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Abstract. In this paper a variational method for registering or mapping like points in medical images is proposed
and analyzed. The proposed variational principle penalizes a departure from rigidity and thereby provides a natural
generalization of strictly rigid registration techniques used widely in medical contexts. Difficulties with finite dis-
placements are elucidated, and alternative infinitesimal displacements are developed for an optical flow formulation
which also permits image interpolation. The variational penalty against non-rigid flows provides sufficient regular-
ization for a well-posed minimization and yet does not rule out irregular registrations corresponding to an object
excision. Image similarity is measured by penalizing the variation of intensity along optical flow trajectories. The
approach proposed here is also independent of the order in which images are taken. For computations, a lumped
finite element Eulerian discretization is used to solve for the optical flow. Also, a Lagrangian integration of the
intensity along optical flow trajectories has the advantage of prohibiting diffusion among trajectories which would
otherwise blur interpolated images. The subtle aspects of the methods developed are illustrated in terms of simple
examples, and the approach is finally applied to the registration of magnetic resonance images.
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1. Introduction

The diagnostic use of medical image sets in a clinical
setting implicitly requires a point by point correspon-
dence between the same tissue sites in separate images.
For example, two given images may be of a single pa-
tient at different times, such as during a mammography
examination involving repeated imaging after the in-
jection of a contrast agent [26]. On the other hand, the
images may be of a single patient viewed by different
imaging modalities, such as by magnetic resonance and
computerized tomography to provide complementary
information for image-guided surgery [11]. In fact, im-
ages of two separate patients may even be compared to
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evaluate the extent of pathology of one in relation to
the other [29]. Similarly, an image of a patient may be
compared to an idealized atlas in order to identify or
segment tissue classes based upon a detailed segmen-
tation of the atlas [29]. Thus, what is needed finally
is an explicit coordinate transformation that will map
any point in one image to its corresponding point in
the other. With such a mapping, images are said to be
registered.

Since the term registration is often used rather
loosely in the context of its applications, it may be
useful to elaborate on the above description of what
registration is by stating what it is not. Note that by
manipulating intensities alone, it is possible to warp
or morph one image to another without having an ex-
plicit coordinate transformation identifying like image
points. Thus image registration is not image morphing,
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but can be used for such an application. Similarly, im-
age interpolation can be achieved without registration,
but a parameterized coordinate transformation can be
used to interpolate between images. Also, when com-
plementary information in separate imaging modalities
is superimposed, images are said to be fused. Since fu-
sion too can be achieved by manipulating intensities
alone, fused images need not be registered, but rather
can be fused by registration.

Rigid registration is performed under the constraint
that images are related by a pure rigid-body transfor-
mation, i.e., a translation plus a rotation. Such regis-
tration is attractive in medical imaging because of the
ubiquity of nearly rigid objects in the body. It is es-
pecially popular for image modality fusion in order to
guide brain surgery [11]. Particularly when performed
prospectively with the use of extrinsic fiducial mark-
ers, rigid registration and its concomitant errors are well
understood [12]. Since rigid registration is widely used
and treated as a standard for comparison in the med-
ical community [11], even in cases for which a more
flexible registration is sought [26], it was an initial aim
of the present work to define a generalization which
maximizes rigidity in a natural sense.

A leading application and demand for non-rigid reg-
istration is for mammographic image sequences in
which tissue deformations are less rigid and more elas-
tic [26]. This observation has motivated the develop-
ment of registration methods based on linear elasticity
[10, 24]. Alternatives emerge from noting that a rigid
transformation is equivalent to one which is both con-
formal (angle preserving) and isometric (area preserv-
ing) [6]. Some authors relax rigidity by constraining
transformations to be conformal or isometric [13]. Oth-
ers employ a local rigidity constraint [19] or allow iden-
tified objects to move as rigid bodies [20]. The approach
developed here involves instead a variational principle
penalizing a departure from rigidity. Thus, a rigid reg-
istration is selected when one fits the data. Otherwise
rigidity is maximized strongly or weakly depending
upon the dominance of the rigidity penalty. Based upon
a function space minimization, this approach is non-
parametric. By contrast, many other non-rigid registra-
tion methods are parametric, based for instance upon
the determination of polynomial coefficients [26].

Whether parametric or non-parametric, the un-
knowns in a registration problem are generally over-
determined by the available information, and must be
determined by optimizing an image similarity mea-
sure; see [11] for further details. In particular, it is a

noteworthy conclusion of the study in [34] that highly
accurate rigid registrations of multi-modal brain im-
ages can be achieved with information-theoretic mea-
sures. Nevertheless, as recognized in [25], mutual in-
formation contains no local spatial information, and
random pixel perturbations leave underlying entropies
unchanged. Thus, in the present framework image sim-
ilarity is driven by penalizing the variation of a local
image feature along trajectores connecting like points.
In this introductory work, that local image feature is
simply the raw intensity, but other discussed features
can be treated naturally.

Because image registration is an ill-posed process, it
can lead to quite aberrant results unless regularization
is applied [9, 21]. In the approach developed here, a
variational penalty on the departure from rigidity pro-
vides sufficient regularization for a well-posed mini-
mization. At the same time, the penalty does not rule
out irregular registrations, for example, corresponding
to an object excision.

The approach developed in this work was influenced
by Thirion’s interpretation of optical flow as a means
of driving a diffusion process in which one image is
deformed toward a match with a static second image
[28]. This process may be visualized in Fig. 1 with
the deformations evolving from the front face (shown
right) toward the back face (shown left) of the displayed
box. Because of an apparent unnatural directionality in
this diffusion process, the present work was oriented
from the outset so that the registration would be the
same independent of the order in which images are
taken; see also [4]. With this preconception, one might
already anticipate an elliptic formulation in the box of
Fig. 1, with the given images imposed as boundary con-
ditions on the front and back faces. In fact, an elliptic
system is derived here for an optical flow field whose
integrated trajectories connect like image points in the
front and back faces. Natural boundary conditions also
permit trajectories to leave the computational domain,
which is a necessary condition to support purely rigid
transformations. Furthermore, image interpolation is
achieved in parallel image planes by distributing the in-
tensity with minimal variation along trajectories. Thus,
the optical flow is determined in an Eulerian frame and
the intensity in a Lagrangian frame. Note that optical
flow has been proposed in other ways for registration:
with an evolution equation formulation that depends
upon the order of the images [2], with more usual op-
tical flow regularization that leads to aqueous effects
which are unnatural for medical applications [15], and
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Figure 1. The domain Q with 2D images I0 and I1 on the front
and back faces �0 and �1, respectively. Curvilinear coordinates are
defined to be constant on trajectories connecting like points in I0 and
I1.

as a linearization of the nonlinear similarity criterion
[19].

The paper can now be summarized as follows. In
Section 2 a framework used throughout the paper is
presented. Specifically, optical flow is defined and im-
age similarity is developed in terms of the variation of
intensity along optical flow trajectories. In Section 3
basic elements from elasticity theory are explored for
registration regularization. It is shown that linearized
elastic potential energy of finite displacements does
not select rigid transformations preferentially, and that
the unlinearized energy is computationally intractable.
Finally, a computationally convenient penalty on the
departure of infinitesimal displacements from rigidity
is identified. Section 4 begins with a complete defini-
tion of the proposed variational registration method.
Then the optimality conditions are derived separately
for each variable in subsections. Simple examples are
also considered to justify the choice of penalty func-
tions and of boundary conditions. Also, the optical flow
system is shown to be well-posed under the condition
that the intensity does not manifest certain trivial sym-
metries. Section 5 begins by introducing the numerical
framework for the proposed registration method. Then
the discretizations of the optimality system of the previ-
ous section are developed separately for each variable
in subsections. In Section 6 the final numerical imple-
mentation is applied both to test cases and to magnetic
resonance images. In particular it is shown that the ap-
proach succeeds in achieving a natural generalization
of rigid registration.

2. Image Similarity

Following the illustration in Fig. 1 for 2D images, let
two given images I0 and I1 be situated respectively on
the front and back faces of a box,

Q = {(x1, . . . , xN , z)

= (x, z) : 0 < x1, . . . , xN , z < 1}, (2.1)

i.e.,

I0 on �0 = {(x, z) ∈ ∂ Q : z = 0} (2.2)

and

I1 on �1 = {(x, z) ∈ ∂ Q : z = 1}. (2.3)

Then define curvilinear coordinates (ξ1, . . . , ξN , ζ ) =
(ξ, ζ ) so that ξ is constant along trajectories through
Q that connect like points in I0 and I1, and ζ = z.
Also, suppose that x = ξ in �0 and therefore the dis-
placement vector within Q is d = x − ξ. Further, a
trajectory tangent is given by (u1, . . . , uN , 1) in terms
of the optical flow defined as

u = (u1, . . . , uN ) = xζ . (2.4)

Now the simplest similarity measure discussed in
[11], i.e., the sum of squared intensity differences, takes
the following form,∫

�c
0

[I0(ξ) − I1(x(ξ, 1))]2 dξ. (2.5)

It is not assumed that every point in �0 finds a like
point in �1, i.e., trajectories are allowed to move out
of the box Q. Therefore, the domain of integration in
(2.5) is given by �c

0 = {ξ ∈ �0 : x(ξ, ζ ) ∈ Q, 0 <

ζ < 1}, the subset of �0 on which trajectories extend
completely through the full depth of Q. To reach a
similarity measure which involves only infinitesimal
displacements as opposed to the finite displacement
d(ξ, 1) = x(ξ, 1) − ξ, consider now the integral,

Js(I ) =
∫ 1

0

∫
�c

0

[
d I

dζ
(x(ξ, ζ ), ζ )

]2

dξdζ, (2.6)

constrained by the boundary conditions:

I (ξ, 0) = I0(ξ), I (x(ξ, 1), 1) = I1(x(ξ, 1)),

ξ ∈ �c
0. (2.7)
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To demonstrate the relation between (2.5) and (2.6),
consider that, under the condition (2.7), Js(I ) is mini-
mized by:

I (x(ξ, ζ ), ζ ) = I0(ξ) + ζ [I1(x(ξ, 1)) − I0(ξ)]. (2.8)

Substituting this expression into (2.6) then leads back
to (2.5). However, with (2.4) the optical flow equation
[16]:

d I

dζ
(x(ξ, ζ ), ζ ) = ∇x I · xζ + Iζ = ∇x I · u + Iz,

(2.9)

now suggests the following modification of (2.6),

∫
Q

[∇x I · u + Iz]
2 dxdz, (2.10)

which has an integrand involving purely local informa-
tion throughout Q. It differs from (2.6) by not includ-
ing the transformation Jacobian 1/det(∇ξx). In other
words, (2.10) gives a convenient Eulerian (local) coun-
terpart to the Lagrangian (trajectory following) form
appearing in (2.6). Furthermore, the counterpart to (2.7)
in the Eulerian context is given by:

I = I0 on �0, I = I1 on �1. (2.11)

It is also shown by a consideration of optimality condi-
tions in Section 4 that a minimizer I for (2.10) should
satisfy the supplementary boundary condition:

I = 0 on � = ∂ Q\{�0 ∪ �1}. (2.12)

Thus, an image similarity measure is given by (2.10)
under the constraints (2.11) and (2.12).

Other similarity measures can be treated along the
same lines. Specifically, suppose D is an operator
which extracts a local image feature which should
differ as little as possible between like points in the
images I0 and I1. Then subject to the new boundary
conditions,

I = DI0 on �0, I = DI1 on �1, (2.13)

the function I in (2.10) transports the chosen feature
along optical flow trajectores. For instance, considered
operators D include intensity scaling as well as dif-
ferential operators designed to match level curves. Of

course, other differential geometric or statistical de-
scriptors can be treated naturally. However, (2.13) is
not considered here in detail.

3. Elastic Regularization

For a given ζ in Fig. 1, consider now the deformation
x(ξ, ζ ) and the associated matrix (the right Cauchy-
Green strain tensor in elasticity [6]),

C(ζ ) = ∇ξxT∇ξx = {∇ξxi · ∇ξx j }. (3.1)

The transformation is conformal if ∇ξxi · ∇ξx j = 0,
i �= j , and additionally isometric if ‖∇ξxi‖2 = 1,
i = 1, . . . , N , and so rigid when C(ζ ) = I [6]. Thus,
the (Green-St.Venant) strain E = 1

2 (C − I ) measures
how close the deformation is to being rigid. The work
required to perform a given deformation gives the elas-
tic potential energy stored in the deformed body [6],

W (E) =
∫

�c
0

[λtr(E)2 + 2µ|E |2] dξ, (3.2)

where λ and µ are the so-called Lamé constants [6].
Here, |E |2 = E : E where : denotes a componentwise
matrix scalar product. Now in terms of the displace-
ment d = x−ξ the strain can be linearized according to
2E = C− I = ∇ξd+∇ξdT+∇ξdT∇ξd ≈ ∇ξd+∇ξdT

which gives the approximation to the elastic potential
energy,

W (E) ≈
∫

�c
0

[
λ(∇ξ · d)2 + 1

2
µ|∇ξdT + ∇ξd|2

]
dξ.

(3.3)

With (2.5) and (3.3), consider (tentatively) computing
a registration by minimizing the following cost,

Jlin(d) =
∫

�c
0

[I0(ξ) − I1(ξ + d(ξ, 1))]2dξ

+
∫ 1

0

∫
�c

0

[
λ(∇ξ · d)2

+µ

2
|∇ξdT + ∇ξd|2

]
dξdζ.

(3.4)

The following reasoning shows that (3.3) is not a suit-
able regularization for selecting rigid transformations.
Suppose I0 and I1 are related by a rigid transformation
r via I0(ξ) = I1(r (ξ)). Clearly the choice of a morph-
ing x(ξ, ζ ) in which r can be embedded via x(ξ, 0) = ξ
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and x(ξ, 1) = r (ξ) is not unique. Specifically, define
the rigid-body motion x̂(ξ, ζ ) = R(ζ )(ξ − a) + a,
where a is the center of rotation and R(ζ ) = eζ W for a
skew-symmetrix matrix W [22]. Also define the convex
combination x̃(ξ, ζ ) = (1−ζ )ξ+ζ x̂(ξ, 1), which with
increasing ζ corresponds to compressing the initial im-
age and then expanding it to the final image. Assume
further that the intensities corresponding to these trans-
formations are given in Q by (2.8) with x replaced by x̂
and x̃ respectively. With this choice, the similarity term
(2.5) is zero. Now, with d̂ = x̂ − ξ and d̃ = x̃ − ξ, an
elementary calculation shows that Jlin(d̃) < Jlin(d̂). In
other words, the linearized elastic potential energy reg-
ularization selects the compression/expansion instead
of the rigid-body motion.

The situation is different for the unlinearized elas-
tic potential energy. If a cost functional Junl is con-
structed with (2.5) and (3.2) analogously to (3.4), the
unlinearized elastic potential energy regularization se-
lects the rigid-body motion instead of the compres-
sion/expansion. However, the optimality system for
Junl is very complex and contains coefficients with
terms

(‖∇ξxi‖2 − 1
)

whose signs may not even be
uniform.

Nevertheless, these difficulties can be circumvented
by formulating rigidity in an Eulerian frame instead of
in a Lagrangian frame. To this end, note that xζ (ξ, ζ ) =
u(x(ξ, ζ ), ζ ) gives ∇ξxζ = ∇xu∇ξx, and therefore
C(ζ ) in (3.1) satisfies:

∂ζ C(ζ ) = ∇ξxT
ζ ∇ξx + ∇ξxT∇ξxζ

= ∇ξxT[∇xuT + ∇xu]∇ξx. (3.5)

Hence, if ∇xu is skew-symmetric, then ∂ζ C(ζ ) = 0
implies C(ζ ) = C(0) = I and the transformation is
rigid for all ζ ∈ [0, 1].

Now with (2.10) and (3.5), consider computing a
registration by minimizing the following cost,

Jeul(I, u) =
∫

Q
[(∇x I · u + Iz)

2

+ β|∇xuT + ∇xu|2] dxdz (3.6)

subject to I = I0 on �0, I = I1 on �1, and I = 0 on
�. To test this formulation with x̂ and x̃ as considered
above, define û(x, z) = x̂ζ = W (x − a) and ũ(x, z) =
x̃ζ = [z + (R(1) − I )−1]−1(x − a). As before, assume
that the similarity term (2.10) is zero. Then an elemen-
tary calculation shows that Jeul(û) = 0 < Jeul(ũ). In
other words, the rigid-body motion is selected instead

of the compression/expansion. It is also seen in the
next section that the optimality system corresponding
to (3.6) is computationally convenient.

4. Optimality Conditions

Image registration and interpolation are achieved in this
work by minimizing the following cost,

J (I, u) =
∫

Q
[(∇ I · u + Iz)

2 + φ(|∇uT + ∇u|2)

+ α|uz|2] dxdz (4.1)

subject to:

I = I0 on �0, I = I1 on �1, and

I = 0 on �. (4.2)

Trajectories through the domain Q are defined by in-
tegrating the optical flow under boundary conditions,
i.e., by solving:

x(ξ, ζ ) = ξ +
∫ ζ

0
u(x(ξ, ρ), ρ) dρ,

ξ ∈ �0, ζ ∈ [0, 1]. (4.3)

and

y(η, ζ ) = η +
∫ 1

ζ

u(y(η, ρ), ρ) dρ,

η ∈ �1, ζ ∈ [0, 1]. (4.4)

A registration is given by the coordinate transformation
x(ξ, 1) and by the inverse transformation y(η, 0). The
given images I0 and I1 are interpolated by the intensity
I .

The function φ appearing in (4.1) is discussed further
in Section 4.2, but it is assumed to be smooth on (0, ∞)
and continuous on [0, ∞). Also, the term involving uz

is included to select the most natural rigid-body motion
in Q as well as to establish the well-posedness shown
below in Theorem 1.

With respect to the registration goal as stated in the
Introduction, it may be observed now that the formu-
lation in Q increases the problem dimenion by one. In
this connection, the following points are worthwhile to
emphasize. First, the present formulation affords image
interpolation in addition to registration. Also, alterna-
tive diffusion processes evolving from �0 to �1 are
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here replaced by an elliptic formulation in Q with the
payoff that the result is independent of the image order.
Finally, these benefits are gained without an increased
problem dimension if the optical flow is autonomous.
Although the condition uz = 0 is not imposed explic-
itly in this work, it was found to hold practically in all
examples presented in Section 6.

The necessary optimality conditions will now be de-
rived first for I and then for u. The intent is to solve
cyclically for one variable with the other held fixed.

4.1. Optimality Conditions for Intensity

First, for fixed u, the variational derivative of J with
respect to I is given by

δ J

δ I
(I ; Ī ) = 2

∫
Q

(∇I · w)(∇ Ī · w) d y (4.5)

where for convenience ∇ = (∇, ∂z), w = (u, 1), and
y = (x, z). Also, assume for the moment that I is only
subject to I = I0 on �0 and I = I1 on �1, so that the
perturbation Ī is constrained to vanish on �0 and on
�1. Then, boundary integrals on �0 and on �1 vanish
in the following:

δ J

δ I
(I ; Ī ) = 2

∫
∂ Q

(∇I · w)(w · ν) Ī d y

− 2
∫

Q
∇ · [(∇I · w)w] Ī d y

= 2
∫

�

(∇I · w)(u · n) Ī d y

−2
∫

Q
∇ · [(∇I · w)w] Ī d y. (4.6)

Here, ν is an outwardly directed normal vector at ∂ Q
which reduces to n at �. For the variational derivative
above to vanish for all perturbations Ī , in particular for
perturbations vanishing on the boundary �, the follow-
ing equation must hold in the interior:

∇ · [(∇I · w)w] = ∇(∇ I · u + Iz) · u + (∇ I · u + Iz)z

+ (∇ · u)(∇ I · u + Iz)

= d2 I

dζ 2
+ (∇ · u)

d I

dζ
= 0 in Q (4.7)

in which (2.9) has been applied.
Consider now the choice of boundary conditions

shown in (4.2). For the boundary term in (4.6) to van-
ish for all perturbations Ī , there are three possibilities

on �: Ī = 0, u · n = 0, or ∇I · w = 0. The first
case corresponds to having imposed (4.2) so that the
perturbation Ī would be constrained to vanish on all
of ∂ Q. To see the unsatisfactory consequences of the
other two options, consider first that u · n = 0 is im-
posed at �. This means that trajectories would not be
allowed to impinge upon the boundary at �, and this
restriction would clearly corrupt a rigid registration.
Since it is required to produce a rigid registration when
one fits the data, the boundary condition u · n = 0 at �

is ruled out. Now consider that ∇I · w = d I/dζ = 0
is imposed at �. Then fix a trajectory which departs
from �0 and impinges on � at ζ = ζ́ as shown in
Fig. 2. From (4.7), the conditions on the trajectory that
d2 I/dζ 2 + (∇ ·u)d I/dζ = 0 for 0 < ζ < ζ́ , I = I0 at
ζ = 0, and d I/dζ = 0 at ζ = ζ́ imply that I remains
constant at I = I0 along the trajectory. The situation is
similar for trajectories that depart from �1 and impinge
upon � in the reverse direction. This is in fact a state
toward which the solution (I, u) would be drawn since
it reduces the cost J . Specifically, when the intensity I
is computed in this way, the optical flow u is drawn in
its next iteration toward more trajectories that impinge
upon �. Eventually all trajectories impinge upon � to
give the minimum possible cost, and no like points in
I0 and I1 are connected. Clearly, this is a solution to be
avoided. Thus, the intensity field is assumed to satisfy
the boundary conditions (4.2).

From (4.2) and (4.7), the optimal intensity I for fixed
u is given in a Lagrangian frame by:

I (x(ξ, ζ ), ζ )

=




I0(ξ)[1 − U (ξ, ζ, 1)] + I1(x(ξ, 1))U (ξ, ζ, 1),
ξ ∈ �c

0

I0(ξ)[1 − U (ξ, ζ, ζ́ )],
x(ξ, ζ́ ) ∈ �, ξ ∈ �i

0

I0(ξ),
x(ξ, ζ́ ) ∈ �, ξ ∈ �i

0, (4.8)

and:

I (y(η, ζ ), ζ )

=




I1(η)[1 − V (η, 0, ζ )] + I0(y(η, 0))V (η, 0, ζ ),
η ∈ �c

1

I1(η)[1 − V (η, ζ̀ , ζ )],
y(η, ζ̀ ) ∈ �,η ∈ �i

1

I1(η),
y(η, ζ̀ ) ∈ �,η ∈ �i

1 (4.9)

in terms of quantities defined as follows. Here, �c
0

and �i
0 are the disjoint subsets of �0 from which
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Figure 2. When the intensity I is constant along trajectories connected with �, all trajectories are drawn toward � until the cost J vanishes.

Figure 3. The intensity Ie models the excision of an object from �0, and the discontinuous ue is the natural corresponding optical flow.

trajectories extend completely and incompletely, re-
spectively, through the full depth of Q. Also, �c

1 and �i
1

are disjoint subsets of �1 defined similarly. Let � ⊂ Q
denote a set in which trajectories fail to be well defined,
e.g., due to a singularity in the optical flow field. Define
U and V by:

U (ξ, ζ, ζ́ )

=



Ũ (ξ, ζ ) − Ũ (ξ, 0)

Ũ (ξ, ζ́ ) − Ũ (ξ, 0)
,

0, x(ξ, ζ́ ) ∈ �,

Ũ (ξ, ζ )

=
∫ ζ

ζ0

exp

[
−

∫ σ

ζ0

∇ · u(x(ξ, ρ), ρ) dρ

]
dσ, (4.10)

for ξ ∈ �0, ζ ∈ [0, ζ́ ], and arbitrary ζ0 ∈ [0, ζ́ ], and:

V (η, ζ̀ , ζ )

=



Ṽ (η, 1) − Ṽ (η, ζ )

Ṽ (η, 1) − Ṽ (η, ζ̀ )
,

0, y(η, ζ̀ ) ∈ �,

Ṽ (η, ζ )

=
∫ ζ

ζ0

exp

[
−

∫ σ

ζ0

∇ · u(y(η, ρ), ρ)dρ

]
dσ, (4.11)

for η ∈ �1, ζ ∈ [ζ̀ , 1], and arbitrary ζ0 ∈ [ζ̀ , 1]. Under
a condition such as u ∈ W 1,∞(Q) ⊂ C0,1(Q̄) [30],

trajectories are well defined by (4.3) and (4.4) and the
singular set � is empty [8]. On the other hand, it is not
intended to rule out situations where the registration
is correctly described by a discontinuous optical flow
field which would occur for instance when an object
is excised. Suppose that � ⊂ Q denotes the set where
shocks develop in the optical flow field as seen in Fig. 3.
Then trajectories are defined up to the shock and the
intensity is constant along such trajectories as shown in
(4.8) and (4.8). At all other points in Q not accessible
from trajectories (4.3) or (4.4) the intensity is zero.

4.2. Optimality Conditions for Optical Flow

Now, for fixed I , the variational derivative of J with
respect to u is given by

δ J

δu
(u; ū)

= 2
∫

Q
[(∇ I · u + Iz)(∇ I · ū) + α(uz · ūz)] dxdz

+ 2
∫

Q
φ′(|∇uT + ∇u|2)[∇uT

+ ∇u] : [∇ūT + ∇ū] dxdz. (4.12)
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The optical flow u is computed by solving the weakly
formulated optimality system,

0=1

2

δ J

δu
(u; ū) = B(u, u, ū) − F(ū), ∀ū ∈ C∞(Q̄),

(4.13)

where B and F are defined as follows:

B(u, v, w)

=
∫

Q
[(∇ I · v)(∇ I · w) + α(v z · w z)] dxdz

+
∫

Q
φ′(|∇uT + ∇u|2)(∇vT + ∇v) : (∇wT

+∇w) dxdz (4.14)

F(w) = −
∫

Q
Iz∇ I · w dxdz. (4.15)

The solvability of (4.13) is considered below in
Theorem 1 for linear φ. The optimality system is also
given below in differential form. As explained in con-
nection with (4.6), only natural boundary conditions
are considered for u in order to avoid disturbances to
rigid registrations, and therefore, the above variational
derivative satisfies

1

2

δ J

δu
(u; ū) =

∫
Q
{(∇ I · u+ Iz)∇ I −αuzz

− ∇ · [2φ′(|∇uT+∇u|2)(∇uT+∇u)]}
· ūdxdz +

∫
�

n · [2φ′(|∇uT+∇u|2)

× (∇uT+∇u)] · ūdxdz+
∫

�1

αuz

· ūdx−
∫

�0

αuz · ūdx. (4.16)

Requiring this variational derivative to vanish for
smooth perturbations ū which have vanishingly small
support while remaining concentrated at a given point
in a single integral above leads to the following opti-
mality conditions on the optical flow u:




−2∇ · [φ′(|∇uT + ∇u|2)(∇uT + ∇u)]
−αuzz + (∇ I∇ I T)u = −Iz∇ I, Q,

n · (∇uT + ∇u) = 0, �, uz = 0, �0, �1.

(4.17)

To illustrate the effect of the function φ, consider
the system for one-dimensional images, Ie(x, 0) and
Ie(x, 1) from Ie(x, z) = max{(1 − 1

2 z) − 2|x − 1
2 |, 0},

which model the excision of an object {Ie(x, 0) > 1
2 }

in �0 as shown in Fig. 3. The natural corresponding
optical flow is ue(x, z) = 1

4χ[0,1/2](x) − 1
4χ[1/2,1](x),

but the corresponding cost is not finite if φ is linear.
Instead, the fitting penalty in this case is total variation
φ(s) = β

√
s,

J (u)=
∫ 1

0

∫ 1
2

z
4

(
2u − 1

2

)2

dxdz

+
∫ 1

0

∫ 1− z
4

1
2

(
2u + 1

2

)2

dxdz

+
∫ 1

0

∫ 1

0
[2β|ux | + α|uz|2]dxdz (4.18)

for which J (ue) = β and for which (4.13) holds with
u = ue. Note the difficulty in implementing such sin-
gular transformations in a purely Lagrangian frame
such as with (3.4). Of course, if smoother registrations
are desired, then choosing a linear function φ is more
appropriate. Intermediate regularization goals can be
reached through intermediate choices for φ [33], but
it is assumed here that φ(s2) is convex for well-posed
minimization [3].

4.3. Well-Posedness of the Variational Problem

It is not quite clear beforehand whether the cost func-
tion (4.1) is sufficiently coercive with respect to u to
quarantee well-posedness for (4.13) or whether addi-
tional optical flow regularization such as∫

Q
φ(|∇u|2) dxdz (4.19)

is necessary. For instance, suppose the intensity has
the form I (x, z) = |x|2 in Q, and thereby supports an
ambiguous optical flow uθ = θW x for any θ ∈ R and
for any skew-symmetric matrix W ∈ RN×N . Then the
cost is zero for every θ ∈ R, and in particular J (uθ ) �→
∞ as ‖uθ‖H 1(Q) = O(θ ) → ∞. However, it can be
assumed safely that medical images do not support such
ambiguity. Thus, on the basis of the following theorem,
the regularization shown in (4.19) is not used in this
work.

Theorem 1. Suppose that an intensity I ∈ W 1,∞(Q)
manifests sufficiently few symmetries that for every a ∈
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RN and for every skew-symmetric W ∈ RN×N ,∫
Q

|∇ I · (a + W x)|2 dxdz > 0, (4.20)

unless a = 0 = W . Then with φ(s) = β(x, z)s, 0 <

β0 ≤ β(x, z) ≤ β1 < ∞, there exists a unique u ∈
H 1(Q) such that (4.13) holds.

Proof: Since C∞(Q̄) is dense in H 1(Q), the claim
follows from the Lax-Milgram Theorem [5] once it is
shown that B(u, v) = B(·, u, v) is bounded and coer-
cive on H 1(Q) and that F(v) is bounded on H 1(Q).
The boundedness of B and F is readily established:

|B(u, v)| ≤ ‖I‖2
W 1,∞(Q)‖u‖L2(Q)‖v‖L2(Q)

+ α‖uz‖L2(Q)‖v z‖L2(Q)

+ 4β1‖∇u‖L2(Q)‖∇v‖L2(Q) ≤ [‖I‖2
W 1,∞(Q)

+ α + 4β1]‖u‖H 1(Q)‖v‖H 1(Q) (4.21)

|F(v)| ≤ ‖I‖2
W 1,∞(Q)‖v‖L2(Q). (4.22)

To establish coercivity of B, assume there exists a se-
quence {un} ⊂ H 1(Q) such that

‖un‖H 1(Q) = 1 while B(un, un) → 0.

(4.23)

For convenience, define now the semi-norm | · |B sat-
isfying the following inequality:

|u|2B = ‖∇uT + ∇u‖2
L2(Q) + ‖uz‖2

L2(Q)

≤ 1

min{α, β0} B(u, u). (4.24)

Since H 1(Q) is compactly embedded in L2(Q) [1],
there is a subsequence {unl } which converges in L2(Q).
From Korn’s Inequality [27],

‖∇u‖2
L2(Q) ≤ k1‖u‖2

L2(Q) + k2‖∇uT + ∇u‖2
L2(Q)

(4.25)

it follows that

∥∥unl − unk

∥∥
H 1(Q) ≤ c1

∥∥unl − unk

∥∥
L2(Q)

+ c2

∣∣unl − unk

∣∣
B
. (4.26)

Since both terms on the right vanish, it follows that
{unl } is a Cauchy sequence in H 1(Q) with some limit

u∗ ∈ H 1(Q) which satisfies:

min{α, β0}|u∗|B ≤ B(u∗, u∗) = lim
nl→0

B(unl , unl ) = 0.

(4.27)

From (4.24) and (4.27) it follows that ∂zu∗
i = 0 =

e∗
i j = 1

2 (∂xi u
∗
j + ∂x j u

∗
i ). Thus, u∗ is independent of z.

From the identity ∂xi x j u
∗
k = ∂xi e

∗
jk + ∂x j e

∗
ki − ∂xk e∗

i j
[7], it follows that u∗ is a linear function of x. Since
e∗

i j = 0, u∗ is given by u∗ = a + W x for some a ∈ RN

and some skew-symmetric W ∈ RN×N . Then from
B(u∗, u∗) = 0 it follows that the integral in (4.20)
vanishes. However, this violates the assumption on I
unless u∗ = 0, which contradicts the assumption that
‖un‖H 1(Q) = 1. Thus, B is coercive on H 1(Q).

Although details are not provided here, it is as-
sumed that if I ∈ W 1,∞(Q) then u ∈ W 1,∞(Q) [30],
as mentioned in Section 4.1 concerning conditions un-
der which trajectories are globally well-defined. When
the given images are so noisy that only I0 ∈ BV (�0)
and I1 ∈ BV (�1) can be assumed, then additional in-
tensity regularization can be considered, similar to that
found in [2]. Otherwise, global existence of trajecto-
ries can be assured by representing I0 and I1 in terms
of their multilinear interpolants.

5. Numerical Approximation

The discretizations of (4.7) and (4.17) are described
separately in the subsections below with the intent to
implement them in the following loop by solving for
one variable while the other is held fixed:

• Set u = 0.
• Repeat until the relative difference in u is sufficiently

small:

◦ Compute I from u as specified in Section 5.1.
◦ Compute u from I as specified in Section 5.2.

While the convergence of this cycling is not proved
here, convergence has been observed for all examples
presented in Section 6.

The numerical discretization begins with a division
of Q into a grid of cells, each having dimensions
(h, . . . , h, τ ), in the x1, . . . , xN , and z directions, re-
spectively, where h = 2−p and τ = 1/K for inte-
gers p and K . Specifically, with the integer-component
N -dimensional multi-indices i = (i1, . . . , iN ), 0 =
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(0, . . . , 0), and 1 = (1, . . . , 1), define the cell cor-
ners by (xi+1/2, zk+1/2) = (ih, kτ ), 0 ≤ i ≤ 2p · 1,
0 ≤ k ≤ K , and the cell centroids by (xi , zk) =
((i − 1

2 )h, (k − 1
2 )τ ), 1 ≤ i ≤ 2p · 1, 1 ≤ k ≤ K .

Then, the notation fi,k is used for a grid function at
the cell centroid (i, k), and fractional indices are used
for cell boundaries. The given images I0 and I1 are im-
posed numerically as boundary conditions, Ii,k0 = I0,i

and Ii,k1 = I1,i in the cell face coordinates (i, k0) and
(i, k1), respectively, where k0 = 1

2 and k1 = K + 1
2 .

5.1. Intensity Discretization

To discuss the effects of different discretizations, the
following model situation is considered. Suppose with
x(ξ, ζ ) = ξ+uζ and u = (1/

√
2, 1/

√
2), that the given

images are related by a simple translation, I0(ξ) =
I1(ξ + u). Thus, ∇ · u = 0 and (4.7) takes the form,

∇ (∇ I · u + Iz) · u + (∇ I · u + Iz)z = d2 I

dζ 2
= 0.

(5.1)

Figure 4. The given images I0 and I1 are shown on the left and on the right, respectively, and a planview of the correct intensity I in Q is
illustrated in the middle, along with an Eulerian discretization around the empty circle.

Figure 5. For the given 32 × 32 images I0 and I1 shown in Fig. 4, intermediate images {{Ii ,k} : 1 ≤ k ≤ 16} computed with an
Eulerian discretization of (5.1) are read from left to right and from top to bottom.

Assume that the intensity is represented as a grid func-
tion Ii,k . Then, an Eulerian discretization of (5.1) takes
the form,

I(i+uτ/h,k+1) − 2Ii,k + I(i−uτ/h,k−1) = 0 (5.2)

solved for example through iteration by

I �
i,k = 1

2

[
I �−1
(i+uτ/h,k+1) + I �−1

(i−uτ/h,k−1)

]
(5.3)

where the values I(i+uτ/h,k+1) and I(i−uτ/h,k−1) must
be interpolated from nearby intensity grid values. To
see the consequences of such an interpolation, con-
sider the case illustrated in Fig. 4, where I0(x) = χS(x)
and I1(x) = χS(x − u) for the square S = {x : 0 ≤
x1, x2 ≤ 1

2 }, and the correct intensity I is defined on
Q as equal to one in the diagonal zone and zero oth-
erwise. Let the empty circle denote the cell (i, k), the
filled circles its cell neighbors, and the stars the cell
coordinates (i ± uτ/h, k ± 1). Then, a natural linear
interpolation of intensity grid values in the respective
neighborhoods gives I(i+uτ/h,k+1) = 1

2 = I(i−uτ/h,k−1),
and therefore from (5.3) the value of Ii,k drops from
one to one-half. Repeated application of (5.3) produces
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Figure 6. For the given 32 × 32 images I0 and I1 shown in Fig. 4, intermediate images {{Ii ,k} : 1 ≤ k ≤ 16} computed with a Lagrangian
discretization of (5.1) are read from left to right and from top to bottom.

the results shown in Fig. 5, where for the given 32×32
images I0 and I1 shown in Fig. 4, intermediate images
{{Ii,k} : 1 ≤ k ≤ 16}, are read in Fig. 5 from left to right
and from top to bottom. Clearly, the linear interpola-
tion is too dissipative, and although nonlinear interpo-
lation operators can be considered, the conclusion from
this experiment was that a Lagrangian discretization of
(4.7) is preferred over an Eulerian one. In fact, the re-
sults shown in Fig. 6 reflect the improvement obtained
from the Eulerian discretization described below.

The discretization of (4.8) and (4.9) requires first
an integration through the optical flow field u in (4.3)
and (4.4) to obtain trajectories x(ξ, ζ ) and y(η, ζ ) im-
pinging on �0 and on �1 as illustrated in Fig. 2. The
intensity discretization requires secondly an integra-
tion through the divergence field ∇ · u in (4.10) and
(4.11) to obtain U (ξ, ζ, ζ́ ) and V (η, ζ̀ , ζ ) for (4.8) and
(4.9). However, the optical flow discretization remains
Eulerian. Therefore, multilinear interpolation of the
values {ui,k} is used to represent u for (4.3) and
(4.4). Similarly, multilinear interpolation of the values
{∇h · ui,k} is used to represent the divergence ∇ · u in
(4.10) and (4.11), where ∇h · ui,k is obtained by cen-
tral differences with natural one-sided modifications
at the boundary. Outside the convex hull of centroids,
u and ∇ · u are represented by multilinear extrapola-
tion. With the interpolated optical flow vector and di-
vergence fields, the integrals in (4.3), (4.4), (4.10), and
(4.11) are approximated using a Runge-Kutta-Fehlberg
adaptive integration.

Although the discretization chosen for (4.7) is
Lagrangian, intensity grid values are needed for the
Eulerian discretization of (4.17). In order to perform
image morphing, intensity values are also needed along
trajectories emanating from front cell faces {(i, k0)}
and from rear cell faces {(i, k1)}. Therefore, one op-
tion is to calculate only those trajectories emanating
from front or rear cell faces, to solve for the inten-
sity along these trajectories, and then to interpolate

these intensity values onto interior cells to obtain in-
tensity grid values for (4.17). However, such interpo-
lation leads again to smoothing problems as illustrated
in Figs. 4 and 5. Thus, the chosen procedure is to gen-
erate trajectories emanating from every cell centroid
(xi , zk), both toward �0 and toward �1 so that with
(4.8) and (4.9) an intensity grid function can be ob-
tained without interpolation. For this, ζ0 in (4.10) and
(4.11) is set to its value at a cell centroid. In spite of
the apparent expense of these integrations, note that
they are independent, but require individual treatment
to halt integration once the boundary � or an irregu-
lar flow zone � has been reached. Nevertheless, the
integrations can be vectorized by maintaining a grid
function,

�i,k

=



1, trajectory through (xi , zk) advances
through Q,

0, otherwise (5.4)

which always multiplies trajectory increments and
which switches from one to zero after a trajectory has
reached � or �. While it is clear when the boundary
� has been reached, an arrival criterion for the set �

can be implemented numerically in terms of whether
an integration accuracy criterion has been met. Once
a trajectory reaches the boundary of Q, the intensity
I is computed from (4.8) and (4.9) using multilinear
interpolation from face centroid values of I0 on �0 and
I1 on �1 and from I = 0 on �.

The computation of the intensity can now be sum-
marized as follows:

• From each cell centroid, integrate (4.3) and (4.4) to
generate trajectories x and y directed toward �0 and
�1, respectively.
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• Simultaneously integrate (4.10) and (4.11) to obtain
U and V .

• While integrating, represent u and ∇ · u by multi-
linear interpolation and extrapolation from cell cen-
troids.

• Represent the intensity on the boundary of Q by
multilinear interpolation from face centroid values
of I0 on �0 and I1 on �1 and from I = 0 on �.

• Compute the intensity I at each cell centroid using
in (4.8) and (4.9).

5.2. Optical Flow Discretization

Now, consider the computation of the optical flow u
from (4.17). The numerical approximation is obtained
naturally from a finite element discretization of (4.12)
[5]. Specifically, let Sh,τ be the space of tensor products
of linear C0 splines defined on Q, and let u ∈ Sh,τ be
determined by:

B(u, u,χ) = F(χ), ∀χ ∈ Sh,τ (5.5)

where B and F are given in (4.14) and (4.15). Be-
cause of the possible nonlinearity, φ′ in (5.5), a lagged
diffusivity iteration is used [32]. Specifically, given
u�−1 ∈ Sh,τ , let u� ∈ Sh,τ be determined by:

B(u�−1, u�,χ) = F(χ), ∀χ ∈ Sh,τ . (5.6)

For this, assume that φ is sufficiently regularized so
that 0 < β0 ≤ φ′ ≤ β1 < ∞. Thus, by Theorem 1, u�

is well-defined by (5.6).
As illustrated in [17], finite element discretizations

lead to aberrant consequences in the limit of vanish-
ing regularization corresponding to an ever improv-
ing signal-to-noise ratio. To avoid these consequences
as well as the wide bandwidth of the algebraic sys-
tem in (5.6), a lumping approach is used to derive a
finite difference discretization which is consistent with
(5.6). Such lumping is implemented here by using cell-
centered tensor products of spline basis functions:

s(0)(t) = χ[0,1](t), s(1)(t) = [
s(0) ∗ s(0)

]
(t)

s(mi )

(
h−1xi − N + mi

2

)
on Qxi =

[
mi

2
h, 1 − mi

2
h

]

s(n)

(
τ−1z − N + n

2

)
on Qz =

[
n

2
τ, 1 − n

2
τ

]
.

Q ≈ Q̂ = Qx1 × · · · × QxN × Qz

(5.7)

which are minimally smooth in a given direction
for a given term as detailed below. The effect of
this lumping is to concentrate the algebraic formu-
lation at cell centers. Thus, the final system un-
knowns become the optical flow grid values di-
rectly instead of merely finite element basis function
weights.

Lumping is implemented for the term
∫

Q̂(∇ I · u)
(∇ I · χ)dx dz from B(u�−1, u,χ) with mi = n =
0 in (5.7) and leads to the algebraic coefficients
(∇ Ii,k∇ I T

i,k)ui,k . Here, the numerical gradient ∇h I is
computed with simple central differences with natu-
ral one-sided modifications at the boundary. In spite
of the apparent wavelike nature of the transport of
intensities through Q, nonlinear gradient approxima-
tions [23] were not found necessary for the compu-
tation of ∇h I . The transport is however sensitive to
the computation of Iz , which must be consistent with
(2.9):

(Iz)i,k = (d I/dζ )i,k − ∇h Ii,k · uI
i,k (5.8)

where uI in (5.8) denotes the optical flow used to
compute the intensity. With Iz computed in this way,
the term − ∫

Q̂ Iz∇ I · χ dxdz from F(χ) leads with
mi = n = 0 in (5.7) to the source term −(Iz)i,k

∇h Ii,k .
Lumping is implemented as follows for the terms

of
∫

Q̂ φ′
�−1[(∇uT + ∇u) : (∇χT + ∇χ)]dxdz from

B(u�−1, u,χ). In all cases, n = 0 in (5.7). Then for
diagonal terms, φ′∂xi ui∂xi χi , the values m j = δi j are
used in (5.7). For off-diagonal terms, φ′∂xi uk∂xι

χκ , i �=
ι, k �= κ , the values m j = δi j + διj are used in (5.7).
Also,

βi,k = φ′(∣∣[∇uT + ∇u]�−1
i,k

∣∣2)
(5.9)

is computed using central differences for ∇u�−1. Nat-
ural one-sided modifications are used at the bound-
ary, and for fractional subscripts β is computed
by differencing u�−1 symmetrically with respect to
the appropriate cell face. This lumping is particu-
larly useful to derive the numerical boundary condi-
tions and the resulting stencils are given in detail in
[18].

Finally, lumping is implemented for the term∫
Q̂ α[uz ·χz] dxdz from B(u�−1, u,χ) with mi = 0 and

n = 1 in (5.7), and leads to the standard finite differ-
ence discretization of the 1D Laplacian with Neumann
boundary conditions.
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The discretizations defined above lead to a 2N p K ×
2N p K linear system,

A�−1u� = f (5.10)

in which the matrix A�−1 is dependent upon u�−1. A de-
tailed Taylor series analysis shows that this discretiza-
tion is consistent with the differential form of the opti-
mality system for the optical flow given in (4.17). Ac-
cording to the following, u� is well defined by (5.10).

Theorem 2. Suppose that the grid values {∇h Ii,k}
manifest sufficiently few symmetries that for every a ∈
RN and for every skew-symmetric W ∈ RN×N ,∑

1≤i≤2p ·1

∑
1≤k≤K

|∇h Ii,k · (a + W xi )|2 > 0, (5.11)

unless a = 0 = W . Also, assume that φ′
�−1 is cellwise

constant and that (5.9) satisfies 0 < β0 ≤ βi,k ≤ β1 <

∞. Then A�−1 in (5.10) is a symmetric and positive
definite matrix.

Proof: The matrix is evidently symmetric and non-
negative. Suppose there exists a vector of grid values
u∗ = {u∗

i,k} such that u∗ · A�−1 · u∗ = 0.
Now let w represent the function which is cellwise

constant with respect to x and piecewise linear and
globally C0 with respect to z, and suppose w has coef-
ficients {u∗

i,k} for the corresponding spline tensor prod-
ucts shown in (5.7). Then the terms in u∗ · A�−1 · u∗

derived from integrals involving α result from substi-
tuting w in these integrals and thus,

0 = u∗ · A�−1 · u∗ ≥
∫

Q̂
α|w z|2. (5.12)

Therefore, the coefficients {u∗
i,k} are constant with re-

spect to k.
Now let v represent the function which is cellwise

constant with respect to z and piecewise multilinear
and globally C0 with respect to x, and suppose v has
coefficients {u∗

i,k} for the corresponding spline tensor
products shown in (5.7). Then note that the mass ma-
trices for s(0)(t) and s(1)(t), i.e.,

M (0) =
{ ∫ 1

0
s(0)(h−1t − k) s(0)(h−1t − l) dt :

0 ≤ k, l ≤ h−1

}
(5.13)

M (1) =
{ ∫ 1− h

2

h
2

s(1)

(
h−1t − k + 1

2

)
s(1)

×
(

h−1t − l + 1

2

)
dt : 0 ≤ k, l ≤ h−1

}

(5.14)

satisfy the spectral property:

1

6
χ · M (0) · χ ≤ χ · M (1) · χ ≤ χ · M (0) · χ.

(5.15)

Therefore, all terms in u∗ · A�−1 · u∗ derived from inte-
grals involving φ′

�−1 can be estimated in terms of tensor
products of splines in (5.7) with mi = 1 and n = 0.
Thus, all such terms result from substituting v in the
corresponding integrals and hence:

0 = u∗ · A�−1 · u∗ ≥ β0

∫
Q̂

|∇vT + ∇v|2dxdz.

(5.16)

Since the coefficients {u∗
i,k} are constant with respect to

k, v has the form u∗
i,k = v(xi , zk) = a + W xi for some

a ∈ RN and for some skew-symmetric W ∈ RN×N , as
argued in the proof of Theorem 1.

Finally, since u∗ · A�−1 · u∗ majorizes the sum in
(5.11), that sum must vanish. However, this violates
the assumption on I unless u∗ = 0.

The computation of the optical flow can now be sum-
marized as follows:

• Compute ∇h I by central differences and Iz by (5.8).
• Set u0 = u and � = 1.
• Repeat until the relative difference in u� is suffi-

ciently small:
◦ Assemble A�−1 using u�−1, solve (5.10) for u�, and
set � = � + 1.

• Set u = u�.

According to Theorem 2, the system in (5.10) can be
solved using a conjugate gradient method. Although
conjugate gradient is relatively slow in the present con-
text, it is used in this introductory work for conve-
nience. On the other hand, note that if α = ∞ (uz = 0)
and φ(s) = βs, then (5.10) is �-independent and has
the spectral structure of the elasticity approach of [9] in
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Figure 7. In the two uppermost rows, the intermediate 32 × 32 images {{Ii ,k} : 1 ≤ k ≤ 16} are read from left to right and from top to bottom.
The essentially z-independent computed optical flow field is shown in the lower left. The registration error is represented in the lower right,
where I0(ξ), I1(ξ), and |I0(ξ) − I1(ξ)|, respectively, appear in the top row, and I1(η), I0(η), and |I1(η) − I0(η)|, respectively, appear in the
bottom row.

which fast Fourier methods are used. However, partic-
ularly for the treatment of natural boundary conditions,
the preferred solution procedure for (5.5) involves non-
linear multigrid techniques [14, 31] as well as multi-
scale pyramidal strategies in place of the loop shown at
the beginning of Section 5. Further numerical details
will be reported separately.

6. Computational Results

The final numerical methods defined in the previous
section are applied first to test cases and then to mag-
netic resonance images. First, Fig. 7 shows a simple
example in which the given 32 × 32 images I0 and
I1, shown to the right of the optical flow vector field,
are related by a pure rotation. All the computations re-
ported in this section were performed using the IDL1

(Interactive Data Language) system. In every example,
h and τ are one but can be rescaled in terms of reg-
ularization parameters to be consistent with the defi-
nition Q = (0, 1)N . Also, I ∈ [0, 1] holds in all ex-
amples, and white represents I = 1 while black rep-
resents I = 0. In the example of Fig. 7, α = 10 and
φ(s) = βs with β = 10. The successful computation
of the rotation is evident in the sequence of intermedi-
ate images {{Ii,k} : 1 ≤ k ≤ 16} and in the essentially

z-independent rotational optical flow field. Now define
the transported or morphed images:

I0(η) =




I0(y(η, 0)), η ∈ �c
1,

0, y(η, ζ̀ ) ∈ �, η ∈ �i
1,

I1(η), y(η, ζ̀ ) ∈ �, η ∈ �i
1

(6.1)

I1(ξ) =




I1(x(ξ, 1)), ξ ∈ �c
0,

0, x(ξ, ζ́ ) ∈ �, ξ ∈ �i
0,

I0(ξ), x(ξ, ζ́ ) ∈ �, ξ ∈ �i
0

(6.2)

and the registration errors:

E p
0 (�) = ‖I0 − I1‖L p(�), � ⊆ �0, (6.3)

E p
1 (�) = ‖I0 − I1‖L p(�), � ⊆ �1. (6.4)

For the example shown in Fig. 7, the errors satisfy
E1

0(�c
0) = 0.0094 = E1

1(�c
1) on the domain subsets

on which trajectories extend completely through the
full depth of Q, and E1

0(�0) = 0.014 = E1
1(�1) on the

full image domains. Also, E1
0(�0) = 0.016 = E1

1(�1)
holds for the example shown in Fig. 6 for which α = 1
and β = 1 were used. Thus, the approach succeeds to
produce a rotation or a translation when one fits the
data.
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Figure 8. Penalties φ(s) = βs and φ(s) = β
√

s + ε are compared in the top and bottom rows, respectively. The essentially k-independent
optical flow fields are shown in the left column. The middle column shows the morphing of a uniform grid from �0 to �1. The corresponding
registration errors are shown to the right in the same format as used in Fig. 7 but with scaled errors in the rightmost column. Specifically, for
each penalty, I0(ξ), I1(ξ), and |I0(ξ) − I1(ξ)|/E∞

0 (�0) appear above I1(η), I0(η), and |I1(η) − I0(η)|/E∞
1 (�1), respectively.

On the other hand, the example shown in Fig. 7 was
also constructed so that trajectories emanating from
nontrivial pixels in �0 and �1 would impinge on the
boundary �. As a result, the registration error satisfies
E∞

0 (�c
0) = 0.52 = E∞

1 (�c
1) on the subdomains �c

0 and
�c

1, but E∞
0 (�0) = 1 = E∞

1 (�1) on the full domains
�0 and �1. By contrast E∞

0 (�0) = 0.45 = E∞
1 (�1)

holds for the translation example shown in Fig. 6. Al-
though the desired registration has been computed for
the rotation, there is clearly a potentially influential
loss of information when nontrivial trajectories im-
pinge upon �, and such a loss can be avoided simply by
extending images by zero and using a sufficiently large
domain. The alternative use of non-natural boundary
conditions would clearly disturb the images shown in
Fig. 7.

Next, Fig. 8 shows a computational counterpart to
Fig. 3 in which the given 32 × 32 images I0 and
I1 are related by an excision, i.e., the middle com-
ponent {I0 > 1

2 } is removed to create I1. Accord-
ing to the same format used in Fig. 7, I0 appears
above I1 leftmost among the images shown in Fig. 8.
Also, the (Gaussian) penalty φ(s) = βs, β = 10−3,
and the (regularized TV) penalty φ(s) = β

√
s + ε,

β = 10−4, ε = 10−2 are compared. In both cases,
K = 4 and α = 105 are chosen, and the optical flow
field is essentially k-independent. The superior perfor-

mance of the TV penalty can be seen most conspicu-
ously from the middle column in Fig. 8 which shows a
morphing of a uniform grid from �0 to �1. Note that
for both penalties, the wide grey zone in I1 shows that
the middlemost region of I1 has been expanded. On
the other hand, while the TV penalty maps only greyer
pixels in I0 onto I0, the Gaussian penalty spuriously
maps some brighter pixels of I0 onto I0 to generate
a brighter strip in the middle of I0. Also, the inap-
propriate x2-dependence resulting from the Gaussian
penalty, particularly in the top and bottom image bor-
ders, is evident in the corresponding images I0 and
|I1 − I0|/E∞

1 (�1). With the Gaussian penalty, the er-
rors are E1

0(�c
0) = 0.14, E∞

0 (�c
0) = 0.5, E1

1(�c
1) =

0.011, and E∞
1 (�c

1) = 0.29 on the subdomains, and
E1

0(�0) = 0.14, E∞
0 (�0) = 0.5, E1

1(�1) = 0.013,
and E∞

1 (�1) = 0.5 on the full domains. With the
TV penalty, the errors are E1

0 = 0.14, E∞
0 = 0.5,

E1
1 = 0.005, and E∞

1 = 0.025 both on the subdomains
and the full domains.

Now, Fig. 9 shows a final simple example to reveal
how the strongly rigid registration shown especially
in Fig. 7 can be relaxed to what will be referred to
as weakly rigid registration obtained by relaxing the
dominance of the rigidity penalty. Again, following the
format of Figs. 7 and 8, I0 is shown above I1 leftmost
among the images shown in Fig. 9. Here, the 32 × 32
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Figure 9. To demonstrate strongly and weakly rigid registration with a simple example, penalties φ(s) = βs with large and small β are
compared in the top and bottom rows, respectively. The essentially k-independent optical flow fields are shown in the left column. The middle
column shows the morphing of a uniform grid from �0 to �1. The corresponding registration errors are shown to the right in the same format
as used in Fig. 7 but with scaled errors in the rightmost column. Specifically, for each penalty, I0(ξ), I1(ξ), and |I0(ξ) − I1(ξ)|/E∞

0 (�0) appear
above I1(η), I0(η), and |I1(η) − I0(η)|/E∞

1 (�1), respectively.

images I0 and I1 both contain a left-situated square
which remains fixed, while a right-situated square
moves upward from I0 to I1. In both cases of this exam-
ple, a linear penalty, φ(s) = βs, is used and K = 2 and
α = 10 are chosen. The compared cases correspond to
β = 10 (strongly rigid) in the upper part of Fig. 9 and
to β = 10−2 (weakly rigid) in the lower part. The dif-
ference between strongly and weakly rigid registration
is particularly evident in the respective uniform grid
morphings from �0 to �1 shown in the middle column
of Fig. 9. Specifically, weakly rigid registration evi-
dently permits a departure from rigidity, i.e., a fluctua-
tion in areas and angles, which vanishes on average and
with increasing variance as the dominance of the rigid-
ity penalty is relaxed. The errors corresponding to the
strongly rigid case are E1

0 = 0.037 = E1
1 and E∞

0 =
1 = E∞

1 both on the subdomains and the full domains.
The errors corresponding to the weakly rigid case are
E1

0 = 0.0045 = E1
1 and E∞

0 = 0.41 = E∞
1 both on

the subdomains and the full domains. Note that this and
other more complex examples were constructed partic-
ularly to generate a nonautonomous optical flow field.
The field can of course be made nonautonomous for
sufficiently small α, but the result manifests more nu-
merical fluctuation than any information rich variation
which contributes to the registration. The trend of the

flows is toward autonomy, and suggests further inves-
tigation of the regularization discussed in Section 3.

Finally, Fig. 10 shows an example of the registration
of two magnetic resonance images I0 and I1 from a con-
trast enhanced dynamic scan containing 128×128 pix-
els each. The scan was performed with a T1-weighted
inversion recovery turbo-flash sequence. Again, fol-
lowing the format of Figs. 7–9, I0 is shown above I1

leftmost among the images shown in Fig. 10. The most
conspicuous object in the middle of these images is the
left kidney situated to the right of the vertebral column
appearing along the left border. This example is sim-
ilar to that of Fig. 9 in the sense that the left-situated
vertebrae remain fixed while the right-situated kidney
moves upward from I0 to I1 as a consequence of respi-
ration. In both cases of this example, a linear penalty,
φ(s) = βs, is used and K = 2 and α = 10 are cho-
sen. As with Fig. 9, the compared cases correspond
to β = 10 (strongly rigid) in the left part of Fig. 10
and to β = 10−2 (weakly rigid) in the right part. The
difference between strongly and weakly rigid regis-
tration is again particularly evident in the respective
uniform grid morphings from �0 to �1 shown in the
middle row of Fig. 10. The errors corresponding to the
strongly rigid case are E1

0(�c
0) = 0.046, E∞

0 (�c
0) =

0.58, E1
1(�c

1) = 0.046, and E∞
1 (�c

1) = 0.55 on the



Registration by Maximally Rigid Optical Flow 63

Figure 10. To demonstrate strongly and weakly rigid registration of magnetic resonance images, penalties φ(s) = βs with large and small β

are compared in the left and right columns, respectively. The essentially k-independent optical flow fields are shown in the bottom row. The
middle row shows the morphing of a uniform grid from �0 to �1. The corresponding registration errors are shown at the top in the same format
as used in Fig. 7 but with a common scale for the errors. Specifically, for each penalty, I0(ξ), I1(ξ), and |I0(ξ)−I1(ξ)|/0.64 appear above I1(η),
I0(η), and |I1(η) − I0(η)|/0.64, respectively.
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subdomains, and E1
0(�0) = 0.049, E∞

0 (�0) = 0.61,
E1

1(�1) = 0.048, and E∞
1 (�1) = 0.62 on the full do-

mains. The errors corresponding to the weakly rigid
case are E1

0(�c
0) = 0.030, E∞

0 (�c
0) = 0.40, E1

1(�c
1) =

0.029, and E∞
1 (�c

1) = 0.44 on the subdomains, and
E1

0(�0) = 0.031, E∞
0 (�0) = 0.43, E1

1(�1) = 0.029,
and E∞

1 (�1) = 0.47 on the full domains. The error im-
ages have been displayed according to a common scale,
in which 0.64 represents the brightest error intensity, in
order to reveal the improvement obtained by the weakly
in relation to the strongly rigid registration. Note that
these images were taken in sequence after the injec-
tion of a Gadolinium-DTPA based contrast agent, as
is particularly evident from certain bright spots which
appear suddenly in one image and not the other. The
registration is particularly difficult in the neighborhood
of a bright spot in I1 situated to the left among the
vertebrae, and forthcoming work on image similarity
measures will be useful for treating such situations.

Note

1. See http://www.rsinc.com/idl/index.asp.
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