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Abstract. Let E be an arbitrary space, and δ an extensive dilation of P(E) into itself, with an adjoint erosion ε.
Then, the image δ[P(E)] of P(E) by δ is a complete lattice L where the sup is the union and the inf the opening of
the intersection according to δε. The lattice L, named viscous, is not distributive, nor complemented. Any dilation
α on P(E) admits the same expression in L. However, the erosion in L is the opening according to δε of the erosion
in P(E). Given a connection C on P(E) the image of C under δ turns out to be a connection C ′ on L as soon as
εδ(C) ⊆ C. Moreover, the elementary connected openings γx of C and γ ′

δ(x) are linked by the relation γ ′
δ(x) = δγxε. A

comprehensive class of connection preverving closings εδ is constructed. Two examples, binary and numerical (the
latter comes from the heart imaging), prove the relevance of viscous lattices in interpolation and in segmentation
problems.
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1. Introduction

This paper is a modified version of my communica-
tion [20] at ISMM 2002. On the one hand, Ch.Ronse
provided me with a counter example proving that
Theorem 8 of this communication needed a supplemen-
tary condition, and noticed also that some assumption
was useless in Proposition 16. On the other hand, I.
Terol Villalobos asked me several questions about the
text, showing that some developments were uselessly
complicated. I thank them both for their comments, and
also because that urged me to review the whole paper. I
made several changes and simplifications which finally
yield what follows.

The present study stems from three origins. First
of all the viscous lattices, also called lattices of
dilates, appeared at CMM (Centre de Morpholo-
gie Mathématique) during the nineties as a typical
counter example of bad properties (those listed in
Proposition 3), which is always useful when lectur-
ing courses. It is for this sake of pedagogy that they are
introduced in [9] p. 101 and in [18], Section 2.1. But
in both cases, the properties of Propositions 1 and 3

are stated without proofs. It was tempting to approach
the structure more systematically, and to discover the
consequences of these geometrical quanta of opera-
tion that are the structuring elements δ(x). Second, in
1998 C. Vachier presented her first results on water-
shed regularization, where she was applying a viscos-
ity algorithm due to Meyer [10]. Their viscous prop-
agations (see [22], and [23]) suggested me to replace
the usual working lattice P(E) by the more convenient
framework that is developed below. My third motiva-
tion comes from morphological connections. In this
theory, one can easily derive a connection from an-
other by means of extensive dilations (e.g. by discs in
R

2) that cluster particles [17], but there are less possi-
bilities to split objects, and the viscous lattice approach
seemed to reach this goal.

2. Reminder on Lattices, Atoms, Co-Primes
and Sup-Generators

In this paper, we compare the lattice P(E) of the sub-
sets of an arbitrary set E with the viscous set lattice L,
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which is provided with the same set ordering as P(E),
but where the infimum is no longer the set intersection.
This provokes various changes whose description re-
quires the reminder of a few definitions and of some
classical results (for the definitions, see [1] and for the
results associated with operators [5–7, 11, 14, 16]).

1. A non zero element A of a complete lattice T is
an atom if X ≤ A implies X = 0 or X = A. For
example the sets {x}, x ∈ E are atoms in P(E),
where they are called singletons.

2. An element A ∈ T , A �= 0 is said to be co-prime
when A ≤ X ∨ Y implies A ≤ X or A ≤ Y, in a
non exclusive manner.

3. A class B is said to be a sup-generator when every
element X ∈ T is the supremum of the elements of
B smaller than it

X = ∨{B ≤ X, B ∈ B}.

4. Lattice T is said to be atomic (resp. co-primary)
when it is generated by a class of atoms (resp. co-
primes). Clearly, every atom belongs to every sup-
generating family.

5. Let 0 and M be the extreme elements of lattice T .
If X, Y ∈ T are such that

X ∧ Y = 0 and X ∨ Y = M,

then Y is called a complement of X (and vice versa).
The lattice T is said to be uniquely complemented
when each of its elements has a unique complement.

6. Several useful properties involve distributivity. Re-
member that a lattice T is distributive if for all A,
B,C ∈ T

A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C)

A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C).

The two equalities are equivalent. In a dis-
tributive lattice, every atom is co-prime ( [6],
Proposition 2.37). A complemented and distribu-
tive lattice is said to be Boolean (e.g. P(E)).

7. Lattice T is modular when for any A, B, C in T

B < A ⇒ A ∧ (B ∨ C) = B ∨ (A ∧ C).

Clearly, distributivty implies modularity [1].

8. Let L, M be two complete lattices. The mappings
from L into M which commute with the sup (resp.
the inf) are called dilations δ (resp. erosions ε)

δ(∨Xi ) = ∨δ(Xi ), ε(∧Xi ) = ∧ε(Xi ), Xi ∈ L
(1)

with in particular δ(0L) = 0M and ε(ML) = MM.
9. The dilations δ : L → M and of the erosions ε :

M → L correspond to one another via the duality
relation

δ(X ) ≤ Y ⇔ X ≤ ε(Y ), X, Y ∈ L , (2)

called “adjunction”. It is due to E.Galois, and occurs
if and only if δ is a dilation and ε an erosion [5,16].

10. Given the adjunction (δ, ε), the composition product
γ = δε (resp.ϕ = εδ) product is an opening (resp.
a closing) i.e. an increasing, idempotent and anti-
extensive (resp. extensive) operation [7, 11, 16].

11. The family L = {δ(X ), X ∈ P(E)} is both the
image of P(E) under dilation δ and under the open-
ing γ = δε, adjoint to the dilation δ (Theorem 1.3
in [15], see also [11]).

12. Let γ be an opening on P(E), and I ⊆ P be the
class of those sets that are invariant under γ . It is
closed under union and γ (X ) is the union of all sets
Y ∈ I that are smaller than X (Proposition 7.1.1,
p. 188, in [7], see also [11]), (dual statement for the
closings).

13. Complete lattices are the concern of several duali-
ties. First, we can reverse the sense of the ordering,
and invert sup and inf operations, which generates
the dual lattice (T , ≤) of (T , ≥). Atoms, co-primes
and sup-generators on (T , ≤) define, on (T , ≥),
dual anti-atoms, primes, and inf-generators respec-
tively. Moreover, when lattice (T , ≥) is boolean,
the complement operator induces another duality
on (T , ≥). Finally, Eq. (2) of Galois adjunction pro-
vides us with a third duality which, just as the first
one, applies to any lattice, complemented or not.

3. Viscous Lattices

Let E be an arbitrary set, P(E) be the lattice of its sub-
sets, and let δ be an extensive dilation: P(E) → P(E),
with adjoint erosion ε. The operator δ is determined by
the images of singletons {x} of P(E), since the dilate
δ(X ) of any X ∈ P(E) is the union of the dilates of the
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points it contains:

δ(X ) = ∪{δ(x), x ∈ X} X ∈ P(E) (3)

According to the above point 11, the image L =
δ(P(E)) of the dilation δ coincides with that of the
adjoint opening δε. In fact, family L turns out to be a
complete lattice:

Proposition 1. Given an extensive dilation δ on
P(E), the setL = δ(P(E)) is a complete lattice regard-
ing the inclusion ordering. In this lattice, the supremum
of a family {Xi , i ∈ I } coincides with its set union,

whereas the infimum ∧ is given the opening according
to γ = δε of the intersection ∩Xi

∧{Xi , i ∈ I } = γ (∩{Xi,i ∈ I }) {Xi , i ∈ I } ∈ L (4)

The extreme elements of L are E and the empty set ∅.
L is said to be the viscous lattice of dilation δ.

Proof: Consider a family {Xi , i ∈ I } ∈ L. We draw
from Relation (3) that the set union is the smallest ele-
ment of L greater than each Xi . On the other hand,
according to the above points 11 and 12, γ (∩Xi )
belongs to L, and is the largest element of L in-
cluded in ∩Xi , therefore in each Xi which achieves the
proof.

Proposition 1 can be extended to complete lattices
(indeed, it is already implicitly contained in [5, 15]); but
we keep here the level of generality of theP(E) lattices.
Dually, the set L∗ of all ε(x), X ∈ P(E) is equal to the
set of εδ(X ). We have

Proposition 2. The two families L and L∗ turn out
to be two isomorphic lattices.

Proof: We draw from [15] (p. 21), or from [5], the
two equalities δεδ = δ and εδε = ε, which imply that
δε is the identity on L∗ and εδ is the identity on L,
so that the two increasing mappings δ : L∗ → L and
ε : L → L∗ are each other’s inverse.

If a lattice is instructive by its bad properties, as well
as by its nice ones, then the following result teaches us
a lot.

Proposition 3. The viscous lattice L of dilation δ is
generally neither modular (hence neither distributive)
nor co-primary, nor admits any unique complement.

Figure 1. Counter example for the lack of distributivity in L .

Proof: Exhibiting a counter-example of each prop-
erty is enough. Take for dilation δ the Minkowski’s
addition by the structuring element B, in R

2 or in Z
2

where B is the compact square of side 3. Consider the
three squares X, X ′, and Y of size three depicted in
Fig. 1. These three elements are atoms of L. However,
a 3×3 square included in the union (X ∪ X ′) is not nec-
essarily included in either X , or X ′: therefore, atoms
are not co-prime. Moreover, setting Z = X ∪ Y , we
have Y < Z < X ′ ∪ Y

[Z ∧ X ′] ∪ Y = ∅ ∪ Y = Y < Z = Z ∧ (X ′ ∪ Y )

hence lattice L is not modular. As it is not modular,
it is not distributive [1]. Finally, the complements are
multiple because when X ∈ L, any set Y ∈ L such that

Y ⊇ Xc and γ (Y ∩ X ) = ∅.

is a complement of X in L.

It is remarkable that as soon as P(E) is regularized
by any δ, as small as we want, it looses its basic prop-
erties to be distributive and uniquely complemented.
The above counter-properties are not independent: they
illustrate a contrario a well known result in lattice the-
ory (see for example [9], p. 101) according to which in
a distributive lattice, any atom is co-prime. The main
consequence of such a statement concerns operators, as
it is not possible to base ourselves on the complement
for defining pairs of dual operations. Fortunately, Ga-
lois’s adjunctions (2) between dilations and erosions
remain defined (as on any complete lattice), which will
be useful.

Dilation δ may be the composition product of two
dilations, i.e. δ1 = δ2δ3. Then every δ1(x) is a union of
δ2(y)′s so Lδ1 ⊆ Lδ2 . In particular, δ may depend on a
positive parameter. Suppose for example that E is the
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Euclidean space R
n and take for generating dilation

δ = δr the Minkowski addition by the open ball of
radius r . We have clearly

r ≤ r ′ ⇒ Lr ⊇ Lr ′

As r varies, the union of all lattices Lr generates the
complete lattice

L = ∪{Lr , r > 0}

which is still non-modular, non-distributive, non-
uniquely complemented and non co-primary. Lattice
L is composed of all sets that are equal to their inte-
riors, i.e. of all open sets of the Euclidean space R

n.

And marvellously, when we add to L the points, the
lines and the various fine sets of the space, in order to
obtain the complete family P(Rn), then we recover all
nice properties of complement, of distributivity, and of
co-primarity that seem so natural to us. . .

4. Increasing Operations in L

Consider a viscous lattice L, as defined in
Proposition 1. We will distinguish between the increas-
ing operations on L which do not involve a connection
from those which require some. The present section is
devoted to the first category; the second one is studied
in the next sections.

As every increasing operation in L is a supremum
of erosions and an infimum of dilations of L into it-
self ([15], p. 20), we can focus the study on these two
operations only. Moreover, as L is a subset of P(E),
we can wonder to which extent a dilation or an erosion
on P(E) generates homologs on L, and, if so, which
ones? In order to avoid any confusion, we denote by α

the current dilation on P(E) in itself and we keep sym-
bol δ for referring to the fixed dilation of P(E) that
generates L, and whose adjoint erosion is ε.

Proposition 4. 1/ Any dilation α : P(E) → P(E)
that commutes with δ is also a dilation of L into itself.

2/ If α−1 stands for the erosion adjoint to α in P(E),
and β for the erosion adjoint to α in L, then we have

β = δεα−1 = γα−1 (5)

Proof: 1/ As dilations α and δ commute, we get

α[L] = α[δ[P(E)]] = δ[α[P(E)]] ⊆ L

which means that α maps L into itself, and as the
suprema in L and in P(E) are the same, α is also a
dilation on L;

2/ The eroded β(X ), in L, is the greatest Y ∈L such
that α(Y ) ⊆ X, or by adjunction inP(E), such that Y ⊆
α−1(X ). By Proposition (1) this must be γ (α−1(X )),
which is nothing else than relation (5).

Therefore, each eroded element in L is equal to the
opening by δε of the homologous eroded element (i.e.
of the same adjoint dilation) in P(E).

5. Connections on Viscous Lattices

In Mathematical Morphology a connection, or con-
nected class, on P(E) is a set family C ⊆ P(E) that
satisfies the three following axioms ([17])

i/ ∅ ∈ C
i i/ x ∈ E ⇒ {x} ∈ C (6)

i i i/{Xi , i ∈ I } ⊆ C and ∩ Xi �= ∅ ⇒ ∪Xi ∈ C.

The second axiom means that class C is sup gener-
ating, and the third one that it is conditionally closed
under union. the following theorem [17] provides us
with an operating way to act on connections:

Theorem 5. The datum of a connected class C on
P(E) is equivalent to the family {γx , x ∈ E} of the so
called “point connected openings” such that

(iii) for all x ∈ E, we have γx (x) = {x}
(iv) for all A ⊆ E, x, y ∈ E, γx (A) and γy(A) are

equal or disjoint
(v) for all A ⊆ E, and all x ∈ E, we have x /∈ A ⇒

γx (A) = Ø.

Clearly, the invariant sets of the γ ′s coincide with the
connected class C. The definition of a connection, as
well as the equivalence theorem, extend to a complete
sup-generated lattice T (cf. [18]) by changing, in the
first axiom, ∅ by the zero of the lattice and, in the third
one, the intersection and the union by the supremum
and the infimum. The second axiom then consists in
stating that C is a sup-generating class. In particular,
when there exists in T a sup-generating family S that
belongs to all the sup-generating classes, the second
axiom can be replaced by S ⊆ C [13].

In the case of viscous lattices, we are almost in
this last situation, for the class {δ(x), x ∈ E} of the
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structuring elements plays a specific role. Not only it
is sup-generating, but it also belongs to all the sup-
generating classes of L that are not too pathological.
It is in particular the case when we have εδ(x) = {x}
for all points x ∈ E . By adjunction, this condition is
equivalent to

δ(x) ⊆ δ(y) ⇔ x = y (7)

whose meaning is that of a separation axiom. Equiva-
lence 7 is fulfilled for example for the translation in-
variant dilations on P(Rn) or P(Zn), as soon as the
transform δ(o) of the origin is bounded. When Rela-
tion 7 is satisfied, then the δ(x)’s become atoms, which
ensures us that they belong to all connected classes.
Therefore, we can restrict ourselves to such separated
dilations, which yields the following definition of a
connection on L.

Definition 6. LetLbe a viscous lattice onP(E), based
on a dilation δ satisfying Equivalence (7). A class C ′ of
L defines a connection on L when

i/ ∅ ∈ C ′

ii/ x ∈ E ⇒ δ{x} ∈ C ′ (8)

iii/ {Xi , i ∈ I } ⊆ C ′ and ∧ Xi �= ∅ ⇒ ∪ Xi ∈ C ′

Consider now a connectionC onP(E) (and no longer
on L). An interesting feature of dilation δ is that it may
preserve also the C-connectivity of the singletons, i.e.

x ∈ E ⇒ δ(x) ∈ C (9)

Then, since dilation δ is extensive by definition (see
Proposition 1), it preserves the whole class C (Propo-
sition 8 in [18]) and the adjoint erosion ε treats the

Figure 2. (a) Am I connected? (b) The two left handside segments (of two points each), as well as the two right handside ones are C′-connected
sets, but the union of the three segments is not.

connected components independently of each other
(Proposition 11 in [18]), i.e.

X = ∪{Xi , Xi ∈ C} ⇒ ε(X ) = ∪ε(Xi )

The correspondence between the two systems of ax-
ioms (6) and (8) is so direct that we can wonder whether
the restriction to L of any connection on P(E) does not
induce a connection on L itself. Indeed that is the case,
as we will see now, but the discussion below about
Fig. 2(a) indicates that the connections reached in this
way may not be the most pertinent ones.

Proposition 7. Let L be the viscous lattice on P(E)
of (extensive) dilation δ, and let C be a connection on
P(E). If δ preserves the connectivity of the singletons of
P(E), then the restriction C ′ = (C ∩L) of connection
C to L is itself a connection over lattice L. If γx stands
for the point connected opening at point x w.r.t. C, we
have

δγ x (A) = γxδγ x (A) ⊆ γxδ(A), A ∈ P(E) (10)

Proof: We observe firstly that the empty set is a δ

dilate, and all δ(x), x ∈ E belong to bothC andL, hence
class C ′ satisfies the first two axioms of Definition 6. As
regarding the third one, consider a family {Xi , i ∈ I }
in class C ′. When ∧Xi �= ∅, we have ∧Xi �= ∅ ⇒
∩Xi �= ∅ ⇒ ∪Xi ∈ C, but ∪Xi also belongs to L
which is closed under union, hence ∪ Xi ∈ C ′, which
is therefore a connection. As for rel. (10), we observe
that δγ x (A), x ∈ E, A ∈ P(E), is connected because δ

preserves class C (by Proposition 11 in [18]), and that
δγ x (A) = γxδγ x (A) because by extensivity of δ,the
set δγ x (A) contains the point x . The last inequality of
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rel. (10) follows from the fact that γxδ is increasing and
γx (A) ⊆ A.

A simpler form of Proposition 7 appears in U. Braga-
Neto’s Ph.D. thesis [3], pp. 85–86. Conversely, let C ′

be a connection on L. Associate with it the class C ′
1

conditionally closed under union generated by C ′, i.e.
the class in P(E) that is composed of all the unions of
elements of C ′whose intersections are not empty. We
have C ′ ⊆ C ′

1, since some inf-empty families may have
a non empty intersection. Add to C ′

1 the class S of the
singletons of P(E), by putting

C = C ′
1 ∪ S (11)

Class C is, by construction, a connection onP(E). Here
we find one of the set connections mentioned by Ch.
Ronse in [12], namely one that is formed by the con-
nected invariant sets of opening δε, plus the singletons.
More precisely, it is the smallest extension of C ′ to the
lattice of the connections on P(E), but obviously, it is
not the only possible one: the maximum connection on
P(E), that is to say P(E) itself, also includes C ′. Now,
the restriction of C to L, where C is defined by rel.(11),
does not restore the connection C ′ where we started
from to construct C. In other words, Proposition 7 does
not draw up a complete inventory of the connections on
L, but rather describes those which do not really bring
into play the infimum of lattice L.

On the other hand, the class C∩L connects too much.
For instance, if we take for C the arcwise connection
in R

2 or in Z
2, and for L the lattice of the sets open by

the unit disc B, the union of the three discs in Fig. 2(a)
is an element of both C and L, hence of C ′. However,
in the lattice L of the open sets, these three discs are
two by two disjoint. And they are disjoint because their
eroded versions by B are disjoint in P(E). Therefore,
Fig. 2(a) will be considered as composed of three sep-
arated particles for the connections on L which involve
connections on P(E) before the dilation δ. Such con-
nections, which will be more restrictive, can be carried
out in the following way:

Theorem 8. Let C be a connection on P(E) and δ:
P(E) → P(E) be an extensive dilation, of adjoint
erosion ε, that generates the lattice L = δ(P). If the
closing εδ preserves the connection C, i.e. εδ(C) ⊆ C,

then the image C ′ = δ[C] of the connected sets under
δ is a connection on lattice L.

Proof: As connection C contains the singletons and
the empty set, and as δ(∅) = ∅, the first two axioms of

Definition 8 are satisfied. For proving the third one, we
consider a family {X ′

i , i ∈ I }of elements ofC ′ , i.e. such
that for each i ∈ I there exists a Xi ∈ C with X ′

i =
δ(Xi ). Suppose that {∧X ′

i , i ∈ I } �= ∅, hence ∅ �=
∧X ′

i = δε(∩X ′
i ) = δ[∩εδ(Xi )]. As δ is a dilation, it

satisfies the implication A = ∅ ⇒ δ(A) = ∅, therefore
∩εδ(Xi ) �= ∅. As Xi is C-connected and εδ(C) ⊆ C,
the union ∪εδ(Xi ) turns out to be C-connected and

∪{X ′
i , i ∈ I } = ∪{δXi , i ∈ I } = ∪{δεδXi , i ∈ I }

= δ[∪{εδ(Xi ), i ∈ I }] ∈ C ′,

which achieves the proof.

Theorem 8 opens the way to new connections on L,
noticeably more restrictive than those of Proposition 7.
For example, in Fig. 2(a), when we take the arcwise
connection and the dilation δ by the unit disc, the three
lobes of Fig. 2(a) become three separated connected
components.

One may notice a curious feature of Theorem 8,
which does not assume that the δ-images of the ele-
ments of C be themselves C-connected. For instance,
in Z

1 equipped with the arcwise connection, if one
takes for δ the dilation by the doublet {0, +3}, i.e.
δ(x) = {x, x + 3}, then any segment is clearly invari-
ant under the closing εδ. The conditions of Theorem 8
are then fulfilled; this implies, for example, that the
two left-hand side segments of Fig. 2(b) form a
C ′-connected set (since they are the dilate of a segment
by δ), as well as the two right-hand side ones, although
their union is not anymore C ′-connected. However nei-
ther the left two segments, nor the right two ones, are
C -connected sets.

6. Key-Dilations

In Theorem 8 there appears the assumption that the
adjunction closing εδ preserves connection C, i.e.
εδ(C) ⊆ C. Such a condition is obviously not general.
For example, take in Z1 the centred structuring element
δ(x) made of seven points, when point x is at the left
of �, and of three points only, when not (see Fig. 3).

We observe on the figure that the corresponding clos-
ing εδ does not preserve connectivity (the same draw-
back still occurs when we replace δ(x) by its extremi-
ties). Is the condition εδ(C) ⊆ C very demanding? Are
there many dilations δ whose associated closing εδ sat-
isfy such a property, and if so, can connection C be
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Figure 3. An example of a dilation δ that does not preserve con-
nectivity. (a) initial set X in Z1; (b) dilate δ(X ); (c) closed set εδ(X ).

completely arbitrary? That are the questions we treat in
this section by constructing a class of convenient pairs
(δ, C). This class (the key-dilations) is probably not the
most general one. The following reminder, which gen-
eralizes the role of the arcs in the arcwise connections,
will be useful.

Proposition 9. A set X is connected if and only if
when (x, y) ∈ X, one can find a connected set included
in X and containing x and y ([17], p. 54).

In pipe organs, the vertical pipes are put on a par-
allelepiped box with compressed air inside. Their ar-
rangement forms a 2-D matrix where all pipes of each
row belong to a same rank (i.e. have the same timbre:
oboe, bourdon, etc.) and all those of a same column
play a same key, so that the row /column intersection
labels a unique rank/key combination. As the dilations
we propose below will be decomposed in a same way,
we call them, by analogy, “key-dilations.”

One usually says that a dilation δ in the Euclidean
space is linear of direction α when the transform of
each point x ∈ R

n is contained in a straight line �α

of direction α. Consider a given family {α1..α j .. αk} of
directions in R

n (with k < ∞), and let L j (x, l) stand
for the closed segment of length l and direction α j

centred at point x . The length itself may be a function
l(x, α j ) of the point x and the direction α j .

Definition 10. Given a finite set {α j , 1 ≤ j ≤ k}
of directions in R

n , let {δ j , 1 ≤ j ≤ k} be a family
of linear dilations on δ j : F(Rn) → F(Rn), of adjoint
erosions {ε j , 1 ≤ j ≤ k} and such that for all x ∈ R

n

and of all directions α j , 1 ≤ j ≤ k, we have

1. δ j (x) = L j (x, l(x, α j ));

2. ε jδ j (x) = {x};
3. δ(x) = δk . . . δ2δ1(x) = Lk(x, l(x, αk)) · · · ⊕

L2(x, l(x, α2) ⊕ L1(x, l(x, α1)).

Then the composition product δ is said to be a key-
dilation.

The first axiom of the definition is a condition of 1-D
convexity for the mapping x → δ j (x). In addition, by
placing x at the center of the transform, we make the
mapping δ j extensive. But it is not translation invariant
and the length l(x, α j ) of the segment L j (x, l(x, α j ))
may vary from point to point. The second axiom repeats
the separation axiom already introduced by Rel. (7). Fi-
nally, the third one generalizes the convexity condition
of the first one. When a second direction, α2 say, is in-
troduced, this third axiom establishes some dependence
between the two primitive dilations. The δ2(y) dilates
of all points y of L1(x, l(x, α1)) must be translated of
each other in order to obtain

δ(x) = δ1(x)δ2(x) = L1(x, l(x, α1)) ⊕ L2(x, l(x, α2))

(12)

so that when x describes a straight line �1 of direc-
tion α1, then all the δ2(x)’s are equipollent segments.
By duality between the directions α1 and α2, the same
occurs for the δ1(x)’s when x describes a straight line
�2. In addition, Rel. (6) shows that the composition
product δ = δ2δ1 is commutative.

By adding a third direction α3 we generate the key-
dilation δ = δ3δ2δ1. If the three directions are coplanar,
the segments L3(x, l(x, α3)) must have the same length
along the straight lines �2, and also along the �1 lines,
so that their length is the same everywhere, i.e. dilation
δ3 is translation invariant. The same comment applies,
of course, for a fourth, fifth, etc. direction, and finally
extends to R

n as follows.

Proposition 11. Let δ = δk . . . δ2δ1 be a key-dilation
of order k in R

n. If k ≤ n, then for every j0 ∈ [1, k]
the dilations {δ j , j ∈ [1, k], j �= j0} are translation
invariant along the straight lines of direction α j0 . If
k > n, then there exists n directions for which the
previous statement is true, and k − n other ones for
which the δ j ’s are translation invariant. Moreover, the
product δ = δk . . . δ2δ1 is commutative with respect to
all its factors.

In R
n , the key-dilations δ j , 1 ≤ j ≤ k, operate on

the closed sets F(Rn) of R
n via the cross sections by
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Figure 4. The three rectangles that form δ1(A) (in dark grey) are
supposed to reconnect ouside the frame. The α2 stripe that contains
point y is the union of the two rectangles in light and medium grey.
The rhombus R is the medium grey rectangle.

straight lines �α j that span the space by translations.
The closing ε jδ j (A), A ∈ F(Rn) can only remove
open segments of pores in direction α j (they are for
example the two light and medium grey rectangles of
Fig. 4), and each segment is treated independently of
the others. In order to ensure that ε jδ j maps F(Rn)
into itself, we will suppose that the structuring element
x → δ j (x) is a continuous mapping. Then it follows
from Theorem 3.11 in [8] that ε jδ j is an upper semi-
continuous mapping from F(Rn) into itself.

Before entering such a multidirectional approach,
we will focus on the case when one direction only, α1

say, is involved. It is classically known that in R
1 and in

Z
1 the translation invariant closings by segments pre-

serve the arcwise connectivity [3] . We will generalize
this result in three ways, by weakening the translation
invariance, and by increasing the possible connections
and the dimensions of the space.

Below, the expression {z, z′} indicates the pair of
the two points z and z′, and [z, z′] the closed segment
from z to z′. In the notation, the space R

1 is assimilated
to an axis, and we keep the same symbols (x, z..) for
denoting the points and their abscissae. The dilate of z
is the segment from z0 at the left, to z1 at the right, with
z1 − z = z − z0 , and the notation with subscripts 0
and 1 is the same for any point dilate. Finally, in what
follows, “segment” means always “closed segment.”

Proposition 12. Let δ be a key-dilation in R
1. Then

1. the dilates of segments are segments;
2. the eroded of segments are segments or the empty

set;

3. Given {z, z′} ∈ R
1, with z < z′, and a ∈]z, z′[, the

following equivalence holds

{δ(z) ∪ δ(z′) is a segment} ⇔ δ(a) ⊆ δ(z) ∪ δ(z′)

(13)

4. The segments are invariant under the closing εδ.

Proof:

1. The first point is a direct consequence of Proposition
8 in [18], namely that an extensive dilation with
connected point-dilates preserves connectivity.

2. By anti-extensivity of ε, we have ε([z, z′]) ⊆ [z, z′].
Suppose that ε([z, z′]) is not empty and comprises
more than one segment, one can find point a ∈
ε([z, z′])c between two segments of ε([z, z′]). To say
a /∈ ε([z, z′]) is equivalent to saying δ(a) �⊆ [z, z′],
therefore either point a0 is in the left outside of
[z, z′], or a1 in the right outside. Suppose it is a0,
and take a point b in a segment of ε([z, z′]) at the
left of a. We have a0 < z ≤ b0 ≤ b < a, which
implies, by symmetry that a0 < b0 ≤ b1 < a1, i.e.
δ(b) ⊆ δ(a). Then, according to Rel. (7), or the sec-
ond axiom of Definition 10, we have a = b, which is
in contradiction with the assumption a /∈ ε([z, z′]).
Hence ε([z, z′]) is a segment.

3. We first prove Equivalence (13) in the ⇒ sense.
Consider a point a ∈]z, z′[ and suppose that δ(a)
hits the background, that there exists b ∈ δ(a) ∩
[δ(z) ∪ δ(z′)]c. As δ(z) ∪ δ(z′) is a segment, point b
is located either at the left of z0 or at the right of z′

1. In
the first case, for example, the following inequalities
hold

a0 ≤ b ≤ z0 ≤ z ≤ a

so that, by symmetry, a0 ≤ z0 ≤ z1 ≤ a1, i.e.
δ(z) ⊆ δ(a), hence a = z, which is incompatible
with a ∈]z, z′[. The second case is treated in the
same way, which results in implication ⇒.

Conversely, suppose that δ(a) ⊆ δ(z) ∪ δ(z′) for
some a ∈]z, z′[. If the right member of this inclu-
sion is composed of two segments, then δ(a), as a
segment, is included in one of them, δ(z) say. But
δ(a) ⊆ δ(z) implies a = z, which is a contradiction.
Hence δ(z) ∪ δ(z′) is a unique segment.

4. By extensivity of the closing, we have [z, z′] ⊆ εδ

[z, z′]. For proving the inverse inclusion, consider
a point a ∈ εδ [z, z′], i.e. by adjunction δ(a) ⊆ δ
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[z, z′]. If a is exterior to [z, z′], at the left side for
example, we obtain the sequence z0 ≤ a0 ≤ a ≤ z,
hence δ(a) ⊆ δ(z), and a = z. Therefore a ∈ [z, z′],
which achieves the proof.

As a direct consequence of point 3, note that for all
{z, z′} ∈ R

1 the dilate δ(z) ∪ δ(z′) is a segment if and
only if

δ(z) ∪ δ(z′) = δ([z, z′]) (14)

Indeed, when δ(z) ∪ δ(z′) is a segment, then Equiv-
alence (13) gives ∪{δ(a), a ∈]z, z′[} ⊆ δ(z) ∪ δ(z′),
hence δ([z, z′]) ⊆ δ(z) ∪ δ(z′). The reverse inclu-
sion derives from the increasingness of δ, which re-
sults in Eq. (14). Conversely, this equation implies
that δ(z) ∪ δ(z′) is a segment, as the dilate of a
segment.

The above properties do not bring any connection
into play. We will now introduce a connection C on
F(Rn) and assume that all segments whose direction
belongs to the family {α j } are C-connected. Coming
back first to the one directional case, we can state the
following result.

Proposition 13. Let δ1 : F(Rn) → F(Rn) be a key-
dilation of (unique) direction α1, and let C be a connec-
tion on F(Rn) that contains all segments of direction
α1. If A ∈ F(Rn) is C-connected, then both δ1(A) and
ε1δ1(A) are C-connected.

Proof: δ1(A) is connected because an extensive dila-
tion with connected point-dilates preserves connectiv-
ity (Proposition 8 in [18]). Consider now the closing
ε1δ1(A) and distinguish between the points of A and
those of ε1δ1(A)\A, i.e. the added points. If point x is
added to A then it is located on a open segment ]z, z′[
⊆ Ac whose extremities lean on A. Then [z, z′] ∪ A
is connected, and the proof is achieved by applying
Proposition 9 as previously.

More generally, we can state the following

Proposition 14. Let {α1, α2} be two directions in R
n,

and let C be a connection on F(Rn) that contains
all segments of directions {α1, α2}. If δ = δ2δ1 is a
key-dilation of directions {α1, α2}, then the closing εδ

preserves connection C.

Proof: By commutativity of δ, we can write εδ =
ε1ε2δ2δ1. Let A ∈ F(Rn) be connected. According to

Proposition 13 both δ1(A) and ε2δ2δ1(A) are connected,
and ε2δ2 extends δ1(A) uniquely by adding open seg-
ments ]z2, z′

2[ ⊆ [δ1(A)]c whose extremities z2 and z′
2

lean on δ1(A). These segments form α2 stripes of vari-
able thicknesses, that may be suppress or not by the
later erosion ε2 (see Fig. 4).

Take an “added point” y, i.e. such that y ∈
ε2δ2δ1(A)\δ1(A). The α1-segment [z1, z′

1] going
through y is either connected to δ1(A) or not. If so,
then [z1, z′

1] extends an existing α1-dilated segment of
δ1(A), so that if the later erosion ε1 preserves point y,
then y belongs to a segment that hits ε1δ1(A).

Consider now the case when the whole segment
[z1, z′

1] misses δ1(A), and suppose that the later ero-
sion ε1 preserves point y, i.e. that δ1(y) ⊆ [z1, z′

1]. This
case, depicted in Fig. 4, means that every yi ∈ δ1(y)
belongs to a new α2-segment that bridges [δ1(A)]c and
whose two extremities (zi,2, z′

i,2) ∈ δ1(A). Put

l2 = inf{| zi,2 − yi | + | z′
i,2 − yi |, yi ∈ δ1(y)}.

As the segments [zi,2, z′
i,2] are closed, there exist among

them a shortest one, [z0,2, z′
0,2] say, of length l2, and

whose one extremity, z0,2 for example, belongs to
δ1(A). The α1-stripe of section [z0,2, z′

0,2] intersects the
α2-stripe going through y and of thickness δ1(y) by
forming a rhomb R(y) of directions {α1, α2}. Denote
by u the intersection point between the α2-chord going
through y and the α1-side of rhomb R starting from z0,2.
By invariance of the α1-dilations along the �2 lines, we
have z0,2 ∈ δ1(u). Therefore δ1(u) extends aα1-segment
of δ1(A), so that the segment [u, z0,2] ∈ ε1ε2δ2δ1(A)
and hits ε1δ1(A). On the other hand, and still by α1-
invariance, the later erosion ε1 reduces rhomb R to its
central segment, that contains [u, y].

Finally, both connected components [u, y] and
[u, z0,2] hit the component ε1δ1(A), therefore the union
[u, y] ∪ [u, z0,2] ∪ε1δ1(A) is connected, and also in-
cluded in ε1ε2δ2δ1(A) . As point y was arbitrarily
chosen in ε1ε2δ2δ1(A), we derive that each pair of
points (x, y) ∈ ε1ε2δ2δ1(A) belongs to a connected
component included in ε1ε2δ2δ1(A) and containing
ε1δ1(A), hence ε1ε2δ2δ1(A) is C-connected (Proposi-
tion 9), which achieves the proof.

For extending this result to k directions, we must
write

εδ = (εk−1 . . . ε2ε1)εkδk(δk−1 . . . δ2δ1).
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The above proof remains true when we substitute
(εk−1 . . . ε2ε1), εk, δk, (δk−1 . . . δ2δ1) for ε1, ε2, δ2, δ1

respectively. We can state.

Corollary 15. Let {α j , 1 ≤ j ≤ k} be a finite set of
directions in R

n, and {δ j , 1 ≤ j ≤ k} be a family of as-
sociated linear key-dilations. Denote by δ = δk . . . δ2δ1

the composition product of the δ j ’s and by ε its adjoint
erosion. If a connection C on F(Rn) contains all seg-
ments of directions {α j }, then the closing εδ preserves
connection C.

In two dimensions, Proposition 14 and its corollary
open the door to squares, hexagons, octagons, etc. of
possible variable sizes, but not to triangles (which is
not dramatic); in three dimensions they enable us to
use cubes, rhombo-dodecahedra (i.e. dilates of cube
diagonals), but not cube-octahedra (which is slightly
more dramatic). One may conjecture that the proposi-
tion extends to infinite elementary segment dilations,
which should include the discs, and all symmetrical
compact convex sets of R

2. In practice, the fact that
the proposition is partly independent of the translation
invariance can be useful when some perspective is in-
volved. When studying traffic control on highways, for
example, S. Beucher and M. Bilodeau are led to struc-
turing elements whose sizes reduce with the distance
[2].

In Z
2, one has to pay attention that the chosen con-

nection C must accept the segments of successive 1’s
in each direction α j . The squares and the octagons, for
the 8-connectivity of the square grid, and the hexagons,
for the arcwise connection of the hexagonal grid, ful-
fill such a condition, but neither the octagons for the
hexagonal grid connection, nor the dodecagons for the
8-connectivity of the square grid, nor a fortiori dilates
of Brezenham segments. A similar comment applies to
Z

3.

7. Geodesic Reconstruction

It remains to express the C ′ components of a given set
A as a function of its C components. The following
proposition answers the question

Proposition 16. Let γx (resp. γ ′
δ(x)) be the point con-

nected opening at point x ∈ E (resp. at δ(x) ∈ L) for
the connection C (resp. C ′) of Theorem 8. Then the two

openings γ ′
δ(x) and γx are linked by the relationship

γ ′
δ(x) = δγxε (15)

Proof: Let Z ∈ L. For any x ∈ E , by the adjunction
(ε, δ) we have x ∈ ε(Z ) iff δ{x} ⊆ Z .

1/ If x /∈ ε(Z ), then γxε(Z ) = ∅, so δγxε(Z ) =
∅. Also δ({x}) �⊆ Z , so γ ′

δ(x)(Z ) = ∅ and γ ′
δ(x)(Z ) =

δγxε(Z ).
2/ Suppose now that x ∈ ε(Z ). From γxε(Z ) ∈

C we draw δγxε(Z ) ∈ C ′. Also x ∈ γxε(Z ), so
δ(x) ⊆ δγxε(Z ). Moreover, δγxε(Z ) ⊆ δε(Z ) ⊆ Z .
As δ(x) ⊆ δγxε(Z ) ⊆ Z and δγxε(Z ) ∈ C ′, we
deduce that δγxε(Z ) ⊆ γ ′

δ(x)(Z ). As γ ′
δ(x)(Z ) ∈ C ′,

we have εγ ′
δ(x)(Z ) ∈ C, and as δ(x) ⊆ Z , we have

δ(x) ⊆ γ ′
δ(x)(Z ), so by adjunction (ε, δ) we obtain

x ∈ εγ ′
δ(x)(Z ). From x ∈ εγ ′

δ(x)(Z ) ∈ C, we draw
γxεγ

′
δ(x)(Z ) = εγ ′

δ(x)(Z ). Asγ ′
δ(x)(Z ) ∈ C ′ ⊆ δε(P(E)),

we have γ ′
δ(x)(Z ) = δεγ ′

δ(x)(Z ). Therefore

γ ′
δ(x)(Z ) = δεγ ′

δ(x)(Z ) = δγxεγ
′
δ(x)(Z ) ⊆ δγxε(Z ).

From the double inclusion

δγxε(Z ) ⊆ γ ′
δ(x)(Z ) and γ ′

δ(x)(Z ) ⊆ δγxε(Z )

we deduce the equality, which achieves the proof.

If we have a mean to compute γxε(Z ), then relation
(15) supplies a simple algorithm to derive γ ′

δ(x)(Z ). The
most popular one, called geodesic reconstruction works
under the following assumptions:

• Space E is supposed to be metric, and αλ(x) stands
for the closed ball of radius λ at point x ∈ E ; for
each λ > 0 the family {αλ(x), x ∈ E} is interpreted
as structuring elements that generate a dilation αλ;

• Space E is equipped with a connection C that is pre-
served by each dilation αλ;

• The set εZ under study is compact and has a finite
number of C-components;

• Each C-component Y of εZ is “well linked” (in the
sense of [4], I-19, see also [13]) i.e. for every pair
(a, b) of points of Y and for every η > 0,there exists
a finite sequence a = a1, . . . an = b of points of Y
such that d(ai , ai+1) ≤ η for every i < n.

Then according to a classical result, γx (εZ ) is
reached by finite iteration, for some λ0 > 0. The map-
ping to be iterated is ψεZ (Y ) = αλ0(Y ) ∩ εZ . Starting
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from Y = {x}, we finally obtain, by considering
Relation (15)

γ ′
δ(x) = δγx (εZ ) = δ

[
ψn

εZ ({x})] n < ∞ (16)

8. Two Applications

In the two examples which follow, the space E is
the digital plane, the discs Bλ are digital approxima-
tions of the Euclidean discs by octagons in the four
main directions of the square grid, and the connec-
tion C is the usual 8-connectivity. Therefore, the in-
volved Minkowski additions are digital key-dilations.
Theorem 8 is satisfied, so that we can use Relation (16).
The integer radius λ turns out to be a viscosity index,
that we make vary in the first example. In the second
example, we try and apply the above set oriented ap-
proach to contour detection in numerical imagery.

8.1. Set Interpolation

Consider a binary contour, partly identified by a dotted
line such as the set of the black points in Fig. 5. In
a viscous lattice L, the opening of the complement
of this object, if not empty, turns out to be made of

Figure 5. (a) In white, marker A, in black the complement of set Z :
geodesic reconstructions by dilations for a radius of viscosity λ= 15;
(b) Case of the optimal radius λmax = 17; (c) Optimal reconstruction
from the edges of the field; (d) Corresponding median element.

one or two C ′-particles, depending on the size of δ.
Figure 5 depicts two reconstructions of set Z ∈ P(Z2)
from a given white marker A ∈ P(Z2) , when δ is the
Minkowski’s addition by a disc Bλ of radius λ. When
parameter λ is small, the “fluidity” of the successive
dilations allows to go between the pins of Zc. This
occurs in Fig. 5(a) (although, for the sake of display, the
light grey invasion has been stopped before it reaches
the edges of the field). As parameter λ increases, these
pins stop the reconstruction process, but if λ goes on
increasing, then no marker Bλ can be found anymore in
the figure, and the reconstructed set is empty. When λ

decreases, before situation 5(a), it reaches a minimum
radius λmax for which the reconstruction is the largest
possible, without touching the field borders (Fig. 5(b)).
Besides, remark that the mapping Z → γmax(Z ) is an
opening ofL into itself. Therefore, though the approach
is non-parametric, it involves a λmax to be detected from
the set under study.

If now the same experiment is carried out again, but
with the field border as a marker instead of A, we get, as
previously, a minimum dilation radius λ′

max which does
not flood the inner part, with obviously λ′

max = λmax.
The resulting reconstruction is depicted in Fig. 5(c).

For the sake of symmetry, we can interpolate be-
tween Fig. 5(b) and (c) by means of their median ele-
ment (rel. (13) in [19]). If X stands for the light grey set
of Fig. 5(b), and Y for the dark grey one of Fig. 5(c),
their median element M(X, Y ) is given by

M(X, Y ) = ∪{δλ(X ∩ Y ) ∩ ελ(X ∪ Y ), λ ≥ 0}.

The interpolator M which we are led to, provides a nice
interpolation from a visual point of view (Fig. 5(d)).

Strong relationships link morphological connections
and segmentation [21]. They derive from a general re-
sult according to which any connection C on a com-
plete lattice T partitions each element A of T into
maximum classes that are precisely the C-connected
components of A (see Proposition 7 in [18]). The above
example illustrates this point. The viscous latticeL sup-
generated by the discs of radius 17, or by their digital
approximations, induces a connection C ′ in the sense of
Theorem 8. For this connection, the two light grey sets
of Fig. 5(b) and (c), are the only possible reconstruc-
tions of set Z from δ(x) when the small δ(x) spans the
space. One can observe that the intersection of these
two components contains some pixels. However, since
their infimum, in the sense of lattice L, is empty, and
their union restores the whole set Z , they do partition
Z in the viscous sense.



280 Serra

Figure 6. (a) Positron image of a heart muscle and its contour by watershed; (b) Optimal reconstruction of the internal C ′-components.

8.2. Watershed Regularization

Let us consider the positron image of a heart muscle,
in Fig. 6(a). The watershed line of its gradient enables
the construction of a representative contour, but whose
drawing is quite irregular. We purpose to regularize it
by viscous flood. Let us consider the restriction of the
gradient to the watershed line. This is a numerical func-
tion (looking a bit like the Great Wall of China) whose
threshold at the value t gives the watershed points of
gradient ≤t . Consequently, the successive thresholds
appear like dotted lines all the less dense since t is
higher. For each value t we determine a radius λmax

of the dilation disc which enables the maximum re-
construction of the dotted line from the central marker.

Figure 7. (a) Internal and external optimal C ′-contours, and (b) Median element.

Finally, we take the union of the maximum reconstruc-
tions as t varies: its represents the largest viscous sur-
face built from the watershed (Fig. 6(b)).

As before, we are able to determine a maximum outer
numerical function, from the borders of the field, then
to take the support contours of both inner and outer
surfaces (Fig. 7(a)) and to calculate their median ele-
ment. The result, depicted in Fig. 7(b), turns out to be
a realistic regularization of the zigzag contour of the
initial watershed.

The approach of this second example is different
from the one presented in [22], as the algorithm of
[22] is not defined in the viscous lattices context. The
choice for the markers is different too: in [22], they
are purely internal, and the marker at level n is the
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reconstructed image of level n − 1. Finally, the third
difference deals with the choice of the sizes of dilations
δ: our algorithm is non-parametric, therefore general,
and could be particularized according to the type of the
images investigated.

9. Conclusion

From a mathematical point of view, the viscous lat-
tices show the pertinence of Galois adjunctions (i.e. the
pair dilation/erosion), and of the morphological con-
nections. Indeed, these two notions remain valid, even
when most of the basic useful properties of a lattice,
such as distributivity, complementation, atomicity, etc.
do vanish.

From a physical point of view, viscous lattices pro-
vide a framework without points, lines and fine struc-
tures, but where elementary distances such as differen-
tials can still be introduced.

Practically, a combined use of the two remaining
notions allows us to generate connected filters and seg-
mentations. The two examples of propagations that are
proposed above illustrate the regularization, or fuzzi-
ness, effect of the viscosity, where dotted lines turn out
to become barriers. The operations that these examples
involve are obviously not the only possible ones, and
one can imagine PDE’s based wave fronts that propa-
gate over a viscous lattice.
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