discrete integer set L = [0, L − 1] and is
defined on a finite discrete lattice S. We denote by us

the value of the image u at the site s ∈ S. An image
is decomposed into its level sets using the decompo-
sition principle [28]. It corresponds to considering all
thresholding images uλ where uλ

s = 1lus≤λ. Note the
original image can be reconstructed from its level sets
using us = min{λ, uλ

s = 1} as shown in [28].

2.1. Reformulation into Binary MRFs

For any function u which belongs to the space of
bounded variation, the coarea formula states that [23]
states that T V (u) = ∫

IR P(uλ) dλ almost surely, where
P(A) is the perimeter of the set A. In the discrete case,
we write T V (u) = ∑L−2

λ=0 P(uλ) (note that uL−1
s = 1

for every s ∈ S, which explains the summation up to
(L − 2) only.) Let us denote by s ∼ t the neighbor-
ing relationship between sites s and t and by (s, t) the
related clique of order two. For sake of simplicity we
shall note sums on cliques of order one and two by

∑
s

and
∑

(s,t) respectively.
In [5], Boykov et al. justify the local estimation of

perimeter. Such an estimation has already been done
empirically in [8]. We estimate the perimeter locally
with cliques of order two. Thus we have

T V (u) =
L−2∑
λ=0

∑
(s,t)

wst |uλ
s − uλ

t | . (2)

where wst are positive coefficient. See Section 5 for
numerical values of these coefficients. We now refor-
mulate the energy as a summation on gray levels.

Proposition 1. The discrete version of energy (1)
rewrites as follows

Ev(u) =
L−2∑
λ=0

Eλ
v (uλ) + C , where (3)

Eλ
v (uλ) = β

[ ∑
(s,t)

wst ((1 − 2uλ
t ) uλ

s + uλ
t )

]

+
∑

s

(gs(λ + 1) − gs(λ)) (1 − uλ
s ) (4)

gs(x) = f (x, vs) ∀s ∈ S and C =
∑

s

gs(0).
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Proof: Using the fact that for binary variables d, e:
|d−e| = d+e−2de, and starting from the previous dis-
crete approximation of the coarea formula, we obtain

T V (u) =
L−2∑
λ=0

∑
(s,t)

wst ((1 − 2uλ
t ) uλ

s + uλ
t ). Moreover

the following decomposition holds for any function g
of a single variable:

∀k ∈ [0, L − 1] g (k)

=
k−1∑
λ=0

((g(λ + 1) − g(λ)) + g(0)

=
L−2∑
λ=0

(g(λ + 1) − g(λ)) 1lλ<k + g(0).

(notice that this formula is coherent for both k = 0 and
k = L − 1). Thus, by defining gs(us) = f (us, vs) and
since 1lλ<us = 1 − uλ

s , we have

f (us, vs) = gs(us)

=
L−2∑
λ=0

(gs(λ + 1) − gs(λ)) (1 − uλ
s ) + gs(0).

This concludes the proof.

Note that each Eλ
v (·) in (4) is a binary MRF with an Ising

prior model. We endow the space of binary configura-
tions by the following order : a � b iff as ≤ bs ∀s ∈ �.
In order to minimize Ev(·) one would like to mini-
mize all Eλ

v (·) independently. Thus we get a family {ûλ}
which are respectively minimizers of Eλ

v (·). Suppose
we do so, then clearly the summation will be minimized
and thus we have a minimizer of Ev(·) provided this
family is monotone, i.e,

ûλ � ûμ ⇔ ûλ
s ≤ ûμ

s ∀λ ≤ μ , ∀s ∈ S. (5)

If this property holds then the optimal solution is given
by the reconstruction formula from level sets [28]: ûs =
min{λ, ûλ

s = 1} ∀s. Else the family {uλ} does not define
a function, and thus our optimization scheme is no more
valid.

2.2. Two Lemmas Based on Coupled Markov Chains

Since the MRF posterior energy is decomposable on
levels, we shall use in the sequel both “local neighbor-
hood configuration” Ns = {ut }t∼s and its level decom-
position N λ

s = {uλ
t }t∼s for a given site s, λ ∈ [0, L−2].

The local conditional posterior energy at this site will

be noted Ev(· | Ns) (our assumptions imply that it de-
pends in fact on vs only.) Then [16]:

Lemma 1. If the local conditional posterior energy at
each site s can be written as

Ev(us | Ns) =
L−2∑
λ=0

( �φs(λ) uλ
s + χs(λ) ), (6)

where �φs(λ) is a non-increasing function of λ and
χs(λ) is a function which does not depend on uλ

s ,
then one can exhibit a “coupled” stochastic algorithm
minimizing each total posterior energy Eλ

v (uλ) while
preserving the monotone condition: ∀s , uλ

s is non-
decreasing with λ .

The Lemma states that given a binary solution a
 to
the problem Eλ

v (·), there exists at least one solution b̂
to the problem Eμ

v (·) such that a
 � b̂ ∀λ ≤ μ. The
proof relies on coupled Markov chains [19, 39].

Proof: From the decomposition (6) the local
conditional posterior energy at level value λ is
Eλ

v (uλ
s | N λ

s ) = �φs(λ) uλ
s + χs(λ). Thus the follow-

ing Gibbs local conditional posterior probability can
be computed:

Ps(λ) = P(uλ
s = 1 | N λ

s , vs) = exp {−�φs(λ)}
1 + exp {−�φs(λ)}

= 1

1 + exp {�φs(λ)} . (7)

With the conditions of the Lemma 1, this latter expres-
sion is clearly a monotone non-decreasing function of
λ.

Let us now design a “coupled” Gibbs sampler for
the (L − 1) binary images in the following sense: first
consider a visiting order of the sites (tour). When a
site s is visited, pick up a single random number ρs

uniformly distributed in [0, 1]. Then, for each value of
λ, assign: uλ

s = 1 if 0 ≤ ρs ≤ Ps(λ) or else uλ
s = 0

(this is the usual way to draw a binary value according
to its probability, except that we use here the same
random number ρs for the (L−1) binary images.) From
the non-decreasing monotony of (7) it is seen that the
set of assigned binary values at site s satisfies uλ

s =
1 ⇒ uμ

s = 1 ∀μ ≥ λ. The monotone property uλ �
uμ ∀λ ≤ μ is thus preserved. Clearly, this property also
extends to a family of (L − 1) coupled Gibbs samplers
having the same positive temperature T when visiting a
given site s: it suffices to replace �φs(λ) by �φs(λ) / T
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in (7). Hence, this property also holds for a series of
(L − 1) coupled Simulated Annealing algorithms [25]
where a single temperature T boils down to 0 (either
after each visited site s or at the beginning of each tour
[45] .) This concludes the proof.

Our Lemma gives a sufficient condition for the si-
multaneous “level-by-level” minimization of posterior
energies while preserving the monotone property. Let
us stress again that other proofs of this Lemma are
given by Chambolle in [10], Hochbaum in [29] and
Zalesky in [47].

Proposition 2. Lemma 1 applies for both L1+ TV and
L2+ TV MRF posterior energies.

Proof: equation (4) implies that, up to constant C :

Eλ
v (uλ

s | N λ
s ) =

L−2∑
λ=0

( �φs(λ) uλ
s + χs(λ) ),

with

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
�φs (λ) = β

[ ∑
t∼s

wst (1 − 2uλ
t )

]
− (gs (λ + 1) − gs (λ))

χs (λ) = β

[ ∑
t∼s

wst uλ
t

]
+ gs (λ + 1) − gs (λ).

The contribution of the total variation term to �φs(λ),
β

∑
s∼t wst (1−2uλ

t ) , is clearly a non-increasing func-
tion of λ (β and wst ≥ 0). Now, a similar reasoning for
L1 data fidelity yields directly in this case

gs(us) = |us − vs | =
L∑

λ=0

|uλ
s − vλ

s |

=
L∑

λ=0

uλ
s (1 − 2vλ

s ) + vλ
s .

The contribution to �φs(λ) of gs(us) is thus (1 − 2vλ
s ),

which shares the same non-increasing property. On the
other side, one has for the L2 term:

−(gs(λ + 1) − gs(λ)) = −((λ + 1 − vs)2 − (λ − vs)2)

= − (2 (λ − vs) + 1),

which is also a decreasing function of λ.

Thus both L1 + TV and L2 + TV posterior energies
could be minimized “independently” on levels.

We now precisely characterize requirements of
Lemma 1. To that aim we recall that a one-dimensional
discrete function f defined on [A, B] is convex on
]A, B[ iff 2 f (x) ≤ f (x − 1) + f (x + 1) ∀x ∈]A, B[
or equivalently, iff f (x +1)− f (x) is a non-decreasing
function on [A, B[.

Lemma 2 . The requirements stated by Lemma 1
are equivalent to these: all conditional energies
Ev(us | Ns) are convex functions of grey level us ∈
]0, L − 1[, for any neighborhood configuration and
local observed data.

Proof: Since the total energy is “decomposable” on
the levels from (3) , so are the local conditional ener-
gies:

Ev(us | Ns) =
L−2∑
λ=0

Eλ
v (uλ

s | N λ
s ).

Besides, since the local conditional posterior energy
component at site s and for level λ is a function of
binary variable uλ

s , it satisfies:

Eλ
v (uλ

s | N λ
s ) − Eλ

v (uλ
s = 0 | N λ

s )

= (
Eλ

v (uλ
s = 1 | N λ

s ) − Eλ
v (uλ

s = 0 | N λ
s )

)
uλ

s ,

which yields by identification with (6):

�φs(λ) = Eλ
v (uλ

s = 1 | N λ
s ) − Eλ

v (uλ
s = 0 | N λ

s ). (8)

Now, in the transition λ → λ + 1, only the following
level variable does change: uλ

s = 1 → uλ
s = 0 . From

the decomposition of conditional energies on levels,
this means that only the level component Ev(us | Ns)
does change and thus:

Ev(λ + 1 | Ns) − Ev(λ | Ns)

=Eλ
v (uλ

s = 0 | N λ
s ) − Eλ

v (uλ
s = 1 | N λ

s ) = −�φs(λ).

The monotone non-increasing condition on φs(λ) is
thus equivalent to: Ev(λ + 1 | Ns) − Ev(λ | Ns) is a
non-decreasing function on [0, L − 1]. This concludes
the proof.

Clearly both L1 + TV and L2 + TV models enjoy
this convexity property and we find again the results of
Proposition 2. In next section we study the specific L1

+ TV case.
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3. Theoretical Study of the L1+ TV Case

The use of total variation with L1 data fidelity has been
studied in [2, 4, 12, 34, 35]. However, the results of this
section are new as far as we know. Contrast and self-
dual invariance properties of the L1+ TV energy were
first proved in [18] for the continuous formulation of
equation (1) both in terms of image support and grey
levels. Here we prove them in the discrete framework.
Then we study the uniqueness vs. non-uniqueness of
energy minimizers in this case.

3.1. Contrast and Self-Dual Invariant Filters

Let h be a discrete change of contrast, i.e., a non-

decreasing application: L = [0, L − 1]
h�→ L′ =

[0, L ′ − 1].

Lemma 3. Assume h to be a discrete change of con-
trast and u a discrete image defined on LS. The follow-
ing holds:

∀μ ∈ L′ ∃λμ ∈ L s.t. (h(u))μ = uλμ .

In other words, after a discrete change of contrast, the
level sets of an image h(v) are some level sets of the
image v.

Proof: For each μ ∈ L′ let us note

λμ = sup(λ ∈ L | h(λ) ≤ μ)

It is clear that

∀us ∈ L, h(us) > μ ⇔ us > λμ.

Thus:

(h(us))μ = us
λμ .

This concludes the proof.

Proposition 3. Let v be an observed image and h be
a discrete change of contrast. Assume u to be a global
minimizer of Ev(·). Then h(u) is a global minimizer of
Eh(v)(·).

Proof: It is sufficient to prove that for any level μ,
a minimizer for h(v)μ is h(u)μ. The key point here is

that the L1 + T V total energy decomposes on levels
as:

Ev(u) =
L−2∑
λ=0

Eλ
vλ (uλ)

Using lemma 3, there exists λ = λμ such that vλ =
h(v)μ. A minimizer of Eλ

vλ (·) is uλ. Thus, uλ is a min-
imizer of Eλ

h(v)μ (·) And we have uλ = h(u)μ. This
concludes the proof for contrast invariance.

Self-dual invariance is easily obtained. Let us define for
this purpose the “discrete inverse contrast” operator
L τ�→ L as: τ (us) = L − 1 − us . The proof of the
following proposition is straightforward.

Proposition 4. Let v be an observed image and as-
sume u is a minimizer of E(·|v), then τ (u) minimizes
Eτ (v)(·).

3.2. Uniqueness vs. Non-uniqueness of Solutions

We now study the behavior of minimizers for the
L1 + T V model. An approach to look for the exis-
tence and uniqueness of discrete minimizer(s) comes
from the modern theory of phase transitions [20, 26].
Without going to the detail, it can be shown that sen-
sitivity of minimizers to boundary conditions (i.e., the
discrete analog of “Dirichlet conditions” rather than
Von Neumann’s ones) is the signature of a phase tran-
sition.

Let us see what happens for the L1 + T V case. Due

to the usual formula |us − vs | =
N−2∑
λ=0

|uλ
s − vλ

s |, the

energy component at level λ ∈ [0, L − 2] is:

Eλ
v (uλ) =

∑
s

|uλ
s − vλ

s | + β
∑
(s,t)

wst |uλ
s − uλ

t |. (9)

In the case wst = 1 ∀(s, t) this corresponds to an
isotropic ferromagnetic Ising model with single cou-
pling constant J = β/2 > 0 and magnetic field ampli-
tude B = 1/2 (whose local sign at site s depends on
vλ

s ) over all levels. A particular case of equation (9), the
binary “chessboard” model [37, 42], i.e., an isotropic
4-connected ferromagnetic Ising model where the ob-
served data vλ at level λ is a binary chessboard image,
was indeed shown to exhibit a phase transition prop-
erty. Namely when the basic square cell side A satisfies:
A > 4J/B (= 4β) the unique minimal energy config-
uration (also called ground state) is the initial binary
chessboard itself, whatever boundary conditions. In the
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opposite case two periodic ground states occur, namely
the uniform binary white and black images. Physically
speaking any object whose characteristic size (diame-
ter) is greater than 4β is conveniently restored, whereas
smaller objects are lost in their “background”.

In the general case we consider now a grey level
chessboard image with constant minimal and maximal
grey level values m and M respectively. The associated
binary images vλ can now take three forms:

vλ =

⎧⎪⎨⎪⎩
0 if 0 ≤ λ < m

c if m ≤ λ < M

1 if M ≤ λ ≤ L − 2

,

where c is the binary chessboard image defined by c =
{1lvs=M}s∈S .

• Minimizing energies Eλ for levels outside “effec-
tive” grey level range [m, M[ yields:

uλ =
{

0 if 0 ≤ λ < m

1 if M ≤ λ ≤ L − 2,

since it consists in restoring uniform black and white
observed binary images. In other words no grey level
value outside the interval [m, M] is generated. This
has to be compared to the continuous approach which
generates extra grey levels outside the initial grey
level range [11], because of the coefficient ε intro-
duced in the numerical scheme in order to avoid di-
vision by zero.

• For intermediate levels (m ≤ λ < M) the same
binary chessboard image vλ = c has to be restored
with the same energy functional over all these levels
while ensuring the monotone condition to hold on
{uλ}. If we fall into the case where A > 4β this
yields back the original binary image uλ = c for
this interval of levels (Fig. 1 in the case m > 0), so
that our overall restoration scheme yields the original
grey level image v, in a perfectly coherent way.

When the cell size becomes nonstationary previ-
ous condition may be no more valid and the analog
of a “phase transition” in grey levels can be observed
according to the value of β wrt. the characteristic cell
sizes (Fig. 2). This property remains to be proved
rigorously at the theoretical level.

4. Minimization Algorithms: The Convex Case

In this section we propose two alternative algorithms to
minimize exactly the total variation with convex data
fidelity terms. The first one is a sequential algorithm

Figure 1. Level-by-level minimum energy configurations for the
grey level chessboard model.

while the second one relies on a divide-and-conquer ap-
proach. Both algorithms rely on results of the previous
section. They are based on exact and efficient optimiza-
tion of binary MRFs thanks to a graph-cut technique.
It consists in building a graph such that its minimum
cut gives an optimal labelling. The seminal work which
describes such an approach is described by Greig et al.
in [27]. The sequential algorithm requires respectively
one cut and L

2 cuts for the best and worst case. The
divide-and-conquer based algorithm performs log2 L
minimum cost cuts in any case. We emphasize that
both algorithms compute an exact minimizer.

4.1. A Sequential Algorithm

According to the decomposition of the total energy on
the level sets of image u and considering the monotone
property given in Lemma 1, a straightforward algo-
rithm is to minimize the energy “level by level”. Each
of these optimizations consists in computing the Maxi-
mum a posteriori of a binary MRF. This approach leads
to perform (L −1) binary optimizations. Assume these
optimizations are performed independently, then the
monotone property given in equation 5 can be violated
if the energy is not strictly convex (like the L1 + T V
model for instance). Thus we need to assure the coher-
ence of solutions.

We proceed as follows. We perform optimizations
from the lowest, i.e., 0, to the highest grey level, i.e.,
(L−1). We show the optimality of the solution by in-
duction. Assume we compute a solution ûλ at a level λ

which satisfies the monotone property for levels strictly
lower that λ. Let As = {s ∈ S|ûλ

s = 1}. The key
observation is the following. Recall that Lemma 1
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Figure 2. Minimal energy configurations obtained by Simulated Annealing. Initial temperature T0 = 16 with decreasing step = 0.98, β = 1.5
(4-connectivity).
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Figure 3. Illustration of our algorithm based on divide-and-conquer technique. The partition of the image after a minimization with respect
to some level λ is shown on (a). The connected components of the image (a) are depicted in (b): it corresponds to the decomposition of the
problem into subproblems. Each subproblem are solved independently and the result is depicted on (c). Finally the solution of subproblem are
recombined and it yields the image (d).

states that given an optimal labelling for the level
λ (i.e, ûλ), there exists at least one minimizer for
the level (λ + 1), referred to as ûλ+1, which satis-
fies the monotone property. The latter is satisfied if
ûλ+1

s = 1 ∀s ∈ As . Such a minimizer for the level
(λ + 1) is computed by restricting the energy to sites
s /∈ As during the optimization. The obtained mini-
mizer is thus a global minimizer for the level λ + 1
which also satisfies the monotone property (equation
5). From an implementation point of view, it means
that we build the graph such that its minimum cost cut
always labels uλ+1

s as 1. This algorithm mainly corre-
sponds to the one proposed by Zalesky in [47].

4.2. A Divide-and-Conquer Based Algorithm

We present now another algorithm which takes benefit
from inclusion properties of binary solutions in order
to increase the performances.

4.2.1. Divide-and-Conquer Assume that ûλ is an op-
timal solution for the level λ. Each site s is labelled to
a boolean value ûλ

s which indicates if its optimal grey
level value is lesser or equal, or greater than λ. Re-

call the decomposition of the energy givenby equation

(3): Ev(u) =
L−2∑
λ=0

Eλ
v (uλ) + C . The terms in the sum-

mation only requires the thresholded images uλ of u
(we can drop the constant C since we deal with min-
imization). The precise value of u is not required. It
is useless to take into account pixels which are greater
than λ for optimizations which only deal with areas that
are already lesser or equal to λ. Obviously, the same
observation holds for pixels which are lower than or
equal to λ. Consequently, we consider the image con-
nected components (note that they define a partition of
the image), and we independently launch optimizations
from each others.

These properties lead us to propose an algorithm
which rely a divide-and-conquer strategy [14]. Such
an approach is as follows:

– first, decompose the problem into smaller ones.
– then, solve independently each of these subproblems.
– last, recombine the solutions of the subproblems in

order to get the solution of the global problem.

The decomposition of the problem into smaller ones is
performed by computing the connected components of
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Figure 4. The image girl corrupted with an additive Gaussian noise σ = 12 and σ = 20 in (a) and (c) respectively. Their L2 +T V restaurations
are shown in (b) and (d) for with β = 23.5 and β = 44.5 respectively.

the minimizer at level λ. Combination of solutions is
straightforward since the connected components define
a partition of the image. This process is depicted on
Figure 3.

During the resolution of a subproblem, one has to
pay great attention to the local boundary conditions.
If the pixels of a connected component are lower than
λ, then the neighboring pixels of this component are
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Figure 5. Results of the restoration of the image girl with the model L2+T V using our and Chambolle algorithms in 4-connectivity. Minimizers
for the image girl corrupted with a Gaussian noise σ = 12 are presented in (a) and (b) for Chambolle and our algorithms (β = 16). Images
depicted in (c) and (d) are respectively minimizers using Chambolle and our algorithms (β = 20) for the image girl corrupted with an additive
Gaussian noise σ = 20.

necessarily greater than λ. Indeed, if this was not true,
these pixels would be a part of the connected compo-
nent. A similar reasoning is conducted for connected
components whose pixels are greater than λ.

4.2.2. Choice of the Threshold A good strategy for
the choice of the level λ at which the optimization
has to be performed is to use a dichotomic process.
Compared to the sequential algorithm which requires
L binary optimizations to compute the solution, this
strategy requires only log2(L) binary optimizations by
pixels. Indeed, a dichotomic strategy requires n com-
parisons to get a solution with a precision L2−n . If one
would have an oracle which would give the true value
λ for each pixel, then only two minimum cuts for pixel
would be needed : one for the level λ and one for the
level (λ+1). Finally, the more the size of subproblems

are equal, the smaller the complexity of a divide-and-
conquer based algorithm is [14].

The dichotomic approach has also been described
by Chambolle in [10] however he does not propose
the divide-and-conquer improvement. The method of
Hochbaum is more similar to ours. She is using an
approach similar to the one proposed in [24] to solve
the parametric max-flow problem. Due to the inclu-
sion property, she can reduce the size of the graph by
merging nodes which are known not to change their
labels into a single one, instead of computing the con-
nected components as we do. Besides, her algorithm
also takes into account the solution found at the previ-
ous step to get an initialization for the new minimum-
cut to compute. She shows that the complexity of her
algorithm reduces to the complexity of solving a single
minimum-cut problem plus the complexity of finding
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Figure 6. Minimizers of TV with L1 fidelity for the woman image. From left to right: original image, then minimizers for β = 1, β = 2.1,
β = 3. Finally, some level lines of the minimizers (in the same order). Only level lines multiples of 10 are displayed.

the integer minima of n convex functions where n is
the number of pixels. This complexity is better than the
one of our algorithm since we have to compute log2(L)
minimum cuts. Note that we were not able to derive the
exact complexity of our algorithm for the average case.
However, Hochbaum does not present any numerical
results.

5. Experiments and Discussion

Our implementation makes use of the graph construc-
tion proposed by Kolmogorov et al. in [31] to get an
optimal labelling of a binary MRF. Although many
minimum cut algorithms are available [14], we used
the algorithm described in [6] et al. which deals with
these energies encountered in computer vision (includ-

ing our case). We used the approach proposed in [33]
for perimeter estimation: it means that in Eq. (2) we
set wst to 0.26 and 0.19 for first- and second- nearest
neighbors, respectively. For strictly convex energies,
we have verified in all experiments that our algorithms
and the approach described by Ishikawa in [30] give
the same results. For convex energies (but not strictly
convex, such as the model L1 + T V ), we have ob-
tained different minimizers for each of the three al-
gorithms (sequential, divide-and-conquer, Ishikawa’s
algorithms), but with the same energy, as predicted by
the theory.

Figure 4. depicts our results for the girl (256 × 256)
corrupted with additive Gaussian noise of standard
deviation σ = 12 and σ = 20 with the L2 + T V
model. The results present the stair-case effect. This
phenomenon has been already noticed and described
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Figure 7. Minimizers of TV with L1 fidelity for the aerial image Montpellier. Results for different β are presented.

in [13, 21, 22]. We compare our results with the ones
obtained by the duality-based algorithm of Chambolle
which is presented in [9]. For a fair comparison, we use
the same 4-connectivity as him. It means that we ac-
count for the 4 nearest neighbors only, with related co-
efficients being set to wst = 1. Results are depicted on
Figure 5. For the Gaussian noise corruption of σ = 12,

our algorithm produces a minimizer whose associated
energy is 1.63487 × 107, while the one obtained by
Chambolle algorithm is 1.68984 × 107. For the image
corrupted with an additive Gaussian noise with σ = 20,
our minimizer has the energy 3.01547 × 107, whereas
Chambolle’s one is 3.12923 × 107. We also observe
a small loss of contrast in the results compared to the
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Figure 8. Minimizers of TV with L1 and L2 fidelity for image Barbara. Differences are shown (texture). The zero is set to the grey level 128
for both difference images.

original images. This behavior is described in [12] by
Chan et al. and is mainly due to the case of the L2-
norm as data fidelity. These authors suggest to replace
the L2-norm by the L1-norm in order to preserve the
contrast. This is justifed by our result in section 3 which
shows that minimization of the model L1 + T V yields

a morphological filter. Figures 6. and 7. depict some
results for the L1+ TV model on respective woman
(232 × 522) and Montpellier (512 × 512) aerial im-
ages. The more the regularization coefficient β is high,
the more images are simplified. For the image woman
the details of the face disappear while the background
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tends to become homogeneous. Moreover such a fil-
tering drastically reduce the number of level lines. The
same comments apply for the aerial image. Clearly, on
both results, the image is simplified while the contrast
is maintained. This is due to the morphological behav-
ior of the filter.

As noted by Meyer in [32], the model L2 + T V can
be used for image decomposition. The latter consists
in decomposing an image into two components: the
first one contains the geometry of the image while the
second one contains the texture information. In [46],
Yin et al study the model L1 + T V for such decom-
positions. Note that a new minimization algorithm for
L1 + T V , based on iterative thresholding is presented
in [4]. Figure 8. depicts results for image Barbara us-
ing both L1 and L2 fidelity terms and TV regulariza-
tion. The coefficient β is chosen to yield the best visual
result. Clearly, the model L1 + T V outperforms the
other one. All the textures are well captured into the
texture component for the L1-based model while some
of them are missed by the L2-based one. Note that, for
the L2-based decomposition, some contours appears
in the texture although they should be in the geometric
component. Other norms instead of the total variation
are considered in [3, 32, 43] and references therein.

Time results (on a 3GHz Pentium IV) for the divide-
and-conquer-based algorithm and for the sequential-
based algorithm are given on Table 1. for L2 and L1

data fidelity. Clearly the divide-and-conquer based al-
gorithm along with dichotomy outperforms the sequen-
tial algorithm.

6. Conclusion

In this paper we have presented an algorithm which
computes an exact solution for the minimization of the
total variation under a convex constraint. The method
relies on the decomposition of the problem into bi-
nary ones using the level sets of an image. Compared

Table 1. Time results (in seconds on a Pentium4 3GHz) with L1

and L2 data fidelity term for different weighted term β. Time for
the divide-and-conquer and for the sequential (in parentheses) ap-
proaches are presented.

L2 fidelity Image β = 23.5 β = 44.5

Girl (256 × 256) 0.79 (12.40) 0.97 (13.24)
Aerial (512 × 512) 2.88 (47.66) 3.40 (51.75)

L1 fidelity Image β = 2.7 β = 4.7

Girl (256 × 256) 0.73 (12.34) 0.85 (13.22)
Aerial (512 × 512) 3.53 (56.64) 5.03 (71.86)

to the state of the art, our algorithm is quite fast and
provides a global minimizer in any dimensions. First,
the algorithms described by Ishikawa in [30] and Pol-
lak et al. in [38] which perform exact optimizations
lack of one of these properties. Then, our algorithm
presents some improvements compared to those pro-
posed by Zalesky in [47] and Chambolle in [10]. Last,
the main difference between our algorithm and the one
proposed by Hochbaum [29] is that she makes use of
a parametric-based approach [24] while we rely on a
divide-and-conquer scheme. Besides, we have shown
that minimization of the model L1 + T V yields a mor-
phological filter.

Several future works are under investigation. First of
all, comparison to other existing algorithms perform-
ing exact energy minimization (and in particular the
one of Hochbaum [29]) has to be made. Besides the
calculus of the complexity of our algorithm remains to
be done. An extension of the model L1 + T V for vec-
torial mathematical morphology is presented in [15].

In the next part of this paper, we extend the proposed
approach of energy decomposition on the level sets to
a more general class of energies. We show that the case
of the total variation is indeed a particular case.
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