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Abstract. The article is concerned with edge-forming methods to be applied as a post-process for image zooming.
Image zooming via standard interpolation methods often produces the so-called checkerboard effect, in particular,
when the magnification factor is large. In order to remove the artifact and to form reliable edges, a nonlinear semi-
discrete model and its numerical algorithm are suggested along with anisotropic edge-forming numerical schemes.
The algorithm is analyzed for stability and choices of parameters. For image zooming by integer factors, a few
iterations of the algorithm can form clear and sharp edges for gray-scale images. Various examples are presented
to show effectiveness and efficiency of the newly-suggested edge-forming strategy.
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1. Introduction

Image interpolation techniques are often required in
various tasks in image processing and computer vision
such as image generation, compression, and zooming.
It is the first of the two basic resampling steps and
transforms a discrete image into a continuous func-
tion. (The second step is to produce the resampled dis-
crete image.) Image resampling is necessary for every
geometric transform of discrete images except shifts
over integer distances or rotations about multiples of
90 degrees. Thus image interpolation methods have
occupied a peculiar position in image processing and
computer graphics [13, 14, 18, 19, 26].

There are two kinds of interpolation methods: lin-
ear and nonlinear ones. For linear methods, diverse
interpolation kernels of finite size have been intro-
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duced, in the literature, as approximations of the ideal
interpolation kernel (sinc function) which is spatially
unlimited; see Lehmann et al. [19] and references
therein. Two of the simplest approximations are related
to the nearest-neighbor interpolation and the bilinear
interpolation. Higher-order interpolation methods in-
volving larger number of pixel values have shown su-
perior properties for some classes of images. However,
most of the linear interpolation methods have been in-
troduced with no count on edges. Thus they bring up
the smoothing effect in resulting images. Furthermore,
when the image is zoomed by a large factor, the zoomed
image looks blocky; such a phenomenon is call the
checkerboard effect.

Recently, some nonlinear interpolation methods
have been suggested to overcome the artifacts of linear
methods [3, 16, 20]. The major step in the nonlinear
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methods is to either fit the edges with some templates or
predict edge information for the high resolution image
from the low resolution one.

In this article, we are interested in the development of
edge-forming methods to be applied as a post-process
of linear image zooming methods, with a hope of re-
moving the checkerboard effect. We will introduce a
nonlinear semi-discrete model that incorporates a con-
straint term and then suggest anisotropic edge-forming
numerical schemes in order for the model to be able to
form edges. For simplicity, we focus on edge-forming
techniques for interpolated images by integer factors,
in gray-scale in 2D. In the case, a portion of pixel val-
ues in the enlarged image can be assigned directly from
the original image without approximation, while most
of the values are approximated from neighboring pixel
values. During the edge-forming, we try not to change
the original values and try to alter the approximated
values to form reliable edges, by setting the parameter
of the constraint term appropriately.

For a closely related method, see a total variation
based interpolation method suggested by Guichard and
Malgouyres [15]. See also [21], where some linear and
nonlinear interpolation methods are analyzed mathe-
matically and experimentally, including the total vari-
ation based interpolation.

An outline of the article is as follows. In Section 2,
we present a brief review on linear interpolation meth-
ods. Section 3 begins with a nonlinear semi-discrete
model; the remainder of the section suggests effi-
cient time-stepping procedures and anisotropic edge-
forming schemes for the model. Stability and the choice
of constraint parameter are analyzed for the discrete
algorithm. In Section 4, we verify the performance of
the algorithm in terms of its ability for edge-forming
and efficiency, for image zooming by integer factors.
Section 5 contains discussion on applications of the al-
gorithm to 3D and/or color images, followed by its
applicability to image zooming by non-integer fac-
tors. The last section summarizes our new-findings and
experiments.

2. Preliminaries

In this section, we briefly review linear interpolation
methods.

The interpolation step of image resampling is to
construct a two-dimensional (2D) continuous function
u(x, y) from its discrete image samples u(k, �), where
x and y are real numbers and k and � are integers. It can
be formally expressed as the convolution of the discrete

image samples with a continuous 2D filter H2D:

u(x, y) =
∑

k

∑
�

u(k, �) H2D(x − k, y − �). (1)

Usually, the interpolation kernel H2D is selected to be
symmetric and separable to reduce the computational
complexity,

H2D(x, y) = H (x) · H (y), (2)

where H is symmetric, i.e., H (−x) = H (x). It is often
required for the kernel H to satisfy

H (0) = 1,

H (x) = 0, |x | = 1, 2, . . .
(3)

and the partition of unity condition

∞∑
k=−∞

H (d + k) = 1, for all 0 ≤ d < 1. (4)

The conditions in (3) guarantee that the image is not
modified if it is resampled on the same grid, and there-
fore the kernel avoids smoothing and preserves high
frequencies. Kernels that fulfill (3) are called inter-
polators, while others are called approximators. The
condition (4) implies that the energy of the resampled
image remains unchanged. In other words, the mean
brightness of the image is not altered when the im-
age is interpolated or resampled. Kernels that satisfy
or fail (4) are named respectively direct current (DC)-
constant or DC-inconstant. It is known that superior
kernels are interpolators and (DC)-constant. However,
they are not sufficient conditions for superior kernels.

For example, the nearest-neighbor interpolation and
the linear interpolation respectively correspond to the
rectangular function H1 and the triangular function H2

defined as

H1(x) =
{

1, 0 ≤ |x | < 0.5,

0, elsewhere,

H2(x) =
{

1 − |x |, 0 ≤ |x | < 1,

0, elsewhere.

(5)

It is easy to check that H1 and H2 are DC-constant
interpolators, but they are in practice suffering from
both the attenuation of high-frequency components and
aliasing.
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Higher-order interpolation methods may improve
the image quality. For references, we present the fol-
lowing cubic interpolators of one-parameter family:

H4,a(x)

=

⎧⎪⎨⎪⎩
(a + 2)|x |3 − (a + 3)|x |2 + 1, 0 ≤ |x | < 1,

a (|x |3 − 5|x |2 + 8|x | − 4), 1 ≤ |x | < 2,

0, elsewhere.

(6)

These cubic interpolators are DC-constant and C1-
continuous; for C2-continuity, one should set a =
−3/4. When a = 0, the kernel (6) requires at most
two pixel values of the image in interpolation; we will

Figure 1. The Elaine images: (a) The original image in 64 × 64 pixels and interpolated images in 256 × 256 cells by (b) H1, (c) H2, (d)
H cubic

2 = H4,0, and (e) H4,−3/4.

also denote it as H cubic
2 , indicating that the kernel is

cubic and utilizes two pixel values.
Figure 1 shows zoomed images (of magnification

of 4 × 4) by the interpolation methods mentioned in
this section. As one can see from the figure, all in-
terpolation methods have instituted checkerboard and
smoothing effects to the resulting image. It should be
noticed that higher-order methods improve the image
quality slightly; however, linear image zooming meth-
ods themselves cannot guarantee a high-quality image.

We may conclude from the above example that im-
age zooming needs to incorporate not only a decent
interpolation method but also an effective post-process
that is able to reduce checkerboard effect and to form
reliable edges. The primary goal in this article is to
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develop an edge-forming algorithm that can connect
the edges, locally linear or smoother. Note that the
linear edge-connection differs from the linear data-
interpolation. Such an edge-forming algorithm must
utilize surrounding values of the original image in order
to satisfy conditions related to the curvature of image
contents.

3. The Edge-Forming Method

This section introduces a nonlinear semi-discrete
model and its linearized time-stepping procedure
(a discrete algorithm) and then addresses effective
anisotropic numerical schemes for edge-forming. Sta-
bility is analyzed for the discrete algorithm.

3.1. A Nonlinear Semi-Discrete Model

Let f be a given image which is zoomed by utiliz-
ing one of linear interpolation methods presented in
Section 2. Then we can write

f = u + e,

where u is the desired image (hopefully, having sharp
and reasonable edges) and e denotes the noise most
of which is arisen during the interpolation. Consider
the following nonlinear semi-discrete model of the
form

∂u

∂t
+ Au = β ( f − u), (7)

where β denotes a constraint parameter and A = A(u)
is a diffusion matrix, i.e., for A = (ars),

ars ≤ 0, r �= s; arr =
∑
s �=r

|ars | > 0, ∀ r.

The recovered image u becomes closer to f as β grows.
Note that the matrix elements depend on the solution
u. In Section 3.3, we will construct the diffusion ma-
trix that is anisotropic and shows an ability to form
edges.

3.2. A Linearized Time-Stepping Procedure

Denote the timestep size by �t . Set tn = n�t and un =
u(·, tn) for n ≥ 0. Then, the problem can be linearized
by evaluating the matrix A(u) from the previous time

level. Consider the linearized θ -method for (7) of the
form:

un − un−1

�t
+ (An−1 + β I ) [θun + (1 − θ )un−1]

= β f, 0 ≤ θ ≤ 1, (8)

where An−1 = A(un−1). The above time-stepping
procedure is a combination of two classical numer-
ical techniques: the incomplete iteration and the θ -
method. The incomplete iteration has been studied ex-
tensively in 1970s and 1980s for the numerical solution
of nonlinear parabolic partial differential equations; see
[2, 8, 9, 28] and references therein. Note that the θ -
method turns out to be the explicit, the implicit, and
the Crank-Nicolson methods respectively for θ = 0,
θ = 1, and θ = 1/2; see e.g. [23].

For an efficient simulation of (8), we will selectAn−1

separable, i.e.,

An−1 = An−1
1 + An−1

2 ,

where A1 and A2 are submatrices that represent con-
nections of pixel values in the horizontal and vertical
directions, respectively. Let

Bn−1
� = An−1

� + 1

2
β I, � = 1, 2.

Then, the alternating direction implicit (ADI) method
[7, 12, 25] is a perturbation of (8), with a splitting error
of O(�t2):

u∗ − un−1

�t
+ Bn−1

1 [θu∗ + (1 − θ )un−1] + Bn−1
2 un−1

= β f,

un − un−1

�t
+ Bn−1

1 [θu∗ + (1 − θ )un−1]

+Bn−1
2

[
θun + (1 − θ )un−1

] = β f,

(9)

or equivalently [10, 11][
1 + θ �t Bn−1

1

]
u∗

= [
1 − (1 − θ ) �t Bn−1

1 − �t Bn−1
2

]
un−1

+�t β f,[
1 + θ �t Bn−1

2

]
un = u∗ + θ �t Bn−1

2 un−1,

(10)

where u∗ is an intermediate solution. Note that when
the matrices An−1

� are composed with a 3-point stencil,
each sweep in (10) can be carried out by inverting a
series of tri-diagonal matrices.
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The ADI method was first introduced by Douglas,
Peaceman, and Rachford [7, 12, 25], as a perturbation
of the Crank-Nicolson difference equation, for solving
the heat equation in 2D. Recently, Douglas and Kim
[11] suggested strategies for a virtual elimination of
the splitting error of the ADI method and its variants.

3.3. Anisotropic Edge-Forming Difference Schemes

For simplicity, we begin with edge-forming schemes
for (7) in 1D. Then we will extend them for images in
2D.

3.3.1. Edge-Forming in 1D. When images are to be
magnified by an integer factor k, one can manage the
interpolation algorithm such that the values at each k-
th pixel can be assigned directly from the original im-
age without approximation. It is then desirable that we
try not to alter those original values during the post-
processing. Thus we may set β in (7) large at the pixels
of original values and let β = 0 elsewhere.

There is no theoretical upper bound for β. However,
it must be sufficiently large at the pixels of original val-
ues, because otherwise the values cannot be preserved
as desired. See (29) below for appropriate choices of β.

Set β = 0 and consider the following explicit
method (θ = 0):

un = un−1 − �tAn−1
1 un−1, (11)

where �t is small enough for the algorithm to be stable.
Let xi be the i-th pixel in the x-direction and ui = u(xi ).
Then we construct the i-th row of An−1

1 consisting of
three consecutive non-zero elements which represent
the connection of ui to ui−1 and ui+1:[

An−1
1

]
i = ( −an−1

i,W , an−1
i,W + an−1

i,E , −an−1
i,E

)
. (12)

We wish to determine an−1
i,W and an−1

i,E in such a way that
the algorithm (11) reveals an ability of edge-forming.
Our candidates are as follows:

an−1
i,W = 2 dn−1

i,E

dn−1
i,W + dn−1

i,E

,

an−1
i,E = 2 dn−1

i,W

dn−1
i,W + dn−1

i,E

,

(13)

where, for q ≥ 0,

dn−1
i,W = [(

un−1
i − un−1

i−1

)2 + ε2]q/2
,

dn−1
i,E = [(

un−1
i+1 − un−1

i

)2 + ε2]q/2 = dn−1
i+1,W . (14)

Here the regularization parameter ε > 0 is introduced
to prevent the denominator in (13) from approaching
zero and is assumed to be small enough. Note that
an−1

i,W +an−1
i,E = 2 and dn−1

i,W in (14) is the second-order fi-
nite difference approximation of [(un−1

x )2+ε2]q/2 eval-
uated at xi−1/2(:= (xi−1 + xi )/2).

At the boundary pixels, the model (7) must in-
corporate a certain boundary condition such as e.g.
the Dirichlet or the no-flux condition. In this arti-
cle, we will construct the linear system An−1

1 as if
the image is flat at the boundary (no-flux boundary
condition). For instance, let x0 be the left end pixel.
Then

[An−1
1 ]0 = (

0, an−1
0,W + an−1

0,E , −an−1
0,W − an−1

0,E

)
= (0, 2, −2). (15)

The right end pixel can be treated similarly. Other
boundary conditions can be incorporated with minor
modifications.

When q = 0, the scheme (12) turns out to be the
central second-order approximation of −∂xx (with the
grid size equal to one). In this case, for the solution
profile given as in Fig. 2, we can see un

i > un−1
i in

(11), because [An−1
1 un−1]i < 0. Furthermore, it is not

difficult to check that un
i = un−1

i for q = 1 and un
i <

un−1
i for q = 2. In general, we can see that at xi in

Fig. 2,

un
i

⎛⎝≥
=
≤

⎞⎠ un−1
i , respectively for

⎧⎨⎩q < 1,

q = 1,

q > 1.

Figure 2. The edge-forming principle. The solid curve involving
solid circles is the solution at the previous level un−1 and the dashed
curves indicate the solutions in the current level near the point xi

depending on q.
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Exploiting the same arguments, we also can see that at
xi+1 in Fig. 2,

un
i+1

⎛⎝≤
=
≥

⎞⎠ un−1
i+1 , respectively for

⎧⎨⎩q < 1,

q = 1,

q > 1.

We summarize the above observation as follows: The
formula in (13)–(14) can make the image sharper for
q > 1 and therefore form edges. Such a strategy will
work not only for the explicit algorithm 11 but also
for other time-stepping procedures such as the implicit
(θ = 1) and Crank-Nicolson (θ = 1/2) methods. The
formula is clearly anisotropic.

Remark. The edge-forming formula in (13)–(14) can
be obtained from a numerical approximation of the
differential operator

Dq = −|ux |εq

(
ux

|ux |εq

)
x

, |ux |ε =
√

u2
x + ε2.

(16)

Indeed, the formula can be obtained with the following
differences:

(
ux

|ux |εq

)
x

(xi ) ≈ 1

di,W
ui−1 −

(
1

di,W
+ 1

di,E

)
ui

+ 1

di,E
ui+1,

|ux |εq (xi ) ≈ 2
di,W · di,E

di,W + di,E
,

evaluated at proper time levels. Thus (11) can be viewed
as an explicit scheme for the following problem

∂u

∂t
+ Dq = 0. (17)

For a clearer understanding of characteristics of (16),
we differentiate its right-side and simplify the result to
read

Dq = −ε2 − (q − 1)u2
x

ε2 + u2
x

uxx . (18)

It follows from (17) and (18) that Dq is a diffu-
sion operator when q ≤ 1. On the other hand, when
q > 1, Dq is a diffusion operator for small gradients
(|ux | < ε/

√
q − 1), while (17) acts as a reverse-time

heat equation for larger gradients (|ux | > ε/
√

q − 1).
In practice, q must not be too large.

Figure 3. The stencil at the pixel xi j .

The classical reverse-time heat equation is known
to be unstable. We will analyze stability for the dis-
crete problem in 2D, the θ -method (8); see Section
3.4.

3.3.2. Edge-Forming in 2D. Now, we consider edge-
forming schemes for 2D images. Recall that for the 2D
problem,A1 andA2 are submatrices that represent con-
nections of pixel values in the horizontal and vertical
directions, respectively. Here we will present schemes
for A1; the schemes can be applied correspondingly
for [An−1

2 ]i j .
As in (12) and (13), we let the row in An−1

1 corre-
sponding to the pixel xi j consist of three consecutive
non-zero elements:

[
An−1

1

]
i j = ( − an−1

i j,W , an−1
i j,W + an−1

i j,E , −an−1
i j,E

)
, (19)

where, corresponding to the stencil in Fig. 3,

an−1
i j,W = 2 dn−1

i j,E

dn−1
i j,W + dn−1

i j,E

, an−1
i j,E = 2 dn−1

i j,W

dn−1
i j,W + dn−1

i j,E

. (20)

Here dn−1
i j,W and dn−1

i j,E can be determined as follows:

dn−1
i j,W = [(

D un−1
i−1/2, j

)2 + ε2]q/2
, dn−1

i j,E = dn−1
i+1, j,W ,

(21)

whereD un−1
i−1/2, j is to be defined as finite difference ap-

proximations of |∇un−1| evaluated at xi−1/2, j , the mid
point of xi−1, j and xi, j . In the following, we consider
two cases.
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• Case 1: We define D = D1 as

D1 un−1
i−1/2, j

=
((

un−1
i, j − un−1

i−1, j

)2 +
[

1

2

(
un−1

i−1, j+1 + un−1
i, j+1

2

−un−1
i−1, j−1 + un−1

i, j−1

2

)]2)1/2

=
((

un−1
i, j − un−1

i−1, j

)2 + (
un−1

i−1, j+1 + un−1
i, j+1

−un−1
i−1, j−1 − un−1

i, j−1

)2
/16

)1/2
. (22)

• Case 2: Then, we consider another approximation
D = D2 as

D2 un−1
i−1/2, j = 1

2

(
Dcun−1

i−1, j + Dcun−1
i, j

)
, (23)

where Dc is the central second-order approximation
of |∇| defined as

Dcun−1
i, j = ((

un−1
i+1, j − un−1

i−1, j

)2/
4

+ (
un−1

i, j+1 − un−1
i, j−1

)2/
4
)1/2

.

3.4. Stability of the θ -Model

When the image is to be magnified by a factor of k1×k2,
where k1 and k2 are positive integers, one can interpo-
late the image such that the values at every (k1 × k2)-
th pixel are assigned directly from the original image
without approximation. Then, for the edge-forming, we
set the parameter β large at those pixels not to alter the
original values much, and set β = 0 elsewhere. That
is,

β(x)

=
{

β0 at each (k1 × k2)-th pixel of original values,

0 elsewhere,

(24)

where β0 is a positive number. Being equipped with
the numerical schemes in the previous subsection, the
θ -method (8) satisfies the maximum principle in the
following sense.

Theorem 3.1. Let the θ -method (8), 0 ≤ θ ≤ 1,
incorporate the schemes in (19)–(21) and satisfy the
following condition

4(1 − θ )�t ≤ 1, (25)

with β set as in (24). Suppose the solution of (8), un,
have a local maximum or minimum at a point x̂i j

where β = 0. Then it is constant, for all q ≥ 0,
on the block of (k1 × k2) pixels that contains the
point x̂i j .

Proof: First note that an−1
i j,W +an−1

i j,E +an−1
i j,S +an−1

i j,N = 4
for all (i, j) and for all q ≥ 0. The Eq. (8) at a point
xi j can be written as

[1 + (4 + β)θ�t] un
i j

= θ�t
[
an−1

i j,W un
i−1, j + an−1

i j,E un
i+1, j + an−1

i j,S un
i, j−1

+ an−1
i j,N un

i, j+1

] + (1 − θ )�t
[
an−1

i j,W un−1
i−1, j

+ an−1
i j,E un−1

i+1, j + an−1
i j,S un−1

i, j−1 + an−1
i j,N un−1

i, j+1

]
+ [1 − (4 + β)(1 − θ )�t] un−1

i j + �tβ fi j . (26)

Let β = 0 at x = xi j and un
i j be a local maximum

or minimum. Then, it follows from (25) that each of
coefficients in the right side of (26) is nonnegative and
their sum becomes [1 + 4θ�t]. Thus the values at the
four adjacent pixels of xi j in both new and previous time
levels and un−1

i j must be the same as un
i j . The argument

can be applied repeatedly to show that um , m ≤ n, must
be constant at least on the block of (k1 × k2) pixels that
contains the point xi j .

Thus, when (25) is satisfied, the θ -method (8) may
have local extrema only at the pixels of original val-
ues where β = β0 > 0 and it cannot introduce ex-
tra local extrema inside the block of (k1 × k2) pixels.
The maximum principle is important, because other-
wise the θ -method may create unnecessary features
during the edge-forming. Note that the model (7) in-
corporating the edge-forming schemes presented in the
previous subsection, (19)–(23), acts like a reverse-time
heat equation in the continuous level, as analyzed in
(16)–(18) for the 1D problem.

Note that the implicit method (θ = 1) is uncon-
ditionally stable. Indeed, when the θ -method satisfies
(4 + β)(1 − θ )�t ≤ 1, utilizing the same argument
in the proof of Theorem (3.1), one can show that for
every choice of β ≥ 0,

min
i, j

fi j ≤ un
i j ≤ ‖ f ‖∞, n ≥ 0, (27)

where ‖ f ‖∞ := maxi, j | fi j |, the maximum norm of f .
The following theorem completes stability analysis

for the θ -method (8). It also reveals a way of choosing
appropriate β with which the difference |un − f | is
small enough at the pixels where β > 0.
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Theorem 3.2. Let the θ -method (8), 0 ≤ θ ≤ 1,
incorporate the schemes in (19)–(21) and satisfy

(4 + β)(1 − θ )�t ≤ 1. (28)

Then,

max
β>0

∣∣un
i j − fi j

∣∣ ≤ 4

4 + β
‖ f ‖∞, n ≥ 1. (29)

Proof: Let δn−1
i j := un−1

i j − fi j . Then it follows from
(26) that

[1 + (4 + β) θ�t] un
i j

= θ�t
[
an−1

i j,W un
i−1, j + an−1

i j,E un
i+1, j + an−1

i j,S un
i, j−1

+an−1
i j,N un

i, j+1

] + (1 − θ )�t
[
an−1

i j,W un−1
i−1, j

+an−1
i j,E un−1

i+1, j + an−1
i j,S un−1

i, j−1 + an−1
i j,N un−1

i, j+1

]
+[1 − 4�t + (4 + β)θ�t] fi j

+[1 − (4 + β)(1 − θ )�t] δn−1
i j (30)

and therefore

[1 + (4 + β) θ�t]
(
un

i j − fi j
)

= θ�t
[
an−1

i j,W un
i−1, j + an−1

i j,E un
i+1, j + an−1

i j,S un
i, j−1

+ an−1
i j,N un

i, j+1

] + (1 − θ )�t
[
an−1

i j,W un−1
i−1, j

+ an−1
i j,E un−1

i+1, j + an−1
i j,S un−1

i, j−1 + an−1
i j,N un−1

i, j+1

]
− 4�t fi j + [1 − (4 + β)(1 − θ )�t] δn−1

i j .

(31)

Thus it follows from (27) and the equality an−1
i j,W +

an−1
i j,E + an−1

i j,S + an−1
i j,N = 4 that

∣∣un
i j − fi j

∣∣ ≤ 4�t

1 + (4 + β) θ�t
‖ f ‖∞ + γ0 ‖δn−1‖∞,

(32)

where

γ0 = 1 − (4 + β)(1 − θ )�t

1 + (4 + β) θ�t
= 1 − (4 + β)�t

1 + (4 + β) θ�t
.

The condition in (28) implies that 0 ≤ γ0 < 1. Note
that ‖δ0‖∞ = ‖u0 − f ‖∞ = 0. Hence

∣∣un
i j − fi j

∣∣ ≤ 4�t

1 + (4 + β) θ�t
·

n−1∑
k=0

γ k
0 · ‖ f ‖∞

≤ 4�t

1 + (4 + β) θ�t
· 1

1 − γ0
· ‖ f ‖∞

= 4

4 + β
‖ f ‖∞, (33)

which completes the proof.

For instance, if it is desired for |un
i j − fi j | to be not

larger than 1% the given image f at the pixels where
β > 0, one should choose β ≥ 396.

4. Numerical Experiments

In this section, we provide a numerical verification for
the performance of the semi-discrete model (7) incor-
porating schemes presented in Section 3. For all ex-
periments, we choose θ = 1, �t = 1, β = 1000
for the θ -method (8) and q = 1.5 and ε = 0.05 in
(21). Note that β is set large at the pixels of original
values and zero elsewhere. For other choices which
may violate the stability conditions in Theorems 3.1
and 3.2, the program works fine in practice. For ex-
ample, when we select θ = 0.5 with other parameters
given the same, the performance shows no observable
differences.

For all examples in this section, the interpolated im-
age is scaled by 1/255 such that the maximum pos-
sible value of the image in the edge-forming compu-
tation is one. Thus every parameter choice discussed
in this section is related to the scaled images. The fi-
nal results are scaled back and quantized for the 8-bit
display.

In Fig. 4, we compare the two schemes, D1 (22) and
D2 (23), applied to edge-forming for an interpolated
disk by a factor of 4 × 4. Figure 4(a) depicts the in-
terpolated image by H cubic

2 . In Figs. 4(b) and (c), we
present the edge-formed images by applying the ADI
(10) along withD1 (22) andD2 (23), respectively, start-
ing from the image in Fig. 4(a). As one can see from the
figure, the interpolated image shows the checkerboard
effect. In edge-forming, D1 performs better than D2,
which has been observed for most examples we have
tested.

For the above example, one may try to enlarge the
image by two recursive applications of 2 × 2 magnifi-
cation and edge-forming rather than once 4×4 magni-
fication followed by edge-forming. The interpolation
introduces no observable difference, while the edge-
forming may improve the results a lot.

For the examples below, we utilize D1 only.
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Figure 4. Synthetic binary images in 240 × 240 cells, for magnification of 4 × 4. (a) The interpolated image by H cubic
2 from an image in

60 × 60 cells, (b) the edge-formed image by D1 (22), and (c) the edge-formed image by D2 (23).

In Fig. 5, we continue investigating the performance
of the newly suggested edge-forming schemes in Sec-
tion 3. Figure 5(a) depicts the interpolated and edge-
formed image by a factor of 8×8 once, while Fig. 5(b)
contains the image magnified by three recursive appli-
cations of 2 × 2 interpolation and edge-forming. The
image of large magnification, Fig. 5(a), shows portions
where the edge of the disk is under-developed (concave
in) from the interpolated image; the edge is developed
better in Fig. 5(b).

Figure 6 shows a synthetic image in 360 × 360 cells
for 9 × 9 image magnification. The original image g
in Fig. 6(a) is shrunken to a small image of 40 × 40
cells and interpolated into 360 × 360 cells by H cubic

2 ,
Fig. 6(b). The small image is utilized for two recursive
applications of 3 × 3 interpolation and edge-forming;
the resulting image is u, as depicted in Fig. 6(c). The
edges are clearly formed in the figure, although the
sharp corners of the features are not well recovered due
to a lack of information in the shrunken image. Note
that edges near the image boundary have altered (to be
normal) by the effect of boundary treatment discussed

Figure 5. Synthetic binary images in 480 × 480 cells, for magnifi-
cation of 8 × 8 from the same original image as in Figure 4. (a) The
edge-formed image by 8 × 8 magnification once and (b) the edge-
formed image by three recursive applications of 2 × 2 magnification
and edge-forming. H cubic

2 is utilized for the interpolation.

in (15). The error |g − u| is shown in Fig. 6(d). The
thickness of features in the error must be eight at most,
except at sharp corners. The line segments in the error
are verified to have thicknesses of 1–3.

Figure 7 presents the performance of the edge-
forming algorithm applied to a real image, a Lenna
Face in 50 × 50 cells. Figure 7(a) presents the 4 × 4
interpolated image by H cubic

2 and Fig. 7(b) contains
the edge-formed image by two recursive applications
of 2 × 2 interpolation and edge-forming. As one can
see from the figure, the interpolated image shows the
checkerboard effect, most of which has been eliminated
in the edge-formed image.

For the edge-forming for Fig. 7(b), three iterations of
ADI (10) are applied after each interpolation. When the
image is to be zoomed 2–3 times in each direction, the
edge-forming algorithm has developed reliable edges
in 2–3 ADI iterations for most images; later iterations
make the edge-formed image look smoother a little bit.
For the image zooming by factors of k ≥ 4, the edge-
forming requires a larger number of ADI iterations. By
a recursive application of smaller factors, one can speed
up the simulation, because the earlier recursions are
applied to smaller images and therefore much cheaper
in computation.

We have tested the edge-forming algorithm with var-
ious choices of parameters: θ , �t , β, q, and ε. It has
been verified that the performance is acceptable and
barely sensitive to the choices of parameters when we
set θ ∈ [0.5, 1],�t ∈ [0.5, 2],β ≥ 400, q ∈ [1.3, 1.7],
and ε ∈ [0.01, 0.1].

5. Discussion

In this section, we discuss issues arising when the edge-
forming algorithm is applied to 3D and/or color images,
followed by its applicability to image zooming by non-
integer factors. Finally we will consider deblurring.
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Figure 6. A synthetic image in 360 × 360 cells for 9 × 9 image magnification. (a) The original image g, (b) the H cubic
2 -interpolated image by

a factor of 9 × 9 from a shrunken image in 40 × 40 cells, (c) the edge-formed image u, and (d) the absolute error |g − u|.

Figure 7. Lenna Face in 200 × 200 cells, for magnification of 4 × 4. (a) The interpolated image by H cubic
2 from an image in 50 × 50 cells and

(b) the edge-formed image by two recursive applications of 2 × 2 interpolation and edge-forming.
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Extension for 3D images: It is easy and almost
straightforward to apply the edge-forming algorithm
for 3D images. For instance, one may adopt the
Douglas-Gunn’s general formula [10] for the ADI (10).
The numerical schemes in Section 3.3.2 can be ex-
tended for 3D images, without meeting difficulties.
However, when 3D is concerned, efficiency becomes
another important issue. Techniques for efficiency im-
provement, along with applications to 3D image con-
struction via slice-stacking, will be presented else-
where.

Extension for color images: Color images consist
of three components, e.g., red, blue, and green. One
may apply the edge-forming algorithm for color im-
ages in a component-wise fashion. However, the in-
terpolation and the edge-formed results can involve
undesirable colors, due to different developments
of colors in separate treatments. Another interesting
transformation overcoming such a difficulty is the
brightness-chromaticity decomposition in the angle
domain, which has extensively studied for color im-
age processing [1, 6, 17, 29, 30]. Now, an efficient
and reliable numerical modeling for such a system of
coupled differential equations would be a challenging
task.

Image zooming by non-integer factors: When image
is to be magnified by a non-integer factor, it may be dif-
ficult to apply the edge-forming algorithm suggested in
this article. However, the algorithm is still applicable
when the factor is given in the form of k = �/m, where
� and m are positive integers. In the case, one can man-
age the interpolation algorithm such that each �-th pixel
value can be assigned from the original image without
approximation, for which one can set β large. For ex-
ample, let k = 3/2. Then, it is easy to see that each
third value in the interpolated image can be obtained
directly from the original image.

For image zooming by general factors, one has to
develop an effective strategy for the choice of β =
β(x), which is very critical not to introduce an excessive
blur into the resulting image. Such a subject along with
color image zooming will be dealt with in detail in a
forthcoming article [4].

Deblurring: When the parameter β is chosen large
enough (see (29)), the values obtained from the original
image can be kept with a minor change (or exactly
the same in quantized integer values). Thus the edge-
formed image can be viewed as a zoomed image by
an improved interpolation. However, the result often

looks blurrier than usual, which we believe is due to
a corresponding expansion of light scattering inherited
in the original image. Thus it is reasonable to apply
a deblurring algorithm to edge-formed images [5, 22,
24, 27].

6. Conclusions

When standard interpolation methods are applied for
image zooming by a large factor, the enlarged image
often shows the checkerboard effect. To remove the
artifact and form reliable edges, we have suggested a
new edge-forming strategy. A nonlinear semi-discrete
diffusion model and its discrete algorithm have been
introduced along with anisotropic edge-forming nu-
merical schemes. The algorithm has been analyzed for
stability and reliable choices of parameters. Various
numerical examples are presented in order to convince
the effectiveness and efficiency of the algorithm. For
gray-scale images in 2D, the new edge-forming strat-
egy has shown a satisfactory performance for image
zooming by integer factors; edges are formed clearly
and sharply. Discussion is made for the algorithm to
be applicable to image zooming for 3D and/or color
images, or by non-integer factors.
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