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Abstract. Flat morphological operators, also called stack filters, are the natural extension of increasing set
operators to grey-level images. The latter are usually modeled as functions E → T , where T is a closed subset of
R̄ (for instance, Z or [a, b]).

We give here a general theory of flat morphological operators for functions defined on a space E of points and
taking their values in an arbitrary complete lattice V of values. Several examples of such lattices have been considered
in the litterature, and we illustrate our therory with them. Our approach relies on the usual techniques of thresholding
and stacking. Some of the usual properties of flat operators for numerical functions extend unconditionally to this
general framework. Others do not, unless the lattice V is completely distributive.
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1. Introduction

Most morphological operations used for processing
and filtering grey-level images are flat operators. This
means [16] that they are grey-level extensions of oper-
ators for binary images, and they can be obtained by:
(a) thresholding the grey-level image for all threshold
values, (b) applying the binary operator to each thresh-
olded image set, and (c) superposing the resulting sets.
For example the flat operators corresponding to dilation
and erosions are the max and min filters.

The genesis of flat operators lies within the first stud-
ies towards extending set morphology to numerical
functions by the use of umbras. These were developed
in the late seventies by Matheron, Serra and Meyer
in France, and by Sternberg in the USA. A summary
of these early works can be found in Chapter 12 of
[37].

∗This paper is dedicated to Henk Heijmans, who made major con-
tributions to the theory of Mathematical Morphology, until a health
accident in March 2004 ended his scientific career.

Under the name of stack filters, flat operators
were investigated in [44] through an operation called
threshold decomposition, which is a variant of the
standard stacking procedure used for flat opera-
tors [16] (thresholded images being arithmetically
summed instead of combined by lattice-theoretical op-
erations). This work inspired several others [25, 26
42], relying deeply on the thresholding and stacking
paradigm. An alternative view of flat operators, un-
der the name of order-configuration filters, was given
in [31]: such operators “choose” one grey-level value
in the pixel window by using only the order rela-
tions between these grey-levels. In fact, one has for
flat operators an analogue of the Matheron decom-
position theorem [20, 37, 38], so that a flat opera-
tor computes a combination of infima and suprema
of grey-level values in pixel neighbourhoods (see
Section 3.3).

Hardware implementations of flat operators have
been described in the litterature, see for example [4].
Flat operators have been applied to the analysis of
fingerprints, leading to the creation of start-ups (like
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Morpho-systems in Fontainebleau, France, now a
subsidiary of SAGEM).

An extensive theory of flat operators on grey-level
images was made by Heijmans [16, 17, 18]. He
considered grey-level images as numerical functions
E → T where T = R = R ∪ {+∞, −∞} or
Z = Z ∪ {+∞, −∞}, or more generally T is a closed
subset of R (for example, T = [a, b] or T = [a, b] ∩ Z
for a, b ∈ R with a < b).

Flat operators share some fundamental properties
[18], however it is known that there are variations be-
tween the two cases where the set of grey-levels is
discrete, and where it is analog. For example, with
bounded discrete grey-levels (T being a finite subset of
R, say T = [a, b] ∩ Z for a < b), flat operators com-
mute with increasing grey-level transformations and
with thresholding. This is very interesting conceptu-
ally, because it allows a binary interpretation of the
behaviour of flat operators in terms of “bright” and
“dark” zones of an image, but also in practical situ-
ations, because flat operators are compatible with the
compression of the range of image values. On the other
hand, in the case of analog grey-levels (T is not in-
cluded in Z), flat operators commute in general only
with continuous increasing grey-level transformations;
also, when the underlying set operator is upper semi-
continuous, the corresponding flat operator commutes
with all increasing grey-level transformations and with
thresholding (as in the case of discrete grey-levels). A
general theory of flat morphology for images with real
grey-levels is made in [14], where it is shown in par-
ticular that the commutation with thresholding holds
“almost everywhere”.

There is a growing need for a general theory of flat
operators for images E → V , where E is a space of
points, and V is a lattice of values. One reason is the
need to reach a common understanding of flat mor-
phology for grey-level images in both cases of discrete
and analog grey-levels; in particular there should be
an explanation of why some properties like commu-
tation with thresholding hold unconditionally in the
case of discrete grey-levels, and only for upper semi-
continuous operators in the case of analog grey-levels.

Another reason is the use of other types of images
than sets (binary images) or grey-level images with
the numerical ordering on grey-levels. Let us describe
some of them.

The first example is given by multivalued images,
where each pixel has a vector of values. Examples
include multimodal medical images, multispectral
images in remote sensing and astronomy, or colour

images coded in RGB. Here the space of vector val-
ues is considered as a subset of R

n
, more precisely it is

the set C = T n , where T is the same numerical scale
used for each scalar value (e.g., the R, G and B com-
ponents of colour). This set C = T n has a componen-
twise ordering inherited from the numerical ordering
on T (that is, (x1, . . . , xn) ≤ (y1, . . . , yn) iff x1 ≤ y1,
. . . , xn ≤ yn), and is thus a complete lattice. Flat oper-
ators can then be defined on multivalued images in the
same way as is usually done [16] for grey-level images.
In fact, it is easily shown that this amounts to applying
the usual (grey-level) flat operator on each of the scalar
components of the image (see Section 3.2). However,
as pointed out by Serra [39] in the case of RGB images
(but this is true for any type of multivalued images),
we lose some properties, even for discrete RGB val-
ues, in particular the commutation with thresholding.
Indeed let the image I be made of red and green points
(i.e., with coulours (255, 0, 0) and (0, 255, 0)), take the
thresholding θ selecting all points with colour above
yellow (i.e., ≥ (255, 255, 0)), and let δ be a dilation
(for sets); as red and green are not above yellow, the
thresholded image θ (I ) will be empty, so dilating it by
δ remains empty: δ(θ (I )) = ∅; on the other hand, if
we dilate the image first with the flat dilation δC (for
colour images), the dilated image δC (I ) will mix some
red and green points into yellow ones, which will be
selected by thresholding, so θ (δC (I )) �= ∅. Why does
dilation not commute with thresholding, that is, why
do we have θ (δC (I )) �= δ(θ (I ))? (Note that some au-
thors have tried to palliate this problem by an artificial
linearization of the RGB space, or by using various
HLS-type colour spaces, which contradict each other
and do not conform to standard colorimetry [29]).

Second, in order to process video sequences, Keshet
(Kresch) introduced [23, 24] the reference order on
grey-level images. Take a closed grey-level set T ⊆ R.
Choosing a reference grey-level r ∈T , we define the
reference order ≤r w.r.t. r as follows: for two
grey-levels a, b we have a ≤r b if a is between r
and b, i.e., if either r ≤ a ≤ b or r ≥ a ≥ b (numeri-
cally). This ordering on the set T of grey-levels turns
it into a complete inf-semilattice, in other words every
nonvoid family of grey-levels has an infimum, but not
necessarily a supremum. By adding a greatest element
∞ to T , T = T ∪ {∞} becomes a complete lattice. In
Fig. 1 we illustrate the construction of this lattice for
T = Z. Given a space E of points, the sets T E and
T

E
of functions E → T or E → T can be ordered

with reference to a fixed function Ref ∈ T E : for ev-
ery point p ∈ E , the values F(p), G(p) of functions



Flat Morphology on Power Lattices 187

r + 1

r + 2

r + 3

r - 1

r - 2

- 3r

r + 1 r - 1

- 3r

r + 2

r + 3

r - 2

oo

r

r

Figure 1. Transformation of the numerically ordered lattice Z into
the complete lattice Z ∪ {∞} for the reference order w.r.t. r .
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Figure 2. Hasse diagram of the lattice U of labels with 5 proper
labels u, v, w, x, y, and the 2 dummy labels ⊥ and �.

F, G ∈ T E are ordered with reference to Ref (p); then
T E is a complete inf-semilattice, called the reference
semi-lattice, while T

E
is a complete lattice. The refer-

ence semilattice has been studied in detail in [19]. Can
we define flat operators on T E or on T

E
, and in this

case what are their properties?
Third, in an algorithm for segmenting video se-

quences, Agnus [1, 2, 3] defined “object-oriented”
variants of flat erosion and geodesical reconstruction,
where grey-levels are considered as labels of objects,
and all image portions having distinct grey-levels are
processed independently. It turns out [34, 35] that these
“object-oriented” variants of flat morphological oper-
ators are simply the standard flat operators on label
images, that is functions E → U , where U is the lat-
tice of labels made of n mutually incomparable proper
labels (n ≥ 3), to which one adds, as least and greatest
elements, two dummy labels ⊥ and � (meaning respec-
tively “no label” and “conflicting labels”); we illustrate

in Fig. 2 the Hasse diagram of this lattice for n = 5
(the Hasse diagram [6, 18] is a graph whose nodes are
the elements of the lattice and where an edge between
nodes a above and b below indicates that a covers b,
that is a > b but there is no m such that a > m > b).
We will briefly discuss this lattice U later, because it
will appear in several counterexamples. As explained
in [34], that approach can be used for the processing of
the hue component of colour images, and indeed some-
thing relatively similar has been done in [15], under the
name of labeled openings.

These three examples show the need of a general
theory of flat morphological operators on the power
lattice V E of functions E → V , where E is a space of
points and V is an arbitrary complete lattice of image
values. However, with the notable exceptions of [39],
Chapter 10 of [18], and to a lesser extent [45, 46] for fi-
nite window operators, the theory of flat morphological
operators on non-binary images has been restricted to
the case of grey-level images having grey-level values
in a subset of Z or R.

The purpose of this paper is to give such a general
theory. Some preliminary results have been published
in [33], and we applied this theory for label images in
[34]. Let us briefly review the approaches of Heijmans
(Chap. 10 of [18]), Serra [39] and Wild [45, 46], and
then explain how we proceed.

In Chap. 10 and 11 of [18], Heijmans defines flat
operators through the usual operations of thresholding
and superposition. Let E be the space of points and let
V be a complete lattice of image values. Consider a
function F : E → V . For every v ∈ V , we define the
threshold set

Xv(F) = {p ∈ E | F(p) ≥ v}. (1)

Then, given an operator ψ : P(E) → P(E) on sets,
the flat operator corresponding to ψ is the operator
ψV : V E → V E on functions defined by setting for
any function F and point p:

ψV (F)(p) =
∨

{v ∈ V | p ∈ ψ (Xv(F))}. (2)

However Heijmans makes some drastic assumptions
on the lattice V of values (see in [18] Definition 10.4
of an admissible and of a strongly admissible complete
lattice). They are introduced because of the intricate
constructions that he uses to analyse properties of flat
operators. We will provide a detailed analysis of these
assumptions in the Appendix, where we show that a
complete lattice is admissible iff it is completely dis-
tributive. Moreover, a product of two or more complete
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chains (e.g., the lattice of RGB colours) is in general
not strongly admissible. Thus all results of [18] are re-
stricted to a very particular case for the lattice V of
values; in practice, V will have to be a complete chain
of numerical values (R, [a, b], Z, or [a, b] ∩ Z).

On the other hand, in an attempt to obtain in a general
framework the fundamental property that flat operators
commute with continuous increasing transformations
on the lattice of values, Serra [39] takes an arbitrary
lattice V of values, but in the definition (1) of thresh-
olding he replaces the order ≥ by the negation �≤ of the
dual order ≤:

Yv(F) = {p ∈ E | F(p) �≤ v}.

When V is a chain (i.e., totally ordered), which is the
case for subsets of R or Z, the relation �≤ means >.
With such a definition of thresholding, the above defi-
nition (2) of the flat operator ψV must also be modified.
Serra’s approach did not lead to a complete theory as
the one of Heijmans.

Wild [45, 46] considers images E → V , where V is
a lattice (not necessarily complete), and operators on
such images which compute on each point a composi-
tion of finite suprema and infima of values of points.
When the lattice V is distributive, some decomposi-
tion formulas are given. This corresponds in fact to the
particular case of a flat operator ψV arising from a fi-
nite window operator ψ on sets: this means that for
each point p ∈ E there is a finite window W (p) ⊆ E
such that for every set X ⊆ E , whether p ∈ ψ(X )
or not depends only on X ∩ W (p); then for an image
F : E → V , ψV (F)(p) depends only on the values of
F on W (p).

In this paper, we will provide a general theory of
flat operators on functions E → V , where V is an
arbitrary lattice of values, using the classical con-
struction of (1, 2). From this point of view, we fol-
low Heijmans. However, following Serra, we do not
put any assumption on the lattice V . We will see that
some known results for grey-level functions in R or
Z extend to the general case, while some others re-
quire the complete lattice V to be completely dis-
tributive (which is in fact the admissibility condition
of Heijmans). We will obtain an analogue of Math-
eron’s theorem, which shows how to compute the value
ψV (F)(p) by a supremum of infima of values F(q) for
some points q; this is similar to what Wild does, but
we do not restrict ourselves to finite window opera-
tors, so the suprema and infima of our formula can
be infinite (that is why we require the lattice to be
complete).

The paper is organized as follows. Section 2 recalls
some lattice-theoretical concepts and terminology for
mathematical morphology; in particular we discuss
in detail distributivity, and its specializations called
infinite and complete distributivity. It introduces also
our notation, and recalls some known facts about
adjunctions and Galois connections. Section 3 defines
flat operators and gives their main properties. The
Conclusion summarizes our results and links them to
further perspectives.

This paper being already very long, we have left
out some questions, which will be dealt with in further
papers. We mentioned above that the commutation with
thresholding, and with increasing mappings V → V
(also called anamorphoses or contrast functions), takes
two different forms for discrete grey-levels and for con-
tinuous ones; this will be analysed in a general frame-
work. There are also some generalizations of flat op-
erators, namely flat operators in several variables, and
semi-flat operators (according to Heijmans [18]).

2. Lattices, Distributivity and Images

We assume that the reader is familiar with the notions
of partial order, poset (partially ordered set), lattice,
complete lattice, and power lattice, used in mathemat-
ical morphology. See Section 1.3 of [20] for a brief
overview. Chapter 2 of [18] gives a broader exposi-
tion. A standard reference on posets and lattices is [6].
We will recall here some classical concepts not always
dealt with in [20] (but which are described in [6, 18]).

Let us first introduce our notation. We consider
mainly three types of lattices. First lattices of image
values; they are denoted with capital letters V, W (for
a general lattice), or T, U, R (for some specific lattices,
see below), and we write their elements by lower-case
letters a, b, . . . , y, z, except for the least and greatest
elements, written ⊥ and � respectively. The order re-
lation on the lattice, and the corresponding supremum
and infimum operations are written ≤,

∨
and

∧
. Next,

we consider lattices whose members are images, which
can be of two types:

• The lattice P(E) of subsets of a space E , ordered by
inclusion ⊆, with supremum and infimum operations
given by the union

⋃
and the intersection

⋂
, and

∅ and E as least and greatest elements. Otherwise,
parts of E are written by capital letters X, Y, Z , . . .

• The power lattice V E of functions E → V , where
V is a complete lattice of values, with the pointwise
ordering: F ≤ G iff F(p) ≤ G(p) for all p ∈ E , and
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the pointwise supremum and infimum operations:∨
i∈I

Fi : E → V : p �→
∨
i∈I

Fi (p) and∧
i∈I

Fi : E → V : p �→
∧
i∈I

Fi (p).

The least and greatest functions are the ones with
constant values ⊥ and � respectively, we write them
C⊥ and C�, see (15) below. Otherwise functions
E → V are written by capital letters F, G, H, . . .

Let 2 = {0, 1}, the binary lattice; then we have an
isomorphism between P(E) and the power lattice 2E

of binary functions E → 2.
Finally, we consider operators, that is maps trans-

forming an image into an image, written with Greek
letters (generally lowercase), except for some special
operators, like the identity id : F �→ F . For a lat-
tice L of images, the operators constitute the power
lattice L L , with componentwise order, supremum and
infimum operations: ψ ≤ ξ iff ψ(F) ≤ ξ (F) for all
F ∈ L ,

[∨
i∈I ψi

]
(F) = [∨

i∈I ψi (F)
]
, and similarly

for
∧

. There is another operation on operators, the
composition: the composition of ξ followed by ψ is
ψξ : F �→ ψ(ξ (F)).

When L = P(E), the notation for the order relation
and the supremum and infimum operations, will be the
same for set operators P(E) → P(E) as for sets: we
will thus write ψ ⊆ ξ ,

⋃
i∈I ψi and

⋂
i∈I ψi . In the

power lattice P(E)W of maps W → P(E) (for any set
W ), we will adopt the same set-theoretical notation for
the order, supremum and infimum, which are given by
the componentwise inclusion, union and intersection;
the same convention holds as well as for operators on
P(E)W .

Let us now describe the specific lattices of values
denoted by T , U and R.

1. T designates a lattice of numerically ordered
grey-levels; it can be any subset of R = R ∪
{−∞, +∞} which is closed under nonvoid supre-
mum and infimum operations (or equivalently:
topologically closed); in practice, T will usually
be R, [a, b] = {x ∈ R | a ≤ x ≤ b} (with
a, b ∈ R and a < b), Z = Z ∪ {−∞, +∞}, or
[a . . . b] = [a, b] ∩ Z (with a, b ∈ Z and a < b).
In classical mathematical morphology [18], grey-
level images are usually considered as numerical
functions E → T .

2. U designates the lattice of labels illustrated in Fig. 2.
It is made of a finite family U∗ of proper labels, to

which two dummy labels ⊥ and � are added; we
assume that |U∗| ≥ 3, so that |U | ≥ 5. The order
relation ≤ on U reduces to the following:

∀u ∈ U, u ≤ u, ⊥ ≤ u, u ≤ �.

In particular, two distinct elements of U∗ (proper
labels) are not comparable for the order: we never
have u < u′ for u, u′ ∈ U∗. For more details see
[34], where it is shown that the application of flat
morphological operators to label images amounts to
processing independently all zones having a given
proper label.

3. R designates the set R ∪ {∞} or Z ∪ {∞} with
the reference order w.r.t. a reference r ∈ R \ {∞},
illustrated in Fig. 1, in other words for a, b ∈ R \
{∞}, we have a ≤r b if a is between r and b, that
is r ≤ a ≤ b or r ≥ a ≥ b (numerically); for every
a ∈ R, we set a ≤r ∞. Then R is a complete lattice
with r and ∞ as least and greatest elements. When
we want to specify the chosen reference element, we
will write Rr ; otherwise we can assume that r = 0.

Sometimes we will give definitions and properties
for an abstract complete lattice (which can be a lattice
of values, of images, of operators, or anything else).
In this case we will write this lattice L or M , and its
elements with lower-case letters.

We recall some standard notions concerning com-
plete lattices [6, 13, 18, 20]. Let L be a complete lattice.
Notice first the following identity, which will be used
freely later on:

∀Xi ∈ P(L) (i ∈ I ),
∨ ( ⋃

i∈I

Xi

)
=

∨
i∈I

(∨
Xi

)
.

(3)

A subset S of L is called a sup-generating family of
L if every element x of L is a supremum of elements
of S; in fact we have then x = ∨{s ∈ S | s ≤ x}.
A complete sublattice of L is a part M of L which
is a complete lattice for the order ≤ on L , with the
same supremum and infimum operations as in L , and
with the same least and greatest elements as those
of L . In other words, for any part S of M ,

∨
S and∧

S are elements of M (including for S = ∅, for
which

∨ ∅ and
∧ ∅ give the least and greatest element

of L).
Let L , M be two complete lattices (which may be

either distinct or equal) with least and greatest elements
⊥L , �L in L and ⊥M , �M in M . An increasing map
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ψ : L → M verifies:

∀xi ∈ L (i ∈ I ),

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψ

( ∨
i∈I

xi

)
≥

∨
i∈I

ψ(xi ),

ψ

( ∧
i∈I

xi

)
≤

∧
i∈I

ψ(xi ).

(4)

A dilation is a map δ : L → M which commutes with
the supremum operation, and an erosion is a map ε :
L → M which commutes with the infimum operation:

∀xi ∈ L (i ∈ I ),

δ

( ∨
i∈I

xi

)
=

∨
i∈I

δ(xi ) and ε

( ∧
i∈I

xi

)
=

∧
i∈I

ε(xi ).

In particular δ(⊥L ) = ⊥M and ε(�L ) = �M (since
the least element is equal to the empty supremum, and
the greatest element is equal to the empty infimum).
Dilations and erosions are increasing.

Given two maps δ : L → M and ε : M → L , the
ordered pair (ε, δ) is an adjunction if

∀x ∈ L , ∀y ∈ M, δ(x) ≤ y ⇔ x ≤ ε(y).

It is well-known [13, 18, 20] that given δ : L → M
and ε : M → L such that (ε, δ) is an adjunction, ε is
an erosion and δ is a dilation, δεδ = δ, εδε = ε, δε is
an opening on M and εδ is a closing on L; conversely,
given a dilation δ : L → M , there is a unique erosion
ε : M → L such that (ε, δ) is an adjunction, and given
an erosion ε : M → L , there is a unique dilation
δ : L → M such that (ε, δ) is an adjunction.

There is a classical variant of the adjunction, which
arises when we replace in M the order ≤ by its dual ≥.
A map α : L → M is an anti-dilation if it transforms
the supremum into an infimum:

∀xi ∈ L (i ∈ I ), α

( ∨
i∈I

xi

)
=

∧
i∈I

α(xi ).

In particular δ(⊥L ) = �M (the empty supremum in L
becomes the empty infimum in M). A pair of maps α :
L → M and β : M → L forms a Galois connection if

∀x ∈ L , ∀y ∈ M, y ≤ α(x) ⇔ x ≤ β(y) .

Note that α and β play here symmetrical roles (con-
trarily to δ and ε in an adjunction), so we do not order
the pair {α, β}. Now the above adjunction property be-
comes the following:

Property 1. Let L and M be two complete lattices
(not necessarily distinct).

1. Given α : L → M and β : M → L which form
a Galois connection, α and β are anti-dilations.
Furthermore, αβα = α and βαβ = β, αβ and βα

are closings (respectively on M and on L).
2. Given an anti-dilationα : L → M, there is a unique

anti-dilation β : M → L such that α and β form
a Galois connection; β is defined by setting for any
y ∈ M: β(y) is the greatest x ∈ L such that y ≤
α(x).

2.1. Distributivity, Infinite and Complete

We consider here various properties of lattices, that
will be relevant for the lattice V of values taken by a
function. Most of these properties will extend to the
lattice V E of functions E → V .

In a poset L , the order ≤ is total if for every a, b ∈ L ,
we have always a ≤ b or b ≤ a; we say then that L is
a chain, and we call a complete chain a totally ordered
complete lattice.

Let L be any lattice; for any a0, a1, x ∈ L we have

a0 ≤ a1 ⇒ a0 ∨ (x ∧ a1) ≤ (a0 ∨ x) ∧ a1.

One says that L is modular [6, 18] if this inequality is
in fact an equality:

a0 ≤ a1 ⇒ a0 ∨ (x ∧ a1) = (a0 ∨ x) ∧ a1. (5)

For any a, b, c ∈ L we have always

a ∧ (b ∨ c) ≥ (a ∧ b) ∨ (a ∧ c) and

a ∨ (b ∧ c) ≤ (a ∨ b) ∧ (a ∨ c).

L is distributive [6, 18] if

∀a, b, c ∈ L , a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

It is known [6] that this is equivalent to requiring the
dual condition:

∀a, b, c ∈ L , a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

Every distributive lattice is modular, but the converse
is not true. An example of modular lattice which is
not distributive is the one of vector subspaces (ordered
by inclusion) of a vector space of dimension >1 [6].
The lattice U of labels (see Fig. 2) is also modular but
non-distributive [34]. On the other hand the reference
lattice R is not modular, hence not distributive.
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There are several generalizations of distributivity for
complete lattices [6, 18]. Two of them are often used in
morphology [18], namely infinite supremum distribu-
tivity (in brief, ISD), and its dual, infinite infimum dis-
tributivity (in brief, IID). Let L be a complete lattice;
we say that L is infinitely supremum distributive, or
ISD, if

∀a ∈ L , ∀bi ∈ L (i ∈ I ),

a ∧
( ∨

i∈I

bi

)
=

∨
i∈I

(a ∧ bi ), (6)

where I is a nonempty index set; we say that L is
infinitely infimum distributive, or IID, if

∀a ∈ L , ∀bi ∈ L (i ∈ I ),

a ∨
( ∧

i∈I

bi

)
=

∧
i∈I

(a ∨ bi ). (7)

The two are not equivalent. For example the fam-
ily of open sets of Rn constitutes a complete lat-
tice which is ISD but not IID, while the family
of closed sets is an IID complete lattice which is
not ISD.

Note that ISD implies that for any integer n > 1 we
have

n∧
i=1

( ∨
j∈Ji

ai, j

)
=

∨
( j1 ,..., jn )

∈J1×···×Jn

(
a1, j1 ∧ · · · ∧ an, jn

)
=

∨
( j1 ,..., jn )

∈J1×···×Jn

n∧
i=1

ai, ji . (8)

The dual formula (with ∨ and ∧ interverted) holds for
IID. This suggests a stronger distributivity law, where
(8) or its dual would be extended to n being infinite, in
other words a distributivity between infinite suprema
and infinite infima. This is called extended distributiv-
ity or complete distributivity [6, 18]. Consider a set I
indexing a family of index sets Ji for i ∈ I ; a choice
map associates to each i ∈ I an element of Ji , in other
words it is a function ϕ : I → ⋃

i∈I Ji such that for
every i ∈ I we have ϕ(i) ∈ Ji ; write 
(I ) for the set
of choice maps. Clearly, a complete lattice L verifies
for any ai, j ∈ L (i ∈ I , j ∈ Ji ):∧

i∈I

∨
j∈Ji

ai, j ≥
∨

ϕ∈
(I )

∧
i∈I

ai,ϕ(i) and∨
i∈I

∧
j∈Ji

ai, j ≤
∧

ϕ∈
(I )

∨
i∈I

ai,ϕ(i). (9)

Complete distributivity means that the above inequali-
ties are in fact equalities. More precisely: the extended
supremum distributivity law is

∀ai, j ∈ L (i ∈ I, j ∈ Ji ),∧
i∈I

∨
j∈Ji

ai, j =
∨

ϕ∈
(I )

∧
i∈I

ai,ϕ(i), (10)

and the dual extended infimum distributivity law is

∀ai, j ∈ L (i ∈ I, j ∈ Ji ),∨
i∈I

∧
j∈Ji

ai, j =
∧

ϕ∈
(I )

∨
i∈I

ai,ϕ(i). (11)

Here we can always suppose that I �= ∅ and Ji �= ∅ for
all i ∈ I , otherwise (10) and (11) are trivially verified
(under the form � = � or ⊥ = ⊥). We illustrate
extended supremum distributivity in Fig. 3. Note that
for I finite, (10) reduces to (8).

In fact, the two laws are equivalent. This can be
shown directly by applying (10) to the right-hand
side of (11) (and vice-versa), see for example [27],
pp. 78, 79. Earlier, Raney [30] showed that each of
(10) and (11) is equivalent to the following autodual
condition: “L is a complete homomorphic image of
a complete ring of sets”; this means that there is a

Φ( )I

ai,j ai,j

ai,j

ai,j

ai,j

ai,j

ai,j

ai,jai,jai,j

J

J

J

i

i

i

I

ϕ ϕϕϕ

Figure 3. Extended supremum distributivity: on each line, we take
the supremum, then we take the infimum of the results; alternatively,
we can take the infimum on each transversal crossing each line once,
then take the supremum of results.
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set A, a family B of parts of A which is closed un-
der arbitrary unions and intersections (for Bi ∈ B,
i ∈ I ,

⋃
i∈I Bi ,

⋂
i∈I Bi ∈ B), and a surjective map

ψ : B → L such that for Bi ∈ B, i ∈ I , ψ(
⋃

i∈I Bi ) =∨
i∈I ψ(Bi ) and ψ(

⋂
i∈I Bi ) = ∧

i∈I ψ(Bi ). We say
thus that the complete lattice L is completely dis-
tributive if (10) or equivalently (11) holds. Note that
Matheron [27] says “complete” and “total” distributiv-
ity to mean infinite and complete distributivity respec-
tively.

We can express (10, 11) without index sets. Given a
family X of parts of L , a choice map on X is a map
ϕ : X → ⋃

X such that for any X ∈ X we must have
ϕ(X ) ∈ X ; let 
(X ) be the set of choice maps on X ;
then (10) can be written as

∀X ⊆ P(L),
∧
X∈X

∨
X =

∨
ϕ∈
(X )

∧
X∈X

ϕ(X ), (12)

while (11) becomes

∀X ⊆ P(L),
∨
X∈X

∧
X =

∧
ϕ∈
(X )

∨
X∈X

ϕ(X ). (13)

It is known [6] that every complete chain is com-
pletely distributive. The same holds then for a product
of chains. The lattice P(E) is also completely distribu-
tive.

The above expressions (10, 11), or (12, 13), for
complete distributivity are not always easy to use. We
will give an equivalent definition, which does not rely
on choice functions. Our approach derives from the
work of Bruns [8], and to a lesser extent from that of
Papert [28].

Define the relation � on L as follows [8]: for w, x ∈
L ,

w � x ⇔
[
∀Y ⊆ L , x ≤ ∨

Y ⇒ ∃y ∈ Y, w ≤ y
]
.

(14)

Heijmans [18] wrote w � x and said that w is below
x .

For w � x , we have w ≤ x [8, 18]: this follows by
taking Y = {x} in (14). Also, v ≤ w � x ≤ y implies
v � y [8]. Finally, the least element ⊥ of L verifies
⊥ � x ⇔ ⊥ < x [18]. We say that w is a sup-factor
of x if w � x and w > ⊥.

Let us give a few examples:

• For L = P(E), the sup-factors of a subset X of E
are precisely the singletons included in X .

• For L being the set of numerical functions E → Z̄,
define the impulse ih,v (h ∈ E , v ∈ Z) by ih,v(h) = v

and ih,v(p) = −∞ for p �= h; then the sup-factors of
a function F are the impulses ih,v such that ih,v ≤ F ,
that is v ≤ F(h).

• In a complete lattice L , an atom is some a ∈ L
which covers ⊥, that is such that ⊥ < a but there is
no b ∈ L with ⊥ < b < a. The lattice L is atomic
if its atoms constitute a sup-generating family. As
noticed in [18], p. 339, in an atomic lattice L , a sup-
factor of x ∈ L must necessarily be an atom ≤ x ;
Heijmans states also the converse (for an atom a such
that a ≤ x , we have a � x), but this is wrong in
general, this property holds iff (L , ≤) is isomorphic
to (P(A), ⊆), where A is the set of atoms.

• An element x of a complete lattice L is a strong
coprime [27] if for any Y ⊆ L , x ≤ ∨

Y implies
that there is some y ∈ Y with x ≤ y. By (14), this is
equivalent to x � x ; in particular, x �= ⊥, so x is its
own sup-factor.

Other examples can be found in [18], p. 340. We give
now our characterization of complete distributivity:

Lemma 2. The complete lattice L is completely dis-
tributive iff every element of L is the supremum of its
sup-factors: ∀x ∈ L, x = ∨{w ∈ L |⊥ < w � x}.

Proof: Suppose that L is completely distributive, and
let x ∈ L; as ⊥ is the supremum of the empty set
of its sup-factors, we can assume that x > ⊥. Let
Z = {Z ⊆ L | x ≤ ∨

Z}. Note that {x} ∈ Z , with∨{x} = x , while x ≤ ∨
Z for any other Z ∈ Z

(in particular, Z �= ∅). Hence
∧

Z∈Z
∨

Z = x . For
every choice map ϕ ∈ 
(Z), let wϕ = ∧

Z∈Z ϕ(Z ).
Applying (12), we get

x =
∧
Z∈Z

∨
Z =

∨
ϕ∈
(Z)

∧
Z∈Z

ϕ(Z ) =
∨

ϕ∈
(Z)

wϕ.

Take any ϕ ∈ 
(Z), and let Y ⊆ L with x ≤ ∨
Y ; then

Y ∈ Z , and as wϕ = ∧
Z∈Z ϕ(Z ), we get wϕ ≤ ϕ(Y ),

but as ϕ ∈ 
(Z), we have ϕ(Y ) ∈ Y ; we have thus
shown that wϕ � x for all ϕ ∈ 
(Z). Thus

x =
∨

ϕ∈
(Z)

wϕ ≤ {w ∈ L | w� x}

= {w ∈ L |⊥ < w � x}.

But we explained above that for w � x we have w ≤
x , so the reverse inequality {w ∈ L |⊥ < w � x} ≤ x
holds, and we derive the equality.

Suppose now that x = ∨{w ∈ L |⊥ < w � x} for
all x ∈ L . Take any ai, j ∈ L (i ∈ I , j ∈ Ji ), and let
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x = ∧
i∈I

∨
j∈Ji

ai, j . We can assume that I �= ∅ and
Ji �= ∅ for all i ∈ I , otherwise (10) is trivially verified.
Then for a fixed i ∈ I we have x ≤ ∨

j∈Ji
ai, j , so for

any w � x , there is some j ∈ Ji with w ≤ ai, j . We
associate thus to each sup-factor w of x a choice map
ϕw where for every i ∈ I , ϕw(i) is a j ∈ Ji chosen
such that w ≤ ai, j ; in other words w ≤ ai,ϕw(i) for all
i ∈ I , so we get w ≤ ∧

i∈I ai,ϕw(i). As x = ∨{w ∈ L |
⊥ < w � x}, we get

x =
∨

⊥<w�x

w ≤
∨

⊥<w�x

∧
i∈I

ai,ϕw(i).

But the choice functions ϕw constitute only a part of

(I ), so we get x ≤ ∨

ϕ∈
(I )

∧
i∈I ai,ϕ(i), that is:∧

i∈I

∨
j∈Ji

ai, j ≤
∨

ϕ∈
(I )

∧
i∈I

ai,ϕ(i).

Given the reverse inequality in (9), we obtain the ex-
tended supremum distributivity law (10).

A consequence of this lemma is the well-known
fact [27] that a complete lattice having a sup-
generating family of strong coprimes (elements
which are their own sup-factors) is completely
distributive.

In this paper, we will be considering the power lattice
V E of functions E → V for a space E and a complete
lattice V of values. It is clear that whenever V is mod-
ular, distributive, infinitely supremum or infimum dis-
tributive, or completely distributive, then V E will share
that property. In particular, if V is a chain, V E will be
completely distributive. This is for example the case
if we take for V the lattice T of numerically ordered
grey-levels; similarly, for multivalued images we take
V = T n , so V E is isomorphic to T n×E , which is com-
pletely distributive. Also the binary lattice 2 = {0, 1}
is a chain, so 2E , which is isomorphic to P(E), is com-
pletely distributive.

3. Flat Operators

In this section, we will show how the construction of
increasing flat operators on grey-level images, given
in [16] and Chapters 10 and 11 of [18] (see (1, 2)
above), can be extended to functions having values in
an arbitrary complete lattice V ; we will see that many
features of flat operators known in the grey-level case
remain valid in this general framework. Some proper-
ties will be obtained without any requirement on the

complete lattice V of values, so they are valid for mul-
tivalued images, label images, images with values in
the completed reference lattice, etc. On the other hand,
a few properties do not hold unless we assume the
lattice V to be infinitely or completely distributive (a
property satisfied by binary, grey-level and multivalued
images).

We stress the following point: throughout this
section, we restrict ourselves to increasing set operators
(and the flat operators derived from them will also be
increasing). Indeed, the standard construction for flat
operators does not work correctly for non-increasing
operators (see [16]).

Several of our results stated here were proved in
[33], and we indicate this source in their statement;
however for some of them, we nevertheless include a
proof, which means that this is a new proof, different
from the one given in [33].

Let us now introduce some general notation. We con-
sider a space E of points (which can in fact be any set),
and an arbitrary complete lattice V of image values,
whose least and greatest elements are written ⊥ and �
respectively. Images will then be functions E → V ,
we call such functions V -images. The power lattice
V E is the complete lattice of V -images E → V , with
the componentwise ordering. Image processing trans-
formations are called operators; in the case of binary
images, they correspond to mapsP(E) → P(E), while
in the case of V -images, they are considered as maps
V E → V E .

For every v ∈ V , write Cv for the function E → V
with constant value v:

∀p ∈ E, Cv(p) = v. (15)

We see in particular that the least and greatest elements
of the lattice V E are the constant functions C⊥ and
C� respectively. For any B ⊆ E and v ∈ V , the
cylinder of base B and level v is the function CB,v

defined by

∀p ∈ E, CB,v(p) =
{

v if p ∈ B,

⊥ if p /∈ B.
(16)

Note in particular that Cv = CE,v . Also, for h ∈ E and
v ∈ V , the impulse ih,v is the cylinder C{h},v , thus

∀p ∈ E, ih,v(p) =
{

v if p = h,

⊥ if p �= h.
(17)
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3.1. Thresholding, Stacking and Flat Operators

We introduce now our main concepts: thresholding and
stacking, whose properties are investigated. This leads
then to the definition of flat operators.

For a V -image F (a function F : E → V )
and a value v ∈ V , we define the threshold set
Xv(F) as in the definition of Heijmans, see (1)
above:

∀v ∈ V, Xv(F) = {p ∈ E | F(p) ≥ v}. (18)

It is easily seen that Xv(F) increases with F (that is,
F ≤ G implies Xv(F) ⊆ Xv(G)), but decreases withv:

v ≤ w ⇒ Xw(F) ⊆ Xv(F). (19)

The following is related to an argument on p. 8 of
[27]:

Lemma 3. Let F ∈ V E be fixed. Define the maps
θF : V → P(E) and ηF : P(E) → V by

∀v ∈ V, θF (v) = Xv(F) and

∀Z ∈ P(E), ηF (Z ) =
∧
p∈Z

F(p).

Then θF and ηF form a Galois connection. Further-
more:

1. For any v ∈ V , we set

s(v, F) =
∧

{F(p) | p ∈ Xv(F)}; (20)

then s(v, F) = ηFθF (v), s(v, F) ≥ v and
Xs(v,F)(F) = Xv(F).

2. For any Z ∈ P(E), we set

S(Z , F) = Xv(F) for v =
∧
p∈Z

F(p); (21)

then S(Z , F) = θFηF (Z ), S(Z , F) ⊇ Z and∧
p∈S(Z ,F) F(p) = ∧

p∈Z F(p).

Proof: For v ∈ V and Z ∈ P(E), Z ⊆ θF (v) means
that Z ⊆ Xv(F), in other words ∀p ∈ Z , F(p) ≥ v,
which is equivalent to

∧
p∈Z F(p) ≥ v, that is v ≤

ηF (Z ). Hence θF and ηF form a Galois connection.
This implies in particular (see Property 1) that ηFθF

and θFηF are closings on V , and that θFηFθF = θF

and ηFθFηF = ηF . For any v ∈ V ,

ηFθF (v) = ηF (θF (v)) = ηF (Xv(F))

=
∧

p∈Xv (F)

F(p) = s(v, F).

As ηFθF is a closing, s(v, F) = ηFθF (v) ≥ v, and the
equality θFηFθF = θF gives

Xs(v,F)(F) = θF (s(v, F)) = θF (ηFθF (v))

= θF (v) = Xv(F).

For any Z ∈ P(E), S(Z , F) = Xv(F) = θF (v) for
v = ηF (Z ), so S(Z , F) = θF (ηF (Z )) = θFηF (Z ).
As θFηF is a closing, S(Z , F) ⊇ Z , and the equality
ηFθFηF = ηF gives∧

p∈S(Z ,F)

F(p) = ηF (S(Z , F)) = ηF (θFηF (Z ))

= ηF (Z ) =
∧
p∈Z

F(p).

This Lemma will be used for proving several results
in this paper and in further ones. By Property 1, θF is
an anti-dilation, which means that for W ⊆ V ,

w =
∨

W ⇒ Xw(F) =
⋂
v∈W

Xv(F). (22)

This generalizes (19).

Definition 4.

1. A stack (on V ) is a decreasing map � : V → P(E),
i.e., it associates to every v ∈ V a subset �(v) of
E , and for v, w ∈ V with v ≤ w we have �(w) ⊆
�(v). Write S(V, E) for the family of stacks on V .

2. Given a V -image F , the threshold stack of F is the
map 
F : V → P(E) given by

∀v ∈ V, 
F(v) = Xv(F);

by (19), it is a stack on V (i.e., for v ≤ w we have

F(w) ⊆ 
F(v)).

3. Given a stack � on V and an increasing operator ψ

on P(E), ψV � is the map V → P(E) defined by

ψV �(v) = ψ (�(v)) ;

it is a stack on V . The map ψV : S(V, E) →
S(V, E) : � �→ ψV � is called the action of ψ

on S(V, E).
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Figure 4. Left: V = {0, 1, 2, 3, 4, 5}, E is a segment, and we show a stack on V . Right: its superposition.

4. Given a stack � on V , the superposition of � is the
V -image �� defined by

�� =
∨
v∈V

C�(v),v; (23)

in other words, for every point p ∈ E we have

��(p) =
∨

{v ∈ V | p ∈ �(v)}. (24)

This definition calls several comments:

1. The stack 
F is the map θF of Lemma 3.
2. P(E)V is a power lattice for the order given by

componentwise inclusion, with supremum and in-
fimum given by componentwise union and inter-
section. S(V, E) being a part of P(E)V , it inherits
thus this ordering: �0 ⊆ �1 iff �0(v) ⊆ �1(v)
for all v ∈ V . In fact S(V, E) is a complete sub-
lattice of P(E)V , in the sense that a (componen-
twise) union or intersection of stacks remains a
stack.

3. The operator ψ must necessarily be increasing in or-
der to guarantee that for v ≤ w, �(w) ⊆ �(v) will
lead toψ (�(w)) ⊆ ψ (�(v)). Then the actionψV of
ψ on S(V, E) is increasing, in the sense that for two
stacks � and �′, � ⊆ �′ implies ψV � ⊆ ψV �′.
This action ψV is a homomorphism for both the
composition operation and complete lattice struc-
ture of operators, in the sense that [ξψ]V = ξV ψV ,
the identity operator id has its action idV equal to the
identity on stacks, and for a family ψi (i ∈ I ) of op-
erators, [

⋃
i∈I ψi ]V = ⋃

i∈I ψi V and [
⋂

i∈I ψi ]V =⋂
i∈I ψi V .

We illustrate a stack and its superposition in Fig. 4.

Lemma 5. The maps 
 : V E → S(V, E) : F �→

F and � : S(V, E) → V E : � �→ �� form an
adjunction (
, �).

Proof: For � ∈ S(V, E) and F ∈ V E , �� ≤ F
means

∨
v∈V C�(v),v ≤ F , that is ∀v ∈ V , C�(v),v ≤

F , in other words ∀v ∈ V , ∀p ∈ �(v), v ≤ F(p),
equivalently ∀v ∈ V , �(v) ⊆ Xv(F) = 
F(v), which
means � ⊆ 
F .

Thus 
 is an erosion, which means that for a family
Fi (i ∈ I ) of V -images, we have for every v ∈ V :

Xv

( ∧
i∈I

Fi

)
=

⋂
i∈I

Xv(Fi ). (25)

In particular, Xv is increasing: F ≤G implies Xv(F) ⊆
Xv(G) (as said above).

Lemma 6. The map 
 : V E → S(V, E) : F �→ 
F
is injective, the map � : S(V, E) → V E : � �→ ��

is surjective, and �
 is the identity on V E .

Proof: Let F ∈ V E and p ∈ E ; set Vp,F = {v ∈
V | p ∈ Xv(F)}. By (24) we have �
F(p) = ∨{v ∈
V | p ∈ Xv(F)} = ∨

Vp,F . For v ∈ Vp,F , we have
F(p) ≥ v; however p ∈ X F(p)(F), that is F(p) ∈
Vp,F ; we get thus

∨
Vp,F = F(p). Hence �
F = F

for all F ∈ V E . This implies that � is surjective and

 is injective.

The following is implicitly contained in Chapter 10
of [18] and in [27], p. 8:

Lemma 7. Let � be a stack on V . Then the following
are equivalent:
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1. There is some F ∈ V E such that � = 
F.
2. � = 
��.
3. � is an anti-dilation.

Proof: Item 2 implies item 1 by taking F = ��.
Item 1 implies item 3, because 
F is the map θF of
Lemma 3, forming a Galois connection with ηF , so that
it is an anti-dilation by Property 1.

Let us show that item 3 implies item 2. Let the stack
� be an anti-dilation. By Lemma 6 and the adjunc-
tion property, 
� is a closing, so � ⊆ 
��. Let
v ∈ V and p ∈ 
��(v); then p ∈ Xv(��), that is
v ≤ ��(p) = ∨{w ∈ V | p ∈ �(w)}. As � is an
anti-dilation, we get

�(v) ⊇ �
( ∨

{w ∈ V | p ∈ �(w)}
)

=
⋂

{�(w) |w ∈ V, p ∈ �(w)}

which implies that p ∈ �(v). Therefore 
��(v) ⊆
�(v) for every v ∈ V , and from the double inclusion
� ⊆ 
�� and 
�� ⊆ �, the equality follows.

Combining the last two lemmas, we get:

Corollary 8. Let Sad (V, E) be the set of stacks on V
which are anti-dilations. Then Sad (V, E) is a complete
lattice isomorphic to V E , the isomorphism being given
by the map 
 : V E → Sad (V, E) : F �→ 
F and the
restriction of the map � to Sav(V, E): Sav(V, E) →
V E : � �→ ��.

We can now construct flat operators on V E as in [16]
(see (2) above):

Definition 9. Let ψ be an increasing operator on
P(E). The flat operator corresponding to ψ , or the
flat extension of ψ , is the operator ψV : V E → V E on
V -images, defined by setting for any V -image F :

ψV (F) = �ψV 
F ; (26)

in other words (see (23)),

ψV (F) =
∨
v∈V

Cψ(Xv (F)),v, (27)

so that for every point p ∈ E we have by (24):

ψV (F)(p) =
∨

{v ∈ V | p ∈ ψ (Xv(F))}. (28)

This latter Eq. (28) is (up to a change of notation)
the same formula as in Section 5 of [16]. When V is
the lattice T of numerically ordered grey-levels, one
associates to a function F its umbra (or hypograph)

U (F) = {(h, v) |h ∈ E, v ∈ T, v ≤ F(h)};

then Xv(F) is the horizontal cross-section of U (F) at
height v. Note that (25) translates in terms of umbras
as:

U

( ∧
i∈I

Fi

)
=

⋂
i∈I

U (Fi ).

Intuitively, we apply ψ to each horizontal cross-section
of the umbra U (F) of the function F , and take the upper
envelope of the modified umbra.

We illustrate this in Fig. 5 for a one-valued (constant)
function, and for a two-valued function. We will discuss
such functions further in Section 3.2.

The following result is an immediate consequence
of the facts that 
 and � are increasing, while an in-
creasing operator on sets has an increasing action on
stacks:

Proposition 10 ([33]). For an increasing operator ψ

on P(E), ψV is an increasing operator on V E .

3.2. Images with Specific Sets of Values

In Definition 4 we have taken threshold sets Xv(F) for
all values v ∈ V . In fact, some values of v are not
necessary for this purpose:

• The value v = ⊥ is redundant in all the above for-
mulas.

• For T = R or Z, let T ′ = T \{±∞}. It has been
stressed in [32] that we should not take into account
infinite grey-levels t = ±∞ for the umbra U (F) =
{(h, t) | t ≤ F(h)}, the impulses ih,t (see (17)), and
the threshold sets Xt (F) (see (18)). Indeed, not only
⊥ = −∞, but also � = +∞ is redundant, because
+∞ = sup T ′, so that X+∞(F) = ⋂

t∈T ′ Xt (F) by
(22). Thus we can restrict such formulas to t ∈ T ′.

• For RGB colour images, the flat extension of a set op-
erator can be constructed by applying the grey-level
flat operator to each of the red, green, and blue com-
ponents of the image, and joining the results. This
amounts to considering only red (r, ⊥, ⊥), green
(⊥, g, ⊥), and blue (⊥, ⊥, b) threshold values v for
the threshold sets Xv(F). A similar remark applies
to multivalued images.
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Figure 5. (a) The function F = Ca . (b) The function ψT (F) is obtained by applying ψ to the horizontal cross-sections of the umbra of F
(shown in light grey), and superposing the results. We get ψT (F) = Cψ(E),a ∨ Cψ(∅),�. (c) The function F = Ca0 ∨ CA,a1 , where a0 < a1. (d)
We get ψT (F) = Cψ(E),a0 ∨ Cψ(A),a1 ∨ Cψ(∅),�.

More generally, it is easily derived from (22) that in
Definition 9 one can replace V by a sup-generating
family:

Proposition 11 ([33]). Let Vs be a sup-generating
subset of V . Then for any increasing operator ψ on
P(E) and any V -image F, the construction of ψV (F)
in Definition 9 can be based on thresholds Xv(F) only
for v ∈ Vs, in other words (see (27))

ψV (F) =
∨
v∈Vs

Cψ(Xv (F)),v, (29)

so that for every point p ∈ E we have (see (28))

ψV (F)(p) =
∨

{v ∈ Vs | p ∈ ψ (Xv(F))}. (30)

For example, with V = T = R, we take Vs =
T ′ = R or Vs = Q, while with V = T = Z, we take
Vs = T ′ = Z.

A consequence of this result deals with the case
where V is a product lattice: V = W1 × · · · ×
Wn , with componentwise ordering (w1, . . . , wn) ≤
(w′

1, . . . , w
′
n) iff wi ≤ w′

i for all i = 1, . . . , n. We
define for i = 1, . . . , n the i -th projection πi : V →
Wi : (w1, . . . , wn) �→ wi ; it can naturally be extended
to V -images as �i : V E → W E

i : F �→ �i (F) by
applying it pointwise: �i (F)(p) = πi (F(p)). Now a

flat operator on V -images amounts to applying to each
i-th projection the flat operator on Wi -images:

Proposition 12. Let V = W1 × · · · × Wn and let ψ

be an increasing operator on P(E). Then for every V -
image F we have �i (ψV (F)) = ψWi (�i (F)) for all
i = 1, . . . , n.

Proof: Note first that the i-th projection distributes
both supremum and infimum operations: πi (

∨
X ) =∨

x∈X πi (x) and πi (
∧

X ) = ∧
x∈X πi (x). For i =

1, . . . , n, let ρi : Wi → V be defined by

∀w ∈ Wi , π j (ρi (w)) =
{

w if j = i,

⊥ if j �= i.

In other words, ρi (w) is the vector having w at i-th
position, and ⊥ everywhere else. Then (πi , ρi ) is an
adjunction: for w ∈ Wi and v ∈ V , ρi (w) ≤ v iff
w ≤ πi (v).

For every v ∈ V , we see easily that v =∨n
i=1 ρi (πi (v)), because the left and right terms have

the same j-th projection for j = 1, . . . , n:

π j

(
n∨

i=1

ρi (πi (v))

)
=

n∨
i=1

π j (ρi (πi (v))) = π j (v).

Thus W = ⋃n
i=1{ρi (w) |w ∈ Wi } is a sup-generating

family of V . Applying Proposition 11, we get for each
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F ∈ V E :

ψV (F) =
∨
w∈W

Cψ(Xw(F)),w

=
∨ n⋃

i=1

{
Cψ(Xρi (w)(F)),ρi (w) |w ∈ Wi

}
.

For p ∈ E , we have p ∈ Xρi (w)(F) iff ρi (w) ≤ F(p),
which is, by the adjunction (πi , ρi ), equivalent to w ≤
πi (F(p)), that is p ∈ Xw(�i (F)). Thus Xρi (w)(F) =
Xw(�i (F)), and combining this with (3), we get:

ψV (F) =
n∨

i=1

∨{
Cψ(Xw(�i (F))),ρi (w) |w ∈ Wi

}
.

Then for j = 1, . . . , n, as � j distributes the supre-
mum, we get

� j (ψ
V (F))

=
n∨

i=1

∨{
� j (Cψ(Xw(�i (F))),ρi (w)) |w ∈ Wi

}
.

We check easily from (16) that for B ⊆ E and v ∈ V ,
� j (CB,v) = CB,π j (v), thus for v = ρi (w) we have
� j (CB,ρi (w)) = CB,π j (ρi (w)), which gives CB,w for i =
j and C⊥ for i �= j ; so for B = ψ(Xw(�i (F))) we get:

� j
(
Cψ(Xw(�i (F))),ρi (w)

)=
{

Cψ(Xw(� j (F))),w if i = j,

C⊥ if i �= j.

Therefore

� j (ψ
V (F)) =

∨{
Cψ(Xw(� j (F))),w |w ∈ W j

}
= ψW j (� j (F)).

For example, in multivalued images, vector values
form the lattice T n , where T is the complete chain of
grey-levels, thus applying a flat operator ψ (T n ) to a mul-
tivalued image amounts to applying the corresponding
grey-level flat operator ψT to each one of the scalar
components of the image.

Flat operators are reputed not to create new values
in a grey-level image. Note first that even when ⊥ and
� do not belong the set of values of F , these values
can appear in ψV (F) if some conditions are not met:

Proposition 13. Let ψ be an increasing operator on
P(E).

1. If ψ(∅) �= ∅, then for all F ∈ V E and p ∈ ψ(∅) we
have ψV (F)(p) = �.

2. If ψ(E) �= E, then for all F ∈ V E and p /∈ ψ(E)
we have ψV (F)(p) = ⊥.

3. If ψ(∅) = ∅ and ψ(E) = E, then:

• For any a ∈ V , ψV (Ca) = Ca.
• For any a, b ∈ V with a < b and for every

F ∈ V E such that a ≤ F(p) ≤ b for all p ∈ E,
then a ≤ ψV (F)(p) ≤ b for all p ∈ E.

Proof:

1. Let p ∈ ψ(∅); as ψ is increasing, for every
v ∈ V we have p ∈ ψ (Xv(F)), so (28) gives
ψV (F)(p) = ∨

V = �.
2. Let p /∈ ψ(E); as ψ is increasing, for every v ∈ V

we have p /∈ ψ (Xv(F)), so (28) gives ψV (F)(p) =∨ ∅ = ⊥.
3. Suppose that ψ(∅) = ∅ and ψ(E) = E . For every

v ∈ V , we have Xv(Ca) = E for v ≤ a, and ∅
otherwise; thus ψ (Xv(Ca)) = E for v ≤ a, and ∅
otherwise. Hence (28) gives for every p ∈ E :

ψV (Ca)(p) =
∨

{v ∈ V | p ∈ ψ (Xv(Ca))}
=

∨
{v ∈ V |v ≤ a} = a,

that is ψV (Ca) = Ca . Now for a, b ∈ V with a < b,
the fact that a ≤ F(p) ≤ b for all p ∈ E means
Ca ≤ F ≤ Cb; as ψV is increasing (Proposition 10),
we get Ca = ψV (Ca) ≤ ψV (F) ≤ ψV (Cb) = Cb,
that is a ≤ ψV (F)(p) ≤ b for all p ∈ E .

Note that for E = Rn or Zn , the usual operators,
like the dilation, erosion, opening and closing by a
nonvoid structuring element A, verify that condition
ψ(∅) = ∅ and ψ(E) = E ; in fact this is the case
for any translation-invariant operator, except the con-
stant E and constant ∅ operators, in other words the
erosion/closing and the dilation/opening by the empty
structuring element ∅. This is why this condition is not
considered in practice.

It is well-known that in the case of images with
finitely many grey-levels (say, V = T = [a, b] ∩ Z),
for an increasing set operator ψ verifying ψ(∅) = ∅
and ψ(E) = E , the flat operator ψV will not add new
grey-levels in an image. On the other hand, for T = Z,
it can introduce the grey-level ±∞, while for continu-
ous grey-levels, it can introduce new finite grey-levels,
but in both cases it is only as limits of existing grey-
levels in the original image.

Here in the general case of V -images, new values
in ψV (F) can be obtained by combinations of suprema
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and infima of existing values F(q) (including the empty
supremum ⊥ and the empty infimum �). In other words
if the image F has its values in a complete sublattice
W of V , those of ψV (F) will also be in W . More pre-
cisely, the following is a straightforward consequence
of item 1 of Lemma 3 (namely that s(v, F) ≥ v and
Xs(v,F)(F) = Xv(F)):

Proposition 14 ([33]). Let W be a complete sublat-
tice of V and let F be a W -image. Let ψ be an increas-
ing operator on P(E). Then ψV (F) = ψW (F).

It means in particular that for any V -image F , the
values of ψV (F) will belong to the complete sublattice
W of V generated by the values of F .

Let us give a few applications of Propositions 11 and
14.

As {⊥, �} is a complete sublattice of V , isomor-
phic to {0, 1}, the lattice {⊥, �}E of binary images
E → {⊥, �} (ordered by ≤) is isomorphic to the lat-
tice 2E , hence to the latticeP(E) of parts of E (ordered
by inclusion); this isomorphism is given by the map
P(E) → {⊥, �}E : B �→ CB,�. Now this isomor-
phism extends to operators:

Proposition 15. For any increasing operator ψ on
P(E), ψV behaves like ψ on binary images E →
{⊥, �}: for any B ⊆ E,

ψV (CB,�) = Cψ(B),�. (31)

In particular, two distinct increasing operators ψ, ξ on
P(E) have distinct flat extensions: ψ �= ξ ⇒ ψV �=
ξ V .

Proof: Take W = {⊥, �} and let Ws = {�}; now
Ws is a sup-generating family of W , and we have
X�(CB,�) = B, with CB,� ∈ W E . Apply Proposition
14, then Proposition 11 for the sup-generating family
Ws :

ψV (CB,�) = ψW (CB,�) = Cψ(X�(CB,�)),� = Cψ(B),�.

This shows (31). Now if ψ �= ξ , there is some B ⊆ E
such that ψ(B) �= ξ (B), so ψV (CB,�) �= ξ V (CB,�).

For cylinders, the behaviour of a flat operator is as
follows:

Proposition 16. Take B ⊆ E and a ∈ V . Let ψ be
an increasing operator on P(E). Then ψV (CB,a) =

Cψ(B),a ∨ Cψ(∅),�. In particular, if ψ(∅) = ∅, then
ψV (CB,a) = Cψ(B),a.

Proof: If a = ⊥, then CB,a = C∅,�, and Proposition
15 gives ψV (C∅,�) = Cψ(∅),�, which is indeed the
same as Cψ(B),⊥∨Cψ(∅),�. If a = �, then CB,a = CB,�,
and Proposition 15 again gives ψV (CB,�) = Cψ(B),�,
which is indeed the same as Cψ(B),� ∨Cψ(∅),� (because
ψ(∅) ⊆ ψ(B)). We can thus suppose that a �= ⊥, �.
The values of CB,a are in the complete sublattice W =
{⊥, a, �} of V ; the set Ws = {a, �} is a sup-generating
family of W . Apply Proposition 14, then Proposition
11 for the sup-generating family Ws of W :

ψV (CB,a) = Cψ(Xa (CB,a )),a ∨ Cψ(X�(CB,a )),�
= Cψ(B),a ∨ Cψ(∅),�,

because Xa(CB,a) = B and X�(CB,a) = ∅. We
have thus shown the equality ψV (CB,a) = Cψ(B),a ∨
Cψ(∅),�, whatever the value of a. If ψ(∅) = ∅, the
term Cψ(∅),� becomes the least V -image C⊥, which
is redundant in the formula, and we get ψV (CB,a)
= Cψ(B),a .

As a particular case, for B = E , we obtain
ψV (Ca) = Cψ(E),a ∨ Cψ(∅),�, and indeed if ψ(∅) = ∅
and ψ(E) = E , we get ψV (Ca) = Ca , as in item 3
of Proposition 13. When the conditions ψ(∅) = ∅ and
ψ(E) = E are not met, for a ∈ V \ {⊥, �}, ψV (Ca)
will be like what we showed in Fig. 5(b) for V = T .

We can now describe the behaviour of a flat operator
on an image whose values form a finite chain:

Proposition 17. Let n > 0, let a0, . . . , an ∈ V and
A0, . . . , An ∈ P(E) such that ⊥ < a0 < · · · < an =
� and A0 ⊃ · · · ⊃ An. Let

F =
n∨

i=0

CAi ,ai ,

in other words the V -image F is given by

∀p ∈ E, F(p) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⊥ if p ∈ E \ A0,

ai if p ∈ Ai \ Ai+1

(i = 0, . . . , n − 1),

an = � if p ∈ An.

Then

ψV (F) =
n∨

i=0

Cψ(Ai ),ai ,
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in other words

∀p ∈ E, ψV (F)(p) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⊥ if p ∈ E \ ψ(A0),

ai if p ∈ ψ(Ai ) \ ψ(Ai+1)
(i=0, . . ., n − 1),

an = � if p ∈ ψ(An).

Proof: We verify that for i = 0, . . . , n, Xai (F) = Ai .
Now W = {⊥, a0, . . . , an} is a complete sub-lattice of
V , and Ws = {a0, . . . , an} is a sup-generating family
of W . Applying Propositions 14 and 11 we get

ψV (F) =
∨

w∈Ws

Cψ(Xw(F)),w =
n∨

i=0

Cψ(Xai (F)),ai

=
n∨

i=0

Cψ(Ai ),ai ,

and the result follows.

For example in Fig. 5(c), we have n = 2, A0 = E ,
A1 = A and A2 = ∅, so ψV (F) will indeed be as in
Fig. 5(d).

3.3. Matheron’s Theorem: Sup-Inf Decomposition

In mathematical morphology for sets, Matheron’s the-
orem [37] states that a translation-invariant increasing
operator on P(E) is a union of erosions; more pre-
cisely, we have ψ = ⋃

B∈K(ψ) εB , where K(ψ) =
{B ∈ P(E) | o ∈ ψ(B)} (o being the origin); the set
K(ψ) is called the kernel of ψ . As noticed in [31], it is
linked to the well-known fact that an increasing func-
tion {0, 1}n → {0, 1} can be expressed as a maximum
of minima. There have been several generalizations,
for example for translation-invariant increasing opera-
tors in a complete lattice where Minkowski operations
are defined [20], or increasing operators in an arbitrary
complete lattice [38]. Matheron’s kernel has the fol-
lowing property:

Definition 18. Given B ⊆ P(E), we say that B is an
upper family if for every B ∈ B and for every C ∈
P(E) such that B ⊂ C , we necessarily have C ∈ B.
For any B ⊆ P(E), the least upper family containing
B is

U(B) = {C ∈ P(E) |∃B ∈ B, B ⊆ C}; (32)

we call it the upper closure of B.

The kernel K(ψ) is an upper family, which makes
it redundant: for B ∈ K(ψ) and C ⊃ B, we have
C ∈ K(ψ), but for every X ∈ P(E), we have εC (X ) ⊆
εB(X ), so that εC is redundant in the union

⋃
B∈K(ψ) εB .

Given B ⊆ K(ψ) such that U(B) = K(ψ), we have
then ψ = ⋃

B∈B εB .
We will prove here an analogue of Matheron’s the-

orem. As we do not assume translation-invariance, we
will have a kernel at each point, and we will see that the
flat operator gives at each point the supremum, for all
sets in the kernel, of the infima of values of the function
on that set.

Given an increasing operator ψ on P(E), for every
point p ∈ E we define the kernel of ψ at p as the set

K(ψ, p) = {B ∈ P(E) | p ∈ ψ(B)}. (33)

This generalizes Matheron’s kernel in the following
sense: in the case where E = Rn or Zn and ψ is
translation-invariant, at the origin o we haveK(ψ, o) =
K(ψ), while for any other point p, K(ψ, p) is the set of
translates by p of elements of K(ψ): K(ψ, p) = {Bp |
B ∈ K(ψ)}.

Theorem 19. Let ψ be an increasing operator on
P(E). Then for every F ∈ V E and p ∈ E, we have

ψV (F)(p) =
∨

B∈K(ψ,p)

∧
q∈B

F(q). (34)

Furthermore, the following hold for every point p ∈ E:

1. K(ψ, p) is an upper family.
2. K(ψ, p) = ∅ ⇔ p /∈ ψ(E) ⇔ [∀F ∈

V E , ψV (F)(p) = ⊥].
3. K(ψ, p) = P(E) ⇔ p ∈ ψ(∅) ⇔ [∀F ∈

V E , ψV (F)(p) = �].

Proof: Fix F ∈ V E and p ∈ E . Let

P = {v ∈ V | p ∈ ψ (Xv(F))} and

Q =
{ ∧

q∈B

F(q) | B ∈ K(ψ, p)

}
.

By (28), we have ψV (F)(p) = ∨
P . The result (34)

that we have to show states that ψV (F)(p) = ∨
Q; we

will thus prove that
∨

P = ∨
Q.

Let w ∈ Q; thus there is some B ∈ K(ψ, p) such
that w = ∧

q∈B F(q); by (21), S(B, F) = Xw(F),
and by Lemma 3, we have S(B, F) ⊇ B; as B ∈
K(ψ, p), we have p ∈ ψ(B), and as ψ is increasing
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and B ⊆ S(B, F) = Xw(F), we get p ∈ ψ(Xw(F)),
so w ∈ P . Therefore Q ⊆ P and so

∨
Q ≤ ∨

P . Now
let v ∈ P; by (20), s(v, F) = ∧

q∈Xv (F) F(q), and by
Lemma 3, we have v ≤ s(v, F). As v ∈ P , we have
p ∈ ψ (Xv(F)), so Xv(F) ∈ K(ψ, p), hence s(v, F) ∈
Q. Therefore

∨
P ≤ ∨

v∈P s(v, F) ≤ ∨
Q. From the

two inequalities
∨

Q ≤ ∨
P and

∨
P ≤ ∨

Q, the
equality follows, and (34) holds.

Let B ∈ K(ψ, p); thus p ∈ ψ(B). As ψ is increas-
ing, for any C ∈ P(E) such that B ⊂ C , we have
p ∈ ψ(C), that is C ∈ K(ψ, p). Hence K(ψ, p) is an
upper family.

If K(ψ, p) = ∅, then E /∈ K(ψ, p), that is p /∈
ψ(E). Conversely, if p /∈ψ(E), then as K(ψ, p) is an
upper family, for any B ∈ P(E) we have B /∈ K(ψ, p),
thus K(ψ, p) = ∅. Hence K(ψ, p) = ∅ ⇔ p /∈ ψ(E).
We showed in Proposition 13 that if p /∈ ψ(E), then for
every F ∈V E we have ψV (F)(p) = ⊥. On the other
hand, by Proposition 15, ψV (C�) = ψV (CE,�) =
Cψ(E),�, so that if p ∈ ψ(E), then ψV (C�)(p) =
Cψ(E),�(p) = � �= ⊥. Hence p /∈ ψ(E) ⇔ [∀F ∈
V E , ψV (F)(p) = ⊥]

. Therefore item 2 holds.
If K(ψ, p) = P(E), then ∅ ∈ K(ψ, p), that

is p ∈ ψ(∅). Conversely, if p ∈ ψ(∅), then as
K(ψ, p) is an upper family, for any B ∈ P(E) we
have B ∈ K(ψ, p), thus K(ψ, p) = P(E). Hence
K(ψ, p) = P(E) ⇔ p ∈ ψ(∅). We showed in Propo-
sition 13 that if p ∈ ψ(∅), then for every F ∈ V E we
have ψV (F)(p) = �. On the other hand, by Propo-
sition 15, ψV (C⊥) = ψV (C∅,�) = Cψ(∅),�, so that if
p /∈ ψ(∅), then ψV (C⊥)(p) = Cψ(∅),�(p) = ⊥ �= �.
Hence p ∈ ψ(∅) ⇔ [∀F ∈ V E , ψV (F)(p) = �]

.
Therefore item 3 holds.

As we will see in Section 3.6, there is generally
no dual decomposition of ψV (F)(p) as an infimum
of suprema; this requires complete distributivity.

The fact that for p ∈ E the kernel K(ψ, p) is an
upper family, implies that the decomposition (34) is
redundant: given B ∈ K(ψ, p) and C ⊃ B, we have
C ∈ K(ψ, p), but

∧
q∈C F(q) ≤ ∧

q∈B F(q), so that C
is redundant in the formula (34). We can thus replace
K(ψ, p) by any B ⊆ P(E) such that U(B) = K(ψ, p).

Lemma 20. Let B, C ⊆ P(E). Then

1. B ⊆ U(C) ⇔ U(B) ⊆ U(C), and this holds
iff for any F ∈ V E ,

∨
B∈B

∧
q∈B F(q) ≤∨

C∈C
∧

q∈C F(q).
2. U(B) = U(C) iff for any F ∈ V E ,∨

B∈B
∧

q∈B F(q) = ∨
C∈C

∧
q∈C F(q).

Proof:

1. The equivalence B ⊆ U(C) ⇔ U(B) ⊆ U(C)
follows from the fact that U(C) is an upper fam-
ily and U(B) is the least upper family contain-
ing B. Suppose that B ⊆ U(C), and let F ∈
V E : for B ∈ B, there is some C ∈ C such
that C ⊆ B, so

∧
q∈B F(q) ≤ ∧

q∈C F(q); thus∨
B∈B

∧
q∈B F(q) ≤ ∨

C∈C
∧

q∈C F(q). Suppose
now that B �⊆ U(C): there is some B ∈ B such
that for every C ∈ C, C �⊆ B; define F ∈ V E by
F(q) = � for q ∈ B and F(q) = ⊥ for q /∈ B;
then

∧
q∈B F(q) = � but for every C ∈ C we have∧

q∈C F(q) = ⊥, and we get
∨

B∈B
∧

q∈B F(q) =
� �≤ ⊥ = ∨

C∈C
∧

q∈C F(q).
2. Interverting B and C in item 1, we get U(B) ⊇

U(C) iff for any F ∈ V E ,
∨

B∈B
∧

q∈B F(q) ≥∨
C∈C

∧
q∈C F(q). Combining this with item 1, the

result follows.

Combining item 2 with (34) and the fact thatK(ψ, p)
is an upper family, we obtain:

Corollary 21. Given an increasing operator ψ on
P(E), a point p ∈ E, and a family B ⊆ P(E), we
have: [

∀F ∈ V E , ψV (F)(p) =
∨
B∈B

∧
q∈B

F(q)

]
⇔ U(B) = K(ψ, p).

We see also that every operator on V -images that
applies at each point a supremum of infima of image
values, is a flat operator:

Corollary 22. Let � : V E → V E be such that for
every p ∈ E there is some Bp ∈ P(P(E)) such that
for every F ∈ V E we have

�(F)(p) =
∨

B∈Bp

∧
q∈B

F(q).

Define the operator ψ : P(E) → P(E) by setting for
every X ∈ P(E):

ψ(X ) = {p ∈ E | X ∈ U(Bp)}.

Then ψ is increasing, U(Bp) = K(ψ, p) for every p ∈
E, and � = ψV .

Let us illustrate the above results with the example of
the median operation used by median filters. It is the flat
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extension of the “majority vote” operation on binary
variables (given n binary variables x1, . . . , xn , n odd,
select the binary value represented by the majority of
the xi ’s). Thus, for x1, . . . , xn ∈ V , the median verifies

med(x1, . . . , xn) =
∨
B∈B

∧
i∈B

xi ,

where B is the set of parts of {1, . . . , n} having size
(n + 1)/2. Let us consider some specific examples for
V (but not the standard lattice T of numerically ordered
grey-levels):

1. For V = T n (colour or multivalued images), the
median is obtained by taking the median in each
coordinate, cf. Proposition 12.

2. For V = U (the lattice of labels) and x1, . . . , xn �=
�, if there is a label u represented at least (n + 1)/2
times in the sequence x1, . . . , xn , then the median
is u, otherwise it is ⊥ [34].

3. For V = Rr (the lattice R∪{∞} or Z∪{∞} ordered
w.r.t. a reference r �= ∞) and x1, . . . , xn �= ∞,
the median for the reference ordering will coincide
with the usual median for the numerical ordering.
Indeed, we have 3 cases: (a) at least (n +1)/2 of the
xi ’s are numerically above r , and the median is the
(n + 1)/2-th in (numerically) descending order; (b)
at least (n+1)/2 of the xi ’s are numerically below r ,
and the median is the (n + 1)/2-th in (numerically)
ascending order; (c) neither holds, and the median is
the reference r . This means that if we take images
with finite values ordered w.r.t. reference r (as in
the original works of Keshet [19, 23, 24], where the
value ∞ was excluded), we can define the median
filter in the same way as for numerically ordered
values, and it will be a flat operator.

3.4. Flat Extension of Some Particular Operators

The following is a rewording of Lemma 6:

Proposition 23 ([33]). idV = �
, it is is the identity
on V E .

We can interpret this result according to Section 3.3:
for every p ∈ E we have B ∈ K(id, p) ⇔ p ∈
B, so K(id, p) = U({{p}}), hence by Corollary 21,
idV (F)(p) = F(p).

Let us now consider dilations, erosions and ad-
junctions on P(E). A variable structuring element
(or neighbourhood function, or windowing function
[33, 34]) is a map A : E → P(E) associating to

every point p ∈ E a pointwise structuring element
(or neighbourhood, or window) A(p) ⊆ E . Given a
variable structuring element A, its dual is the variable
structuring element Ã defined by

∀p, q ∈ E, q ∈ Ã(p) ⇔ p ∈ A(q).

The dilation by A and the erosion by A are the operators
δA and εA on P(E) defined by setting for Z ⊆ E :

δA(Z ) = ⋃
z∈Z A(z),

εA(Z ) = {p ∈ E |A(p) ⊆ Z}. (35)

Note that

δA(Z ) = {p ∈ E | Ã(p) ∩ Z �= ∅},

and that (δA(Zc))c = εÃ(Z ) and (εA(Zc))c = δÃ(Z ). A
“folk theorem” states that

• (εA, δA) is an adjunction on P(E), and
• conversely, given an adjunction (ε, δ) onP(E), there

is a unique variable structuring element A such that
ε = εA and δ = δA; for every p ∈ E , we have
A(p) = δ({p}).

We can now consider the flat operators correspond-
ing to dilations and erosions by a variable structuring
element. We see that we obtain the same formulas as
in the usual case of numerical functions [16, 17]:

Proposition 24 ([33]). Let δA and εA be the dilation
and erosion (on P(E)) by a neighboorhood function
A. Then:

1. For F ∈ V E and p ∈ E, we have:

δV
A (F)(p) =

∨
q∈Ã(p)

F(q),

εV
A (F)(p) =

∧
q∈A(p)

F(q).
(36)

2. (εV
A , δV

A ) is an adjunction on V E .

Interpreting this result according to Section 3.3, for
every p ∈ E we have K(δA, p) = U({{q} |q ∈ Ã(p)})
(i.e., B ∈ K(δA, p) ⇔ B∩Ã(p) �= ∅), andK(εA, p) =
U({A(p)}) (i.e., B ∈ K(εA, p) ⇔ A(p) ⊆ B), so that
(36) follows.

Note that the dilation δA verifies δA(∅) = ∅; there-
fore Proposition 16 gives

∀B ⊆ E, ∀v ∈ V, δV
A (CB,v) = CδA(B),v. (37)
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It is known that if π is a symmetry (translation, ro-
tation, etc.) of the Euclidean space E = Rn , we can
apply π to grey-level or multivalued images by setting
π (F) : π (p) �→ F(p), that is π (F)(p) = F(π−1(p)).
In fact the action of π on V -images is the flat extension
of its action on sets:

Proposition 25. Let the map π : E → E act on sub-
sets of E: for X ∈ P(E), π (X ) = {π (x) | x ∈ X}. Then
for F ∈ V E and p ∈ E we haveπV (F)(p) = ∨{F(q) |
q ∈ E, π (q) = p}. In particular, if π is bijective (a per-
mutation of E), then πV (F)(p) = F(π−1(p)), where
π−1 is the inverse of π , in other words πV corresponds
to the action of π on V -images.

Proof: In fact, π acting on sets is δA for A(p) =
{π (p)}, with Ã(p) = {q ∈ E | π (q) = p}. Ap-
plying (36), we obtain πV (F)(p) = ∨{F(q) | q ∈
E, π (q) = p}. When π is bijective, {q ∈ E | π (q) =
p} = {π−1(p)}, where π−1 is the inverse of π , so that
πV (F)(p) = F(π−1(p)).

An important class of morphological operations are
the connected operators [10, 11, 36, 40, 41] (see [43]
for a brief description). Suppose that we have a connec-
tion (or connectivity class) C in P(E) (see Chapter 2
of [38]); the elements of C are the connected sets. Ex-
amples of connections are the family of 4-connected
subsets of E = Z2, or the one of topologically con-
nected subsets of E = Rn . For F ∈ V E , a flat zone
of F is a connected component (according to C) of
F−1(t) = {p ∈ E | F(p) = t} for t ∈ {F(p) | p ∈ E}.
For X ∈ P(E), a flat zone of X is a flat zone of its char-
acteristic function χX : E → {0, 1}, in other words, it
is a connected component (according to C) of X or Xc.
A connected operator is an operator which coarsens
the partition of E into flat zones, in other words such
that a flat zone in the initial image will be part of a
flat zone of the resulting image. We will rather use the
following equivalent definition:

Definition 26. Let C be a connection in P(E).

• An operator ψ : P(E) → P(E) is connected if for
every C ∈ C and X ∈ P(E) such that C ⊆ X or
C ⊆ Xc, we must have C ⊆ ψ(X ) or C ⊆ ψ(X )c.

• An operator � : V E → V E is connected if for every
C ∈ C and F ∈ V E such that F has constant value
on C , �(F) must have constant value on C .

The following is known in the case of grey-level
images [43]:

Proposition 27. For an increasing connected opera-
tor ψ on P(E), ψV is connected.

Proof: Let C ∈ C and F ∈ V E such that there is
some w ∈ V with F(p) = w for all p ∈ C . Thus for
every v ∈ V , we have either v ≤ w and C ⊆ Xv(F),
or v �≤ w and C ⊆ Xv(F)c. As ψ is connected, we
will get either C ⊆ ψ (Xv(F)), or C ⊆ ψ (Xv(F))c.
This means that the cylinder Cψ(Xv (F)),v will have its
values for p ∈ C , either all equal to v, or all equal to
⊥. From (27) we get that ψV (F) = ∨

v∈V Cψ(Xv (F)),v

has a constant value on C . Hence ψV is connected.

3.5. Combinations of Operators

Now we give some results and counterexamples con-
cerning the flat extension of a union, intersection, and
composition of set operators, as well as on the flat
extension of openings and closings. These properties
were obtained by Heijmans [18] in the case where the
lattice V is strongly admissible.

The flat extension of a union of set operators is the
join of their individual flat extensions:

Proposition 28 ([33]). Given a family of increasing
operators ψi (i ∈ I ) on P(E),

( ⋃
i∈I

ψi

)V

=
∨
i∈I

ψV
i . (38)

Proof: For any V -image F we have:

( ⋃
i∈I

ψi

)V

(F) = �

( ⋃
i∈I

ψi

)
V


F

= �

( ⋃
i∈I

ψi V 
F

)
=

∨
i∈I

�ψi V 
F

=
∨
i∈I

ψV
i (F).

Here we used successively: (26) in Definition 9, the
fact that the action of operators on stacks is a homomor-
phism, the fact that � is a dilation (thanks to Lemma 5),
and again (26).

Corollary 29. Given two increasing operators η, ζ

on P(E), η ⊆ ζ if and only if ηV ≤ ζ V .
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Proof: The map ψ → ψV is injective by Propo-
sition 15, and combining this with the above
Proposition 28 , we get

η ⊆ ζ ⇔ ζ = η ∪ ζ ⇔ ζ V = ηV ∨ ζ V

⇔ ηV ≤ ζ V .

Now the dual form of Proposition 28 does not hold
in general: the flat extension of an intersection of set
operators does not always coincide with the meet of
their individual flat extensions:

Proposition 30 ([33]). Given a family ψi (i ∈ I ) of
increasing operators on P(E),( ⋂

i∈I

ψi

)V

≤
∧
i∈I

ψV
i . (39)

Furthermore, the equality( ⋂
i∈I

ψi

)V

=
∧
i∈I

ψV
i (40)

holds in the following two cases:

1. V is ISD and I is finite;
2. V is completely distributive.

Proof: Consider a family �i (i ∈ I ) of stacks on V .
Since the map � : S(V, E) → V E is increasing, from
(9) we deduce:

�

[ ⋂
i∈I

�i

]
≤

∧
i∈I

[��i ]. (41)

Let us prove that in the cases 1 and 2 we have the
equality:

�

[ ⋂
i∈I

�i

]
=

∧
i∈I

[��i ]. (42)

If I = ∅, the empty intersection
⋂

i∈I �i is the greatest
stack �E : v �→ E , with ��E = C�, while the empty
infimum

∧
i∈I [��i ] is the greatest function C�, so that

(42) holds. Assume now that I �= ∅. Take any point p ∈
E . For each i ∈ I , let Wi = {v ∈ V | p ∈ �i (v)}. Then
we have (∀i ∈ I, v ∈ Wi ) ⇔ (∀i ∈ I, p ∈ �i (v)),

that is:

⋂
i∈I

Wi =
{

v ∈ V | p ∈
⋂
i∈I

�i (v)

}
.

Hence (24) in Definition 4 gives

∀i ∈ I, ��i (p) =
∨

Wi and

�

[ ⋂
i∈I

�i

]
(p) =

∨ [ ⋂
i∈I

Wi

]
. (43)

Let 
(I ) be the set of choice maps ϕ : I → ⋃
i∈I Wi :

i �→ ϕ(i) ∈ Wi . Then∧
i∈I

∨
Wi =

∨
ϕ∈
(I )

∧
i∈I

ϕ(i).

Indeed, this follows from the extended distributivity
law (10, 12), which is verified in case 2 (V completely
distributive), and which in case 1 (V ISD and I finite)
reduces to (8), as for I = {i1, . . . , in}, a choice map ϕ

amounts to an n-tuple (ϕ(i1), . . . , ϕ(in)) ∈ Wi1 ×· · ·×
Win . For each ϕ ∈ 
(I ), let wϕ = ∧

i∈I ϕ(i). For any
i ∈ I , we have ϕ(i) ∈ Wi , that is p ∈ �i (ϕ(i)); now
wϕ ≤ ϕ(i), and as �i is a stack, we have �i (ϕ(i)) ⊆
�i (wϕ), so that p ∈ �i (wϕ), that is wϕ ∈ Wi . As wϕ ∈
Wi for each i ∈ I , we get wϕ ∈ ⋂

i∈I Wi . Therefore

∧
i∈I

∨
Wi =

∨
ϕ∈
(I )

wϕ ≤
∨ [ ⋂

i∈I

Wi

]
.

Applying (43), we get
∧

i∈I [��i ](p) ≤ �[
⋂

i∈I �i ]
(p); as this holds for any p ∈ E , we obtain the inequal-
ity

∧
i∈I

[��i ] ≤ �

[ ⋂
i∈I

�i

]
,

and combining it with the reverse equality (41), the
equality (42) follows.

Consider now increasing operators ψi (i ∈ I ). For
any V -image F , we have by (26) and the fact that the
action of operators on stacks is a homomorphism:( ⋂

i∈I

ψi

)V

(F) = �

[ ⋂
i∈I

ψi

]
V


F

= �

[ ⋂
i∈I

ψi V 
F

]



Flat Morphology on Power Lattices 205

c

a

a

bo

(c)

a

a

(e) (f)

(b)

c

a

a

ab

a

a

a

c

ab

aa

bb

a a

a

c c c

b

b

b c

c

a

a

a

(d)

(a)

A
Av

h

Figure 6. E = Z2 and V = U with |U∗| ≥ 3. (a) The two structuring elements Ah (horizontal) and Av (vertical), centered about the origin o;
let δh and δv be the dilations by Ah and Av respectively (for sets). (b) The function F ∈ U E , where a, b, c are pairwise distinct proper labels,
and with value ⊥ outside the support shown here. (c) δU

h (F). (d) δU
v (F). (e) (δU

h ∧ δU
v )(F). (f) (δh ∩ δv)U (F) is obtained by applying δh ∩ δv

separately to the portions marked a, b and c, and joining the results; it has a smaller value on the central pixel.

and( ∧
i∈I

ψV
i

)
(F) =

∧
i∈I

(
ψV

i (F)
) =

∧
i∈I

(�ψi V 
F).

The result follows then by applying (41, 42) to the
stacks �i = ψi V 
F .

In the proof we showed that when V is completely
distributive, � is an erosion. It can be verified that the
adjoint dilation � maps a V -image F to the stack �F
defined by setting for each v ∈ V :

�F(v) = {p ∈ E |v � F(p)}.

The usual lattices 2, T and T n of image values (cor-
responding to sets, or to numerical or multivalued func-
tions) are completely distributive, and so is any finite
distributive lattice. The equality (40) is then verified.
However it does not always hold when V is not dis-
tributive. Taking for V the non-distributive lattice U
of labels (with |U∗| ≥ 3), we show in Fig. 6 an exam-
ple where (δ1 ∩ δ2)V < δV

1 ∧ δV
2 for two dilations δ1

and δ2.
Let us consider now the flat extension of a compo-

sition of set operators; it should be the composition
of their individual flat extensions: (ψ1ψ2)V = ψV

1 ψV
2 ;

however we will see that this is verified only in three

cases: ψ1 is a dilation, ψ2 is an erosion, or V is com-
pletely distributive.

Lemma 31. Given an increasing operator ψ and an
adjunction (ε, δ) on P(E), we have:

1. δV � = �δV and 
εV = εV 
.
2. �ψV ≤ ψV �.
3. If V is completely distributive, then ψV � = �ψV .

Proof: Let � be a stack on V . Applying (23), the fact
that δV is a dilation (Proposition 24), and (37), we get

δV (��) = δV

(∨
v∈V

C�(v),v

)
=

∨
v∈V

δV
(
C�(v),v

)
=

∨
v∈V

Cδ(�(v)),v = �δV �.

Thus δV � = �δV . Now (εV , δV ), (εV , δV ) and
(
, �) are adjunctions (see Lemma 5 and Proposi-
tion 24), so that for a stack � and a V -image F we
have:

δV (��) ≤ F ⇔ �� ≤ εV (F)
⇔ � ⊆ 
εV (F)

and �δV � ≤ F ⇔ δV � ⊆ 
F
⇔ � ⊆ εV 
F ;
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as δV (��) = �δV �, we get � ⊆ 
εV (F) ⇔ � ⊆
εV 
F , hence 
εV (F) = εV 
F for every F ∈ V E ;
therefore 
εV = εV 
.

As (
, �) is an adjunction, 
� is a closing on
stacks, so � ⊆ 
��. As ψV and � are increasing,
we get �ψV � ≤ �ψV 
��. As ψV = �ψV 
 by
(26), we obtain �ψV � ≤ ψV �� for every stack �,
that is �ψV ≤ ψV �.

Suppose that V is completely distributive. Let x ∈ V
and w be a sup-factor of x . For q ∈ [
��](x), by
Definition 4 we have [��](q) ≥ x , that is x ≤ ∨{v ∈
V |q ∈ �(v)}, and as w � x , we have w ≤ v for some
v ∈ V with q ∈ �(v); but as � is a stack, �(v) ⊆
�(w), so q ∈ �(w). Hence [
��](x) ⊆ �(w), and
as ψ is increasing, ψ([
��](x)) ⊆ ψ(�(w)), that
is [ψV 
��](x) ⊆ [ψV �](w). Let p ∈ E . If p ∈
[ψV 
��](x), we have p ∈ [ψV �](w) for every sup-
factor w of x , but by Lemma 2, x is the supremum of
its sup-factors, so (24) gives then

[�ψV �](p) =
∨

{w ∈ V | p ∈ [ψV �](w)}
≥

∨
{w ∈ V |⊥ < w � x} ≥ x .

We deduce that

[�ψV �](p) ≥
∨

{x ∈ V | p ∈ [ψV 
��](x)}
= [�ψV 
��](p) = [ψV ��](p).

Therefore �ψV � ≥ ψV �� for every stack �, that is
�ψV ≥ ψV �. Combining with the reverse inequality,
the equality ψV � = �ψV holds.

Proposition 32. Given two increasing operators ψ, ξ

and an adjunction (ε, δ) on P(E), we have:
1. (δψ)V = δV ψV and (ψε)V = ψV εV .
2. (ψξ )V ≤ ψV ξ V .
3. If V is completely distributive, then (ψξ )V =

ψV ξ V .

Proof: Apply (26) and the preceding Lemma. Item 1
gives

δV ψV =δV �ψV 
=�δV ψV 
=�[δψ]V 
= (δψ)V

and

ψV εV =�ψV 
εV =�ψV εV 
=�[ψε]V 
= (ψε)V .

Taking the stack � = ξV 
F , item 2 gives

(ψξ )V (F)=�[ψξ ]V 
F =�ψV ξV 
F ≤ψV �ξV 
F

=ψV ξ V (F),

and here item 3 provides the equality when V is com-
pletely distributive.

Note that this result was given in [33], except for
the identity (ψε)V = ψV εV . When V is completely
distributive, Proposition 32 reduces to item 3 (item 1
becomes then a particular case). This guarantees in par-
ticular that the flat extension of an idempotent operator
will be idempotent. As it was the case with Proposi-
tion 30, item 3 is verified for the usual lattices 2, T and
T n of image values (which are completely distributive).

However it does not always hold when V is not dis-
tributive, in particular flat extension does not necessar-
ily preserve the property of idempotence. We show in
Fig. 7 an example where we take again for V the non-
distributive lattice U (with |U∗| ≥ 3); here ψ and ξ

are respectively the erosion ε and dilation δ by a 2 × 2
square; thus εδ is a closing. The second row shows
that that (εδ)U is not idempotent, so it is not a clos-
ing. In fact, if we extended the image G upwards by
repeating the sequence c, b, a of labels, then we would
have εU δU (G) = [(εδ)U ]∞(G) (where the exponent ∞
means the limit for n → ∞, that is �∞ = ∨

n∈N �n).
Since ε and δ use a 2 × 2 window, and a label can in-
crease no more than 2 times (from ⊥ to a proper label
u, then to �), it is clear that the repeated application of
(εδ)U to an image will at every point reach a stable re-
sult after a finite number of iterations. Hence [(εδ)U ]∞

is idempotent, so it is the least closing ≥ (εδ)U .
The first row gives (εδ)U (F) = F < εU δU (F), so
that even by repeating the application of (εδ)U to F ,
we would not reach εU δU (F), that is [(εδ)U ]∞ <

εU δU ; hence εU δU is strictly greater than the least
closing ≥ (εδ)U .

We saw here that the flat extension of a closing is not
always a closing. However we have a positive counter-
part for openings:

Corollary 33. Let γ be an opening on P(E). Then
γ V is an opening on V E .

Proof: By item 2 of Proposition 32, we have γ V =
(γ γ )V ≤ γ V γ V . As γ ⊆ id, Corollary 29 gives γ V ≤
idV , where idV is the identity on V E by Proposition 23;
hence γ V is anti-extensive, and we get γ V γ V ≤ γ V .
From the two inequalities γ V ≤ γ V γ V and γ V γ V ≤
γ V , it follows that γ V is idempotent.

Another interesting consequence of Proposition 28
and item 1 of Proposition 32 is for the flat extension
of:

• an increasing operator ψ on sets expressed as a union
of erosions, or
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Figure 7. E = Z2 and V = U with |U∗| ≥ 3. (a) The structuring element A is a 2 × 2 square with the origin o in the bottom right corner; let δ

and ε be respectively the dilation and erosion by A (for sets). (b) The function F ∈ U E , where a, b, c are pairwise distinct proper labels, and with
value ⊥ outside the support shown here; we have (εδ)U (F) = F . (c) δU (F). (d) εU δU (F), which has a greater value than (εδ)U (F) on the central
pixel. (e) The function G ∈ U E . (f) (εδ)U (G). (g) [(εδ)U ]2(G); iterating (εδ)U will spread the label � upwards. (h) [(εδ)U ]4(G) = εU δU (G).

• an opening γ on sets expressed as a union of open-
ings of the form δε arising from adjunctions (ε, δ),

(thanks to the theorems of Matheron and Serra [18,
38]). From the decompositions

ψ =
⋃
i∈I

εi and γ =
⋃
j∈J

δ jε j ,

we deduce [33] the decompositions

ψV =
∨
i∈I

εV
i and γ V =

∨
j∈J

δV
j εV

j .

This gives in particular an alternate proof of Corol-
lary 33. Indeed, as each (εV

j , δV
j ) is an adjunction by

Proposition 24, γ V will be a supremum of openings,
hence an opening [18].

At first sight, it is not evident why the comparison
of
1. the flat extension of a combination (union, intersec-

tion, composition) of set operators, and
2. the corresponding combination (supremum, infi-

mum, composition) of flat operators,

we have in some cases the equality between the two,
and in some other cases an inequality, where the first
one is always below the second one. This becomes clear
in light of the results of Section 3.3. Let us consider first
the 3 cases with unconditional equality (Proposition 28,
and item 1 of Proposition 32). Given F ∈ V E and the
adjunction (εA, δA) for a variable structuring element
A, we have:( ⋃

i∈I

ψi

)V

(F) =
∨
i∈I

ψV
i (F),

(δAψ)V (F) = δV
A (ψV (F)),

(ψεA)V (F) = ψV
(
εV

A (F)
)
,

(44)

which means by (34, 36) that for every p ∈ E we have:∨
B∈K(

⋃
i∈I ψi ,p)

∧
q∈B

F(q) =
∨
i∈I

∨
B∈K(ψi ,p)

∧
q∈B

F(q),

∨
B∈K(δAψ,p)

∧
r∈B

F(r ) =
∨

q∈Ã(p)

∨
B∈K(ψ,q)

∧
r∈B

F(r ), (45)

∨
B∈K(ψεA,p)

∧
r∈B

F(r ) =
∨

B∈K(ψ,p)

∧
q∈B

∧
r∈A(q)

F(r ).
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Suppose (provisionally) that F is a binary image with
values in the sublattice {⊥, �}. As seen in Proposi-
tion 15, under the isomorphism P(E) → {⊥, �}E be-
tween sets and binary images, set operators correspond
to their flat counterparts. Hence (44) trivially holds for
a binary F , it simply expresses such an isomorphism.
It follows then that (45) holds for any binary F . We see
here that each member of the 3 equalities takes the form
of a supremum of infima. But we saw in Lemma 20
that the equality between two suprema of infima of im-
age values, depends only on the sets on which these
suprema and infima are taken, and not on the lattice in
which they are taken. This implies that since (45) holds
for any F : E → {⊥, �}, it must then necessarily hold
for any F : E → V . Therefore every F ∈ V E will
verify (44).

Consider now Proposition 30. Combining (34) with
(9), ∧

i∈I

ψV
i (F)(p) =

∧
i∈I

∨
B∈K(ψi ,p)

∧
q∈B

F(q)

≥
∨

ϕ∈
(I )

∧
i∈I

∧
q∈ϕ(i)

F(q), (46)

where 
(I ) is the set of choice maps ϕ : I →⋃
i∈I K(ψi , p) : i �→ ϕ(i) ∈ K(ψi , p). Note that when

one of the two condition given in Proposition 30 is
verified (V is ISD and I is finite, or V is completely
distributive), we can apply (10, 12) instead of (9), so
the last inequality becomes an equality. Now (34) gives( ⋂

i∈I

ψi

)V

(F)(p) =
∨

B∈K(
⋂

i∈I ψi ,p)

∧
q∈B

F(q). (47)

Given a binary image F : E → {⊥, �}, by Proposi-
tion 15 we must have

∧
i∈I ψV

i (F) = (
⋂

i∈I ψi )V (F),
and the lattice {⊥, �} is completely distributive. It fol-
lows thus that all expressions in (46) and (47) must be
equal, in particular∨

ϕ∈
i(I )

∧
i∈I

∧
q∈ϕ(i)

F(q) =
∨

B∈K(
⋂

i∈I ψi ,p)

∧
q∈B

F(q).

By Lemma 20, this identity being verified for any F :
E → {⊥, �}, it must then hold for every F : E → V .
Combining it with (46, 47), we deduce that

∧
i∈I

ψV
i (F)(p) ≥

( ⋂
i∈I

ψi

)V

(F)(p),

with equality when V is ISD and I is finite, or V is
completely distributive.

A similar argument applies for items 2 and 3 of
Proposition 32. Here

ψV ξ V (F)(p) =
∨

B∈K(ψ,p)

∧
q∈B

∨
C∈K(ξ,q)

∧
r∈C

F(r )

≥
∨

B∈K(ψ,p)

∨
ϕ∈
(B)

∧
q∈B

∧
r∈ϕ(q)

F(r ),
(48)

where 
(B) is the set of choice maps ϕ : B →⋃
q∈B K(ξ, q) : q �→ ϕ(q) ∈ K(ξ, q), and with the

equality for V completely distributive. We have also

(ψξ )V (F)(p) =
∨

B∈K(ψξ,p)

∧
r∈B

F(r ). (49)

For F : E → {⊥, �}, the equality (ψξ )V (F) =
ψV ξ V (F) and the complete distributivity of {⊥, �}
imply that all expressions in (48, 49) are equal, in par-
ticular∨

B∈K(ψ,p)

∨
ϕ∈
(B)

∧
q∈B

∧
r∈ϕ(q)

F(r ) =
∨

B∈K(ψξ,p)

∧
r∈B

F(r ).

Then this equality must hold for every F : E → V ,
hence

ψV ξ V (F)(p ≥ (ψξ )V (F)(p),

with equality when V is completely distributive.
To summarize, in order to compare the flat exten-

sion of a combination of set operators with the corre-
sponding combination of flat operators, we express the
behaviour of the latter at a point p, obtaining thus a
formula combining suprema and infima. If this combi-
nation is a supremum of infima, the two operators are
equal; otherwise, applying the appropriate distributiv-
ity law transforms the formula into a supremum of in-
fima, and here the two operators are equal only when
V satisfies the required distributivity law.

Let us note that both operators (
⋂

i∈I ψi )V and∧
i∈I ψV

i have the same behaviour on binary images
F : E → {⊥, �} (the one corresponding to

⋂
i∈I ψi on

sets). It follows from Proposition 15 that if
∧

i∈I ψV
i

is flat, it must them be identical to the flat opera-
tor (

⋂
i∈I ψi )V . Therefore if V is not completely dis-

tributive and (
⋂

i∈I ψi )V <
∧

i∈I ψV
i , then the operator∧

i∈I ψV
i is not flat. Similarly for the operator ψV ξ V ,

when (ψξ )V < ψV ξ V (this is for instance the case with
the operator εU δU of Fig. 7).

By Theorem 19 and Corollary 22, flat operators on
V -images are precisely those that apply at each point
a supremum of infima of image values. Suppose that
V is not completely distributive. Let us call flatoid an
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operator on V -images which applies at each point a
combination of suprema and infima of image values
(in any order). When the operators

∧
i∈I ψV

i and ψV ξ V

are not flat, they are flatoids, see (46, 48). The set of
flatoids is closed under the composition, supremum and
infimum operations, and it contains all flat operators.

3.6. Duality

Given a partial order ≤, its reciprocal ≥ is also a par-
tial order, for which the supremum and infimum are
exchanged w.r.t. the order ≤. From this elementary
fact follows the general principle of duality, that ev-
ery property or theorem about complete lattices has a
dual, where we exchange ≤ ↔ ≥,

∧ ↔ ∨
, ⊥ ↔ �,

etc. We will apply this principle to the construction of
flat operators, obtaining thus dual flat operators, which
will then be compared to flat ones. Our results for V
completely distributive were obtained by Heijmans in
the restricted case where V is strongly admissible.

Definition 34. The dual cylinder of base B and level
v is the function C∗

B,v defined by

∀p ∈ E, C∗
B,v(p) =

{
v if p ∈ B,

� if p /∈ B.
(50)

For a V -image F and a value v ∈ V , we define the
dual threshold set X∗

v (F) by

X∗
v (F) = {p ∈ E | F(p) ≤ v}. (51)

A dual stack on V is an increasing map � : V →
P(E). We have in particular for every F ∈ V E the
dual threshold stack of F , namely the map 
∗F : V →
P(E) given by

∀v ∈ V, 
∗F(v) = X∗
v (F);

Operators act on dual stacks in the same way as they
do on stacks. Given a dual stack � on V , the dual
superposition of � is the V -image �∗� defined by

�∗� =
∧
v∈V

C∗
�(v),v; (52)

in other words, for every point p ∈ E we have

�∗�(p) =
∧

{v ∈ V | p ∈ �(v)}. (53)

Given an increasing operator ψ on P(E), the dual flat
operator corresponding to ψ , or the dual flat extension

of ψ , is the operator ψV ∗ : V E → V E on V -images,
defined by setting for any V -image F :

ψV ∗(F) = �∗ψV 
∗F ; (54)

in other words by (52):

ψV ∗(F) =
∧
v∈V

C∗
ψ(X∗

v (F)),v, (55)

so that for every point p ∈ E we have by (53):

ψV ∗(F)(p) =
∧

{v ∈ V | p ∈ ψ(X∗
v (F))}. (56)

Note that in [34], where we took for V the lattice U
of labels, we wrote ψ Ũ instead of ψU∗.

There is another view of duality, namely duality by
inversion. In a lattice L , an autmorphism is an in-
creasing bijection α : L → L whose inverse α−1

is also increasing (i.e., a ≤ b ⇔ α(a) ≤ α(b)),
while a dual automorphism is a decreasing bijection
β : L → L whose inverse β−1 is also decreasing (i.e.,
a ≤ b ⇔ β(a) ≥ β(b)). An inversion (or involution)
of L is a dual automorphism which is equal to its in-
verse, in other words a decreasing map η such that η2

is the identity on L . Then, for a fixed inversion η, any
operator ψ on L has its dual by inversion, namely ηψη;
the properties of ηψη are dual to those of ψ , and re-
ciprocally ψ is the dual by inversion of ηψη. If one
does not take an involution, but more generally a dual
automorphism β, then the dual of an operator ψ will
be βψβ−1.

For the lattice P(E), the standard inversion is the
set complementation X �→ Xc; then every operator ψ

on P(E) has a dual by complementation ψ∗ : X �→
ψ(Xc)c. For the lattice V E of images, an inversion is
built from an inversion of V . Given a map λ : V → V ,
write λE for the map V E → V E that applies λ to
the value of each point: for F ∈ V E , λE (F) : p �→
λ(F(p)). Then for an inversion η of V , ηE will be an
inversion of V E , and every operator � on V E has a
dual by inversion ηE , namely ηE�ηE .

As expected, the dual flat extension of an operator is
indeed the dual of the flat extension, flat dilation and
erosion are dual, and identity is autodual:

Proposition 35. Consider an increasing operator ψ

on P(E) and a variable structuring element A : E →
P(E). Then
1. For any automorphism α of V , αEψV α−1

E = ψV .
2. For any dual automorphism β of V , βEψV β−1

E =
ψV ∗.
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3. δV ∗
A = εV

Ã
and εV ∗

A = δV
Ã

.
4. idV ∗ = idV , the identity on V E

Proof: 1. Let F ∈ V E and p ∈ E . Then (28) gives

α
(
ψV

[
α−1

E (F)
]
(p)

)
= α

(∨ {
v ∈ V | p ∈ ψ

(
Xv

[
α−1

E (F)
])})

.

As α is an automorphism, for every q ∈ E
and v ∈ V , we have α−1(F(q)) ≥ v ⇔
F(q) ≥ α(v), and α−1

E (F)(q) = α−1(F(q));
hence Xv(α−1

E (F)) = Xα(v)(F). Thus, since
[αEψV α−1

E ](F)(p) = α(ψV [α−1
E (F)](p)), we get:[

αEψV α−1
E

]
(F)(p)

= α
(∨ {

v ∈ V | p ∈ ψ
(
Xα(v)(F)

)})
=

∨ {
α(v) |v ∈ V, p ∈ ψ

(
Xα(v)(F)

)}
.

Since α is a bijection, the set of α(v) (v ∈ V ) is V , so[
αEψV α−1

E

]
(F)(p) =

∨
{w ∈ V | p ∈ ψ (Xw(F))}

= ψV (F)(p).

2. Here Xv(β−1
E (F)) = X∗

β(v)(F), and we get[
βEψV β−1

E

]
(F)(p)

= β
(
ψV

[
β−1

E (F)
]
(p)

)
= β

(∨ {
v ∈ V | p ∈ ψ

(
Xv

[
β−1

E (F)
])})

= β
(∨ {

v ∈ V | p ∈ ψ
(
X∗

β(v)(F)
)})

=
∧ {

β(v) |v ∈ V, p ∈ ψ
(
X∗

β(v)(F)
)}

=
∧ {

w ∈ V | p ∈ ψ
(
X∗

w(F)
)} = ψV ∗(F)(p).

3. Using (36) and the fact that duality exchanges
∨

and∧
, we get:

δV ∗
A (F)(p) = εV

Ã
(F)(p) =

∧
q∈Ã(p)

F(q),

εV ∗
A (F)(p) = δV

Ã
(F)(p) =

∨
q∈A(p)

F(q).

4. By Proposition 23, idV is the identity on V E , so
dually idV ∗ is also the identity.

In the case of grey-level images, it is known that
the dual by inversion of a flat operator is the flat
operator corresponding to the dual binary operator:

ψT ∗ = (ψ∗)T . For an arbitrary lattice V of values,
the equality requires complete distributivity (as for the
intersection and composition of operators, see Propo-
sitions 30 and 32):

Proposition 36. Let ψ be an increasing operator on
P(E), and let ψ∗ be its dual by complementation. Then
(ψ∗)V ≤ ψV ∗; when V is completely distributive, we
have the equality (ψ∗)V = ψV ∗.

Proof: Let F ∈ V E and p ∈ E . Define

A = {v ∈ V | p /∈ ψ(Xv(F)c)} and

B = {v ∈ V | p ∈ ψ(X∗
v (F))}.

Note that p /∈ ψ (Xv(F)c) ⇔ p ∈ ψ∗ (Xv(F)); thus
(28) applied to ψ∗ gives (ψ∗)V (F)(p) = ∨

A. Simi-
larly (56) applied to ψ gives ψV ∗(F)(p) = ∧

B.
Let v ∈ A and w ∈ B. We have p /∈ ψ (Xv(F)c)

and p ∈ ψ(X∗
w(F)); hence ψ(X∗

w(F)) �⊆ ψ (Xv(F)c);
as ψ is increasing, we deduce that X∗

w(F) �⊆ Xv(F)c;
in other words there is some q ∈ X∗

w(F) ∩ Xv(F),
which means (18, 51) that F(q) ≤ w and F(q) ≥ v.
Hence v ≤ w for all v ∈ A and w ∈ B, and we
get

(ψ∗)V (F)(p) =
∨

A ≤
∧

B = ψV ∗(F)(p).

Thus (ψ∗)V ≤ ψV ∗.
Write b = ∧

B, and let g ∈ V \ A. Thus p ∈
ψ(Xg(F)c). Let h = ∨{F(q) | q ∈ Xg(F)c}; then
for each q ∈ Xg(F)c we have F(q) ≤ h, so that
Xg(F)c ⊆ X∗

h(F). As ψ is increasing, ψ(Xg(F)c) ⊆
ψ(X∗

h(F)), and p ∈ ψ(X∗
h(F)). Hence h ∈ B, and

b ≤ h = ∨{F(q) | q ∈ Xg(F)c}. If g � b, by (14)
there is some q ∈ Xg(F)c with g ≤ F(q), that is
q ∈ Xg(F), a contradiction. Therefore a sup-factor of
b may not be outside A. If V is completely distribu-
tive, then (by Lemma 11) b is the supremum of its sup-
factors, all of them belonging to A, so b ≤ ∨

A. This
means that ψV ∗(F)(p) ≤ (ψ∗)V (F)(p), so we have the
inequality ψV ∗ ≤ (ψ∗)V , which, combined with the re-
verse inequality, leads to the equality (ψ∗)V = ψV ∗.

The counterexample to item 3 of Proposition 32,
given in Fig. 7, applies also to the last result. Let V = U
with |U∗| ≥ 3, and take δ and ε to be respectively the
dilation and erosion by a 2 × 2 square A. Consider
their duals by complementation δ′ = ε∗ and ε′ = δ∗;
then δ′ and ε′ are the dilation and erosion by the sym-
metrical 2 × 2 square Ǎ = {−a | a ∈ A}. Note that
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(δ′ε′)∗ = δ′∗ε′∗ = εδ. Combining the dual of Proposi-
tion 32 (item 1) with Proposition 35 (item 3), we have
(δ′ε′)U∗ = δ′U∗

ε′U∗ = εU δU . Hence, as illustrated in
Fig. 7,

[(δ′ε′)∗]U = (εδ)U < εU δU = (δ′ε′)U∗.

Other examples (for V = U ) were discussed in [34],
for example the median filter for binary images (which
is autodual), whose flat extension is a supremum of flat
erosions, and whose dual flat extension is an infimum
of flat dilations.

We can interpret Proposition 36 in light of
Section 3.3, using the method of the end of the pre-
vious subsection. Given F ∈ V E and p ∈ E we have:

ψV ∗(F)(p)

=
∧

B∈K(ψ,p)

∨
q∈B

F(q) ≥
∨

ϕ∈
(K(ψ,p))

∧
B∈K(ψ,p)

F(ϕ(B)),

(57)

where 
(K(ψ, p)) is the set of choice maps ϕ :
K(ψ, p) → ⋃

K(ψ, p) : B �→ ϕ(B) ∈ B. Here the
inequality is an equality when V is completely dis-
tributive, or if F is binary with values ⊥, �. Now the
equality

∨
ϕ∈
(K(ψ,p))

∧
B∈K(ψ,p)

F(ϕ(B))=
∨

B∈K(ψ∗,p)

∧
q∈B

F(q), (58)

holds for F binary, hence it is valid for any F . In fact,
one can easily show that for C ∈ P(E), C ∈ K(ψ∗, p)
iff C ∩ B �= ∅ for all B ∈ K(ψ, p), that is iff C ⊇
{ϕ(B) | B ∈ K(ψ, p)} for some ϕ ∈ 
(K(ψ, p));
this implies (58). Combining the two equations, we get
Proposition 36.

Note that when the operator ψ on sets is au-
todual (ψ∗ = ψ), we get ψV ≤ ψV ∗. In [34]
we gave a method for constructing operators on la-
bel images, which are autodual under inversion. We
can generalize it to the case where V is modular
(5):

Proposition 37. Assume that V is modular. Let ψ

and ζ be operators on sets such that ψ ⊆ ψ∗ and
ζ V = ζ V ∗ (for example, ζ = id). Define the operator

ξ = ψ ∪ (ζ ∩ ψ∗) = (ψ ∪ ζ ) ∩ ψ∗. (59)

Then ψV ≤ ξ V ≤ ξ V ∗ ≤ ψV ∗, ζ V ∨ ψV = ζ V ∨ ξ V ,
ζ V ∧ ψV ∗ = ζ V ∧ ξ V ∗, and

ψV ∨ (ζ V ∧ ψV ∗) = (ψV ∨ ζ V ) ∧ ψV ∗

= ξ V ∨ (ζ V ∧ ξ V ∗)

= (ξ V ∨ ζ V ) ∧ ξ V ∗. (60)

The latter operator is autodual by complementation,
i.e., it commutes with βE for every dual automorphism
β of V .

Proof: The modular equality (5) gives ψ ∪ (ζ ∩
ψ∗) = (ψ ∪ ζ ) ∩ ψ∗, so ξ is well-defined. It is clear
that ξ = ξ ∗, and the equality ξ = ψ ∪ (ζ ∩ ψ∗) gives
ψ ⊆ ξ . Corollary 29 implies then that ψV ≤ ξ V

and dually ξ V ∗ ≤ ψV ∗, while Proposition 36 gives
ξ V = (ξ ∗)V ≤ ξ V ∗. Hence ψV ≤ ξ V ≤ ξ V ∗ ≤ ψV ∗.
Now ζ ∪ ξ = ζ ∪ ψ ∪ (ζ ∩ ψ∗) = ζ ∪ ψ (since
ζ ∩ ψ∗ ⊆ ζ ), so Proposition 28 gives ζ V ∨ ψV =
(ζ ∪ ψ)V = (ζ ∪ ξ )V = ζ V ∨ ξ V , and dually
ζ V ∧ ψV ∗ = (ζ ∪ ψ)V ∗ = (ζ ∪ ξ )V ∗ = ζ V ∧ ξ V ∗.

As ψV ≤ ψV ∗ and ξ V ≤ ξ V ∗, the modular equality
gives

ψV ∨ (ζ V ∧ ψV ∗) = (ψV ∨ ζ V
) ∧ ψV ∗ and

ξ V ∨ (ζ V ∧ ξ V ∗) = (ξ V ∨ ζ V ) ∧ ξ V ∗.

Now

ψV ∨ (ζ V ∧ ψV ∗)
= ψV ∨ (ζ V ∧ ξ V ∗) (since ζ V ∧ψV ∗ = ζ V ∧ ξ V ∗),
= (ψV ∨ ζ V ) ∧ ξ V ∗ (since ψV ≤ ξ V ∗),
= (ξ V ∨ ζ V ) ∧ ξ V ∗ (since ψV ∨ ζ V = ξ V ∨ ζ V ).

For a dual automorphism β of V , item 2 of Proposi-
tion 35 gives

βE [ψV ∨ (ζ V ∧ ψV ∗)]β−1
E

= [
βEψV β−1

E

] ∧ ([
βEζ V β−1

E

] ∨ [
βEψV ∗β−1

E

])
= ψV ∗ ∧ (ζ V ∗ ∨ ψV )

= (ψV ∨ ζ V ) ∧ ψV ∗,

so the operator commutes with βE .

By the modular equality (5), we can remove the
parentheses in (59, 60), and write ψ ∪ ζ ∩ ψ∗, ψV ∨
ζ V ∧ ψV ∗ and ξ V ∨ ζ V ∧ ξ V ∗. In [34], the above re-
sult was used to build some autodual operators on label
images, whose behaviour was described in detail:

• From a median filter μ on sets (which is autodual),
build the autodual median filter μU ∨ idU ∧ μU∗.
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• In P(E) (E = Zn or Rn), consider the dilation δ

and erosion ε by a nonvoid symmetrical structuring
element; then δ = ε∗ and ε ⊆ δ, and we can consider
the autodual set operator ψ = ε ∪ id ∩ δ; it is called
an annular filter [21]; now take ψU ∨ idU ∧ ψU∗ =
εU ∨ idU ∧δU , it is an autodual annular filter on label
images.

4. Conclusion and Perpectives

We have given here a general theory of flat increasing
morphological operators on images taking their val-
ues in an arbitrary complete lattice. It can be applied
on multivalued images, images with the reference or-
der [19, 23, 24] (provided that we close the grey-level
reference inf-lattice with a greatest element ∞), la-
bel images [2, 3, 34, 35], etc. Our theory is “natural”,
in the sense that it relies only on the usual threshold-
ing, stack processing and superposition techniques (cf.
Definitions 4 and 9).

We have shown that many results known in the
case of numerical functions extend to this general
framework: possibility to restrict thresholds to a sup-
generating subset of the lattice of values, preservation
of any complete sublattice of values, same behaviour
on two-valued images as the underlying set operator,
formulas for flat dilation and erosion, flat extension of
a union of set operators as the join of their individual
flat extensions, and flat extension of a composition of
a set operator followed by a dilation or preceded by an
erosion, as the composition of their respective flat ex-
tensions. However complete distributivity is necessary
for the dual flat extension of an operator to coincide
with the flat extension of its dual, for the flat extension
of a composition of two arbitrary set operators to be the
composition of their respective flat extensions, as well
as for the extension of an intersection of set operators
to be the meet of their individual flat extensions; (but
only infinite supremum distributivity is required for a
finite intersection).

Due to limitations on space, we have not dealt with
the commutation with thresholding, and with increas-
ing mappings V → V (also called anamorphoses or
contrast functions). In a forthcoming paper, we will
give a form of “continuity” requirement for increasing
maps V → V (anamorphoses), which guarantees com-
mutation with flat operators, then we will see that the
commutation with thresholding requires on the opera-
tor a form of “upper semi-continuity” which depends
on the lattice of values, and we will indeed describe
the form that it takes for an arbitrary lattice of values,

in particular for discrete or analog greylevels or vector
values (e.g., RGB colours).

We have also left out some generalizations of flat
operators. In [18] one defines a semi-flat operator by
the following modification of Definitions 4 and 9. Let
� be a stack of increasing operators, in other words for
each v ∈ V , �(v) is an increasing operator P(E) →
P(E), which decreases as v increases (for v < w,
�(w)(X ) ⊆ �(v)(X ) for all X ∈ P(E)). The action
�V : � �→ �V � of � on stacks is then defined by
the action of each operator �(v) on the corresponding
set �(v), that is �V �(v) = �(v)(�(v)), and �V � will
indeed be a stack, as for v < w we have

�V �(w) = �(w)(�(w)) ≤ �(v)(�(w))

≤ �(v)(�(v)) = �V �(v).

Then the semi-flat operator corresponding to � is the
operator �V : V E → V E on V -images, defined by
setting for any V -image F :

�V (F) = ��V 
F,

that is

�V (F) =
∨
v∈V

C�(v)(Xv (F)),v,

so that for every point p ∈ E we have

ψV (F)(p) =
∨

{v ∈ V | p ∈ �(v) (Xv(F))}.

Generally speaking, the results of Sections 3.2 and 3.3
do not extend to semi-flat operators, while most of
Sections 3.4 and 3.5 remains valid for them, except
Proposition 24.

Another possible extension of flat operators is given
by flat operators in several variables. From an increas-
ing operator ψ : P(E1) × · · · × P(En) → P(E) one
derives the flat operator ψV : V E1 × · · · × V En by

ψV (F1, . . . , Fn) =
∨
v∈V

Cψ(Xv (F1),...,Xv (Fn )),v,

which is indeed the extension of (27) to several vari-
ables. One can also consider semi-flat operators in
several variables. In fact the two extensions (semi-flat
operator and several variables) are linked: given an in-
creasing operator ψ : P(E1) × · · · ×P(En) → P(E),
0 < m < n, and fixed parameters Ai ∈ V Ei for
i = 1, . . . , m, the operator

V Em+1 × · · · × V En → V E : (Fm+1, . . . , Fn)

�→ ψV (A1, . . . , Am, Fm+1, . . . , Fn)
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is semi-flat. Conversely, given a stack � of increasing
operators P(E1) × · · · × P(En) → P(E), define ψ :
P(V ) × P(E1) × · · · × P(En) → P(E) by

ψ(A, X1, . . . , Xn) = �(
∧

A)(X1, . . . , Xn);

then ψ is increasing, and for every (F1, . . . , Fn) ∈
V E1 × · · · × V En we have

�V (F1, . . . , Fn) = ψV (I d, F1, . . . , Fn)

for the identity function I d : V → V : v �→ v.
Let us give two concrete examples. The first one con-

sists in geodesical reconstruction for grey-level images.
Given a mask S ∈ P(E) and a marker R ∈ P(S), write
ρ(S, R) for the geodesical reconstruction by dilation
from the marker R inside the mask S, in other words the
union of connected components of S having an nonvoid
intersection with R; when R is not a subset of S, we
set set ρ(S, R) = ρ(S, R ∩ S). The classical extension
of this operation ρ to grey-level images E → T is the
grey-level reconstruction [43] obtained by applying ρ

at each threshold level, in other words the operator ρT

defined by

ρT (S, R) =
∨
v∈V

Cρ(Xv (S),Xv (R)),v

for R, S ∈ T E . As written here, it is a flat operator in
two variables S and R. However, as pointed out in [7],
for a fixed mask S, ρT (S, ·) is a semi-flat operator on
marker functions R, and similarly for a fixed marker
R, ρT (·, R) is a semi-flat operator on mask functions
S.

A second example is the fuzzy Minkowski addition
of functions E → V (where E = Rn or Zn), defined
in [22] by

F ⊕ G =
∨
v∈V

CXv (F)⊕Xv (G),

which gives at every point p ∈ E :

(F ⊕ G)(p) =
∨
q∈E

(
F(p − q) ∧ G(q)

)
,

and it is under this form that the operator is defined in
[5, 9]. Clearly it is a flat operator V E × V E → V E , but
for a fixed G ∈ V E , δG : F �→ F ⊕ G is a semi-flat
operator on V E (in fact, when V is ISD, it is a dilation).

Another interesting topic is the theory of flat ex-
tensions of non-increasing operators. For example the
top-hat operators X �→ ϕ(X ) \ X (for a closing ϕ) and

X �→ X \γ (X ) (for an opening γ ) are usually extended
to grey-level images by the maps F �→ ϕT (F)− F and
F �→ F − γ T (F). Some ideas towards such an ex-
tension are briefly given at the end of [31], notably by
using the threshold decomposition technique of [44].

It is thus clear that the topic of building operators
on non-binary images with the help of set operators,
thresholding and various forms of “stacking”, is still
open to further research.

Appendix: Heijmans’ Admissibility Conditions

There are works which wait, and which one does not
understand for a long time; the reason is that they
bring answers to questions which have not yet been
raised; for the question often arrives a terribly long
time after the answer. — Oscar Wilde

Recall (14) the relation � on L: for w, x ∈ L ,

w � x ⇔
[
∀Y ⊆ L , x ≤

∨
Y ⇒∃y ∈ Y, w ≤ y

]
.

Heijmans [18] wrote w � x and said that w is below
x . This terminology was probably inspired by [12] (see
the new edition [13], pp. 49, 50); there w � x is said
w is way below x , and this corresponds to the weaker
condition that x ≤ ∨

Y implies that w ≤ ∨
A for

some finite A ⊆ Y .
Let us give further properties of the relation �; again,

our analysis follows the works of Bruns [8] and Papert
[28].

Lemma 38. In a complete lattice L:
1. For w, x ∈ L, w �� x ⇔ x ≤ ∨{y ∈ L |w �≤ y}.
2. For w ∈ L and X ⊆ L, w �

∨
X implies that

w � x for some x ∈ X.

Proof: Let w ∈ L and T = {y ∈ L |w �≤ y}.
1. If x ≤ ∨

T , w � x would give w ≤ y for some y ∈
T , which is impossible; hence w �� x . Conversely, if
w �� x , then there is some Y ⊆ L such that x ≤ ∨

Y
but w �≤ y for all y ∈ Y ; then Y ⊆ T , and as
x ≤ ∨

Y , we get x ≤ ∨
T . Therefore w �� x ⇔

x ≤ ∨
T .

2. Suppose that w �� x for all x ∈ X ; then by item 1
we have x ≤ ∨

T for all x ∈ X , so
∨

X ≤ ∨
T ,

which means by item 1 again that w ��
∨

X , a con-
tradiction.
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Corollary 39. Let the complete lattice L be com-
pletely distributive. Then for w, x ∈ L, w � x implies
that there exists v ∈ L such that w � v and v � x.

Proof: Let X = {v ∈ L | v � x}. By Lemma 2,
we have x = ∨

X , and as w �
∨

X , item 2 of the
previous Lemma gives w � v for some v ∈ X .

We can now introduce Heijmans’ admissibility con-
dition (Definition 10.4 of [18]). Write � for the dual
of the relation � defined in (14), that is:

w � x ⇔
[
∀Y ⊆ L , x ≥

∧
Y ⇒ ∃y ∈ Y, w ≥ y

]
.

(61)

Definition 40 ([18]). The complete lattice L is called
admissible if the following four conditions are all sat-
isfied:
1. For every x ∈ L , x = ∨{w ∈ L |w � x}.
2. For every w, x ∈ L , w � x implies that there exists

v ∈ L such that w � v and v � x .
3. For every x ∈ L , x = ∧{w ∈ L |w � x}.
4. For every w, x ∈ L , w � x implies that there exists

v ∈ L such that w � v and v � x .

Clearly item 1 is equivalent to the complete distribu-
tivity of L (Lemma 2), and item 2 follows from that
complete distributivity (Corollary 39). Now items 3
and 4 are the duals of items 1 and 2; as complete dis-
tributivity is autodual (extended supremum distributiv-
ity (10) is equivalent to extended infimum distributiv-
ity (11)), item 3 is equivalent to complete distributivity,
and item 4 follows from it. To summarize, Heijmans’
admissibility condition is a redundant formulation of
complete distributivity.

Heijmans [18] showed that with the admissibility
(complete distributivity) of the lattice V , one has the
identity

Xv(ψV (F)) =
⋂
w�v

ψ(Xw(F)), (62)

which was then used to prove the properties of flat
operators (cf. the ones given in Sections 3.5 and 3.6).

Now Heijmans [18] says that L is strongly admis-
sible if L is admissible and for every x, y ∈ L with
x �= ⊥ and y �= �, we have x � y ⇔ y � x (note that
in Definition 10.4 of [18], he writes the condition with
x �= � and y �= ⊥, but that is probably a misprint).

Given a complete chain T , for every x ∈ T , we have
two cases:

• x = ∨{y ∈ T | y < x} and for w ∈ T , we have
w � x ⇔ w < x ;

• x >
∨{y ∈ T | y < x} and for w ∈ T , we have

w � x ⇔ w ≤ x .

Hence T is completely admissible in the following two
cases:

• ∀x ∈ T \ {⊥, �}, ∨{y ∈ T | y < x} = x = ∧{y ∈
T | y > x};

• ∀x ∈ T \ {⊥, �}, ∨{y ∈ T | y < x} < x <
∧{y ∈

T | y > x}.

For example R̄ and Z̄ are strongly admissible.
On the other hand, for |T | ≥ 4 and n ≥ 2,

T n is not strongly admissible, as for ⊥ < a <

b < � we have (a, ⊥, . . . ,⊥) � (b, b, . . . , b),
but (b, b, . . . , b) �� (a, ⊥, . . . , ⊥) (take Y =
{(a, �, . . . , �), (�, ⊥, . . . ,⊥)}, then (61) will fail).
Thus a lattice of analog or discrete vector values (such
as RGB colours) will not be strongly admissible. In
practice, strong admissibility will be restricted to grey-
level images.
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N-5/96/G, Centre de Géostatistique, Ecole des Mines de Paris,
1996.

28. S. Papert, “Which distributive lattices are lattices of closed
sets?,” Proc. Cambridge Phil. Soc., Vol. 55 pp. 172–176, 1959.

29. C. Poynton, Digital Video and HDTV—Algorithms and Inter-
faces, Morgan Kaufmann, San Francisco, CA 2003.

30. G.N. Raney, “Completely distributive complete lattices.” Pro-
ceedings of the American Mathematical Society, Vol. 3, pp. 677–
680, 1952.

31. C. Ronse, “ Order-configuration functions: mathematical char-
acterizations and applications to digital signal and image pro-
cessing,” Information Sciences, Vol. 50, No. 3, pp. 275–
327, 1990.

32. C. Ronse, “ Why mathematical morphology needs complete lat-
tices,” Signal Processing, Vol. 21, No. 2, pp. 129–154, 1990.

33. C. Ronse, “Flat morphological operators on arbitrary power
lattices,” Geometry, Morphology, and Computational Imaging,
11th International Workshop on Theoretical Foundations of
Computer Vision, Dagstuhl Castle, Germany, April 7–12, 2002,
Revised Papers, T. Asano, R. Klette and C. Ronse, (Eds.), LNCS,
Springer-Verlag, Vol. 2616, 2003, pp. 1–21.

34. C. Ronse and V. Agnus, “Morphology on label images: flat-type
operators and connections,” J. Mathematical Imaging & Vision,
Vol. 22, Nos. 2/3, pp. 283–307, 2005.

35. C. Ronse and V. Agnus, “Geodesy on label images, and appli-
cations to video sequence processing,” Preprint.

36. P. Salembier and J. Serra, “Flat zones filtering, connected op-
erators, and filters by reconstruction,” IEEE Trans. Image Pro-
cessing, Vol. 4, pp. 1153–1160, 1995.

37. J. Serra, Image Analysis and Mathematical Morphology. Aca-
demic Press, London, 1982.

38. J. Serra, (Ed.), Image Analysis and Mathematical Morphol-
ogy, Vol. 2: Theoretical Advances. Academic Press, London,
1988.

39. J. Serra, “Anamorphoses and function lattices (multivalued mor-
phology),” in Mathematical Morphology in Image Process-
ing, E.R. Dougherty, (Ed.), Marcel Dekker, New York, 1993,
pp. 483–523.

40. J. Serra and P. Salembier, “Connected operators and pyramids,”
in Image Algebra and Morphological Image Processing IV, E.R.
Dougherty, P.D. Gader and J. Serra, (Eds.), SPIE Proceedings,
Vol. 2030, 1993, pp. 65–76.

41. J. Serra and L. Vincent, “An overview of morphological fil-
tering,” IEEE Trans. Circuits, Systems & Signal Processing,
Vol. 11, No. 1, pp. 47–108, 1992.

42. F.Y.C. Shih and O.R. Mitchell, “Threshold decomposition of
gray-scale morphology into binary morphology,” IEEE Trans.
Pattern Analysis & Machine Intelligence, Vol. 11, No. 1, pp. 31–
42, 1989.

43. P. Soille, Morphological Image Analysis: Principles and Appli-
cations (2nd edition). Springer Verlag, 2003.

44. P.D. Wendt, E.J. Coyle and N.C. Gallagher, “Stack filters,” IEEE
Trans. Acoustics, Speech & Signal Processing, Vol. 34, pp. 898–
911, 1986.

45. M. Wild, “On the idempotency and co-idempotency of the mor-
pological center,” International J. Pattern Recognition & Artifi-
cial Intelligence, Vo. 17, pp. 1119–1128, 2001.

46. M. Wild, “Idempotent and co-idempotent stack filters and
min-max operators,” Theoretical Computer Science, Vol. 299,
pp. 603–631, 2003.



216 Ronse

Christian Ronse was born in 1954. He studied pure mathematics
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