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Abstract. An approach to optimal object segmentation in the geodesic active contour framework is presented with
application to automated image segmentation. The new segmentation scheme seeks the geodesic active contour of
globally minimal energy under the sole restriction that it contains a specified internal point pint. This internal point
selects the object of interest and may be used as the only input parameter to yield a highly automated segmentation
scheme. The image to be segmented is represented as a Riemannian space S with an associated metric induced by
the image. The metric is an isotropic and decreasing function of the local image gradient at each point in the image,
encoding the local homogeneity of image features. Optimal segmentations are then the closed geodesics which
partition the object from the background with minimal similarity across the partitioning. An efficient algorithm is
presented for the computation of globally optimal segmentations and applied to cell microscopy, x-ray, magnetic
resonance and cDNA microarray images.
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1. Introduction

Segmentation is a fundamental problem in image anal-
ysis. Given a planar image R

2 → R
n the objective

of segmentation is to partition the image into regions
that are homogeneous according to some measure,
e.g. in object segmentation, the object itself and the
background. While many image segmentation tech-
niques have been proposed, a consistent series of ap-
proaches have focused on segmentation using edge in-
tegration by energy minimisation. In this series a recent
notable development is the Geodesic Active Contour
(GAC) [10]. In this paper we propose a new algorithm
for globally optimal segmentation in planar images
based on the GAC energy model.

1.1. Previous Work

Active contours were initially introduced in the form
of snakes by Kass et al. [21], and have been widely
studied [12, 23]. Kass’ classic snake approach simu-
lated the motion of a series of point masses connected
by springs and thin plates, with passive forces draw-
ing them toward image features such as edges. This
Lagrangian view of curves as splines was replaced by
an Eulerian view of curves as level sets in Osher and
Sethian’s work on front propagation [26], demonstrat-
ing topological independence and greater stability. The
Osher-Sethian level set method was later refined into
the more efficient narrow band scheme presented by
Adalsteinsson and Sethian [1]. Level sets have been
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applied to active contours for image segmentation by
Caselles et al. [9] and Malladi et al. [25]. The Geodesic
Active Contour (GAC) was put forward by Caselles
et al. [10] as a simplification of the snake energy model
with fewer parameters and less sensitivity to the ini-
tial contour. They also demonstrated the equivalence
between GAC and Riemannian geodesics. The seg-
mentation technique presented in this paper is based
on geodesics in a Riemannian space with a metric in-
duced by the image content. Here simple closed curves
of minimal energy are used to partition a specific object
from the remainder of the image.

Typically in Active Contours a variational frame-
work is used to obtain locally minimal contours by
steepest descent of an energy functional. Caselles
et al. [10] used a direct first-order time scheme for
the level set partial differential equation. The timestep
in this scheme was dictated by stability requirements.
Goldenberg et al. [20] adapted the Additive Operator
Splitting scheme of Weickert et al. [31] to obtain an un-
conditionally stable update for the narrow band level
set method, greatly increasing the speed of the segmen-
tation. However variational descent methods are prone
to becoming stuck in local minima caused by noise or
irrelevant objects. Methods have also been proposed
to reduce the attraction of local minima by modify-
ing the curve flow, such as pressure forces [14], dis-
tance forces [15], and Gradient Vector Flow (GVF)
snakes [33]. Although these heuristic methods offer
improved robustness they remain sensitive to initiali-
sation.

A different approach championed by Cohen and
Kimmel [17] is to directly formulate segmentation as
a search for minimal geodesics in a Riemannian space.
The search for open geodesics may be very efficiently
performed using Sethian’s Fast Marching Method [27],
an optimal-time Eikonal equation solver which grew
out of work on narrow band level set methods.
Cohen and Kimmel applied the fast marching method
to obtain minimal paths for GAC, however their formu-
lation only locates the boundary of an object as the open
geodesic connecting two user-specified points. Cohen
later extended their work [16] to detecting open and
closed contours connecting a number of seed points in
an image. In this paper we take a similar approach, us-
ing the fast marching method combined with a branch
and bound search for connected endpoints to obtain the
minimum closed geodesic containing an internal point.

A related area of research formulates object seg-
mentation as the search for a path of minimal en-

ergy across a polar transform of the object. Numerous
approaches have been researched. Denzler and Nie-
mann [18] presented a gradient descent approach to po-
lar active contours for real-time object tracking. Along
with Chen et al. [13] they also give a dynamic program-
ming algorithm to obtain optimal open curves across
a radial trellis. Additionally, heuristics have been sug-
gested to obtain ‘near-optimal’ closed curves. Bamford
and Lovell [7] developed an approximate two-pass dy-
namic programming scheme to ensure continuity of
endpoints. The first pass produced a number of candi-
date endpoints, the best of which was used to compute a
closed curve in the second pass. Sun and Pallottino [30]
and Appleton and Sun [5] have recently addressed the
computation of minimal closed paths in the framework
of Circular Shortest Paths. Two main algorithms for
CSPs have emerged: the Multiple Backtracking Al-
gorithm/Image Patching Algorithm (MBTA/IPA) hy-
brid was proposed in [30] for the fast computation
of near-optimal closed paths, while the Branch and
Bound CSP (BBCSP) algorithm was proposed in [5]
for the somewhat slower computation of optimal closed
paths. Unfortunately in most cases these polar seg-
mentations are restricted to point-convex objects, lim-
iting their application to only the simplest of object
shapes.

1.2. Finding Contours of Globally Minimum Energy

The difficulty in obtaining an optimal segmentation
contour with respect to a given metric is threefold.
Firstly, the number of contours which must be con-
sidered grows exponentially with the image resolu-
tion. Secondly, while obtaining an optimal path be-
tween two given points is relatively straightforward
it is difficult to obtain optimal closed contours. Fi-
nally, in the translation to a discrete grid many meth-
ods suffer a metrication error resulting in anisotropic
segmentations.

In our approach, we represent the image to be seg-
mented as the space R

2 with an associated metric. Typ-
ically the metric is an increasing scalar function of the
local image gradient at each point in the image. Thus
the metric encodes the local homogeneity of the im-
age. The object to be segmented is specified by a single
internal point which must be contained inside the seg-
mentation contour. Following Jordan, a simple close
curve containing the internal point will then partition
the object from the remainder of the image.
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Our method produces the simple closed curve of
minimal energy or length with respect to the metric,
under the restriction that the geodesic must contain a
specified internal point. We show that this restriction
is a natural requirement to obtain a non-trivial global
minimum and is also a natural alternative to various ad-
hoc “balloon” forces proposed by other authors, forces
that prevent contours from collapsing upon themselves.

Our method is not restricted to convex or point-
convex curves. Concave curves are represented in a
spiral space identical to the Riemann surface for the
logarithm relation. Furthermore our method avoids var-
ious metrication errors due to the image grid, and be-
cause of its simple initialization (a single point) and
lack of parameters (only the metric itself decides the
final result) it is highly suitable for automated applica-
tions. Thanks to a combination of highly efficient PDE
solving and discrete algorithms, our method is itself
fast and efficient.

The rest of the paper is structured as follows. In
Section 2 we review the basic theory of Geodesic
Active Contours, the computation of geodesics by the
Fast Marching Method, and Circular Shortest Paths.
Section 3 presents the motivation for the proposed
method. This motivation inspires the simple approach
to segmentation given in this section. In Section 4 a
more sophisticated approach to segmentation under the
GAC energy model is presented, dealing with the issues
of efficiency and optimality. Section 5 discusses the
choice of metric and the backtracking scheme to obtain
geodesics on a discrete grid. A new metric is proposed
and related to existing segmentation schemes utilising
polar transforms. Section 7 presents results comparing
the new method to the classic Geodesic Active Con-
tour framework. Section 8 demonstrates the properties
of the proposed approach. Section 9 concludes.

2. Theoretical Background

In this section we review in more detail geodesic active
contours, computing geodesics via the fast marching
method, and circular shortest paths, which provide the
background to our proposed method.

2.1. Geodesic Active Contours

Geodesic active contours were introduced by Caselles
et al. [10, 11] for segmentation in 2D and 3D images.
In the planar case they are contours which minimise

the integral

E[C] =
∫

C
g(C(s)) ds (1)

E[C] will be referred to as the energy of the contour C :
[0, L[C]] → R

2, with L[C] the Euclidean length of C .
In object segmentation g : R

2 → R
+ is a decreasing

function of edge strength, typically of the form

g = 1

1 + |∇Gσ � I |p
+ ε (2)

where p = 1 or 2. ε > 0 is an arc-length penalty term,
as if we let g = g̃ + ε we obtain

E(C) =
∫

C
g̃(C(s))ds + εL(C)

Cohen and Kimmel [17] demonstrated the role ε

plays in the regularisation of the contour C . The Euler-
Lagrange of Eq. (1) is

gκ = 〈∇g,
−→
N 〉

hence

|κ| ≤ |∇ g̃|
ε

with g ≥ ε and κ the curvature of C . This places a
bound on the maximum curvature of the contour in-
versely proportional to ε.

2.2. Fast Marching and Geodesics

The length E of a path P in a Riemannian space with
heterogeneous metric tensor γ : R

n → R
n × R

n is
given by

E[P] =
∫

P

√
γ (P(s))i j dxi dx j

where repeated indices imply summation.
For an isotropic metric g this simplifies to

E[P] =
∫

P
g(P(s))ds (3)

So we observe that the geodesic active contour en-
ergy (Eq. (1)) is equivalent to the length of a curve in a
Riemannian space with an isotropic and heterogeneous
metric.
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In order to solve the minimisation problem posed by
geodesic active contours between two points p0 and p,
we compute the surface of minimal action U0 from p0.
At each point p of the image plane, U0(p) corresponds
to the minimal energy integrated along a path that starts
at p0 and ends at p.

U0(p) = inf
P(L)=p

{E[P]}

Cohen and Kimmel [17] observed that it may be
described by the Eikonal equation

|∇U0| = g, U0(p0) = 0 (4)

They demonstrated that this surface may be effi-
ciently computed using the Fast Marching Method of
Sethian [27]. The Fast Marching Method is an opti-
mal time algorithm for solving Eikonal equations on a
discrete grid, computing the points of U0 in increasing
order of value. It bears some similarity to Dijkstra’s
algorithm [19] for obtaining shortest paths in graphs,
however it does not display the metrication error inher-
ent to graph algorithms on a discrete grid.

2.3. Circular Shortest Paths

Circular Shortest Paths (CSPs) were introduced by Sun
and Pallottino [29, 30] with application to polar object
segmentation, crack detection in borehole cores from
geophysics and panoramic stereo matching. The dis-
cussion here summarises [5].

Consider a discrete image c : Zu × Zv → R, where
c(i, j) is the cost of traversing the pixel at position
(i, j).

Let G be the directed, vertex-weighted graph with
vertex set V = Zu × Zv . With the notation a =
(a1, a2) ∈ V we define the edge set

E = {(a, b) | a, b ∈ V, a2 = b2 − 1, |a1 − b1| ≤ 1}

Such a graph G is known as a stable acyclic sequen-
tial layered graph [29], or simply as a trellis [7].

A shortest path across such a trellis is defined as a
sequence of connected vertices

P = (a j | a j ∈ V, j ∈ Z
v, (a j , a j+1) ∈ E)

which minimises the path length

L(P) =
v∑

j=1

c(a j )

over all admissible paths P . Such a path may be effi-
ciently computed using dynamic programming.

However circular shortest paths have the added con-
straint that |a1

1 −a1
v | ≤ 1. This forces the two endpoints

a1, av of the path to meet when considering the trellis
to be periodically extended. This global type of con-
straint cannot be embedded in the framework of stan-
dard shortest path algorithms whose efficiency hinges
upon a local solution for each vertex.

Sun and Pallottino [29, 30] propose three fast ap-
proximate solutions and a fourth exact but slow one,
which they called the Multiple Search Algorithm
(MSA). The MSA solves the CSP problem in O(u2v)
time by solving u independent shortest path problems,
one for each source vertex in the first layer.

Appleton and Sun [5] proposed a more efficient
search using a branch and bound formulation of the
problem. They use a generalisation of an observation
of Sun and Pallottino: for a given set of starting ver-
tices the length of the shortest path across the trellis
from those vertices is a lower bound for the length of
all circular paths passing through those vertices. This
inspires a divide and conquer approach to locating the
circular shortest path. A binary search tree is imposed
on the set of potential source vertices in the first layer
of the trellis. The root of the binary tree is the entire first
layer L1. Each node is then equi-partitioned by its chil-
dren into two contiguous sets of source vertices. This
partitioning is applied recursively down the tree to the
leaves, which are all u single vertices of L1. Each node
has value equal to the shortest path across the trellis
from the corresponding starting set. Thus each node’s
value is a lower bound for the corresponding subtree,
and hence a lower bound for the length of the circular
paths passing through its source set. A best-first branch
and bound search is applied to the binary tree, evaluat-
ing only those nodes which may contain the CSP. Dy-
namic programming is used to evaluate each subtree’s
lower bound, with a priority queue guiding the search.
The algorithm halts when a node whose shortest path
is circular has the highest priority.

This branch and bound approach was shown to ob-
tain the globally optimal circular path across the trel-
lis and was demonstrated to reduce the order of the
search to O(u1.6v) on random cost functions, arguably
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a pathological class due to the lack of periodicity and
structure common to applications of CSPs.

We restate the branch and bound CSP algorithm here:

Branch and Bound Circular Shortest Path

1. Initialisation

• Initialise the Root search node as a non-circular
path of arbitrary length

• Enqueue(Root)

2. Priority-First Search: While (true)

• Let n = Dequeue(), where n is a node of the
binary tree
If n is circular:

– Return n
– Halt

For each child χ of n:

– Compute the shortest path across the trellis
for the given source vertices specified by χ

– Store in χ whether the shortest path was cir-
cular

– Enqueue(χ ) with priority equal to the negative
shortest path length

3. Motivation

The purpose of object segmentation is to separate an
object from the remainder of the image. Approaches
to object segmentation typically utilise the dissimilar-
ity of features between the object and the background.
Geodesic active contours seek segmentations which
minimise the homogeneity of features along the bound-
ary between the object and the background.

Variational methods are often used to evolve con-
tours toward a local energy minimum. Since the first
application of level sets to image segmentation by
Caselles et al. [9] a great deal of effort has been put
into improving the speed of this evolution. Malladi
et al. [25] used the narrow band scheme for greater
efficiency, and more recently Goldenberg et al. [20]
used an additive operator splitting scheme to further
increase the speed of segmentation by geodesic active
contours. However these approaches require an initial
contour and have the potential to become trapped in
local minima unrelated to the object of interest.

The segmentation algorithm presented here is moti-
vated by the desire to avoid these spurious local min-
ima. The output of a global minimisation scheme is
the best outcome possible within the solution frame-
work, so poor segmentations become apparent as a poor
choice of metric or energy functional. The indepen-
dence to initial conditions improves the robustness to
noise and image pathologies as well as automating the
segmentation.

The global minimum of Eq. (1) is only well defined
for positive metrics g > 0. Indeed if a metric is nega-
tive in some region then a closed curve of negative en-
ergy may be constructed. Repeated loops about such a
curve will produce arbitrarily low energy, and hence no
global minimum exists. Regions of zero metric permit
arbitrarily convoluted contours such as Peano curves
at zero cost, hence we require that g be positive every-
where in order that a meaningful global minimum exist.
However for g > 0 the global minimum of Eq. (1) is an
empty curve with zero energy, so approaches to con-
structing globally minimal closed curves in the existing
geodesic active contour framework will fail.

In the following we present a new framework in
which we may obtain a non-trivial closed curve of glob-
ally minimal energy. We restrict the set of admissible
contours to those closed curves which contain a spec-
ified interior point, which is used to select the object
of interest. Without this restriction the curve will be
empty so we consider this to be a natural restriction.
Observe that the contour of globally minimal energy
under this restriction will always be a simple closed
curve—as any curve will have positive energy, a con-
tour composed of multiple closed curves would have
greater energy than any of its constituent simple closed
curves.

3.1. Geodesic Active Contours About a Point

Let � be the set of all simple closed curves containing
pint. For simplicity in the following we place the origin
of the image axes at pint = (0, 0). We wish to find the
curve of minimal energy in �, the set of closed curves
containing the origin. Existing methods for comput-
ing (globally) minimal geodesics typically rely on the
computation of a minimal open curve between two end-
points. The constructions presented in this section con-
vert the problem of computing closed geodesics to that
of computing open geodesics. We first present a simpli-
fied version of our technique, demonstrating the broad
approach without introducing excessive complexity.
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Figure 1. A minimal closed geodesic in the image plane R
2 passing through pcut and the corresponding open geodesic in S′ between pstart and

pend.

We identify the two shortcomings of this simple ap-
proach before presenting a more sophisticated con-
struction which overcomes both.

Consider a Riemannian space S′, formed from the
image plane R

2 by cutting infinitesimally beneath the
non-negative x-axis:

∀x ≥ 0, lim
ε→0−

(x, ε) 
= (x, 0)

i.e. the two sides of the cut are disconnected. Figure 1
depicts this space. The mappings µ′ : R

2 → S′ and
µ′−1 : S′ → R

2 may now be introduced:

µ′(x, y) = (x, y) ∈ S′, µ′−1(x, y) = (x, y) ∈ R
2

As R
2 and S′ have differing topologies this mapping

is discontinuous along the cut. We identify the metric
g in the two spaces, so that the metric at any point in
S′ is the same as for the image plane R

2:

g(µ′(p)) = g(p)

A closed curve C : [0, L] → R
2 containing the ori-

gin must pass through the positive x-axis at least once.
In this simple approach we consider the restricted set
of curves �′ ⊂ � which pass through the cut exactly
once. Let pcut be the unique point of intersection be-
tween C and the positive x-axis. Then C ′ = µ′(C) is
the equivalent open curve in S′ with endpoints pstart

and pend on either side of the cut. For completeness we
define the virtual endpoint

pend = lim
ε→0

µ′(C(L − ε))

The endpoints pstart and pend are identified as pcut un-
der the mapping µ′ back to R

2. In this simple construc-

tion we obtain the restricted minimal curve Cmin =
arg inf{E[C]| C ∈ �′}.

For a single pcut we define the surface of minimal
action U : S′ → R

+:

U (p)= inf{E[C ′]|C ′ ⊂ S′, C ′(0)=pstart, C ′(L) = p}

Following Cohen and Kimmel [17] we observe that
U may be described as the viscosity solution to the
following Eikonal equation:

|∇U | = g, U (pstart) = 0

Given U the minimal geodesic C ′ connecting pstart

and pend may be described as a gradient descent path:

∂C ′

∂s
= − ∇U

|∇U | , C ′(L) = pend

The corresponding geodesic C |pcut = µ′−1(C ′) is then
the minimal closed geodesic in �′ passing through pcut.
The minimal closed geodesic in �′ is then the least of
these restricted geodesics.

This simple construction yields the minimal curve
from the set �′ of closed curves which contain the
point pint and pass through the x-axis only once. The
restriction that the curve pass through the cut exactly
once is described here as ‘cut-convexity’, an unfortu-
nate artifact of the simple framework presented in this
section. The exhaustive search through all cut points for
the minimal closed path is potentially quite inefficient,
in parallel with the Multiple Search Algorithm [30].
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4. General Algorithm

4.1. Representing Cut-Concave Contours

Previously we cut the image plane R
2 along the pos-

itive x-axis to obtain the space S′, such that paths
from one side of the cut to the other were forced
to travel around the internal point pint. In this space
we were able to represent any simple closed curve
containing pint which passed through the cut exactly
once. Now we wish to extend our class of admissible
curves to include cut-concave curves, those which pass
through the cut multiple times. To compute such curves
we must allow the curve to pass through the positive
x-axis, while still being able to differentiate between a
path that has passed around pint and one which has not.

Here we construct a space S in which we may repre-
sent any simple closed curve containing pint as a path.
To do so we augment the space S′ such that the informa-
tion about whether a simple closed curve contains pint

is embedded into the space itself. Consider the space
S = S′ × Z, where S′ is the image plane R

2 cut along
the x-axis as before and Z corresponds to the signed
number of times that the path has passed anti-clockwise
around the origin. We connect each side of the cut in
each plane S′ to the upper and lower planes to form a he-
lical surface, creating a space identical to the Riemann
surface of the natural logarithm relation [24]. Thus any
admissible closed curve in R

2 corresponds to a path
on the helical surface S with its endpoints exactly one
layer apart.

The space S and the corresponding representation
of a closed curve as a path are depicted in Fig. 2. Note

Figure 2. The helical representation of a concave curve. (a) Two layers of the helical surface S. A path equivalent to a cut-concave closed curve
has been overlayed. (b) The projection of S to the image plane R

2.

that the perceived slope of S in this figure is solely for
viewing and does not affect the metric g.

There are many equivalent ways to represent an ad-
missible closed curve C in the image plane R as an
open path in S. Without loss of generality we require
that the path begin along the cut at level zero and end
at the corresponding point one layer above (Fig. 2). In
the case of a curve that passes through the cut multi-
ple times, we select the unique starting point such that
the curve lies in the non-negative half-space S′ × Z

+.
Open paths in S satisfying these criteria are described
as admissible in the following. A proof of the existence
and uniqueness of this choice of starting point is given
in the Appendix. It follows that this representation in-
duces a one-to-one correspondence between the set of
admissible closed curves in R

2 and the set of admissible
open paths in S.

From an admissible open path in S we may construct
the corresponding closed curve in R

2 by the projection
ν : S → R

2:

ν(x, y, z) = (x, y) (5)

4.2. Obtaining Cut-Concave Contours

By searching for the minimum admissible open path in
S we may obtain the corresponding minimum admissi-
ble closed curve in R

2. For a given pcut the minimum ad-
missible open path in S may be found on a discrete grid
using the fast marching method. Let pstart = (p1

cut, 0, 0)
and pend = (p1

cut, 0, 1) be the coordinates of the two dis-
crete endpoints of the geodesic. Set U (pstart) = 0 and
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compute the surface of minimal action on S, halting
when it reaches pend. U (pend) is then the energy of the
corresponding geodesic active contour in R

2, with the
geodesic extracted by gradient descent of U from pend

before being projected back onto R
2 by the mapping ν.

Only the points in the non-negative half-space S′ ×Z
+

need to be computed due to the earlier choice of pstart.
For boundary conditions, set

U (x ≥ 0, 0, 0) =
{

0 x = p1
start

∞ otherwise

Observe that the choice of space S ensures that curves
may pass through the cut any number of times before
reaching pend.

4.3. Efficient Search for the Cut Point

The exhaustive search over all possible cut points
pcut proposed earlier is inefficient. Here we adapt the
Branch and Bound Circular Shortest Path (BBCSP) al-
gorithm [5] described earlier to efficiently search the
set of cut points, obtaining the simple closed curve of
globally minimal integral. If efficiency is preferred over
exactness, the MBTA/IPA algorithm [30] can be used
instead to obtain near-optimal geodesic active contours
in log-linear time.

We impose a binary search tree on the discrete set
of cut points lying in the image, denoted P root

cut . Each
node in the binary tree corresponds to a subset of the
cut points in the image. Nodes are equi-partitioned by
their children into two contiguous halves, down to the
leaves of the tree which are all single-pixel nodes. For
each node of the binary tree, Pcut is a set of potential
cut points pcut, with Pstart and Pend the corresponding
set of discrete endpoints in S. The minimal geodesic
is simply the shortest path between these two sets of
endpoints Pstart and Pend. This tree allows us to consider
a large number of possible cut points simultaneously,
efficiently determining the cut point which gives the
minimal closed geodesic.

For any node of the binary tree, the minimal (open)
geodesic connecting Pstart and Pend is a lower bound on
all closed geodesics passing through that node’s cut
set Pcut. This geodesic and its length may be com-
puted using the fast marching method. Active nodes
are stored in a priority queue for efficient access to the
minimum. The branch and bound search proceeds by
progressively splitting the minimal node to search its
children. The search halts when the minimal geodesic
for the node with lowest bound is closed.

4.4. General Algorithm

Globally Optimal Geodesic Active Contours

1. Initialisation

• Initialise the Root search node as an open
geodesic of arbitrary length

• Enqueue(Root)

2. Priority-First Search: (Infinite loop)

• Let n = Dequeue(), where n is a node of the binary
tree
If n has been flagged as closed:

– Return the minimal closed geodesic corre-
sponding to n

– Halt

• Compute the surface of minimal action U in the
space S for the cut-set of node n

– Halt the computation early when at least one
element of each child’s P ′

end has been evaluated

• Locate the end of the geodesic: pend =
arg inf{U (pend) | pend ∈ Pend}

• Obtain the minimal geodesic Cmin for node n by
gradient descent of U from pend to pstart

For each child χ of n:

• Partition Pcut of n to give the subset P ′
cut of χ

• Assign to χ a lower bound inf{U (pend) | pend ∈
P ′

end}
• Flag χ ’s minimal geodesic as closed if pstart and

pend are connected in the discrete grid
• Enqueue(χ ) with priority equal to its negative

lower bound

4.5. Optimality

Here we prove the optimality of the general algorithm
given in this paper. Lemma 1 establishes the correct-
ness of using the energy of the minimal geodesic be-
tween two sets of endpoints as a lower bound for the set
of closed geodesics passing through those endpoints.
Lemma 2 proves the optimality of the closed geodesics
constructed above.

Define the set of admissible curves with respect to
a cut set Pcut as the set of all simple curves containing
pint with both endpoints in the cut set Pcut.
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Lemma 1. Let P ′
cut ⊆ Pcut be two cut sets and let C ′

and C denote their minimal admissible curves respec-
tively. Then E[C] ≤ E[C ′].

Proof: Let �(Pcut) be the set of admissible curves
with respect to Pcut and define �(P ′

cut) likewise. Then
as P ′

cut ⊆ Pcut we have �(P ′
cut) ⊆ �(Pcut), and so

inf E(�(Pcut)) ≤ inf E(�(P ′
cut)). Hence the energy of

the minimal admissible curve passing through Pcut is
a lower bound for the energy of all admissible curves
through P ′

cut.

Corollary 1. Observe that if Pcut is a single point
then �(Pcut) is the set of all simple closed curves pass-
ing through Pcut. Hence by Lemma 1 the energy of the
minimal admissible curve through Pcut is a lower bound
on all closed curves through Pcut.

Lemma 2. The general algorithm presented above
obtains the globally minimal closed curve containing
pint.

Proof: Observe that the cut sets of the search nodes
in the queue partition the cut Pcut. By the corollary of
Lemma 1 the minimum lower bound of the nodes in
the priority queue is a lower bound on the energy of
the globally minimal closed curve containing pint. So
if the minimal curve of the node with lowest bound
is closed then this closed curve is the globally mini-
mal closed geodesic. As this is the halting criteria our
algorithm obtains the simple closed curve of minimal
energy containing pint.

5. Image Segmentation Based on Globally
Optimal Geodesic Active Contours

In this section we discuss the choice of metric for image
segmentation and the backtracking scheme to obtain
geodesics. A new metric is introduced and related to
existing research on polar object segmentation. The nu-
merical problems of computing geodesics on a discrete
grid are also investigated.

5.1. Metrics

By introducing an optimal segmentation scheme we
have removed the dependence upon initial conditions
of geodesic active contours. The segmentation is there-
fore determined solely by the placement of the internal
point pint and the choice of metric. Here we introduce

an alteration to the metric commonly used in GAC
Eq. (2), the inclusion of a weighting term inversely
proportional to the radius r from pint

g′ = 1

r

(
1

1 + |∇Gσ � I |p
+ ε

)
(6)

i.e. g′ = g
r . The reasons for the inclusion of this term

are quite natural. Firstly, without this term a trivial seg-
mentation may be found in the continuous limit. For a
smooth and bounded metric g a sufficiently small circle
C containing pint will have energy

E[C] = lim
r→0

∮
C

g(C(s)) ds

= lim
r→0

g(pint)L(C) = lim
r→0

g(pint)2πr = 0

Thus the energy of this contour approaches zero as
its size approaches zero. This situation is analogous to
the problem of the global minimum of Eq. (1) being an
empty curve. However, with the introduction of the 1

r
term such a small circle C will instead have non-zero
energy:

E[C] = lim
r→0

∮
C

g′(C(s)) ds

= lim
r→0

g(pint)

r
2πr = 2πg(pint)

The introduction of the 1
r term also introduces scale

invariance to the energy functional. A problem in early
work on active contours was the attraction of curves
toward the global minimum of zero energy, causing
snakes to shrink when placed in a homogeneous region.
While many heuristic methods have been proposed to
avoid this and other undesirable minima [14, 15, 33],
the introduction of the 1

r term removes this problem by
ensuring that small contours are not preferred per se
over large contours.

The 1
r term may also be related to segmentation of

the polar transform of an object, as previously inves-
tigated by Denzler and Niemann [18]. One choice of
energy functional for polar segmentation expressed as
a continuous integral is of the form [7]:

E[C] =
∫

C
g(C(r, θ )) dθ (7)

As ds2 = dr2 + r2dθ2 and dr is omitted in Eq. (7),
it may equivalently be written by a projection of ds
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onto
−→
θ :

E[C] =
∫

C

g(C(s))

r
〈ds,

−→
θ 〉

Note the close similarity to Eq. (6).

5.2. Backtracking Methods

Once the surface of minimal action U has been com-
puted the minimal geodesics may be obtained as the
gradient descent paths of U . In the continuous the-
ory the only local minimum of U is the starting set,
so gradient descent paths are guaranteed to converge
to this set. Unfortunately the implementation on a dis-
crete grid is problematic. Many existing methods suffer
from inaccuracy due to grid bias or stability problems,
due to the introduction of false minima in the inter-
polation of U or the creation of vortices in the inter-
polation of ∇U . Here we consider previous schemes
and present a simple approach which is both stable and
isotropic.

Cohen and Kimmel [17] present two approaches.
The first of these is to view the minimal geodesics be-
tween two points p0 and p1 as the set of points pg that
satisfy

U0(pg) + U1(pg) = inf
p∈R2

{U0(p) + U1(p)}

where U0 and U1 are the minimal action surfaces to p0

and p1 respectively. As this approach is applied to dis-
crete data the function U0 + U1 is instead thresholded
with a value larger than its infimum in order that the
resulting path be connected. This produces a fat path
which must then be either thinned or refined by curve
evolution.

Their second, simpler approach is a back propaga-
tion procedure implemented by network descent of the
surface of minimal action. The tracking point is only
allowed to move in a 4-connected or 8-connected grid,
jumping to the neighbour of minimal action at each
step. The resulting gradient descent scheme is uncondi-
tionally stable as the discrete surface of minimal action
computed using a first-order Fast Marching Method
has no local minima except for the starting set. Unfor-
tunately it is anisotropic due to the metrication error of
the gradient used in the descent, producing incorrect
contours even in the continuous limit.

Sethian [28] proposed a second order improved
Euler’s method to integrate the geodesic for global

first order accuracy. However to interpolate gradi-
ents at continuous points from a discrete grid he
suggests using a bilinear interpolation of ∇U . This
interpolation scheme is inconsistent with the minimi-
sation framework as it causes the descent at a point
to depend upon the gradient at higher values of U .
In practice the authors have found this to also pro-
duce vortices in the interpolated gradient field, oc-
casionally trapping the gradient descent in endless
loops.

Kimmel [22] recommends computing the gradient
descent path on a cubic surface interpolated from the
values of U on discrete mesh points. However this
scheme can create false local minima in the interpo-
lated minimal action surface, again trapping the gradi-
ent descent process.

Here we propose a scheme for rectilinear grids which
overcomes these stability and metrication problems.
We bilinearly interpolate the surface U and analytically
determine the gradients at continuous points. Without
loss of generality let the grid step h = 1. Let [Ui j ]22

be the values of the computed surface U on the cor-
ners of the grid square in which the continuous point
lies:

[Ui j ]22 =
[

U (�x�, �y�) U (�x�, �y�)

U (�x�, �y�) U (�x�, �y�)

]
(8)

and thus define the bilinear interpolation scheme

U (x, y) = Ui j Pi (x − �x�)P j (y − �y�),

P(s) = [1 − s, s] (9)

As earlier, repeated indices imply summation.
The gradient ∇U in the interior of grid squares is

simply

∇U (x, y) =
[

Ui j
∂ Pi

∂x
(x − �x�)P j (y − �y�),

Ui j Pi (x − �x�)
∂ P j

∂y
(y − �y�)

]
(10)

The gradient on grid lines and grid points may be de-
fined using one-sided directional derivatives. The one-
sided directional derivative of U (�x) in the direction of
the non-zero vector �θ is defined by

∇�θU (�x) ≡ lim
ε→0+

U (�x + ε�θ ) − U (�x)

ε|�θ |
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For simplicity in the following we define ∇�0U = 0.
We then wish to define ∇−U at any point as

∇−U ≡ �θ∇�θU, �θ = arg min
|�θ |=1

{∇�θU }

For the interpolation scheme of Eq. (9) this may be
derived separably in each dimension using a simple
switching scheme. Define

∇−U = [U−
x , U−

y ]

with

U−
x̂ =

{
λ∇�θU, λ = arg min

λ∈R

{∇λx̂U } x ∈ Z

∇U · x̂ otherwise
.

where x̂ = [1, 0]T . U−
y is defined analogously. Observe

that where U (x, y) is smooth ∇−U = ∇U .
Bilinear interpolation of the surface from the values

at discrete grid points introduces no new local extrema.
Begin by considering the function U (x, y) in the inte-
rior of a grid square. U (x, y) is a second order poly-
nomial in this region so we may analyse its Hessian
∇2U :

det

(
∂2U
∂x2

∂2U
∂x∂y

∂2U
∂y∂x

∂2U
∂y2

)
= −

(
∂2U

∂x∂y

)2

≤ 0

where ∂2U
∂x2 = ∂2U

∂y2 = 0 due to the bilinearity of the
interpolation scheme. As all higher derivatives are zero
this contravenes the requirement for the existence of an
extremum.

Now consider the values of U along a line connecting
two neighbouring grid points. Without loss of gener-
ality consider the case of two grid points (x ′, y) and
(x ′ + 1, y). Along this line U is the linear function
U (x ′ + λ, y) = [U (x ′, y) U (x ′ + 1, y)][1 − λ λ]T

for λ ∈ [0, 1]. Then ∂2U
∂x2 and all higher derivatives are

zero, contradicting the requirement for the existence of
a local extremum.

Finally consider a grid point �x ∈ Z
2 which is

not a discrete extremum, in the sense that it has two
4-connected neighbours �x1, �x2 with U ( �x1) < U (�x) <

U ( �x2). Then we may consider the one-sided direc-
tional derivatives in the directions �θ1 = �x1 − �x
and �θ2 = �x2 − �x . We observe from Eq. (9) that
∇θ1U = U ( �x1) − U (�x) < 0 and ∇θ2U = U ( �x2) −
U (�x) > 0, and hence that U (�x) is not a local
extremum.

At saddle points in the interior of grid squares,
∇−U = �0 while det (∇2U ) < 0. The descent at these
points follows the eigenvector of the Hessian ∇2U with
negative eigenvalue.

This gradient interpolation scheme is simple to im-
plement. Contour tracking is performed using a second
order improved Euler’s method for global first order
accuracy. The resulting contours demonstrate that this
formulation is isotropic.

6. Complexity Analysis

Here we analyse the complexity of the algorithm pre-
sented in Section 4 following the argument from [5]. In
general Branch and Bound techniques have poor worst-
case behaviour on pathological data [34], so here we
analyse the average running time of our algorithm. For
simplicity we consider the case of a square image with
sidelength M .

The halting condition for our algorithm is that the
minimal closed geodesic is shorter than or equal to the
minimal geodesics for all other cut sets. Hence our al-
gorithm must split each cut set which admits a geodesic
shorter than the minimal closed geodesic. We call such
geodesics short geodesics.

This binary tree of cut sets must be evaluated
along all branches from the root (the full cut set)
to those nodes which split the short geodesics. The
priority-first search ensures that only these nodes are
evaluated, minimising the number of geodesic com-
putations required. Short geodesics whose endpoints
are far from meeting will be split near the root of
the search tree, and will tend to be split incidentally
along the way to other geodesics. On the other hand,
short geodesics whose endpoints are nearly connected
quite possibly share a large portion of their length
with the minimal closed geodesic, and so are worth
investigating.

Let N (n) be the number of search nodes to be eval-
uated in the subtree rooted at node n. Let R ≡ P root

cut
denote the root of the search tree, with χ1 and χ2 its
children. Due to the data dependant complexity of
Branch and Bound we use the simple model of the
search dynamics proposed by Zhang and Korf [34].
This model assumes that each node has a constant
probability β of being split given that its parent has
been split. Then the expected number of geodesic
computations to perform is

E(N (R)) = 2 + βE(N (χ1)) + βE(N (χ2))
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Given that children symmetrically partition the cut sets
of their parents we have E(N (χ1)) = E(N (χ2)) and so

E(N (R)) = 2 + 2βE(N (χ1))

The cut in a discrete M × M image has length at most
M . Then the binary search tree has at most �lg M� + 1
levels with the root always split. Recursing we obtain

E(N ((R)) = 2 + 2β(2 + 2β(· · ·))
= 2

(
1 + 2β + (2β)2 + · · · + (2β)�lg M�)

So

E(N (R)) =
 2 · (2β)�lg M�+1 − 1

2β − 1
β 
= 1

2

2(1 + �lg M�) β = 1
2

The cost of splitting a search node is the cost of
running the Fast Marching Method over an M × M
image, O(M2 lg M) [27].

For β > 1
2 , E(N (R)) ≈ 2 · (2β)�lg M�+1

2β−1 ≤ 8β2

2β−1 · M lg(2β)

for large M , giving an overall time complexity of
O(M2+lg(2β) lg M).

For β = 1
2 , we obtain an overall time complexity of

O(M2 lg2 M) directly.
For β < 1

2 , E(N (R)) ≈ 2
1−2β

for large M , giving an
overall time complexity identical to the Fast Marching
Method at O(M2 lg M).

Figure 3. Comparison of segmentation by iterative methods to globally optimal GAC. The interior contour contains the smooth portions of
the lung, while the exterior contour encompasses both smooth and textured portions. The textured portions of lungs often indicate inflamation.
(a) Segmentation by gradient descent GAC. (b) Segmentation by Gradient Vector Flows. (c) Segmentation by globally optimal GAC.

7. Results

In this section we present results for the segmentation of
image data in the form of microscope, x-ray, MRI and
cDNA images. All tests were performed on a 700 MHz
Toshiba P-III laptop with 192MB of RAM under the
Linux operating system. The algorithm has been im-
plemented in the C language.

7.1. Comparison to Classic Geodesic
Active Contours

Here we compare the segmentations produced by the
globally optimal GAC scheme presented in this paper to
two iterative approaches. The first of these is the clas-
sic GAC scheme proposed by Caselles, Kimmel and
Sapiro [10], a variational approached based on curve
evolution via a level set embedding. The second of these
is the Gradient Vector Flow (GVF) scheme of Xu and
Prince [32]. The test image is a chest x-ray where the
application is to find the boundaries of both smooth and
textured portions of lungs. Textured portions can some-
times indicate inflamation or other diseases. The metric
uses a simple morphological texture model. Figure 3(a)
is a segmentation by the classic GAC scheme. Observe
that the contours become stuck in local minima such
as that produced by the collar bone projected onto the
right lung. Figure 3(b) is a segmentation using the GVF
scheme. Although it presents an improvement over the
classic GAC scheme it has failed to segment large
portions of both lungs. Figure 3(c) is a segmentation
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Figure 4. (a) Classic GAC segmentation (narrow-band, explicit time step): 21.5 seconds. (b) Multiscale GAC segmentation (narrow-band,
implicit time step): 3.1 seconds. (c) Globally optimal GAC segmentation: 2.5 seconds. (d) ‘Near-optimal’ GAC segmentation via MBTA/IPA-like
approach: 0.35 seconds.

using the new optimal scheme. The metric is the same
as that used in Fig. 3(a) before radial weighting. This
segmentation offers a significant improvement, having
avoided the local solutions which trapped the contours
in the two iterative approaches.

7.2. Computational Speed

Here we compare the computational speed of Caselles’
classic GAC scheme [10], the proposed globally op-
timal GAC scheme, and their variants. The test ex-
ample is a 301 × 221 magnetic resonance image of
a human heart, the goal being to segment the en-
domyocardium. Figure 4(a) depicts the result of the
classic GAC segmentation implemented by level set
evolution. It converges in 21.5 seconds. This imple-
mentation uses a narrow-band approach with explicit
time step 90% of the maximum given by the Courant-
Freidrichs-Levy stability condition. Figure 4(b) de-
picts the result of a multiscale GAC segmentation,

converging in 3.1 seconds. This implementation uses
a narrow-band approach with an implicit time step
τ = 20 as described by Goldenberg et al. [20], em-
bedded in a multiscale framework for efficiency and
improved convergence. Figure 4(c) shows the result
of the globally optimal GAC segmentation presented
here. The algorithm takes 2.5 seconds. Figure 4(d)
depicts the result of a ‘near-optimal’ GAC segmen-
tation via an MBTA/IPA-like approach in the same
framework as the simple algorithm proposed in Sec-
tion 3. The computation time for this approach is
0.35 seconds.

Both iterative segmentations (a–b) were initialised
with a circle inside the endomyocardium centred on
the internal point depicted in segmentations (c–d).

7.3. Computational Complexity

Here we present experimental results which ver-
ify the simple complexity analysis of Section 6. In
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Figure 5. Two examples from the CSSIP Papanicolou stained cell image database [6]. Figures (a) and (c) depict the original cell images while
figures (b) and (d) show the corresponding segmentations.

Figure 6. Average segmentation time for M × M images over a range of sizes. The fitted curve is proportional to M P lg M with P = 2.08.

order to estimate the average running time of this
method it has been used to segment 500 micro-
scope images from a database of Papanicolou stained
cells [6]. Figure 5 shows two images from this
dataset.

The results depicted in Fig. 6 show the average
running time for square images ranging from size
50 × 50 to 300 × 300. Each image was resized to a
square of the desired sidelength M before segmenta-
tion, with the computation times averaged to produce
these timings. Also shown is a fitted curve of the form
KMP lg M with K a constant and power P = 2.08 cor-
responding to a splitting probability β = 0.53. These

results clearly agree with the simple complexity anal-
ysis of Section 6, and demonstrate that this method
requires an amount of computation that is near linear
in the number of pixels.

8. Discussion

The segmentation framework put forward here com-
pares favourably with standard iterative approaches to
active contours (Fig. 3). For efficiency the fast march-
ing method implemented here is the first order ap-
proximation to the Eikonal equation (Eq. (4)) proposed



Globally Optimal Geodesic Active Contours 81

Figure 7. Segmentation of a microscope image of Cyclostephanos Dubius, a diatom. (a) Piecewise-geodesic segmentation based on the work
of Cohen and Kimmel. Four points were required to segment this object. (b) Segmentation by a minimal closed geodesic under the same metric.
This method is robust to poor placement of the internal point.

in [27]; higher order schemes may be used to improve
the precision of the segmentation. Conversely for situ-
ations where greater speed is required an approximate
method based on MBTA/IPA described in [30] can be
used.

These computational results demonstrate that the
framework presented here is competitive with varia-
tional GAC segmentation schemes while it is arguably
easier to implement than the AOS numerical scheme
for GAC [20].

8.1. Comparison to Cohen’s Related Approach

This approach is related to the work of Cohen and
Kimmel [17] and Cohen [16] on segmentation using
geodesics between seed points. However these meth-
ods are not generally suitable for object segmentation,
as they require a number of points on the boundary of
the object of interest. Figure 7 depicts a microscope im-
age of Cyclostephanos Dubius, a diatom. Figure 7(a)
demonstrates the piecewise-geodesic segmentation of
Cohen and Kimmel while Fig. 7(b) demonstrates the
segmentation method proposed in this paper. Dots de-
note boundary points or the internal point pint respec-
tively. Poor placement of the geodesic endpoints in the
piecewise-geodesic schemes will result in poor seg-
mentations as the contours are forced to pass through
them. By comparison, the method proposed in this pa-
per requires only the internal point pint in order to seg-
ment an object. The contour is not required to pass
through this point and the resulting segmentation is ro-
bust to poor localisation.

8.2. Object Separation

Object boundaries are often difficult to detect along
transitions to adjacent objects with similar features.
Geodesic active contours use the assumed regularity
of the segmentation contour to avoid leaking through
such gaps. Figure 8(a) depicts some cell clusters in
a microscope image. They have been separated using
the approach presented in this paper (Fig. 8(b)). Ob-
serve that on the indistinct border between cells the
segmentation contours approximately interpolate the
cell contours, overlapping suitably where appropriate.

The segmentation of these cells demonstrates a fun-
damental limitation or feature of the framework pre-
sented here. Contours composed of multiple closed
curves will have greater energy than any of their con-
stituent simple closed curves. While a variational ap-
proach to GAC allows the formation of multiple closed
curves, the optimisation approach is implicitly con-
strained to find a simple closed curve. However as
demonstrated in Fig. 8 it may still be applied to produce
multiple closed curves from a set of seed points.

8.3. Relation to Polar Trellis Segmentation

In Section 5.1 we considered a relation between this
method and object segmentation on a polar trellis. A
major limitation of the polar transform approach to seg-
mentation is that it may only be applied to point-convex
objects. The method proposed here overcomes this lim-
itation by considering all simple closed curves contain-
ing the specified internal point. Here we demonstrate



82 Appleton and Talbot

Figure 8. Globally optimal GAC applied to object separation. The cells (a) are separated despite the weak intensity gradient between them (b).

Figure 9. Segmentation of a magnetic resonance image of the cor-
pus callosum in a human brain.

the ability of our scheme to segment objects with con-
voluted or concave boundaries. Figure 9 depicts a mag-
netic resonance image of the corpus callosum in a
human brain. Here the segmentation contour is point-
concave and passes through the x-axis multiple times.

8.4. Constraining the Segmentation

In some applications it is desirable to bias or constrain
the segmentation to take advantage of prior informa-
tion. In situations where an approximate contour is
known this information may be used to spatially weight
the metric. Reducing the metric in the proximity of this
contour will bias the solution to make use of the cor-
responding prior information. A more direct approach
is to block the propagation of the surface of minimal
action from undesired areas. This can be used to force
the contour to contain an arbitrary connected shape or

to restrict its progress to a bounding box or region. In
addition to constraining the optimisation this can also
significantly reduce the computational load.

8.5. Segmentation Quality Measure

The energy of the segmentation contour may be used
as a measure of segmentation quality. A high energy
contour contains a large proportion of weak or non-
existent edges and is indicative of a poor segmentation.
This measure may be used in a post-processing step
to grade segmentation contours and further investigate
poor segmentations.

Figure 10 demonstrates an application of both
spatial constraints and the use of segmentation quality
measure.

Figure 10(a) is a fluorescence microarray image for
cDNA functional analysis. This type of microarray is
used to analyse the expression levels of large collec-
tions of genes. From an image analysis point of view,
the objective is to segment the visible dots and measure
their brightness. The microarray dots form a grid whose
parameters are known approximately, however due to
the printing process there is some jitter in the placement
of the spots. While the majority of spots are circular it
is desirable to obtain the shape of all spots rather than
impose the assumption of circularity. Many spots are
not visible as they produced little or no fluorescence.
Using the algorithm presented in this paper each spot
is individually segmented with the contour constrained
to include a small range of jitter about its expected
bounding box. Additionally the energy of the optimal
contour in each grid box gives the similarity of the spot
to the background, so a simple threshold is used to
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Figure 10. Segmentation of a cDNA microarray image. This image was acquired with an Axon GenePix microarray scanner, and may be
obtained from [8]. (a) The original cDNA microarray image. (b) Segmentation via Seeded Region Growing. (c) Segmentation via globally
optimal GAC.

discard spots with little or no response. The results are
compared to a segmentation via Seeded Region Grow-
ing [3], in which each spot is segmented within its grid
square. The seeds in this method are the centre point
of the grid square and the four corners. The segmenta-
tion via globally optimal GAC misses fewer spots and
gives generally better contours than the seeded region
growing method.

8.6. Limitation to 2D

The proposed method uses shortest path methods
extensively, which prevents its natural extension to
higher-dimension images. However the authors are cur-
rently working on a different approach altogether which
yields the same results but is not limited to 2D [4].

9. Conclusion

We have presented a novel framework for object seg-
mentation under the geodesic active contour energy
model and demonstrated its usefulness with various

applications. We have also developed an efficient al-
gorithm for obtaining optimal segmentations under the
new framework.

The new segmentation method seeks the geodesic
active contour of minimal energy under the sole re-
striction that it contains a specified internal point pint.
This internal point selects the object of interest and may
be used as the only input parameter to yield a highly
automated, optimal object segmentation scheme. The
image to be segmented is represented as a Riemannian
space S with a metric g induced by the image con-
tent. The metric is an isotropic and decreasing function
of the image gradients, thus encoding the local homo-
geneity of the image. Using this space segmentation is
achieved by locating the minimal closed geodesic con-
taining pint. The image plane R

2 is augmented to form
a spiral space S identical to the Riemannian surface
for the natural logarithm relation. This space naturally
embeds the information of whether a closed contour
contains pint without restricting the contour in any way.

Geodesics are computed on the discrete grid us-
ing Sethian’s fast marching method. Minimal closed
geodesics are located efficiently using a best-first
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branch and bound search tree adapted from previous
work on circular shortest paths. The metric typically
used in geodesic active contours is altered to obtain
a scale invariant energy functional suitable for global
minimisation. The optimal closed contour partitions
the image into object and background such that the to-
tal similarity across the partition border is minimised.
The algorithm proposed here is shown to efficiently
obtain the globally optimal geodesic active contour in
planar images. While this method cannot be directly ex-
tended to the computation of globally minimal surfaces,
the authors are currently investigating an alternate
approach to the general N-dimensional segmentation
problem.

The proposed algorithm has been applied to the seg-
mentation of microscope, x-ray, magnetic resonance
and cDNA microarray images. The resulting contours
have been shown to be isotropic and demonstrate ro-
bustness to gaps in object boundaries as well as low
sensitivity to the placement of the interior point. They
have been successfully applied to concave and convo-
luted boundaries, demonstrating the flexibility of the
framework developed here. The new approach com-
pares quite favourably with the classic curve evolution
approach of Caselles et al. [10], achieving more reli-
able and accurate segmentations with reduced compu-
tational effort.

Appendix

Here we analyse the representation, introduced in
Section 4.2, of an admissible closed curve in R

2 as
an admissible open curve in the spiral space S. A curve
in R

2 is defined as admissible if it is simple, closed, and
contains the origin pint. A curve in S is admissible if
it is a simple open curve or path with one endpoint on
the cut at the zero level and the other endpoint exactly
one layer above. Furthermore it must lie entirely in the
positive half-space S′ × Z

+.
All admissible open curves in S may be projected

one-to-one to their corresponding admissible closed
curves C in R

2 via Eq. (5). However it may not be clear
that to each admissible closed curve in R

2 is associated
a unique admissible open curve in S, particularly in the
case of a cut-concave curve. The choice of such a rep-
resentation relies upon the selection of the point pcut

at which to cut the closed curve C to form the corre-
sponding open curve lying entirely in S′ × Z

+. Here
we give a constructive proof that such a point exists
uniquely for all simple closed curves C containing the

origin. It makes use of elementary knot theory, which
is introduced in [2].

A knot is a simple closed curve typically embed-
ded in R

3. A knot may be deformed isotopically to
yield an equivalent knot by smoothly deforming the
curve, not allowing the curve to pass through itself. Two
knots form a non-trivial link if they are entangled and
may not be separated isotopically. The knots consid-
ered here are the curve C and the z-axis of S identified
with pint.

Knots may be represented by a projection to the plane
R

2. To retain the structure of the original knot we make
note of intersections in the planar projection, known
as crossings. A knot may be deformed infinitesimally
to ensure that crossings only occur pairwise between
strands at single points. Crossings designate the orders
of pairs of strands as upper or lower in the lost dimen-
sion of the projection. They may be labelled by the
signum of the cross-product of the planar tangent of
the upper strand with respect to the lower strand. The
sum of the signs of the crossings of a link is an isotopic
invariant equal to twice the linking number, a measure
of the degree to which two knots are entangled. The
knots C and pint have unit linking number, indicating
that C passes around pint once in total. Here we orient
C with respect to pint so that their linking number is
positive.

A planar representation of a knot or link may be ma-
nipulated isotopically using Reidemeister moves [2].
Of particular use in this proof is the second type of
Reidemeister move, depicted in Fig. 11. It removes a
pair of sequential crossings along C of alternating sign.
In Fig. 11 each segment of the knot C (a portion of C
which does not pass behind the z-axis) is labelled by
the common z-value of that segment, the number of
times that the curve has passed around the z-axis from
pcut. The strand labels are the running sum of crossing

Figure 11. A type-II Reidemeister move elides a (+1, −1) crossing
pair. Depicted before and after are crossing signs and strand labels
for the desired choice of pcut.
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numbers for understrands of C , where we set the la-
bel of the first strand after pcut to zero. The desired
cut point is that which results in no negative strand
labels.

We may consider the set of signs of undercrossings
of C to be a cyclic sequence λ with terms taken from
{+1, −1}. The total sum of this sequence is the link-
ing number +1. Consider a representation of λ as the
linear sequence with end point corresponding to pcut.
Then the strand labels are given by the running sum
�i = ∑i−1

j=1 λ j , the minimum of which must be non-
negative. A type-II Reidemeister move is equivalent to
eliding a sub-sequence (±1, ∓1). Observe that eliding
the ‘positive’ sub-sequence (+1, −1) cannot change
the minimum of �, whereas eliding the ‘negative’ sub-
sequence (−1, +1) may increase it.

Repeated application of the ‘positive’ elision to the
cyclic sequence λ is sufficient to reduce the sequence
to λ′ = (+1). As a simple proof by contradiction, con-
sider an irreducible cyclic sequence of elements {±1}
with sum +1 which does not contain a ‘positive’ pair
(+1, −1). As the sum is positive there must exist a
positive element, which cannot be followed by a neg-
ative element. By induction the sequence λ′ is entirely
positive, and with sum +1 must consist solely of the el-
ement +1. The minimum (and indeed only) value of the
corresponding label sequence �′ is 0, and this must also
be the minimum of � as noted previously. Therefore
this sole remaining element corresponds to the unique
choice of cutting point pcut giving a non-negative label
sequence �.

This choice of pcut defines the unique representation
of an admissible closed curve C in 2 as an admissible
open curve in S.

Acknowledgments

Figure 7 was taken from the ADIAC public data web
page:

http://www.ualg.pt/adiac/pubdat/pubdat.html (CEC
contract MAS3-CT97-0122).

We would like to acknowledge Dr. Stephen Rose, Cen-
tre for Magnetic Resonance, University of Queensland
and the Centre for Advanced MRI, The Wesley Hos-
pital, Brisbane for making available the cardiac MR
image of Fig. 4. We would also like to acknowledge
Dr. Michael Buckley, CSIRO Mathematical and Infor-
mation Sciences, for permission to use the microarray
image of Fig. 10, acquired with an Axon GenePix mi-

croarray scanner. This image may be obtained from [8].
The first author would like to acknowledge Jenna Ap-
pleton for interesting discussions on the proof in the
Appendix. We thank the anonymous reviewers for their
helpful comments.

References

1. D. Adalsteinsson and J.A. Sethian, “A fast level set method
for propagating interfaces,” Journal of Computational Physics,
Vol. 118, No. 2, pp. 269–277, 1995.

2. C.C. Adams, The Knot Book, W. H. Freeman and Company,
1994.

3. R. Adams and L. Bischof, “Seeded region growing,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, Vol. 16,
pp. 641–647, 1994.

4. B. Appleton and H. Talbot, “Globally optimal surfaces by con-
tinuous maximal flows,” in C. Sun, H. Talbot, S. Ourselin, and
T. Adriaansen (Ed.), Digital Image Computing: Techniques and
Applications, Proc. VIIth APRS conference, Vol. 2, pp. 987–996.
CSIRO publishing: Sydney, 2003.

5. B. Appleton and C. Sun, “Circular shortest paths by branch and
bound,” Pattern Recognition, Vol. 36, No. 11, pp. 2513–2520,
2003.

6. P. Bamford, Performance evaluation in image segmen-
tation. http://www.cssip.uq.edu.au/staff/bamford/Segmentation
Evaluation/index.htm.

7. P. Bamford and B. Lovell, “Unsupervised cell nucleus segmen-
tation with active contours,” Signal Processing (Special Issue:
Deformable Models and Techniques for Image and Signal Pro-
cessing), Vol. 71, No. 2, pp. 203–213, 1998.

8. M. Buckley, “Spot image analysis software,” http://
experimental.act.cmis.csiro.au/Spot/index.php.

9. V. Caselles, F. Catte, T. Coll, and F. Dibos, “A geometric model
for active contours in image processing,” Numerische Mathe-
matik, Vol. 66, pp. 1–31, 1992.

10. V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active con-
tours,” IJCV, Vol. 22, No. 1, pp. 61–79, 1997.

11. V. Caselles, R. Kimmel, G. Sapiro, and C. Sbert, “Minimal sur-
faces based object segmentation,” IEEE Trans. on PAMI, Vol. 1,
No. 9, pp. 394–398, 1997.

12. T. Chan and L. Vese, “An active contour model without edges,”
in Scale-Space Theories in Computer Vision, 1999, pp. 141–
151.

13. Y. Chen, T. Huang, and Y. Rui, “Optimal radial contour tracking
by dynamic programming,” in Proc. of IEEE ICIP, Thessaloniki,
Greece, October 2001.

14. L.D. Cohen, “On active contour models and balloons,” Computer
Vision, Graphics, and Image Processing. Image Understanding,
Vol. 53, No. 2, pp. 211–218, 1991.

15. L.D. Cohen and I. Cohen, “Finite-element methods for ac-
tive contour models and balloons for 2-D and 3-D images,”
IEEE Transaction on Pattern Analysis and Machine Intelligence,
Vol. 15, pp. 1131–1147, 1993.

16. L.D. Cohen, “Multiple contour finding and perceptual grouping
using minimal paths,” Journal of Mathematical Imaging and
Vision, Vol. 14, No. 3, pp. 225–236, 2001.

17. L.D. Cohen and Ron Kimmel, “Global minimum for
active contour models: A minimal path approach,”



86 Appleton and Talbot

International Journal of Computer Vision, Vol. 24 No. 1,
pp. 57–78, 1997.

18. J. Denzler and H. Niemann, “Active rays: Polar-transformed ac-
tive contours for real–time contour tracking,” Journal on Real-
Time Imaging, Vol. 5, No. 3, pp. 202–213, 1999.

19. E. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, Vol. 1, pp. 269–271, 1959.

20. R. Goldenberg, R. Kimmel, E. Rivlin, and M. Rudzsky, “Fast
geodesic active contours,” IEEE Trans. On Image Processing,
Vol. 10, No. 10, pp. 1467–1475, 2001.

21. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active con-
tour models,” International Journal of Computer Vision, Vol. 1,
No. 4, pp. 321–331, 1998.

22. R. Kimmel, “Numerical geometry of images: Theory, algo-
rithms and applications,” Technion, Israel Institute of Technol-
ogy, Haifa 32000, Oct. 2000.

23. R. Kimmel and A.M. Bruckstein, “Regularized laplacian zero
crossings as optimal edge integrators,” International Journal of
Computer Vision, Vol. 53, No. 3, pp. 225–243, 2003.

24. E. Kreyszig, Advanced Engineering Mathematics, 7th edn., W.
Anderson, 1993.

25. R. Malladi, J.A. Sethian, and B.C. Vemuri, “Shape modeling
with front propagation: A level set approach,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 17, No. 2,
pp. 158–175, 1995.

26. S. Osher and J.A Sethian, “Fronts propagating with curvature-
dependent speed: Algorithms based on Hamilton-Jacobi formu-
lations,” Journal of Computational Physics, Vol. 79, pp. 12–49,
1988.

27. J. Sethian, “A fast marching level set method for monotonically
advancing fronts,” Proceedings of the National Academy of Sci-
ences, Vol. 93, No. 4, pp. 1591–1595, 1996.

28. J.A. Sethian, Level Set Methods and Fast Marching Methods—
Evolving Interfaces in Computational Geometry, Fluid Mechan-
ics, Computer Vision, and Materials Science, Cambridge Uni-
versity Press, 1999.

29. C. Sun and S. Pallottino, “Circular shortest path on regular grids,”
in Asian Conference on Computer Vision, Melbourne, Australia,
2002, pp. 852–857.

30. C. Sun and S. Pallottino, “Circular shortest path in images,”
Pattern Recognition, Vol. 36, No. 3, pp. 709–719, 2003.

31. J. Weickert, B.M. ter Haar Romeny, and M.A. Viergever, “Ef-
ficient and reliable schemes for nonlinear diffusion filtering,”
IEEE Transactions on Image Processing, Vol. 7, No. 3, pp. 398–
410, 1998.

32. C. Xu and J.L. Prince, “Gradient vector flow: A new exter-
nal force for snakes,” in Proc. IEEE Conf. on Comp. Vis. Pat.
Rec. (CVPR), Comp. Soc. Press: Los Alamitos, 1997, pp. 66–
71.

33. C. Xu and J.L. Prince, “Snakes, shapes and gradient vector flow,”
IEEE Transaction on Image Processing, Vol. 7, No. 3, pp. 359–
369, 1998.

34. W. Zhang and R. Korf, “An average-case analysis of branch-

and-bound with applications: Summary of results,” in Proc. 10th
National Conf. on Artificial Intelligence, AAAI-92, San Jose, CA,
1992, pp. 545–550.

Ben Appleton received degrees in engineering and in science from
the University of Queensland in 2001 and was awarded a university
medal. In 2002 he began a Ph.D at the University of Queensland in the
field of image analysis. He is supported by an Australian Postgraduate
Award and the Commonwealth Scientific and Industrial Research
Organisation (CSIRO), Mathematical and Information Sciences. He
has been a teaching assistant in image analysis at the University of
Queensland since 2001. He has also contributed 10 research papers to
international journals and conferences and was recently awarded the
prize for Best Student Paper at Digital Image Computing: Techniques
and Applications. His research interests include image segmentation,
stereo vision and algorithms.

Hugues Talbot received the engineering degree from École Centrale
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