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Abstract. In this paper, we propose to focus on the segmentation of vectorial features (e.g. vector fields or
color intensity) using region-based active contours. We search for a domain that minimizes a criterion based on
homogeneity measures of the vectorial features. We choose to evaluate, within each region to be segmented, the
average quantity of information carried out by the vectorial features, namely the joint entropy of vector components.
We do not make any assumption on the underlying distribution of joint probability density functions of vector
components, and so we evaluate the entropy using non parametric probability density functions. A local shape
minimizer is then obtained through the evolution of a deformable domain in the direction of the shape gradient.

The first contribution of this paper lies in the methodological approach used to differentiate such a criterion. This
approach is mainly based on shape optimization tools. The second one is the extension of this method to vectorial
data. We apply this segmentation method on color images for the segmentation of color homogeneous regions. We
then focus on the segmentation of synthetic vector fields and show interesting results where motion vector fields
may be separated using both their length and their direction. Then, optical flow is estimated in real video sequences
and segmented using the proposed technique. This leads to promising results for the segmentation of moving video
objects.

Keywords: image segmentation, active contours, image statistics, information, information theory, entropy, joint
probability, shape optimization, shape gradient, motion segmentation
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1. Introduction

The notion of entropy has first been introduced by
Shannon [30] and further developed in the information
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theory framework whose principles can be found in
[7]. Information measures such as entropy or mutual
information can be efficiently managed for image and
video segmentation [13] or medical image registra-
tion [20, 33]. As far as segmentation is concerned, a
region may be characterized using the average quan-
tity of information, namely the entropy, carried out by
the intensity. We propose here to focus on the seg-
mentation of vectorial images features. We can for ex-
ample consider the color intensity or motion vectors.
Our goal is to segment homogeneous fields of vec-
tors by considering not only their length but also their
direction. We then propose to minimize the joint en-
tropy of vector components. We do not make any as-
sumption on the underlying distribution of joint prob-
ability density functions (pdfs) of vector components,
and so we evaluate the entropy using non parametric
pdfs.

These information measures are embedded into a
variational framework. We search for an optimal do-
main with regards to a global criterion including both
region-based and boundary-based terms. A local shape
minimizer of this criterion may be reached using de-
formable domains, namely region-based active con-
tours. The basic idea is to obtain, from the derivation
of the criterion, a Partial Differential Equation (PDE)
that drives an initial region towards a local shape min-
imum of the error criterion. Classically, we propose to
make it evolve in the direction of a gradient. How-
ever, since the set of image regions, i.e. the set of
regular open domains in Rn , does not have a struc-
ture of vector space, we cannot apply gradient de-
scent methods in a straightforward fashion. We pro-
pose to use shape gradients coming from shape op-
timization theory [10] to bear on the problem. Such
an approach has been detailed in [1, 17] and is here
further developed for the minimization of information
measures using non parametric probability distribution
functions (pdfs) of image features following the work
in [13].

These theoretical results are then applied to the seg-
mentation of homogeneous color regions such as the
face in video sequences and to segmentation of mo-
tion vectors. In this second part, the goal is to seg-
ment different motions in a sequence of images no-
tably the motion of objects from the global background
motion. There are many practical applications for this
type of problem, e.g. the cinematic post-production,
video monitoring, tracking of objects or human beings,
video coding and indexation e.g. MPEG-4 or MPEG-7.

Variational approaches and region-based active con-
tours have proven to be efficient for motion segmenta-
tion. Some authors choose to minimize the image dif-
ferences [16], while other consider parametric models
for each region [8]. Another approach consists in using
the length of the motion vectors [26] or the dominant
direction [28]. In this paper we are able to consider
both the length and the direction of motion vectors by
using the joint entropy.

In the following section, we recall shape derivation
principles that will then be applied to the derivation of
region-dependent descriptors involving non parametric
pdfs of image features. Such a derivation will be used
to deduce the evolution equation of an active contour
that will minimize information measures such as the
entropy of a region. These theoretical tools will then
be applied to segment coherent regions of color inten-
sity. They will then be developed for the segmentation
of motion vectors in both synthetical images and real
images.

2. Region-Based Active Contours Using Shape
Derivation Tools

In this chapter we address the problem of optimisa-
tion of region and boundary functionals by means of
active contours. Having introduced the basic idea of
active contours and the different approaches that exist
so far, we then describe how to calculate the evolution
equation using shape derivation tools and finally ex-
plain some implementation details, notably the level
set method.

2.1. Problem Statement

Active contours are based on the idea of evolving an
initial contour on an image towards the boundary of
the object(s) of interest. Formally, for a 2D image, the
evolution of a curve can be described as follows:

∂�(s, τ )

∂τ
= FN = v with �(τ = 0) = �0. (1)

�0 is the initial curve, s the arc length, τ the evolution
parameter and N the inward normal vector of �(s, τ ).
For τ → ∞ the curve should converge to the object
boundary. The term F represents the velocity function
of the curve and is usually derived from an energy func-
tional J . The energy functionals that appeared first in
literature were boundary-based. A classical example is
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J (�) = ∫
�

k(b) ds where k(b) can depend on the gradient
of the image [2, 18].

Following the pioneer works of [6, 27], region-based
functionals have then been added in order to incorpo-
rate global information on the region to segment:

J (�) =
∫

�

k(x, �) dx (2)

where the vector x represents the location of the pixel
and k(x, �) the descriptor of the region �. This de-
scriptor can depend on the region itself and is then
called region-dependent. An example of such region-
dependent descriptor is k(x, �) = (I (x) − μ)2, where
μ represents the mean of the intensity over the region
�. This descriptor has been used by [3, 9] for the seg-
mentation of homogeneous regions.

Generally one uses a linear combination of region-
based and contour-based terms in order to perform a
segmentation task. A simple example is the segmen-
tation into two regions �in and �out , which basically
correspond to objects and background. An appropriate
energy functional for this task would be:

J (�in, �out , �)

=
∫

�in

kin(x, �in) dx +
∫

�out

kout (x, �out ) dx

+
∫

�

kb(x) ds (3)

where kin is the descriptor for the object region, kout

for the background region and kb the descriptor for the
contour.

The choice of the descriptors is dependent on the
application. In this article we propose to focus on in-
formation measures such as the joint entropy of vector
components. Once this choice is made the terms have
to be differentiated with respect to the geometry in or-
der to calculate a velocity function that drives an initial
contour towards a minimum. A detailed state of the
art on region-based active contours can be found in
[17]. Let us briefly note that some authors do not com-
pute the theoretical expression of the velocity field but
choose a deformation of the curve that will make the
criterion decrease [5]. Other authors [3, 24, 35] com-
pute the theoretical expression of the velocity vector
from the Euler-Lagrange equations. The computation
is performed in two main steps. First, region integrals
representing region functionals are transformed into
boundary integrals using the Green-Riemann theorem.
Second, the corresponding Euler-Lagrange equations

are derived, and used to define a dynamic scheme in
order to make evolve the initial region. Another alter-
native is to keep the region formulation to compute the
gradient of the energy criterion with respect to the re-
gion instead of reducing region integrals to boundary
integrals. In [9], the authors propose to compute the
derivative of the criterion while taking into account the
discontinuities across the contour. In [15, 17] the com-
putation of the evolution equation is achieved through
shape derivation principles.

This computation becomes more difficult for region-
dependent descriptors. It happens when statistical fea-
tures of a region such as, for example, the mean or the
variance of the intensity, are involved in the minimiza-
tion. This case has been studied in [3, 9, 15, 19, 34]. In
[15, 17] the authors show that the minimization of func-
tionals involving region-dependent features can induce
additional terms in the evolution equation of the active
contour that are important in practice. These additional
terms are easily computed thanks to shape derivation
tools. In the following, we present shape derivation
tools for the computation of the evolution equation.

2.2. Computation of the Evolution Equation Using
Shape Derivation Tools

In order to obtain the evolution equation of the active
contour ∂�(τ )

∂τ
that will lead to a minimum of the energy

criterion J , it is necessary to differentiate the criterion.
The criterion can contain contour-based and region-
based terms as mentioned in Eq. (3). When calculating
the evolution equation there are certain problems to
solve. Firstly: with respect to which variable do we
have to differentiate the criterion? As we are dealing
with regular open domains in Rn that do not have the
structure of vector spaces, it is difficult to compute the
derivative and so the evolution equation. This problem
can be tackled by the use of shape derivation tools [10]
as detailed in [1, 15, 17]. Secondly the region-based
terms show a double dependence, because the descrip-
tor as well as the integration domain depend on the
region. This has to be taken into account when calcu-
lating the evolution equation. To obtain the evolution
equation three principal steps are performed:

1. Introduction of transformations
2. Derivation of the criterion using shape optimisation

theorems
3. Computation of the evolution equation from the

derivative
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2.2.1. Introduction of Transformations. The optimi-
sation of the region functional (2) is difficult and the
variations of a domain must be clearly defined. For-
mally we introduce a mapping Tτ that transforms the
initial domain � into the current domain �(τ ). For a
point x ∈ �, we denote:

x(τ ) = T (τ, x) with T (0, x) = x

�(τ ) = T (τ, �) with T (0, �) = �.

Let us now define the velocity vector field V corre-
sponding to T (τ ) as

V(τ, x) = ∂T

∂τ
(τ, x) ∀x ∈ � ∀τ ≥ 0.

2.2.2. Shape Derivation Tools. We now introduce
two main definitions:

Definition 1. The Eulerian derivative of Jr (�) =∫
�

k(x, �) dx in the direction of V, noted d Jr (�, V),
is equal to:

d Jr (�, V) = lim
τ→0

Jr (�(τ )) − Jr (�)

τ

if the limits exists.

Definition 2. The shape derivative of k(x, �), noted
ks(x, �, V), is equal to:

ks(x, �, V) = lim
τ→0

k(x, �(τ )) − k(x, �)

τ

if the limits exists.

The following theorem gives a general relation be-
tween the Eulerian derivative and the shape derivative
for region-based terms.

Theorem 1. Let � be a C1 domain in Rn and V a
C1 vector field. Let k be a function C1. The functional
Jr (�) = ∫

�
k(x, �) dx is differentiable and its Eule-

rian derivative in the direction of V is the following:

d Jr (�, V) =
∫

�

ks(x, �, V)dx −
∫

∂�

k(x, �)(V · N)da

where N is the unit inward normal to ∂� and da its
area element.

The proof can be found in [10, 31].

2.2.3. Computation of the Evolution Equation for
Region-Based terms. Let us now consider the deriva-
tive of region-based terms. As we differentiate with re-
spect to the region �, we have to distinguish the cases
where the descriptors depend and do not depend on the
region.

2.2.3.1. Region-Independent Descriptors. If a de-
scriptor of a region-based term is not dependent on the
region, the derivation is straigthforward. Let Jr (�) =∫
�

k(x, �)dx be the criterion. Obviously k(x, �) =
k(x) and so ks = 0. Consequently the Eulerian deriva-
tive of Theorem (1) is reduced to:

d Jr (�, V) = −
∫

∂�

k(x)(V · N) da (4)

and the evolution equation, respectively the velocity,
can be calculated using the gradient descent method:

∂�(s,τ )
∂τ

= k(x)N = v

�(s, 0) = �0(s).
(5)

2.2.3.2. Region-Dependent Descriptors. Region-
dependent descriptors of the form Jr (�) =∫
�

k(x, �)dx are more complicated to differentiate. Us-
ing Theorem (1) one obtains a derivative of the follow-
ing form:

d Jr (�, V) = −
∫

∂�

(
k(x, �) + A(x, �)

)
(V · N) da.

(6)

A(x, �) is a term that comes from the region-
dependence and so from the evaluation of the shape
derivative ks . Jehan-Besson et al. [17, 1] describe a
general framework for deriving some region-dependent
descriptors based on statistical parameters.

2.2.3.3. Example. Let us consider a descriptor involv-
ing the mean of the intensity of the region:

k(x, �) = ϕ(I (x) − μ(�)) (7)

with ϕ a positive function of class C1 [4]. The criterion
J is then given by:

J (�) =
∫

�

ϕ (I (x) − μ(�)) dx.



Segmentation of Vectorial Image Features 369

The Eulerian derivative of the criterion J (�) can be
expressed as follows:

d Jr (�, V) =
∫

�

−dμ

dτ
ϕ′ (I (x) − μ(�)) dx

−
∫

∂�

ϕ(I (x) − μ(�))(V · N)da

with ϕ′(r ) = dϕ

dr .
The mean can be written using domain integrals:

μ(�) = 1

|�|
∫

�

I (x)dx =
∫
�

I (x)dx∫
�

dx
,

and so, by applying again the shape derivative theorem,
we get:

dμ

dτ
= 1

|�|2
(

−
∫

∂�

I (x)(V · N)da.

∫
�

dx

+
∫

�

I (x)dx.

∫
∂�

(V · N)da
)

= 1

|�|
∫

∂�

(I (x) − μ(�))(V · N)da.

In this expression, we no longer have domain integrals.
By replacing the derivative of μ in Eq. (8), we obtain
the following formulation:

d Jr (�, V)

=
∫

�

ϕ′(I (x) − μ(�))
∫

∂�

I (x) − μ(�)

|�| (V · N)da

−
∫

∂�

ϕ(I (x) − μ(�))(V · N)da.

The term A(x, �) from Eq. (6) is given by:

A(x, �) = ϕ′(I (x) − μ(�))
∫

∂�

I (x) − μ(�)

|�| .

By changing the order of integration in the derivative,
we can compute the evolution equation of the active
contour:

∂�(s, τ )

∂τ
=

(
ϕ(I (x) − μ(�)) − I (x) − μ(�)

|�|

×
∫

�

ϕ′(I (x) − μ(�))dx
)

N. (8)

This example illustrates the derivation of a sim-
ple region-dependent descriptor involving parametric
probability distribution functions (pdfs). In this report
we get further interested in nonparametric pdfs as de-
tailed in Section 3.

2.2.4. Computation of the Evolution Equation for
Contour-Based Terms. Contour based terms have
the form Jb(�) = ∫

∂�
kb(x) da. Their Eulerian deriva-

tive in the direction vn = (V · N) is [10]:

d Jb(�, vn) =
∫

∂�

(∇kb(x) · N − kb(x)κ)(V · N) da.

(9)

with N the unit inward normal of �, κ the mean curva-
ture of � and da its area element. The evolution equa-
tion is consequently:

∂�(s,τ )
∂τ

= (kb(x)κ − ∇kb(x) · N)N

�(s, 0) = �0(s).
(10)

This result is the classical result found in [2] using
calculus of variations.

2.3. Implementation Using the Level Set Method

There are basically two approaches to implement ac-
tive contours. The explicit approach uses an explicit
parameterization of the contour, e.g. by B-splines [25]
or polygons, and the implicit approach represents the
curve by means of a function of higher dimension, e.g.
the level set method [23]. In the following we are going
to concentrate on the level set method, because among
other advantages it implies the ability to change the
topology.

The idea is to express the curve by means of a higher
dimensional function U (x, τ ) in such a way that the
zero level of U (x, τ ) represents the curve �(s, τ ). More
formally we look for a function U : R2 × R+ → R
such that:

�(s, τ ) = {x | U (x, τ ) = 0}. (11)

An equivalent expression is:

U (�(s, τ ), τ ) = 0, ∀s ∈ [O, L], ∀τ ≥ 0. (12)
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U can be chosen as the signed distance function, i.e.
the value U (x, τ ) represents the signed distance of the
point x to the contour. We choose negative values inside
the curve (region containing the objects) and positive
values outside.

The normal vector N and the curvature κ can be
directly derived from the level set function:

N = − ∇U

|∇U | and κ = div

( ∇U

|∇U |
)

.

This leads to the evolution equation:

∂U (τ )

∂τ
= F |∇U |. (13)

The equation is only valid for U = 0 but it can be
extended to the whole image domain �I if F is defined
over the entire image. However the signed distance
function is not a solution to the extended PDE (13),
see Gomes and Faugeras [12]. Therefore the function
U has to be reinitialised so that it remains a distance
function.

When implementing the level set method it is useful
to perform the calculations only over a narrow band
enclosing the contour instead of the entire image. This
reduces the time complexity of O(N 2) to O(k N ) where
N is the grid size.

Additionally a multiresolution technique can be ap-
plied in order to decrease calculation time, i.e. the con-
tour evolution is performed on different resolutions
starting from an image of reduced size and ending at the
original image size. When passing to a higher resolu-
tion the final contour of the previous resolution serves
as the initial contour of the current resolution.

3. Introduction of Descriptors Based on
Information Theory Measures

We aim for a segmentation into regions with approx-
imately homogeneous statistical features. Many ap-
proaches use statistical measures like the mean or the
variance of some feature(s) inside a region to formu-
late descriptors. Another approach based on informa-
tion theory, notably on the entropy has been presented
in [13, 14, 19]. Indeed, the entropy concept designates
the average quantity of information carried out by a
feature. Intuitively the entropy represents some kind of
diversity of a given feature. In this report we get fur-
ther interested in computing the entropy without any
assumption on the underlying distribution, i.e. using
nonparametric pdfs. We first present general results for

the minimization of functions of non parametric pdfs
and we then apply these results for the minimization of
the entropy and the conditional entropy.

3.1. Derivation of Descriptors Based on Non
Parametric Probability Density Functions

Let f(x) be the feature of interest and q(f(x), �) be the
probability to have feature f(x) with x ∈ �. A general
criterion can be defined as follows:

J (�) =
∫

�

ϕ(q(f(x), �)) dx (14)

where ϕ is a function: R+ → R+ of the probability.
The probability distribution is estimated using the

Parzen window method:

q(f(x), �) = 1

|�|
∫

�

K (f(x) − f(x̂)) dx̂ (15)

where K is the Gaussian kernel of the estimation with
0-mean and �-covariance matrix and |�| the shape
area. The kernel of a vector f = [ f1, f2, . . . , fn]T is:

K (f) = 1

(2π )n/2|�|1/2
exp

(
− 1

2
fT �−1f

)
.

In general, the covariance � depends on the number
of samples, but in our case, the number of pixels in a
region does not change a lot during the segmentation
process. The computation is done for a fixed variance.
See Appendix (B) for the computation with a variance
depending on the number of pixels of the region �.

This criterion defined in (14) is now differentiated
using the shape gradient theorem (Theorem (1)). The
Eulerian derivative of (14) in the direction V is then
given by:

d Jr (�, V) =
∫

�

ϕs(q(f(x), �), V) dx

−
∫

∂�

ϕ(q(f(s), �))(V · N) ds (16)

where N is the unit inward normal of the curve and ϕs

is the shape derivative of ϕ in the direction V.

ϕs(q(f(x), �), V) = ϕ′(q(f(x), �))qs(f(x), �, V)

with qs the Eulerian derivative of q in the direction V.



Segmentation of Vectorial Image Features 371

We apply the shape gradient theorem on q:

qs(f(x), �, V) = 1

|�|2
∫

∂�

(V · N) ds
∫

�

K (f(x) − f(x̂)) dx̂

− 1

|�|
∫

∂�

K (f(x) − f(s))(V · N) ds.

So the shape derivative of ϕ is:

ϕs(q(f(x), �), V) = 1

|�|
∫

∂�

ϕ′(q(f(x), �))[q(f(x), �)

− K (f(x) − f(s))](V · N) ds

where ϕ′(q) represents the derivative of ϕ with respect
to q. We can then deduce the evolution equation of the
active contour that leads J to a minimum:

∂�(s, τ )

∂τ
= ϕ(q(f(x̂), �))N (17)

− 1

|�|
[ ∫

�

(
q(f(x), �)

− K (f(x) − f(x̂))) ϕ′(q(f(x), �)) dx
]

N

with x̂ = �(s, τ ).

3.2. Minimization of the Joint Entropy for Vectorial
Image Features

The entropy represents the average quantity of infor-
mation carried out by a feature, we may then minimize
such a quantity for the segmentation of homogeneous
regions. In this article, we are more particularly inter-
ested by the joint entropy of vectorial image features
f(x) = [ f1(x), f2(x)..., fn(x)]T . We treat f as an obser-
vation of a random vector denoted by F. The continuous
joint entropy can be expressed by:

H (F, �) = 1

|�|
∫

�

− ln q(f(x), �) dx

= 1

|�|
∫

�

− ln q( f1(x), f2(x), .., fn(x), �) dx

(18)

where q(f(x), �) represents the joint probability den-
sity function of the components of the vectorial feature
f(x).

This energy can be written by:

H (F, �) = 1

|�|
∫

�

ϕ(q(f(x̂), �)) dx (19)

with ϕ(q) = − ln q. Using the derivation scheme pre-
sented above, we can calculate the evolution equation:

∂�(s, τ )

∂τ
= − 1

|�| ln q(f(x̂), �)N − 1

|�|
[

H (F, �)

+ 1

|�|
∫

�

K (f(x) − f(x̂))

q(f(x), �)
dx − 1

]
N.

3.3. Application to Region Competition

In the experiments, we use a competition between the
object region �in and the background region �out.
These regions share the same boundary � and we look
for the regions that minimize the following criterion:

J (�in, �out, �)

= H (F, �in) + H (F, �out) +
∫

�

λds (20)

where λ is a regularization parameter.
Let us rewrite the Definition (18) for the regions �in

and �out:

H (F, �in) = 1

|�in|
∫

�in

− ln q(f(x), �in)dx

H (F, �out) = 1

|�out|
∫

�out

− ln q(f(x), �out)dx.

By using the derivation tool presented in the previous
section, we obtain the evolution equation of the active
contour:

∂�(s, τ )

∂τ

=
[

− 1

|�in| ln q(f(x̂), �in) − 1

|�in|
[

H (F, �in)

+ 1

|�in|
∫

�in

K (f(x) − f(x̂))

q(f(x), �in)
dx − 1

]
+ 1

|�out| ln q(f(x̂), �out) + 1

|�out|
[

H (F, �out)

+ 1

|�out|
∫

�out

K (f(x) − f(x̂))

q(f(x), �out)
dx − 1

]
+ λ.κ

]
N

(21)

where κ is the curvature of the curve �.
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3.4. Minimization of the Conditional Entropy

When working with two regions �in and �out one can
also use the following criterion :

HC (�in, �out)

= H (F, �in) · |�in| + H (F, �out) · |�out|. (22)

This criterion is based on a maximization of the mu-
tual information between the feature f(x) and the label
L(x) [14, 19], where L(x) maps a point x either to the
object or the background label. It corresponds to the
conditional entropy between the feature f(x) and the
label L(x).

By performing the same procedure as in the last
section we can calculate the Eulerian derivative in the
direction V of J (�) = H (F, �) |�|:

d Jr (�, V) =
∫

∂�

[
− 1 + 1

|�|
∫

�

K (f(x) − f(x̂))

q(f(x), �)
dx

+ ln q(f(x), �)

]
(V · N) ds.

This gives us the following evolution equation for
the criterion (22):

∂�(s, τ )

∂τ

=
[

− 1

|�in|
∫

�in

K (f(x) − f(x̂))

q(f(x), �in)
dx − ln q(f(x), �in)

+ 1

|�out|
∫

�out

K (f(x) − f(x̂))

q(f(x), �out)
dx + ln q(f(x), �out)

]
N.

This gives an alternative proof to the result found in
[19]. However, the framework proposed in this paper
allow us to consider any descriptor that can be writ-
ten as a function of a non parametric pdf (e.g. dis-
tance functions). Derivation can also be easily per-
formed for a kernel depending on the region � (see
Appendix B). Note that a comparison between our
method and calculus of variations has been given in
[1].

4. Segmentation of Color Images

Until now the feature(s) f(x) which can be used in our
entropy-based energy criteria have not been specified.
We can first choose f(x) to be two or more components

of the intensity for the segmentation of color homoge-
neous regions, i.e. f(x) = [I1(x), .., In(x)]T .

In these experiments we consider two components
of the intensity, i.e. f(x) = [I1(x), I2(x)]T and we use
the joint entropy between the two components I1 and
I2, H (�) = 1

|�|
∫
�

− ln q(I1(x), I2(x), �) dx. We test
our algorithm on the video sequence Erik for the face
segmentation. The Fig. 1 shows the evolution of the
curve, the histogram of the object and the Fig. 2 the
histogram of the background during the segmentation
algorithm on a frame while the Fig. 3 the evolution
of the segmented region through a sequence. These
results show the accuracy of the method for segmen-
tation of homogeneous regions using intensity-based
criterion.

5. Segmentation of Motion Vectors

We can also consider the motion vector coordi-
nates as image features: f(x) = [u, v]T . Therefore
we here consider a combination of two features and
thus the probability q represents a joint probabil-
ity and the entropy is a joint entropy, H (F, �) =

1
|�|

∫
�

− ln q(u(x), v(x), �) dx. Using such an ap-
proach, we consider not only the length of the motion
but also the motion direction as can be shown in the
following synthetical examples.

5.1. Results on Synthetic Images

In the following some segmentation examples on syn-
thetic motion fields are shown using region-based ac-
tive contours and descriptors based on the conditional
entropy. In order to incorporate not only the length
of the motion but also the motion direction in the de-
scriptors the 2-dimensional vector coordinates (u, v)
are used.

The following diagrams show only every 10th vector
of the motion fields. For the sake of clarity they have
also been lengthened by factor 8. Note that the start
point of the arrow is plotted over the point to which the
velocity vector is related to.

The first example shows a rectangle moving right-
wards on a background moving leftwards (Fig. 4(a)).
The vectors of the rectangle and the background have
the same length, so the vector length would not gives
us a discriminative feature in this case. As we take
into account the direction as well the rectangle can be
segmented correctly from the background. Figure 4
shows the segmentation result of this example.
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Figure 1. Joint evolution of the curve and its associated object’s histogram (histogram of the region inside the curve).

In the second example three rectangles of different
size and motion are placed over a moving background
(Fig. 5(a)). Figure 5 illustrates the segmentation result.
A small rectangle traversing the three different motion
fields is chosen as initial contour so it has to extend at
some locations and to shrink at other locations. Also
at some point of time it changes its topology, i.e. it has
to split. The evolution of the respective histograms is
illustrated in Fig. 6. In the left column three samples
of the background histogram and in the right column
three corresponding samples of the object histogram

are depicted. Clearly the peak at (0, 1) correspond-
ing to the background motion disappears gradually in
the object histograms whereas in the background his-
togram it remains the only peak. This shows that our
approach manages also to segment several objects with
a completely different motion provided that the back-
ground motion is homogeneous.

The last example shows an enlarging disc over a
background moving rightwards (Fig. 7(a)). Here the
motion vectors of the object point in nearly every direc-
tion. The length of the vectors is also not homogeneous
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Figure 2. Joint evolution of the curve and its associated background’s histogram (histogram of the region outside the curve).

inside the object. Nevertheless our method is able to
segment properly the disc from the background be-
cause background motion is homogeneous. Figure 7
illustrates the result.

5.2. Motion Estimation on Real Sequences

So far we have only been investigating synthetic ex-
amples of motion fields. In order to segment real world
image sequences we now have to estimate the motion

between consecutive images. To this end we calcu-
late the optical flow between consecutive pairs of im-
ages. Note that we can use any other accurate method
of motion estimation as input of our segmentation
algorithm.

5.2.1. Optical Flow. In the following an image se-
quence is denoted as I (x, y, t) where (x, y) represents
the location in an image domain � and t the time. One
way of estimating the motion in an image sequence is
to calculate the optical flow, i.e. to calculate for each
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Figure 3. Segmentation of the face in the video ‘Erik’ using color features.
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Figure 4. Moving rectangle: Segmentation.
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Figure 5. Moving rectangles: Segmentation.

pixel a motion vector (u, v)T . The basic assumption for
this calculation is that corresponding features maintain
their intensity over time. This can be expressed in the
optic flow constraint (OFC) equation:

∂ I

∂x
u + ∂ I

∂y
v + ∂ I

∂t
= 0 (23)

Solving this equation represents an ill-posed prob-
lem and requires a second constraint which ensures that
the optical flow varies smoothly in space. We search for
the optical flow (u, v) which minimizes the following

functional:

E(u, v) :=
∫

�

( (
∂ I

∂x
u + ∂ I

∂y
v + ∂ I

∂t

)2

+ α �
(|∇u|2 + |∇v|2) )

dx dy (24)

where � is an increasing differentiable function, ∇ :=
(∂x , ∂y)T the 2D nabla operator and α is a regularization
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Figure 6. Moving rectangles: Evolution of the histograms.

parameter. It satisfies necessarily the Euler equations:

0 = ∇ · (� ′(|∇u|2 + |∇v|2)∇u)

− 1

α

∂ I

∂x

(
∂ I

∂x
u + ∂ I

∂y
v + ∂ I

∂t

)
(25)

0 = ∇ · (� ′(|∇u|2 + |∇v|2)∇v)

− 1

α

∂ I

∂y

(
∂ I

∂x
u + ∂ I

∂y
v + ∂ I

∂t

)
(26)

where � ′ denotes the derivative of � and ∇ · ( a
b ) :=

∂x a+∂yb A solution to this can be obtained by calculat-

ing the steady-state of the diffusion-reaction process:

uk = ∇ · (� ′(|∇u|2 + |∇v|2)∇u)

− 1

α

∂ I

∂x

(
∂ I

∂x
u + ∂ I

∂y
v + ∂ I

∂t

)
(27)

vk = ∇ · (� ′(|∇u|2 + |∇v|2)∇v)

− 1

α

∂ I

∂y

(
∂ I

∂x
u + ∂ I

∂y
v + ∂ I

∂t

)
(28)

where k is the diffusion time and for k → ∞, the
solution (u, v) represents a minimum of E(u, v).
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Figure 7. Enlarging disc: Segmentation.

The choice of the function � influences substantially
the regularization process and therefore the results of
the motion estimation. We choose the function that has
been considered by Schnörr [29] and Weickert [32]:

�(s2) = λ2
√

1 + s2/λ2 (29)

The parameter λ is a positive constant which serves as
a contrast parameter see [32].

Figure 8. Difference of pixel intensity between In−1 and In (left) and between Icomp and In (right).

The optical flow calculation can be implemented by
an iterative approach using the Eqs. (27) and (28). This
gives the following for u and v at the iteration k + 1 at
any position:

uk+1 = uk + 
k

[
∇ · (� ′(s)∇uk)

− 1

α

∂ I

∂x

(
∂ I

∂x
uk + ∂ I

∂y
vk + ∂ I

∂t

)]
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Figure 9. Optical flow with and without camera compensation.

vk+1 = vk + 
k

[
∇ · (� ′(s)∇vk)

− 1

α

∂ I

∂y

(
∂ I

∂x
uk + ∂ I

∂y
vk + ∂ I

∂t

)]

where s = |∇uk |2 + |∇vk |2 and 
k is the step size.
We simply start with a flow field of zero-vectors and

Figure 10. Active contour evolution using the vector length.

iteratively adjust the motion vectors for every pixel of
the image until a certain convergence criterion has been
reached. The convergence criterion is usually based
on the difference of the energy functional to minimize
between two iterations.

One practical problem that arises when estimating
the optical flow is that larger movements were not
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sufficiently approximated, i.e. the algorithm gets stuck
in local minima. In fact this happens when movements
are larger than the size of the mask used for the approxi-
mation of the gradient. To overcome this a multiresolu-
tion procedure according to Mémin and Pérez [21] was
implemented. That means that optical flow calculation
is started on an image with coarser (downsampled) res-
olution I j and continued by increasing (doubling) the
resolution step by step until the size of the original im-
age I 0 ( j ranges from J to 0 where J represents the
coarsest and 0 the finest resolution). At each resolu-
tion the motion vectors of the previous step u j−1 are
projected onto the new resolution (u j ) and only the
differences du j are calculated, i.e. the existing estima-
tion is refined. The projection (subsequently denoted
T ) can be a duplication or a bilinear interpolation.

Consequently the energy functional (24) becomes
the following:

E(u, v) :=
∫

�

((∇ Ĩ j · du j + Ĩ j
t

)2

+ α�(|∇(T u j+1 + du j )|2
+ |∇(

T v j+1 + dv j
)|2)) dx dy (30)

where Ĩ j = I j (x − T u j+1, t) and Ĩ j
t = I j (x, t + 1) −

Figure 11. Segmentation result using (u, v).

I j (x − T u j+1, t).
The Multiresolution approach can also help to avoid

holes in the motion field of homogeneous zones, i.e.
where |∇ I | is low. That means motion fields of moving
objects containing homogeneous zones are better filled
while also rendering their boundaries more blurry.

Object motion in image sequences is difficult to es-
timate if the sequences come from a mobile camera.
Much better results are achieved by compensating the
camera motion, i.e. by estimating the global motion.
See Appendix (A) for details.

5.3. Results on Real Sequences

Let us now apply the active contour segmentation
method on the optical flow motion fields. The following
results are all obtained using descriptors based on the
conditional entropy (see Eq. (22)). We used two com-
petitive regions �in (object) and �out (background) in
such a way that the entropy of both regions will be mini-
mized. Moreover a contour-based descriptor is used for
regularisation to obtain smoother contours.
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The optical flow as well as the active contour are cal-
culated on two different resolutions. The features that
have been used are the vector length |u| and the vec-
tor coordinates (u, v). The feature pair of vector length
and direction did not lead to satisfying results. The es-
timation of the angle of the direction is prone to errors.

Figure 10 shows the final active contour of the ’ten-
nis player’ sequence using the motion vector length as
the segmentation feature ( f (x) = |u|). It can be re-
marked that one foot of the tennis player has not been
segmented properly. This is simply because it does not
move with respect to the two consecutive images that
have been used. Clearly, as only features that are based

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2
u -2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

v
 0

 0.2

 0.4

 0.6

 0.8

 1

p

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2
u -2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

v
 0

 0.2

 0.4

 0.6

 0.8

 1

p

-4 -3 -2 -1  0  1  2  3  4
u -4

-3
-2

-1
 0

 1
 2

 3
 4

v
 0

 0.2

 0.4

 0.6

 0.8

 1

p

-4 -3 -2 -1  0  1  2  3  4
u -4

-3
-2

-1
 0

 1
 2

 3
 4

v
 0

 0.2

 0.4

 0.6

 0.8

 1

p

-4 -3 -2 -1  0  1  2  3  4
u -4

-3
-2

-1
 0

 1
 2

 3
 4

v
 0

 0.2

 0.4

 0.6

 0.8

 1

p

-4 -3 -2 -1  0  1  2  3  4
u -4

-3
-2

-1
 0

 1
 2

 3
 4

v
 0

 0.2

 0.4

 0.6

 0.8

 1

p

Figure 12. Evolution of the histograms using (u, v).
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Figure 13. Optical flow of the ’taxi’ sequence.
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Figure 14. Segmentation results of the ‘taxi’ sequence.

on the optical flow have been used in the descriptors,
objects that don’t move are not segmented.

The irregularities in the curve are mainly due to in-
consistencies in the optical flow estimation. It would
probably be useful to apply a vectorial regularization
in order to take into account that the data are vectors
and not scalar data. Moreover the little gap between the
curve and the right border of the object is caused by
erroneous motion detection of the optical flow method
at zones that have been hidden (occlusion problem).

Figure 11 shows the final contour when using the
entropy of the motion vector coordinates (u, v) instead
of their length. Figure 12 shows the evolution of the
respective histograms. The values are quantized using
a 20 by 20 grid, however only the significant parts are
displayed for the sake of clarity. These results are sim-
ilar to those using the vector length.

Figure 14 shows the segmentation results of the
‘taxi’ sequence. Figure 13 illustrates the respective mo-
tion field. Here only taking the length of vectors does
not lead to satisfying results especially with the car at
the bottom left whereas taking (u, v) as segmentation
feature yields much better contours for the respective
objects.

6. Conclusion

In this article, we propose a method of images and
video segmentation based on the minimization of a
criterion. This criterion includes functions of images
features such as the entropy or the conditional entropy.
We relax the assumption of parametric distributions for
these images features by using a Parzen estimation.

Our first contribution is to use the methodological
approach of the shape gradient to derive the criterion.
Second, we extend the method to vectorial data. Third
we can easily take into account a kernel depending on
the region in the Parzen estimator.

Experimental results show the accuracy of the pre-
sented method both on segmentation of color images
and on segmentation of optical flow for moving objects
in video sequences.

Appendix A: Compensation of Camera Motion

Global motion estimation is often based on a paramet-
ric model. In our case this is a 6 parameter affine model
and it is estimated using two consecutive images of a
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sequence [16, 22]. The basic assumption we make is
that the camera motion is dominant in these images,
i.e. we assume that the size of the moving objects in
the sequence is not too large with respect to the back-
ground.

The apparent motion wn(x) of a point x = [x, y]T in
the 2D plane between two images In−1 and In is thus
modeled by:

wn(x) = Anx + tn =
(

an
11 an

12

an
21 an

22

)(
x
y

)
+

(
tn
1

tn
2

)
.

(31)

In order to estimate the parameters of the model the
“Block Matching” technique is applied. The principle
of this method is to partition the current image into
blocks and for each block to find the motion vector
un = [dxn, dyn]T so that it corresponds to the respec-
tive block in the preceding (or subsequent) image.

Using this estimation of movement we seek
for the 6 parameters that minimize the following
criterion:

G(An, tn) =
∑
x∈�I

ϕ(|un(x) − Anx − tn|). (32)

The function ϕ eliminates outliers mainly due to ob-
ject movement and is chosen as the estimator of Geman
and McLure [11].

Using the half-quadratic theorem [4, 11] the mini-
mization problem can be equivalently formulated as:

(An, tn) = arg min
(An ,tn )

∑
�I

wr r2 (33)

where r = |un − Anx − tn| and wr = ϕ′(r )
2r .

The objective is to estimate the 6 affine model pa-
rameters with respect to two consecutive images, In−1

and In , and then to apply the corresponding affine
transformation on image In−1. This will create a com-
pensated image Icomp in such a way that the back-
ground remains more or less fix between Icomp and
In . Figure 8 illustrates this by means of an example.
The grey level represents the difference of the pixel
intensity.

Figure 9 shows the effect of camera motion compen-
sation in context with optical flow estimation. Without
camera motion compensation it seems impossible to
segment the tennis player from the background. This
is due to the fact that the motion of homogeneous

zones like the green tennis court are not estimated
correctly.

Appendix B: Computation of the Derivative of
the pdf When the Variance of the Kernel Depends
on the Number of Pixels of the Region

Now, we rather consider the following estimator:

q(f(x), �) = 1

h1
√|�|

∫
�

K ((f(x) − f(x̂))
√

|�|)dx̂.

(34)

In this case, the domain derivative of q is the
following:

q ′
r (f(x), �, V) = 1

2|�|
∫

∂�

q(f(x), �)(V · N)ds

+ 1

h1
√|�|

∫
∂�

M(f(x), �)

− K
(

(f(x) − f(s))
√

|�|
)

(V · N)ds

where:

M(f(x), �)

=
∫

�

−(f(x) − f(x̂))

2
√|�| K ′((f(x) − f(x̂))

√
|�|)dx̂.

(35)

Proof : Let us denote:

G(�) = 1

h1
√|�|

with h1 a normalization parameter. We can easily find
that :

dGr (�, V) = 1

2 h1|�|3/2

∫
∂�

(V · N)ds.

Let us now denote:

H (f(x), �) =
∫

�

K
(

(f(x) − f(x̂))
√

|�|
)

dx̂, (36)
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we find that:

H ′
r (f(x), �, V) =

∫
�

−(f(x) − f(x̂))

2
√|�|( ∫

∂�

(V · N)ds
)

K ′
(

(f(x) − f(x̂))
√

�
)

dx̂

−
∫

∂�

K
(

(f(x) − f(s))
√

|�|
)

(V · N)ds.

This leads to:

H ′
r (f(x), �, V) =

∫
∂�

(M(f(x), �) − K ((f(x)

− f(s))
√

|�|))(V · N)ds,

where we note:

M(f(x), �) =
∫

�

−(f(x) − f(x̂))

2
√|�|

× K ′((f(x) − f(x̂))
√

|�|)dx̂. (37)

Let us now compute the shape derivative of q , we
have:

q ′
r (f(x), �, V) = H ′

r (F, �, V) G(�)

+ H (F), �) dGr (�, V). (38)

And so :

q ′
r (f(x), �, V) = 1

2|�|
∫

∂�

q(f(x), �)(V · N)ds

+ 1

h1
√|�|

∫
∂�

M(f(x), �)

− K ((f(x) − f(s))
√

|�|) (V · N)ds.
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