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Abstract. This paper concerns with nonuniform sampling and interpolation methods combined with variational
models for the solution of a generalized color image inpainting problem and the restoration of digital signals. In
particular, we discuss the problem of reconstructing a digital signal/image from very few, sparse, and complete
information and from a substantially incomplete information, which will be assumed as the result of a nonlinear
distortion. Differently from well known inpainting applications for the recovery of gray images, the proposed
techniques apply to color images embedding blanks where only gray level information is given. As a typical and
inspiring example, we illustrate the concrete problem of the color restoration of a destroyed art fresco from its
few known fragments and some gray picture taken prior to the damage. Numerical implementations are included
together with several examples and numerical results to illustrate the proposed method. The numerical experience
suggests furthermore that a particular system of coupled Hamilton-Jacobi equations is well-posed.

Keywords: signal and image dynamic processing, inpainting, art restoration, variational calculus, nonuniform
sampling

1. Introduction

Imagine an important and huge art fresco, maybe dated
to 1450, right at the very beginning of the Italian Re-
naissance, and imagine that one day a dramatic and
catastrophic event destroyed it into fragments, maybe
during the Second World War. It would be a very hard
problem to puzzle up this fragmented opera, especially
if the original dimensions were large and the number
of fragments were of several thousands.

On 11th March 1944, a group of bombs launched
from an Allied airplane hit the famous Italian Eremi-
tani’s Church in Padua, destroying it together with the
inestimable frescoes by Andrea Mantegna et al. con-
tained in the Ovetari Chapel. People picked up and
collected what was remaining of one of the most im-
portant operas of the Italian Renaissance, saving the
fragments in some improvised boxes constructed with

the wood of the sits of the Church. Several attempts
to restore these fragments by traditional methods have
been done in the last 60 years, without much suc-
cess. Details on “the state of the art” can be found in
the booklet [21]. Since 1998, the author has been in-
volved in the fascinating attempt to recall to life these
frescoes, by using mathematical methods and com-
puter based techniques. Recently a fast, robust, and
efficient pattern recognition algorithm has been devel-
oped [20, 22] in order to detect the right position and
orientation of the fragments, by means of comparisons
with an old gray level image of the fresco prior to the
damage.1 This method showed to be very effective and,
for example, Fig. 1 illustrates some detected fragments
positioned on their original place. Unfortunately the
surface covered by the original fragments is only 77
m2, while the original area was of several hundreds.
This means that what we can currently reconstruct is
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Figure 1. Fragmented A. Mantegna’s frescoes (1452) by a bomb-
ing in the Second World War. Computer based reconstruction by
using efficient pattern matching techniques.

just a fraction of what was this inestimable artwork.
In particular, it is not known what can be the original
color of those missing parts. There exist some color
images of parts of the frescoes, but it is already proved
that such colors are not faithful at all and the quality of
such pictures is very low. So, natural questions raise:
Is it possible to estimate mathematically what can be
the original colors of the frescoes by using the known
fragments’ information? And, how faithful this estima-
tion is? In this paper we want to discuss these questions
and to illustrate some possible solutions. Clearly, this
problem can be reformulated in very different ways
for different other situations. Therefore, the ideas de-
veloped in this context can be put into more general
frames as we will illustrate in the following.

The reconstruction of a signal from sparse and
nonuniform sampling data is a well known problem in
information theory [7, 8]. Mathematical methods and
numerical algorithms have been developed to compute
missing parts of signals from few and sparse known
sampling information and we refer, for example, to
classical works of Feichtinger et al. [15–17] and Al-
droubi/Gröchenig [1] for major details. These meth-
ods are essentially based on an interpolation of the
signal/image by means of suitable series expansions
of irregularly shifted (translated) basic functions or,
in its discrete version [5, 16, 17], by series expan-
sion of complex exponentials. Therefore, we may say
that relevant mathematical methods and concepts use-
ful in image restoration problems are interpolation and
Fourier/numerical harmonic analysis techniques. Im-
age interpolation can be called, with a more artistic

synonym, inpainting. In the last years, image process-
ing problems attracted the attention of the mathemat-
ical community, and several PDE and variational cal-
culus techniques have been discovered to play also
relevant roles to model situations encountered in this
context. We refer the reader to the nice book [4] for a
quite comprehensive description of this field. One of
the first effective contributions where variational meth-
ods and PDE were used specifically for the inpainting
problem is due to Beltramio, Sapiro et al. [6]. Several
consequent papers came out and we refer to [11] and
[3] as some of the most recent, interesting, and relevant
for our purposes.

All these important contributions are essentially ad-
dressed to solve the problem of guessing or learning
some relatively small missing part of a signal/image by
using the information of the relevant known part, and
they are based on deterministic methods. The problem
of learning from examples is a corner stone in infor-
mation theory and artificial intelligence. Very recently
a probability theory of what can be learned from a
relatively large distribution of data according to a (un-
known) probability measure has been formalized in
the beautiful contribution by Cucker and Smale [12].
Inspired by this work, subsequent papers, for example
[9], illustrate methods to construct estimators of the
probabilistically best solutions of the learning problem.

The situation just exemplified by the fresco problem
is slightly different.We should reconstruct a large miss-
ing part, from a relatively small complete information
and from a partial knowledge of the missing part itself.
In fact, see for example Fig. 1, what is known of our
fresco is at least the gray level of the missing part. This
additional information should be exploited to recover
larger parts with respect to what would be possible with
the classical interpolation and PDE inpainting methods
only. Moreover, one should expect that the additional
information can increase the probability that good es-
timators have to reconstruct the signal/image, in the
spirit of Cucker and Smale ideas.

In this paper we want to show how interpolation
and deterministic PDE inpainting methods can be sep-
arately adapted to work properly in this different sit-
uation, and how they can indeed interplay together to
achieve nice results in concrete cases. Our aim here is
not to give an exhaustive description of such technique,
but mainly to introduce some new framework and mod-
els. Subsequent papers will detail theoretical and nu-
merical properties of the methods here introduced.

The paper is then organized as follows. Section
2 describes the general framework of the problem
and its particular formulation in the case of the color
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reconstruction of digital images from few complete
samples and a large information on the gray levels.
Section 3 is devoted to illustrate a simple solution
to the problem, based on interpolation techniques
and nonuniform sampling methods. In Section 4 we
discuss variational models and evolutionary PDE to
solve the problem for 1D signals and for digital im-
ages. We conclude with the formulation of a system of
coupled Hamilton-Jacobi equations to model the color
inpainting problem, its numerical solution, and results.

2. Scope of the Problems

The nonuniform sampling methods to recover a band-
limited function u from an irregular set of sampling
points S := {u(x j )} j∈J described in [5, 15, 16, 17]
are based on the assumption that the sampling points
are dense enough with respect to the band-width of
the function to be restored. This is exactly in the
same spirit as the more classical and well-known
Whittaker-Shannon theorem. This is intuitively clear
in the sense that if an image is rich of details and the
missing part is quite large with respect to the known
part, it should be impossible to recover correctly its
original version. It is matter of the information that
one has in fact at disposal.

We are interested here to discuss and to treat a rela-
tively different inverse problem.

Problem 1. Consider a signal u : � → R
m,� ⊆ R

n ,
and a submanifold M ⊂ R

m , of dimension d ≤ m
endowed with a C1 nonlinear map L : R

m → M.
We call the couple (M,L), a C1-nonlinear projection.
We assume to have a set of sampling nodes N :=
{x j } j∈J ⊂ � and a subset I ⊆ J such that C :=
{u(xi )}i∈I , subset of R

m , and D := {L(u(x j ))} j∈J \I ,
subset of M, are known sets of values. The problem is
then: How to reconstruct u from the sampling values
C ∪ D.

Of course, the nonlinear distortion L is assumed as a
datum of the problem, and in concrete cases one should
have estimated it a priori. This is the typical situation
where learning from examples [9, 12] is necessary,
the nature of the real source of the distortion being
unknown in general. In the following we will discuss
briefly this estimation problem in the case of the color-
gray conversion for images, exemplifying the process
with the art fresco restoration (Fig. 4).

Examples 1

1. Clearly if the function L|ran(u) is injective, then it
is invertible and one can construct a new set of

sampling values S := C ∪ L−1
|ran(u)D. If S is dense

enough and if u is a suitable band-limited function,
then clearly it is possible to recover the function by
the known nonuniform sampling methods.

2. If 0 ∈ M and L : R
m → M has vanishing range

ran(L|ran(u)) = {0}, then the problem reduces again
just to the nonuniform sampling problem where
S := C.

The interesting cases are when, for example, the
function L is not injective on ran(u), dim(M) < m,
and the density of the points {xi }i∈I is not enough to
ensure the perfect reconstruction of the function u. In
relevant cases, even if the information contained in
C is not sufficient to recover the function, maybe the
additional information D can be exploited somehow.

This very general framework fits with many possible
applications raising in concrete cases: For example, the
recovery of a transmitted signal affected by a stationary
(nonlinear) distortion, or, as in the case mentioned at
the begining of our paper, the restoration of colors of a
fresco from its fragments and some gray picture taken
prior to the damage.

A digital image is modeled as a function u : � ⊂
R

2 → R
3
+, so that, for each “point” x of the image, one

associates the 3D vector u(x) = (r (x), g(x), b(x)) ∈
R

3
+ of the color divided between the different channels

red, green, and blue. In particular a digitalization of
the image u corresponds to its sampling on a regular
lattice εZ

2, where ε > 0 is the sampling step. Let us
again write u : N → R

3
+, u(x) = (r (x), g(x), b(x)),

for x ∈ N := � ∩ εZ
2. Usually the gray level of an

image can be described as a submanifold M ⊂ R
3 of

dimension 1 parametrized as M := Mτ = {τ (x) :
x = L(r, g, b) := L(αr + βg + γ b), (r, g, b) ∈ R

3
+},

where α, β, γ > 0, α + β + γ = 1, L : R+ → R+ is
a non-negative increasing function, and τ : R+ → R

3
+

is a section such that L ◦ τ = idR+ . The function L
is assumed smooth, nonlinear, and normally noncon-
vex and nonconcave. Therefore, in our terminology,
(M,L) is a nonlinear projection, where L(r, g, b) :=
L(αr +βg +γ b). For example, Figs. 1 and 2 illustrate
a typical situation where this model applies and Fig. 4
describes the typical shape of an L function, which is
here estimated by fitting a distribution of data from real
color fragments.

In fact, in this case, there is an area �\D of the
domain � ⊂ R

2 of the image, where some fragments
with colors are placed and complete information sam-
ples C are available, and an other area D where only a
gray level information D is known.
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Figure 2. The original template picture is illustrated on the left.
Few color fragments are illustrated by darker disks on the right,
where the gray level of the missing part is known. For the reader
convenience, the gray level brightness has been exalted in order to
distinguish it from the color part.

So our abstract Problem 1 can be reformulated as
follows: When is it possible to reconstruct the col-
ors from the known information of the colors of the
fragments C and from the gray level information D of
the missing part? There is not a unique answer to this
question and different solutions are described depend-
ing on the methods chosen to solve the problem. Here
we want to illustrate two techniques: The first based on
interpolation methods and the second on PDE and vari-
ational calculus. Next we discuss how these two differ-
ent strategies should be combined in order to achieve
possibly better results.

3. Nonuniform Sampling Methods
and Interpolation Techniques

On the one hand if the sampling set C is quite spread
and dense, then clearly one might apply a nonuniform
sampling method, maybe those described in [1, 17], or
any other efficient interpolation method to recover the
colors of the image. In this situation the information D
would not turn out to be of any use. On the other hand, if
the sampling set C is relatively small and concentrated,
then the previous technique will fail or, at least, will
give a very inaccurate result and therefore also the
information D should be taken into account and maybe
exploited.

Thus, we propose here a very simple scheme based
on interpolation techniques that in the practice gives
acceptable results. Assume to have at our disposal the
following procedures EXTEND, THRS, and ESTIM:

EXTEND[F] → G: given an incomplete color image F
the procedure EXTEND computes a new color image
G which coincides with F in the known color region
of F and it extends the colors of F out of this region.

Figure 3. Voronoi decomposition of the domain where the nodes
are the known complete color pixels.

THRS[F, F0, L, ε] → G: given a color image F, a gray
image F0, a color-gray conversion function L, and a
threshold ε > 0 the procedure THRS computes a new
image G which coincides with F only in those points x
such that |L(F(x)) − F0(x)| ≤ ε, and it is 0 elsewhere.

ESTIM[F, F0] → {L, σ 2} : given a color image F and
a gray image F0 the procedure ESTIM estimates the
color-gray conversion functionL and the total variance
of the ordinates σ 2 with respect to the corresponding
L function as described in Fig. 4.

At this moment we do not care of the accuracy the
EXTEND procedure can achieve, nor its possible con-
crete implementation. With these procedures at hand
we define the following reconstruction algorithm:

Algorithm 1. RESTORE[F, F0] → G:
G = 0;
While G 
= F do

G = F;
{L, σ 2} = ESTIM[F, F0];
ε = 	(σ 2);
F = EXTEND[F];
F = THRS[F, F0, L, ε];

enddo

The procedure RESTORE[F, F0] → G computes
an image G which is the color reconstruction of the
image F from the samples C, being known also the
gray level information D of the missing part F0. The
threshold ε > 0 used at each iteration is a function of
the variance σ 2, since we cannot expect to be more pre-
cise in our reconstruction than the intrinsic uncertainty
of the model describing the color-gray conversion.

In order to understand how Algorithm 1 in fact
works, let us illustrate here a simple implementation
of a procedure EXTEND. Clearly in more concrete
applications one should use more sophisticated, accu-
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Figure 4. Estimation of the nonlinear curve L from a distribu-
tion of points with coordinates given by the linear combination
αr + βg + γ b of the (r, g, b) color fragments (abscissa) and by
the corresponding underlying gray level of the original photographs
dated to 1920 (ordinate). The sensitivity parameters α, β, γ to the
different frequencies of red, green, and blue are chosen in order to
minimize the total variance of the ordinates σ 2.

rate, and robust methods [1, 16, 17]. Given the color
samples C of our image F one splits the domain by us-
ing a Voronoi decomposition, where the nodes for the
decomposition are {xi }i∈I , see Fig. 3. One realizes a
template procedure EXTEND just extending the color
of any sample in C in the corresponding region of the
Voronoi decomposition whose it is part, see Fig. 5. At
this point we apply the procedure THRS just to keep
the best possible extension which is compatible with
the known gray level, up to the prescribed threshold.
From this new extended set of color samples we iterate
the process, constructing a new Voronoi decomposi-
tion, realizing the extension, and then applying again

the thresholding and so on, see Figs. 6 and 7. Dur-
ing the iterative scheme, a dynamical learning process
of the model describing the color-gray conversion is
realized.

It is not difficult to see that Algorithm 1 converges
after a finite number of iterations, and that it will stop
having computed some possible extension G of the
image F. This G might be considered the best possible
extension of the samples C compatible with the known
gray level samples D. This method depends strongly
on the way the procedure EXTEND is implemented
and it exploits the information given by C and D in an
independent way. It is clear that one cannot reconstruct
with this particular implementation any color which is
not already included in the initial sample set C, and not
connected geometrically with one of the initial sample
color pixels by a sequence of Voronoi decompositions.
Therefore, this method is highly local (i.e., no global
properties of the image are in fact used) and it will
fail whenever we will try to reconstruct colors which
cannot depend somehow from those already known
and given, and not connected geometrically with one
of them. For this reason we want here to discuss also
other possible inpainting techniques based on global
properties of the images.

4. PDE and Variational Methods

The modern techniques of processing digital signals
are mainly and traditionally based on developing and

Figure 5. The color of the pixel is extended in the direction of the corresponding Voronoi patch. The constraint check of the projection onto
the sub-manifold up to a threshold allows to keep only the color information which is compatible with the known gray information.

Figure 6. From the new deduced information, one applies again a Voronoi domain decomposition and iterates the process.
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Figure 7. Successive iterations of the interpolation process. The final image is illustrated on the right. Observe that neither the nose nor the
eyes of the character can be reconstructed.

applying Fourier and harmonic analysis concepts, e.g.,
wavelets [28], time-frequency/Gabor analysis [18, 19,
23], sampling theory [7, 8], and on stochastic and
Bayesian modeling [32]. Only recently signal process-
ing has become a very attractive field for applications
of PDE and variational methods. We refer the reader
to the nice introduction [4] for a presentation of this
emerging field, for major details, and an extended lit-
erature.

In this section we want first to show how Problem
1 can be modeled for 1D signals by using suitable en-
ergy functionals whose minima correspond to possible
solutions.

This will help the reader to understand in a simple
and intuitive 1D case how the variational technique
can work. Moreover, such model can be useful for the
restoration, e.g., of audio and speech signals. In par-
ticular, we illustrate a numerical scheme which can be
applied in the cases where the solution exhibits enough
regularity, as it is indeed for audio and speech signals.
Next we propose a non-standard technique based on
time-frequency/Gabor analysis to regularize problems
involving even non-smooth solutions. This method will
require to move from a 1D problem to an equivalent
2D problem. This will introduce us to the treatment of
2D digital signals and to the formulation of a varia-
tional scheme for the solution of Problem 1 for digital
images.

Let us assume � ⊂ R, λ, µ > 0, and L ∈ C1(R).
We look for solutions u ∈ W 1,p(�), for p > 1, of the
following

Problem 2.

arg inf

{
F(u) = µ

∫
�\D

|u(x) − ū(x)|2dx

+ λ

∫
D

|L(u(x)) − ū(x)|2dx

+
∫

�

|∇u(x)|pdx, u ∈ W 1,p(�)

}
,

(1)

where ū ∈ L2(�) is the given observed signal, which
is presumed to be correct on �\D and distorted by the
(nonlinear) function L on D, see Figs. 8 and 9.

To minimize the functional F means essentially to
find a function u ∈ W 1,p(�) that approximates with ū
on �\D,L(u) ≈ ū on D, and it minimizes some p-
norm of its variation. In particular, for p = 2 we would
look for solutions with small curvature. Let us fix p =
2 in the following for simplicity. By the Tonelli’s direct
method of the calculus of variations [29, Chapter 2] [4,
Section 2.1] [13] it is well-known that Problem 2 has a
solution u ∈ W 1,2(�), and it solves the Euler-Lagrange
equation
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Figure 8. As a nonlinear distortion we consider for example
L(x) = 1.8(x + 1)2(x − 1

2 )2.
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Figure 9. The continuous curve represents the original signal,
while the dashed curve is the distorted signal by the nonlinear map-
ping.
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Problem 3.

0 = −�u + 2µ(u − ū)1�\D

+ 2λ(L(u) − ū)
dL
dx

(u)1D := E (L, u) (2)

IfL is convex then the solution of Problem 2 is unique,
and Problem 3 is equivalent to Problem 2. In the case
L is not convex then we can anyway look for solutions
of Problem 2 among those of Problem 3.

A way to compute a solution of Problem 3 is the
steepest descent method: The solution u : �×R+ → R

of the evolutionary equation

∂u(x, t)

∂t
= −E(L, u(x, t)), u(·, 0) = u0 (3)

tends to make vanish E(L, u(x, t)) for t → +∞.
Therefore one can look for solutions of Problem 2
given by u(x) := limt→∞u(x, t).
Remark: This method is as more effective as u0, the
initial guess, is closer to the real solution u. As we will
discuss later, this is the crucial and important motiva-
tion to combine interpolation methods, for achieving
the best first guess of the solution, and then variational
techniques to complete the reconstruction. In fact the
result shown in Fig. 10 is impossible by using an inter-
polation (or irregular sampling) technique only, since
the size of the gap (missing part) to be reconstructed is
too large with respect to the band-width of the signal,
and the use of the variational method might fail if the
first guess u0 is not close enough to the solution. For
example, in Fig. 11 we show the evolution of u(x, t) in
reconstructing the missing part of the signal in Fig. 9,
from a first linear interpolation guess. Therefore, we
expect that in concrete and practical problems only
the interlacing of these two different tools can give
efficient results.

The steepest descent method illustrated in (3) can
be easily discretized and it can work on samples of the

signal by means, e.g., of an explicit Euler scheme. Let
us denote �2(v)(i) := v(i − 1) − 2v(i) + v(i + 1), for
any vector v and for i = 1, . . . , N − 2, and define the
procedure

E[L, v, i] → �2(v)(i) − 2µ(v(i) − ū(i))1�\D

−2λ(L(v(i))−ū(i))
dL
dx

(v(i))1D, i =1, . . . , N −2.

Algorithm 2. STEEP DESC[u0, ε, L,�t]:
v = v̄ := u0;
While max {E[L, v, i]|, i = 1, . . . , N − 2} > ε, do

For i = 1,. . ., N−2 do
v(i) = v̄(i) + �t(E[L, v̄, i]);

enddo
v̄ = v;

enddo
u = v.

Therefore a solution of our original Problem 1 can
be modeled as the result of the procedure STEEP
DESC[u0, ε,L,�t] which, given an observed set of
N samples u0 = ū := C ∪ D, where C are presumed
correct and D are presumed distorted by the function
L, computes approximate evolutions of u0 by discrete
time steps �t. Once Algorithm 2 has corrected the dis-
torted samples, one can use any interpolation method
to reconstruct the solution u of Problem 1.

A similar approach can be realized also in the case
the solution is not smooth, for example u ∈ BV (�). In
general the discretization method to compute a mini-
mizing solution u ∈ BV (�) of the Problem 1 is more
sophisticated and usually it is necessary to construct an
associated regularized problem which has minimum
approximating u. We refer, for example, to [31] [4,
Section 3.2] for details on techniques used in this situ-
ation.
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Figure 10. The steepest descent method is applied to recover the original signal from the partial information on the missing part and the
original information on the known part. In this nice example the reconstruction of the signal is rather good.
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Figure 11. Iterations of the discretized steepest descent method.

In the next section we want to present a non-standard
regularization method based on time-frequency and
harmonic analysis tools.

4.1. A Non-Standard Regularization Method:
Time-Frequency Analysis

For a function f ∈ L2(R) and 0 
= g ∈ C∞
c (R), ‖g‖2 =

1, the transformation

Vg( f )(x, ω) :=
∫

R

f (t)e−2π iωt g(t − x)dt, (4)

is called the short time Fourier transform (or windowed
Fourier transform or simply Gabor transform) of the
function f . Since g is a smooth function, even if f
is not smooth, Vg( f ) is smooth indeed. Moreover, the
map Vg : L2(R2) → L2(R2) is a unitary isomorphism
into its range and left-invertible by its adjoint

V ∗
g (F) =

∫
R2

F(x, ω)e2π iωt g(t − x)dxdω. (5)

Therefore, one has the following reproducing formula

f (t) = V ∗
g ◦ Vg( f )(t)

=
∫

R2
Vg( f )(x, ω)e2π iωt g(t − x)dxdω. (6)

Moreover �:= Vg ◦ V ∗
g is the orthogonal projection

from L2(R2) onto ran(Vg). The Gabor transform gives
simultaneous information on the time-frequency con-
tent of a given signal. In particular, it tells us which are
the "instantaneous" frequencies appearing in a 1D sig-
nal at a given time, somehow as the score is describing
a music, telling which are the notes to be played at a
given time.

Because of the invertibility of Vg , to analyze or
synthetize a signal in the time, or to do that in the time-
frequency plane are equivalent operations. For exam-
ple, in Fig. 12 we have visualized the Gabor transform
of the iterations in Fig. 11. This suggests that Problem
2 can be reformulated in the time-frequency plane. In
fact, as already mentioned, it is known that u ∈ L2(�)
implies Vg(u) ∈ L2((� + supp(g)) × R) ∩ C∞. The
treatment of the problem as defined in the time-
frequency plane is non-standard, especially because
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Figure 12. Iterations of the discretization of the steepest descent method in the time-frequency plane

the domain itself is unbounded. On the other hand, the
range of Vg is always constituted by smooth functions
and this of course is a way to regularize the problem.

Problem 4.

arg inf{F(U )

= µ

∫
(�g\Dg)×R

|U (x, ω)−Vg(ū)(x, ω)|2dxdω

+λ

∫
D×R

|LT F (U )(x, ω)−Vg(ū)(x, ω)|2dxdω

+
∫

�g×R

|∇U |2dxdω, U ∈W 1,2(�g ×R)}, (7)

where �g = � + supp(g), Dg = D + supp(g),
LT F (U ) := Vg(L(V ∗

g (U ))), and ū ∈ L2(�) is the given
observed signal, which is presumed to be correct on
�\D and distorted by the (nonlinear) function L on
D.

Again, one can correctly compute the associated
Euler-Lagrange equations and to formulate the corre-
sponding steepest descent method, in the same way as
we have done in the 1D case. Since similar definitions
and properties of the Gabor transform can be formu-
lated for discrete signals one can easily discretize the
steepest descent method and define a suitable numeri-
cal scheme. Once a minimizing U has been computed,

one can synthetize the corresponding restored audio
signal in the time domain by the formula

u =
∫

R2
U (x, ω)e2π iωt g(t − x)dxdω.

Therefore, in this application, an image restoration in-
duces the recovery of an audio signal. We refer the
reader to [18, 19] for major details on numerical Ga-
bor analysis in the treatment of digital signals. The
analysis of Problem 4 and its connections with corre-
sponding properties in the time domain for audio and
speech signal restoration will be investigated in suc-
cessive contributions.

This section has been useful to us also to move our
attention from the 1D situation back to a 2D problem,
which was the inspiration of this paper. In the next
section we want to generalize what we have discussed
for scalar signals on the real line to vector valued sig-
nals on 2D domains. In particular, it is well known that
the Laplacian appearing in the Euler-Lagrange equa-
tions associated to Problem 4 has very strong isotropic
smoothing properties and does not preserve edges.
While this could not be a relevant problem for 2D
functions in the range of Vg , since they are smooth and
affected by the Heisenberg uncertainty principle which
makes them intrinsically "blurred", it is not suitable for
the reconstruction of 2D functions representing natural
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images, which are usually characterized by the pres-
ence of edges and curves.

4.2. Variational Models for Image Inpainting

There are several and different variational methods for
solving the so called image inpainting problem, i.e.,
the reconstruction of a small missing part of a natu-
ral image by using the information of the remaining
relevant known part. Each of them offers some nice
properties and effects together with some drawbacks.
In this section we want to propose a modification of
what we consider the most simple and well known ap-
proach, in order to have a reasonable numerical solver
for our original problem of the reconstruction of col-
ors. First, let us describe in the following three of the
models discussed recently in the literature:

1. The Beltramio-Sapiro-Caselles-Ballester model.
Let L(u) be a smoothness measure of the image
u, for example, a second order differential operator
given by

L(u) := f (∇u,∇ ⊗ ∇u). (8)

Typical choice for L is the Laplacian L(u) = �u =
trace(∇ ⊗∇u). The reconstruction model proposed
by Beltramio, Sapiro et al. [6] is based on the evo-
lutionary equation

∂u((x, y), t)

∂t
= ∇⊥u((x, y), t) · ∇L(u(x, y), t),

(9)

where ∇⊥u = (− ∂u((x,y),t)
∂y ,

∂u((x,y),t)
∂x ) = |∇u|T,

point to the tangent T. This means that, at the
equilibrium, one has ∂L(u)

∂T = 0. Thus, in terms of
boundary smoothness data, the inpainting process
evolves transporting the information along the ex-
tended isophotes (i.e., level curves) into the region
to be reconstructed. This method has a nice numeri-
cal implementation in [6] which allowed the authors
to show several examples where it works nicely.
However, since there is not a clear information
connecting different isophotes, the evolution might
create nonexistent T-junctions inside the inpainting
region and smoothing operations are necessary to
connect properly such discontinuities. Moreover, a
rigorous theoretical description of such equation is
still a matter of investigation.

2. The Chan and Shen non-linear diffusion model.
This model is more in the spirit of the energy meth-

ods presented in the 1D model and it offers several
advantages. In particular, the mathematics related
to such model is more developed and efficient nu-
merical implementations have been recently well
formulated. It is based on the following minimiza-
tion problem [11]

arginf

{
F(u)=

∫
�\D

|u(x)−ū(x)|2dx

+
∫

�

φ(|∇u(x)|)dx, u ∈W 1,p(�)

}
,

(10)

where ū ∈ L2(�) is the given observed image,
which is presumed to be correct on �\D and D is
the region to be reconstructed.
It is known that (see for example [31] [4, Propo-
sition 3.3.4, Section 3.3.1]) a minimizing solution
solves in particular the following Euler-Lagrange
equation

0 = −∇ ·
(

φ′(|∇u|)
|∇u| ∇u

)
+ 2(u(x) − ū(x))1�\D,

(11)

endowed with suitable boundary conditions, where
∇u is the approximate derivative of u.
On the one hand, such an equation and the cor-
responding steepest descent method are normally
used for the numerical solution of the energy prob-
lem as reasonable practical methods. On the other
hand, this procedure is not completely mathemat-
ically correct and more sophisticated techniques
should be implemented and we refer the reader to
[31] [4, Section 3.2.3–4] for more details. Such
techniques are based again on relaxation and 	-
convergence methods. It has been also proposed by
Chan and Shen [11] to modify (11) in the following
way

0 = −|∇u|∇ ·
(

φ′(|∇u|)
|∇u| ∇u

)
+ 2(u(x) − ū(x))1�\D, (12)

The steepest descent method in the inpainting re-
gion D, for the choice φ(t) = t , becomes

∂u

∂t
= |∇u|∇ ·

( ∇u

|∇u|
)

, (13)
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which describes the well-known (morphological in-
variant) mean curvature motion, see, e.g., [2, 10,
11, 14]. Efficient numerical implementations of
such an evolutionary equation have been recently
formulated for example in [27, 30]. Such model
tends to approximate the isophotes in the inpaint-
ing region by straight lines and, in the following,
we will show that one can modify it to avoid this
problem.

3. The Ambrosio and Masnou model. A method to ex-
tend in a smooth way the isophotes from T-junctions
at the border of the inpainting region has been re-
cently proposed and studied by Ambrosio and Mas-
nou [3] based on the following minimization prob-
lem

arg inf

{
F(u) =

∫
D̄

|∇u|
(

1 +
∣∣∣∣∇ · ∇u

|∇u|
∣∣∣∣

p)

× dx, u ∈ W 1,p(�)

}
, (14)

where D̃ is a slightly larger domain containing the
inpainting region D. In fact, in their paper [3] they
investigate the corresponding relaxed functional F̄
with respect to the L1 topology and the existence
of BV (�) minimizers of F̄ . In the case of n =
2 and p > 1 Chan and Shen derived the (fourth
order) Euler-Lagrange equation corresponding to
such energy problem.

From what we have just illustrated above, there are
several nice intuitions and models based on varia-
tional methods in order to solve the inpainting problem,
where deep mathematics and numerical problems are
involved and still rather unexplored. In our understand-
ing, presently the mathematically most well supported
and the most promising in terms of efficient numerical
schemes and realizations is the Chan-Shen approach.
We want now to borrow their approach in order to dis-
cuss and to model our color reconstruction problem.
We assume then that u is a RGB image.

Problem 5.

arg inf

{
F(u) = µ

∫
�\D

|u(x) − ū(x)|2dx

+λ

∫
D

|L(u(x))− ū(x)|2dx+
3∑

k=1

∫
�

φ(|∇uk(x)|)dx,

u ∈ W 1,p(�, R
3
+)

}
, (15)

where ū is the given observed image, which is pre-
sumed to be colored on �\D and just gray level on
D where the transformation from RGB to gray level is
given by the (nonlinear) function L.

Since we are dealing with natural images one should
relax the functional and look for BV minimizers.
This strategy can be handled in a similar way as it
is done, for example, in [31] [4, Theorems 3.2.1-2]
and it will be discussed elsewhere. However it is
true that a BV minimizing solution of the relaxed
formulation of Problem 5 is anyway solving the
following Euler-Lagrange equations

0=−∇.

(
φ′(|∇uk |)

|∇uk | ∇uk

)
+2µ(uk − ūk)1�\D

+2λ(L(u)−ū)
∂L
∂xk

(u)1D :=Ek(L, u), k =1, 2, 3,

(16)

where u1 := r, u2 := g, u3 := b are the RGB com-
ponents of the image u, and ∇uk is the approximate
derivative. One can consequently formulate the three
evolutionary steepest descent equations by

∂uk((x, y), t)

∂t
= −Ek(L, u((x, y), t)),

u(·, 0) = u0, k = 1, 2, 3, (17)

to make vanish Ek(L, u((x, y), t)), k = 1, 2, 3 for
t → +∞. Therefore one can look for solutions of
Problem 5 given by u(x, y) := limt→∞u((x, y), t).
Observe that, in particular, at the equilibrium and on
the inpainting region D one has

0 = −∇ ·
(

φ′(|∇uk |)
|∇uk | ∇uk

)
+ 2λ(L(u) − ū)

∂L
∂xk

(u).

This means that the extension of the isophotes will not
be in general just straight lines, as we have already seen
also in the 1D model (Fig. 10) where the reconstructed
part is not just a linear interpolation as one could expect
using a mean curvature motion evolutionary equation.

It is important to observe that (16) and (17) are sys-
tems of coupled second order Hamilton-Jacobi equa-
tions and the analysis of the solutions constitutes it-
self an open problem of independent interest that will
be discussed elsewhere. Some results on existence and
uniqueness of viscosity solutions for systems of steady
nonlinear second order PDE have been proposed by
Koike et al. [24–26]. Unfortunately those results apply
under quasi-monotonicity conditions that here cannot
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Figure 13. Successive iterations of the nonlinear diffusion process. Starting from Fig. 2 the color is diffused extending the isophotes in the
inpainting region, following the tracks of the underlying gray level. Emblematic is the reconstruction of the color on the nose of the character,
where the diffusion progresses along it, but not through its boundary, the isophotes having there almost vanishing curvature. The last image
on the bottom-right is the result of 300 iterations of the outer loop of Algorithm 3. Here we have chosen �t = 0.1, λ = µ = 10, and
L(r, g, b) = 1

3 (r + b + g). The initial information content does not appear sufficient for a correct color reconstruction and only a limited part
of the image can be partially restored.

be verified. However, one can easily construct certain
solutions of (16) and (17) in particular cases as follows.

Let us assume that a gray level image v can be iden-
tified with an RGB image τ ◦ v, by means of a section
τ : R+ → R

3
+ such that L ◦ τ = id. For example, if

L(r, g, b) = αr + βg + γ b, with α + β + γ = 1 then
one can choose τ (x) = (x, x, x). Suppose that u is
an image with piecewise linear/straight isophotes, col-
ored on �\D and gray on D. Therefore we can always
assume that u = (u1, u2, u3) = u1|�\D + τ (u1|D) is a
vector valued function. For the choice φ(t) = t , it is
not difficult to show that such a function u is almost
everywhere a stationary solution of (17), i.e., for the
choice u0 = ū := u there will be no evolution, and u
is solution of (16).

4.3. The Numerical Implementation

The steepest descent method illustrated in (17) can be
discretized and it can work on samples of the image by
means, e.g., of an explicit Euler scheme. We assume

here φ(t) = t and we modify again the velocity of the
evolution as in (12) by multiplication of the first term
with the gradient. This produces an evolution by mean
curvature of the isophotes of the image.

For a color digital image v = (v1, v2, v3) and for
i = 1, . . . , N −2, j = 1, . . . , M −2, let us denote the
discrete curvature at (i, j) by

κ(vk)(i, j) :=
∑

(m,n)∈N (i, j)

2(vk(m, n) − vk(i, j))

|∇vk(i, j)| + |∇vk(m, n)|
(18)

where N (i, j) denotes the 4-neighborhood of
the pixel position (i, j), and |∇u(i, j)| =√

(δc
x u(i, j))2 + (δc

yu(i, j))2, δc
x , δ

c
y being the central

differences of order 1 in the direction x and y respec-
tively. Then define the procedure

Ek[L, v, i, j] → |∇vk(i, j)|κ(vk)(i, j) − 2µ(vk(i, j)

− ūk(i, j))1�\D − 2λ(L(v(i, j))
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Figure 14. Successive iterations of the interpolation-inpainting process. The first three pictures on the top are the result of iterations of
Algorithm 1, and the successive are generated by Algorithm 3. Again we have chosen here �t = 0.1, λ = µ = 10, andL(r, g, b) = 1

3 (r +b+g).

− ū(i, j))
dL
dxk

(v(i, j))1D, i = 1, . . . , N − 2,

j = 1, . . . , M − 2, k = 1, 2, 3.

Algorithm 3. STEEP DESC 2D[u0, ε,L,�t]:
v := v̄ := u0;
While max{|E[L, v, i, j]|, i = 1, . . . , N − 2,

j = 1, . . . , M − 2} > ε do
For i = 1, . . . , N − 2 do

For j = 1, . . . , M − 2 do
For k = 1, . . . , 3 do

vk(i, j) = v̄k(i, j) + �t(Ek[L, v̄, i, j]);
enddo

enddo
enddo
v̄ = v;

enddo
u = v.

Therefore a solution of our original Problem 1
can be modeled as the result of the procedure
STEEP DESC 2D[u0, ε,L,�t] which, given an ob-
served set of N ×M samples u0 = ū := C∪D, where C
are presumed colored and D are presumed gray, com-
putes approximate evolutions of u0 by discrete time

steps �t. Of course the explicit Euler scheme is not
the most efficient, and implicit variants can be easily
derived, see, e.g., [27]. However, we expect that, due to
the morphological properties of natural images, even
in the case of implicit schemes the time steps cannot
in practice be chosen arbitrarily large.

Let us show now some applications of Algorithm 3
for the color inpainting problem in Figs. 13 and 14.

5. Conclusion: The Interpolation-Inpainting
Method

Our reconstruction method is based on an inpainting
model which exploits additional information given by
a known nonlinear projection of the solution onto a
manifold of lower dimension. The numerical solution
can be implemented by a suitable discretization of
evolutionary equations which are assumed to start
from an initial guess of the solution. We have shown
that in concrete problems where the inpainting region
is large with respect to the known complete data, only
a combination of suitable interpolation and variational
methods can work properly. Since the interpolation
methods can be computationally expensive (for
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Figure 15. Successive iterations of the interpolation-inpainting process. The first three pictures on the top are the result of iterations of
Algorithm 1, and the successive are generated by Algorithm 3. Again we have chosen here �t = 0.1, λ = µ = 10, andL(r, g, b) = 1

3 (r +b+g).

example the construction of a Voronoi decomposition
is indeed rather expensive) one can combine a few
initial iterations of Algorithm 1, in order to extend as
much as possible the knowledge about the color-gray
conversion and a possible good initial guess of the
solution, with successive fast iterations of Algorithm
3 to complete the reconstruction, see Figs. 14 and 15.
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Nota on Color Pictures
This paper introduces methods to recover colors in digital images.
Therefore the gray level printout of the manuscript does not allow
to appreciate fully the quality of the techniques illustrated and the
author recommends the interested reader to access the electronic
version with color pictures available online.

Note

1. The gray images of the fresco are dated to 1920.
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