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Abstract. In [3] an approach is given for minimizing certain functionals on certain spaces N = Maps(�, N ),
where � is a domain in some Euclidean space and N is a space of square matrices satisfying some extra condition(s),
e.g. symmetry and positive-definiteness. The approach has the advantage that in the associated algorithm, the
preservation of constraints is built in automatically. One practical use of such an algorithm its its application to
diffusion-tensor imaging, which in recent years has been shown to be a very fruitful approach to certain problems
in medical imaging. The method in [3] is motivated by differential-geometric considerations, some of which are
discussed briefly in [3] and in greater detail in [4]. We describe here certain geometric aspects of this approach that
are not readily apparent in [3] or [4]. We also discuss what one can and cannot hope to achieve by this approach.
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1. Introduction

In [3] an approach is given for minimizing certain func-
tionals on certain spaces N = Maps(�, N ), where �

is a domain in some Euclidean space and N is a space of
square matrices satisfying some extra condition(s), e.g.
symmetry and positive-definiteness. (“Map” in this pa-
per means “smooth map” unless otherwise specified.)
The approach has the advantage that in the associated
algorithm, the preservation of constraints is built in
automatically; one does not have to worry about “step-
ping off” the constraint manifold and projecting back
onto it.

One practical use of such an algorithm is its ap-
plication to diffusion-tensor imaging, which in recent
years has been a very fruitful approach to certain prob-
lems in medical imaging [5–9]. In this method one
uses the diffusion tensor field, a positive-definite sym-
metric 3 × 3 matrix varying from point to point in
the region of anatomical interest, to help determine the
connections between tissues in the region; microstruc-
tural connections between a point and its neighbors are
encoded by the direction corresponding to the largest

eigenvalue at that point. To obtain this information
one must restore (or estimate) the “true” diffusion ten-
sor field from usually noisy measurements. Often this
estimate is accomplished by a variational approach
[10, 11] in which the object one can vary is a
3 × 3 matrix of functions, subject to the constraints
that at each point the matrix be symmetric and strictly
positive-definite.

In [3] Chefd’hotel et al. describe a variational
method (a constrained flow) motivated by differential-
geometric considerations, some of which are discussed
briefly in [3] and in greater detail in [4]. The approach
of Chefd’hotel et al. applies to many different con-
straints; in [3] the examples of orthogonal constraints
and isospectral constraints ([3, Sections 2.3 and 2.4])
are considered in a addition to the symmetric positive-
definite constraint ([3, Sections 2.2 and 2.4]). In the
present paper we discuss certain geometric aspects of
this approach that are not readily apparent in [3] or
[4]. We also discuss what one can and cannot hope to
achieve by this approach.

When � and N have positive dimension, Maps(�,
N) is an infinite-dimensional object. There are several
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technical issues related to infinite-dimensionality that
can divert attention from the basic underlying geomet-
ric principles in the method of [3], so, for geometric
clarity, at first we will take � = {point}. Of course,
when � is a single point, N = Maps(�,N) can be
naturally identified with N itself.

Henceforth let N be a (finite-dimensional) manifold
and V a continuous vector field on N. (Note: in this
paper, “manifold” always means “manifold without
boundary.”) Consider the equation for the flow of V:

dx

dt
= V (x(t)), x(0) = x0. (1.1)

The equilibrium solutions of (1.1) are precisely the
zeroes of V, and given any solution of (1.1) for which
limt→∞ x(t) exists, the limit is a zero of V.

Suppose now that L is a section of Aut(TN); i.e.
for each x ∈ N , Lx := L(x) is an invertible linear
transformation from TxN to itself, varying continuously
with x. Then the assignment x �→ Lx (V (x)) defines a
new continuous vector field L(V), and we can consider
the following modification of (1.1):

dx

dt
= L(V )(x(t)) . (1.2)

Because L is invertible at every point, the zeroes of
L(V) are exactly the zeroes of V. Hence (1.2) has the
same equilibrium solutions as (1.1), and for any so-
lution of (1.2) that converges as t → ∞, the limit is
again a zero of V.

An important special case of (1.1) occurs when we
are given a C1 function (“energy”) E : N → R and N
is equipped with a Riemannian metric gN . In this case
we can consider the negative-gradient flow

dx

dt
= −(grad E)|x(t), x(0) = x0, (1.3)

or, as in (1.2), a related equation of the form

dx

dt
= −L(grad E)|x(t), x(0) = x0, (1.4)

for some well-chosen L, and attempt to locate critical
points of E by following the flow as t → ∞. The equi-
libria of (1.3) and (1.4) are identical and correspond to
these critical points.

The replacement of (1.3) with (1.4), in an infinite-
dimensional setting, is what underlies the method pre-
sented in [3]. Although the motivation in [3] is to han-
dle certain constrained variational problems, we will
see below that the method amounts to passing from

(1.3) to (1.4) by “factoring” a variational problem
through another manifold, which leads to (1.4) with
a very particular form for L. The operators Lx that
arise from the method in [3] are not merely invertible,
but symmetric and positive-definite with respect to gN ,
so that the energy is still a decreasing function along
the trajectories of (1.4); in fact we can recast (1.4) as
the negative-gradient flow of E on N with respect to a
modified metric g′

N , defined by

g′
N (X, Y ) = gN (X, (Lx )−1Y ), X, Y ∈ Tx N . (1.5)

Below, we show explicitly where the operators Lx

come from (giving systematically the change of metric
referred to in [3] and [4]), and compute them in the
situations relevant to [3].

We use differential-geometric notation and termi-
nology in this paper; e.g. if M is a manifold then TpM
is the tangent space of M at p, and if � is a map with
domain M, the derivative of � at p is denoted �∗p. For
readers who are not at home in this language, we have
included a glossary in the Appendix.

2. The Geometric Setup

While the setup in [3] uses only operators L in (1.4)
that arise from a change of metric on N, one of the
motivating examples leads to a more general idea that
we consider first.

Assume that (N, gN) is Riemannian manifold and
that EN : N → R is a C1 function. Suppose we are
also given a second Riemannian manifold (M, gM)
and a submersion π : M → N , i.e. a smooth map
whose derivative π∗p : Tp M → Tπ(p) N is surjective
for all p ∈ M . We assume further that π is surjective,
an assumption that is redundant if M is compact and
N connected (because submersions map open sets to
open sets, by the Implicit Function Theorem). If π

is one-to-one, we can regard it as simply providing
a reparametrization of N. More generally—e.g. if
dim(M) > dim(N )—we can think of π as an “over-
parametrization” of N, in which each point x ∈ N
is represented by the manifold π−1(x) of dimension
dim(M) − dim(N ). If we replace the surjectivity
of the derivative with a slightly stronger technical
hypothesis, “local triviality”, as we will do for
simplicity henceforth, our assumptions above amount
simply to the statement that M is a fiber bundle over N
with projection map π (see [12, 16], or our Appendix).

Let EM = π∗EN = EN ◦ π denote the pullback of
EN to M. Because M, N are Riemannian, the gradient
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vector-fields gradMEM , gradNEN are defined on M,
N respectively. To express the explicit relation of
gradMEM to gradN EN we recall the definition of the
adjoint of a linear map between two inner-product
spaces. If W1, W2 are vector spaces with inner products
(·, ·)1, (·, ·)2 respectively, and T : W1 → W2 is a linear
map, then we say that a linear map S : W2 → W1

is adjoint to T if for all w1 ∈ W1, w2 ∈ W2 we have
(w2, Tw1)2 = (Sw2, w1)1. When adjoints exist, as they
always do when W1, W2 are finite-dimensional, they
are necessarily unique. Hence in these cases we speak
of the adjoint of T, which we denote T †.

Of interest to us are the linear maps π∗p : Tp M →
Tπ(p) N (the derivative of π at p) and their adjoints
π
†
∗p : Tπ(p) N → Tp M . Below we let 〈·, ·〉 denote the

pairing between a vector space and its dual.

Lemma 2.1. For all p ∈ M we have

(gradM EM )|p = π †
∗p((gradN EN )|π(p)). (2.1)

Proof: It suffices to check that both sides of (2.1)
have the same inner product with all Y ∈ Tp M . But

gM (gradM EM ; Y )p = 〈d(π∗EN )|p, Y 〉
= 〈(π∗d EN )P , Y 〉 = 〈d EN , π∗pY 〉
= gN (gradN EN , π∗pY )π(p)

= gM (π †
∗p(gradN EN ), Y )p.

�

Note that for each p ∈ M , since π∗p is assumed
surjective, the adjoint π

†
∗p is injective. Also observe

that (2.1) implies that (gradM EM )|p is orthogonal to
the fiber π−1(π (p)), since the tangent space to the
fiber at p is exactly ker(π∗p). The injectivity of π

†
∗p

immediately implies the following.

Corollary 2.2. gradMEM vanishes at p0 ∈ M if and
only if gradN EN vanishes at π (p0) ∈ N. Hence p0 is
an equilibrium solution of the negative-gradient flow of
EM on M if and only if π (p0) is an equilibrium solution
of the negative-gradient flow of EN on N.

Thus if the negative-gradient flow of EM converges,
the limit of a trajectory will project to a critical point
of EN .

In the method used in [3], one does not explicitly
look at the flow on M; rather one projects it back down

to N—which can only be done under certain circum-
stances described shortly—and obtains a new flow on
N whose trajectories one then attempts to follow.

Note that in general, the flow of −gradMEM does not
project to a well-defined flow on N unless π is one-to-
one, because trajectories of −gradMEM starting at two
different pre-images of x0 ∈ N may project down to
two different curves in N. There are two ways of deal-
ing with this issue: (i) ensure, via further assumptions,
that the vector field Ṽ = −gradM EM is projectable,
i.e. that if π (p1) = π (p2) then π∗p1 (Ṽp1 ) = π∗p2 (Ṽp2 ),
or (ii) for each x0 ∈ N, single out a pre-image s(x0) ∈
π−1(x0), and project the trajectory of −gradMEM start-
ing at s(x0) back down to N. The second approach is
not of practical utility. One would want s(x0) to depend
continuously on x0; i.e. for s to be a continuous section
of the fiber bundle (M, N , π ). Such sections often do
not exist; for principal fiber bundles, a category that
includes all the examples considered in Section 3 of
this paper (corresponding to [3, Sections 2.2–2.4])
they exist only when the bundle is topologically trivial
(a Cartesian product N × F)—and in this case, one
might as well replace M with the image M ′ := s(N )
and work with the one-to-one map π |M ′ : M ′ → N
(with a certain induced metric on M′). Thus we are led
to approach (i), which is what underlies the method in
[3, Sections 2.2 and 2.4] (in [3, Section 2.3], the map
π is one-to-one from the start, and approaches (i) and
(ii) above coincide).

To ensure that the vector field −gradMEM is pro-
jectable, we henceforth make the simplifying assump-
tion (which covers all cases considered in [3]) that M is
a Lie group G equipped with a smooth, transitive right-
action on N; we denote the action by (x, h) �→ x · h,
where x ∈ N , h ∈ G. With these data, N is a (right)
homogeneous space for G. We select a point xb ∈ N
and define π : G → N by π (h) = xb · h. Recall that
a Riemannian metric gG on a Lie group G is called
left-invariant if L∗

h gG = gG for all h ∈ G, where
Lh : G → G denotes left-multiplication by h.

Lemma 2.3. In the setting above, if the metric gG is
left-invariant, then the vector field Ṽ := −gradG EG

is projectable (where EG = π∗EN = EN ◦ π ). The
vector field V on N to which Ṽ projects satisfies

Vx = −πh∗π
†
h∗((gradN EN )|x ) ∀x ∈ N , h ∈π−1(x).

(2.2)

Proof: In general, if (M, g) is a Riemannian man-
ifold and � : M → M is an isometry, one has
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(�∗)−1(gradM f ) = gradM (�∗ f ). Hence in our sit-
uation, for all h ∈ G we have (L−1

h )∗gradG EG =
gradG(L∗

h EG).
Suppose now that π (h1) = π (h2). Then h :=

h2h−1
1 ∈ Stab(xb) the stabilizer of xb. But for such

h we have π ◦ Lh = π , implying that L∗
h EG =

L∗
hπ

∗EN = (π ◦ Lh)∗EN = π∗EN = EG , and hence
(L−1

h )∗gradG EG = gradG EG . In other words Ṽh2 =
Ṽhh1 = (Lh)∗Ṽh1 . But then π∗h2 Ṽh2 = (π ◦ Lh)∗Ṽh1 =
π∗h1 Ṽh1 . Thus Ṽ is projectable. Equation (2.2) now
follows from (2.1). �

Thus the operator L we will use in (1.4) is given at
x ∈ N by

Lx = πh∗π
†
h∗, ∀h ∈ π−1(x) . (2.3)

As noted earlier, the vector field L(gradNEN) is sim-
ply the gradient of EN with respect to the metric g′

N
in (1.5). This metric is just the natural “Riemannian
submersion” metric on N induced by the left-invariant
metric gG on G, expressed in a way that is computable
from an arbitrary metric gN on N.

To relate these ideas to what is done in [3] and [4],
assume now that we are initially given an energy func-
tion Eamb, defined on some Euclidean space Rm that we
wish to minimize over certain submanifolds N ⊂ Rm .
Let gEuc denote the standard Riemannian metric on Rm

and let ι : N → Rm . denote the inclusion map. Then
N inherits the Riemannian metric gN = ι∗gEuc and the
restricted energy functional EN = ι∗Eamb. For each
x ∈ Rm, there is a natural isomorphism Tx Rm ∼= Rm

that allows us to identify vector fields on subsets of
Rm with vector-valued functions on these subsets. For
each y ∈ Rm , we let j amb

y denote the canonical iso-
morphism TyRm → Rm ; similarly for x ∈ N , we let
j N
x : Tx N → Rm denote the corresponding identifica-

tion of Tx N with a subspace of Rm. We can then write
(gN )x = ( j N

x )∗gstd, where gstd is a fixed inner product
on Rm, and we have

j N
x = j amb

x ◦ ι∗x (2.4)

for all x ∈ N. The vector field L(gradN EN ) in (1.4)
is then identified with the vector-valued function j N ◦
L(gradN EN ). Furthermore, by the same argument as
in Lemma 2.1 one has

(gradN EN )x = (gradN ι∗Eamb)x

= (ι∗x )†((gradEuc Eamb)|x ), ∀ x ∈ N .

(2.5)

Note that each map j amb
X is an isometry, and hence

its adjoint equals its inverse; thus from (2.4) we have
(i∗x )† ◦ ( j amb

x )−1 = ( j N
x )†. Thus if we define the “ambi-

ent gradient” Z amb (an Rm-valued function on N) by

Z amb(x) = j amb
x ((gradEuc Eamb)|x ) , (2.6)

then the vector field L(gradN EN ) on N is identified
with the vector-valued function on N given by

x �→ j N
x (L(gradN EN )|x )

= j N
x ◦ π∗h ◦ (π∗h)† ◦ (i∗x )†((gradEdu Eamb)|x )

= jx ◦ π∗h ◦ (π∗h)† ◦ (
j N
x

)†
(Z amb(x))

= (
j N
x ◦π∗h

)◦(
j N
x ◦ π∗h

)†
(Z amb(x)), h ∈π−1(x).

(2.7)

3. Examples

We consider three examples that relate to Sections 2.2,
2.3, and 2.4 of [3]. In all of these the appropriate Rm

is a vector subspace of the space Mat(n) of n × n real
matrices (sometimes the whole space). The standard
inner product on Mat(n) can be written in the form

gstd(Y, Z )|X = tr(Y T Z ) (3.1)

where the superscript T denotes transpose. The inner
product we use on vector subspaces of Mat(n) is just
the restriction of (3.1).

Example 1. We take Rm = Sym(n) :=
{symmetric n × n matrices}, N = Sym+(n) :=
{positive-definite symmetric n × n matrices}, and
G = GL (n, R), the group of invertible n × n matrices.
The map π : G → N defined by

π (A) = AT A (3.2)

is a surjective submersion, For A ∈ G and X ∈ N,
let j G

A : TAG → Mat(n) and j N
X = j amb

X : TX N →
Sym(n) denote the natural identifications of tangent
spaces of the submanifolds G ⊂ Mat(n), N ⊂ Sym(n)
with Mat(n), Sym(n) respectively. Since G and N are
open subsets of the indicated vector spaces, the maps
j G
A and j N

X are all isomorphisms. We will also make
use of the isomorphisms �A : TI G → TAG (where I is
the identity) defined by

�A(Y ) = (L A)∗Y = d

dt
(AetY )|t=0,

A ∈ G, Y ∈ TI G. (3.3)
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(Here the matrix exponential is used.) Thus we have the
simple identity j G

A (�A(Y )) = AY . Since �A : TI G →
TAG is an isomorphism for each A ∈ G, we can define
a left-invariant Riemannian metric gG on G by

gG(�A(Y ), �A(Z ))|A = gG(Y, Z )|I := gstd(Y, Z )

= tr(Y T Z ). (3.4)

Writing X = π (A) = AT A, we have

j N
X ◦ π∗A(�A(Y )) = j N

X

(
d

dt
(π (AetY ))|t=0

)

= Y TATA + ATAY = Y TX + XY. (3.5)

To compute the adjoint map, let W ∈ Sym(n) and
define W′ ∈ TIG by ( j N

X ◦ π∗A)†(W ) = �A(W ′). Then
for all Y ∈ TIG we have

gG(�A(Y ), �A(W ′))

= gG
(
�A(Y ),

(
j N
X ◦ π∗A

)†
(W )

)

= gstd
((

j N
X ◦ π∗A ◦ �A

)
(Y ), W

)

= gstd(Y T X + XY, W )

= tr((Y T X + XY )W )

= tr(Y T (X W + (W X )T ))

= tr(Y T (2X W )) since X and W are symmetric

= gG(�A(Y ), �A(2X W )),

implying W′ =2XW. Hence

(
j N
A ◦ π∗A

)†
(W ) = �A(2X W ). (3.6)

Thus, from (2.7) we have

j N
X (L(gradN EN )|X )

= (
j N
X ◦ π∗A

) ◦ (
j N
X ◦ π∗A

)†
(Z amb(X ))

= (2X Z amb(X ))T X + X (2X Z amb(X ))

= 2(Z amb(X )X2 + X2 Z amb(X )). (3.7)

Example 2. We take Rm = Mat(n), G = N = O(n)
(the orthogonal group), π = identity map. In this
case j G

X = j N
X ; however, unlike in Example 1 these

maps are distinct from the canonical isomorphism
j amb
X ; TX Mat(n) → Mat(n). The left-invariant metric

on O(n) is defined just as in (3.4), but in this case TIG
is the space so(n) of antisymmetric n × n matrices, so

that at each X ∈ O(n) we have

gG(�X (Y ), �X (Z ))|X = −tr(Y Z ). (3.8)

Again j G
X (�X (Y )) = XY , and j G

X (TX N )—the tangent
space to G at X, viewed as a subspace of Mat(n)—
is simply {XY |Y ∈ so(n)}. Since X T X = I , we
have gstd(XY, X Z ) = tr((XY )T X Z ) = −tr(Y Z ), and
hence the Euclidean metric on N coincides with the
left-invariant metric gG. Thus both π∗X and its adjoint
are identity maps, and one can easily show that for
all W ∈ Mat(n), ( j N

X )†(W ) = �X ◦ proj(X T W ), where
the orthogonal projection proj : Mat(n) → so(n) is
the map carrying a matrix B to its antisymmetric part
(B − BT )/2. Thus,

jX (LX (Z )) = jX j †X (Z amb(X )) = Xproj(X T Z amb(X ))

= 1

2
(Z amb − X (Z amb(X ))T X ). (3.9)

Example 3. Fix a matrix Q ∈ Sym(n). Take Rm =
Sym(n), G = O(n), and N the orbit of Q under the map
π defined by π (A) = ATQA. We use the same metric
gG on O(n) as in Example 2. Again setting X = π (A),
this time we find

(
j N
X ◦ π∗A

)
(�A(Y )) = [X, Y ] := XY − Y X,

Y ∈ so(n). (3.10)

As in Example 1, let W ∈ Sym(n) = j amb
X (TX Sym(n))

and define W ′ ∈ TI G by ( j N
X ◦ π∗A)†(W ) = �A(W ′).

For all Y ∈ TIG we then compute

−tr(Y W ′) = gG(�A(Y ), �A(W ′))

= gG
(
�A(Y ),

(
j N
X ◦ π∗A

)†
(W )

)

= gstd
((

j N
X ◦ π∗A ◦ �A

)
(Y ), W

)

= gstd([X, Y ], W )

= tr([X, Y ], W ) since[X, Y ] is symmetric,

= −tr(Y [X, W ]) .

Since X and W are symmetric, [X, W] is antisym-
metric. Thus [X, W ] ∈ so(n) and gG(Y, W )|I =
gG(Y, [X, W ])|I ∀Y ∈ so(n), so W ′ = [X, W ],

(
j N
X ◦ π∗A

)†
(W ) = �A = ([X, W ]), (3.11)

and

j N
X (L(gradN EN )|X ) = [X, [Z amb(X )]] . (3.12)



354 Groisser

4. Generalization to Mapping-Spaces

When we replace N by N = Maps(�, N ), where � is
a bounded open domain in (say) R2 or R3, certain ge-
ometrical aspects remain essentially unchanged, while
analytical aspects can become more troublesome. To
endow N with the structure of a Banach manifold one
generally completes the space of smooth maps in a suit-
able Sobolev norm; henceforth in this context “map”
means an element of such a completion. Given a map
X : � → N , the tangent space TXN is naturally iden-
tified with {Y ∈ Maps(�, TN) | Y (p) ∈ TX (p) N ∀p ∈
�} (the space of sections of the pulled-back tangent
bundle X∗TN). Given a Riemannian metric g on N, we
define an inner product on TXN by

gN (Y, Z )|X =
∫

�

gN (Y (p), Z (p))|X (p)dp. (4.1)

This is the standard “L2 metric” on N , a weak Rie-
mannian metric (“weak” because the tangent spaces
are not complete in this inner product). Given a smooth
function E : N → R, we write V = gradNE (the "L2-
gradient" of E) if 〈dE, Y 〉x = gN (V, Y ) for all X ∈
domain(V) and all C∞ compactly supported Y ∈ TXN
(where 〈dE, Y〉)X is the variation of E at X in the di-
rection Y). If G is as in Section 2 then we obtain an
L2 metric on G := Maps(�, G), and it is not hard
to check that the constructions in the previous section
carry over pointwise to this setting, giving us a map
π� : G → N , and linear maps π�

∗h : ThG → Tπ◦hN ,
and their adjoints (where now h ∈ G). In particular the
operators LX : TXN → TXN are given pointwise in
terms of the finite-dimensional operators constructed
in Section 2:

(LX (Y ))(p) = LX (p)(Y (p)) ∈ TX (p) N . (4.2)

Thus, in the analogs of Examples 1–3 with N re-
placed by N , the vector fields jN (L(gradNEN )) are
still given pointwise by Eq. (3.7), (3.9), and (3.12),
with Z amb the L2-gradient of a functional Eamb :
Maps(�, Mat(n)) → R. In this way we obtain Eq.
(9)–(10) and (14) of [3], as well as the un-numbered
equation following (12) in that paper.1

5. Advantages of This Approach

Let Eamb : Rm → R be a function we wish to mini-
mize on a submanifold N, or more generally a function
Eamb : Maps(�, Rm) → R to minimize over a subset

N that is a submanifold of Maps(�, Rm), in some suit-
able sense. Any Riemannian metric on N determines a
gradient-flow equation for minimizing E |N and Eamb|N
in particular this is true of the restriction to N of the
Euclidean metric. The question arises as to why one
would want to consider a change of metric on N, bring-
ing the gradient-flow equation into the form (1.4).

The motivations suggested in [3] are twofold. One
is that in the examples considered, the submanifolds
N carry natural metrics other than the restricted Eu-
clidean metric. It is certainly reasonable to consider
the gradient-flow equation for any natural metric.

The second motivation mentioned in [3] concerns a
numerical scheme for approximating the flow Eq. (1.1),
replacing it with an iterative scheme of the form

x(tn+1) = expx(t)(V (tn)�tn) (5.1)

where exp is the Riemannian exponential map on
N, which for submersions G → N is expressible
in terms of matrix exponentials. One of the advan-
tages of this scheme over an ordinary Euler scheme
x(tn+1) = x(tn) + V (tn)�tn is that there is no danger
of stepping off the constraint manifold N. Thus, if it
is not too costly to compute the matrix exponentials,
there is time saved in each iteration by not having to
“project” back to N.

A third potential advantage of this approach is that
it may happen that if one is searching for a minimum
of E by solving (1.3) numerically in a given example,
the particular nature of grad E may lead to undesirable
features. In such instances it is reasonable to try to
circumvent the numerical problems by instead solving
an equation of the form (1.4) for some well-chosen L,
since the equilibria of (1.3) and (1.4) are identical.
It may happen that the space N has more than one
natural metric, for example, and that the metric that
leads to the best numerical behavior of the discretized
negative-gradient flow is not the most obvious metric.
The examples given in [3] and [4] illustrate that the
gradient-flows that one obtains for certain functionals
on Maps(�, Rm) appear to be very nicely behaved.
However, a priori there is no mathematical reason to
expect faster convergence with one natural metric than
with another.

6. Potential Pitfalls of This Approach

When faced with a problem for which the restricted
Euclidean gradient-flow equation for E on N (or the
Euclidean L2 gradient-flow for E on N ) is ill-behaved,
the intended advantages of the scheme above may be
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illusory, and perhaps even misleading. This is espe-
cially true when N is an open subset of Euclidean
space, as in Example 1 of Section 3. The reasons are
already present in the finite-dimensional situation � =
{point}, so we concentrate on that case, and remark on
further complications in the infinite-dimensional case
only at the end of this section.

First we recall some generalities concerning when
and why the gradient-flow approach works. In (1.1), if
the vector field V is C1 (or, more generally, locally uni-
formly Lipschitz), then local existence and uniqueness
of solutions to (1.1) are guaranteed. Long-time exis-
tence of solutions to (1.1) is a problem only when V
is not sufficiently regular or when N is not compact. In
(1.2), if L is C1 (or at least locally uniformly
Lipschitz), we again have the same exis-
tence/uniqueness behavior as in (1.1).

This negative-gradient flow preserves all sub-level
sets N c := {x ∈ N |E(x) ≤ c}, c ∈ R. If these sub-
level sets are compact, the flow x(t) will exist for all
t ≥ 0 and all initial conditions x0. Compactness en-
sures the existence of at least one critical point of E,
a global minimum, and if the critical points of E are
isolated then every flow line will converge to a critical
point as t → ∞. If E has only one local minimum point
xmin (necessarily the global minimum), then the flow
will converge to xmin, with probability 1 in the space
of initial conditions Nc(for any c greater than or equal
to the minimum value of E). Thus in this situation, one
can reliably locate a global minimum by following the
flow from a randomly chosen initial condition. Below,
we will refer this as topologically guaranteed conver-
gence. Note that if N is compact, then automatically so
are the sub-level sets of any continuous function E.

Even in this finite-dimensional setting, several prob-
lems can arise with the flow when the sub-level sets Nc

of E are not compact: first, there is no guarantee that
a minimum of E exists; second, one cannot guarantee
long-time existence of the gradient flow for all initial
conditions, and third, even when one has long-time ex-
istence starting at a given x0, the trajectory x(t) may fail
to converge by permanently exiting any fixed compact
subset of N in finite time.

In the setting of Example 1, the manifold N is non-
compact, and for functions E whose minimization is
commonly considered, the sub-level sets are also non-
compact. Thus a given function E on N may fail to
have a minimum, and we do not have topologically-
guaranteed convergence of the flow. A change of metric
on N, or even a more general transformation of the flow
equation as in (1.4), cannot remedy this situation, nor
can following a flow on the “intermediate” manifold M

that projects to the desired flow on N. It is the function E
itself, not the metric on N (or factorizability through an
intermediate manifold), that determines the obstacles
to whether the flow converges; changing the metric can
only affect the rate of convergence, not turn a diver-
gent flow into a convergent one. If the flow (1.3) does
converge with, say, a Euclidean metric, convergence
may or may not be more rapid after a change of met-
ric. Thus, while it is worth trying a new metric to see
whether convergence-rate is improved, a priori there
is no reason to expect more rapid convergence with
the flow (1.4) (using 3.12) than for the numerically
simpler Euclidean gradient flow.

Returning to the general setting, another issue
concerns the approximation of the gradient flow by
(5.1), with V = −gradN E , in place of (for example)
a naı̈ve Euler scheme, in which one would have to
compensate for stepping off the constraint manifold
at each iteration. It should be noted that a scheme
of the form (5.1), with any complete metric on N,
achieves this constraint-preservation. In particular this
is true for the restricted Euclidean metric (when it
is complete, as in Examples 2 and 3 of Section 3),
not just for other natural metrics on N such as the
ones in Section 3. On a closed constraint manifold
N that happens to be a homogeneous space for a
matrix group, the chief advantage to using the metrics
discussed in Section 3 (as compared with other
replacements for the Euclidean metric) is that the
exponential map is very easily computed.

However, when N is not closed, then the apparent
advantage above may be illusory. We consider again
the situation of Example 1, in which N is an open cone
in a Euclidean space. The non-compactness of N may
allow a given function E not to have a minimum, and
this will be reflected in the non-convergence of the
gradient flow, whether we use the restricted Euclidean
gradient or the one in (3.7). The Euclidean metric
is incomplete, so there are tangent vectors for which
the exponential map is not defined, and one may not
be able to use (5.1). However, this fact is a relevant
feature of the problem, rather than a defect of the
Euclidean gradient flow. Using the complete metric
from Example 1 will allow us to define the scheme
(5.1) perfectly well, but its properties may be mislead-
ing. For example, a non-convergent trajectory may
slowly approach the boundary of N as t → ∞, instead
of reaching the boundary in finite time as it might
were the Euclidean metric used. Given a trajectory
that is well-approximated by (5.1), this reduction
in speed may make it appear that the iterates are
converging to a nonexistent critical point in N, rather
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than slowly diverging to the boundary of N. Thus, such
an attempt to “pull the flow back” from crossing the
boundary can succeed only at the expense of making
it falsely appear that a divergent trajectory converges.
A numerical scheme that approximates (1.4) by an
iterative procedure generating a sequence {xn = x(tn)}
by some procedure (such as the one in (5.1)) that
forces xn to satisfy the constraint for all n, cannot both
converge and yet faithfully represent the differential
equation along non-convergent trajectories.

As an illustration of this phenomenon, consider a
punctured unit disk D∗ in R2 and let Z be the unit
outward radial vector field. Starting at any point of
D∗, the flow of Z reaches the boundary circle in fi-
nite time. If we replace Z at each point x by Lx(Z)
for some positive-definite linear operator Lx defined at
each point, possibly approaching zero at the boundary,
we may slow down the flow, and will change its trajec-
tories (L may rotate Z), but we cannot make the flow
converge in D∗. However, by slowing down the flow
enough, we may make it appear to converge.

Furthermore, note that even given a complete met-
ric on a noncompact manifold N, not every gradient
vector-field will have integral curves defined for all
time. Thus it is possible to have a function E for
which the gradient flow, with respect to the metric gN ,
reaches the boundary in finite time (more precisely,
for which the gradient flow, starting from some point,
does not exist beyond some finite time). This again is a
significant feature of the function E. However, because
the metric is complete, the scheme (5.1) will be defined
for all n and all step sizes �tn. Thus in this instance
(5.1) cannot be a good approximation to the gradient
flow.

It should also be noted that when N is an open subset
of the ambient Euclidean space, one loses one of the
chief motivations for replacing a naı̈ve Euler step by
another scheme; since N is flat there is no danger that
a small Euler step will take one out of the constraint
manifold. Mathematically, constraining a function to
take its values in a closed submanifold (necessarily of
positive codimension) is very different from constrain-
ing it to take its values in an open subset (necessarily
of codimension zero) of Euclidean space.

When the finite-dimensional submanifold N ⊂ Rm

is replaced by the infinite-dimensional manifold
N = Maps(�, N ) where dim(�) > 0, the space N
is never even locally compact (even if N is compact),
so all the problems related to non-compactness in the
finite-dimensional situation can arise. Additionally,
in such situations, gradNEN may be defined only on
a dense subset of N , and may not have the regular-

ity properties necessary to ensure even short-time
existence of the gradient flow.

Although manifolds Maps(�, N ) as above are never
locally compact, nonetheless one may expect the gra-
dient flow to have better convergence properties if N is
compact than otherwise. This may underlie the empir-
ical findings in [3, Section 3] and [4, Section 5.2] for
diffusion-tensor MRI regularization. Starting with the
same initial data, flows based on the three choices of N
in Examples 1–3 of 3 of this paper (Sections 2.2–2.4
of [3]) were followed. The results were better for cases
2 and 3, in which N is compact (in the case of choice 3,
potentially a different compact manifold for each point
in �), than in case 1, in which N is noncompact.

Appendix: A Glossary of Some
Differential-Geometric Terms

Precise and self-contained definitions of many of the
terms below would require many pages. Instead, in
these instances we have given basic ideas instead of ac-
tual definitions, at the cost of some precision. For pre-
cise treatments, among the more accessible accounts
for non-experts are [2, 15], and [1, chapter 1], which
consider only finite-dimensional spaces; [13, chapter
9], written in sufficient generality to handle finite and
certain infinite-dimensional spaces; and [14, chapter
1], which focuses on infinite-dimensional spaces.

Underlined terms are defined elsewhere in the glos-
sary.

The cotangent space T ∗
p N at a point p of a manifold

N is the dual of the tangent space: T ∗
p N = (Tp N )∗. Its

elements are called covectors.
The derivative �∗p at p of a smooth map �

from a manifold M to a manifold N is the linear
map Tp M → T�(p)N given by generalized direc-
tional derivatives: �∗p(v) = d

dt (γ )|t=0 where γ is any
curve in M with γ (0) = p and γ ′(0) = v. When
N = Rm we compose with the natural isomorphism
j�(p) : T�(p)Rm → Rm and define the differential
d�|p = j�(p) ◦ �∗p : Tp M → Rm .

A diffeomorphism between open sets in a
(topological) vector space or between manifolds is a
smooth bijective map whose inverse is smooth.

The dual space V∗ of a real (topological) vector
space V is the space of (continuous) linear functions
V → R. If V is finite-dimensional, “continuous” is
redundant. If α ∈ V ∗ and v ∈ V , we define 〈α, v〉 :=
α(v). The function 〈·, ·〉 : V ∗ × V → R is called the
dual pairing.

A fiber bundle M over N is a family of mani-
folds (called fibers), all diffeomorphic to some fixed
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manifold F, smoothly parametrized by another man-
ifold N, and together filling out a manifold M. More
formally, a fiber bundle is a triple (M, N, π ) where
the total space M and base space N are manifolds,
π : M → N is a smooth surjective map (the projec-
tion map of the bundle), such that for small enough
open sets U ⊂ N , π−1(U ) is diffeomorphic to U × F
via a map carrying each fiber π−1(p) to {p} × F . (The
last condition, called local triviality, is guaranteed if
the derivative of π is surjective at each point and either
(i) F is compact or (ii) M is a Lie group for which N is
a homogeneous space.) Example: If M = G is a Lie
group and H is a closed subgroup, then the space of left-
cosets G/H is the base-space of a fiber bundle with total
space G and projection-map π : q �→ q H . A vector
bundle is a fiber bundle whose fibers are vector spaces;
examples are the tangent bundle T N := ⋃

p∈N Tp N
and cotangent bundle T ∗N := ⋃

p∈N T ∗
p N of a man-

ifold N. A principal fiber bundle is a fiber bundle
in which the fibers are homogeneous spaces for a Lie
group H acting on itself by right-translations (in par-
ticular each fiber is diffeomorphic to H).

The gradient grad ψ , when it exists, of a smooth
real-valued function ψ on a Riemannian manifold (N,
g), is the (automatically unique) vector field for which
gp(grad ψ |p, v) = 〈dψp, v〉 ∀p ∈ N , v ∈ Tp N . The
gradient of ψ always exists if N is finite-dimensional;
if N is infinite-dimensional, grad ψ may or may not
exist.

A homogeneous space for a Lie group G is a mani-
fold N on which G acts smoothly and transitively (any
point of N can be mapped to any other point by some
element of G). In such a situation, if p0 in N and H
is the stabilizer of p0, then there is a diffeomorphism
N ∼= G/H (the left- or right-coset space accordingly
as G acts from the left or right on N) commuting with
the G-action, and thus exhibiting G as a principal fiber
bundle over N with fiber H.

An isometry from a Riemannian manifold (M, gM)
to a Riemannian manifold (N, gN) is a smooth map
� whose derivative preserves inner products (equiva-
lently, for which �∗gN = gM ).

A Lie group is a manifold equipped with a
group-structure for which all the group-operations are
smooth. All of the classical matrix-groups (e.g. the
orthogonal groups O(n)) are Lie groups.

“lower-star” notation e.g. “F∗”: see pullbacks and
push-forwards.

A manifold is a space N that is locally, but not nec-
essarily globally, topologically equivalent to an open
set in some fixed topological vector space V, e.g. a
finite- or infinite-dimensional Banach space (in the

latter case we call N a Banach manifold). The local
pieces are required to fit together smoothly (via local
diffeomorphisms). This makes the local topology and
notion of differentiable functions on N the same as
those of V. Note that a (topological) vector space is a
special case of a manifold.

A 1-form η on a manifold N is an assignment
of a covector ηp ∈ T ∗

p N to each p in N. In the
differential-geometry literature, definitions usually re-
quire η to be smooth, or at least continuous. Example:
the differential of a real-valued function on N.

pullbacks and push-forwards are objects induced
on one manifold from an object of the same type on
another manifold via a map � from one manifold to the
other. (Note: this terminology is completely unrelated
to the phrase “pull the flow back” in Section 6.) For
concreteness, let � : M → N be the map. Differen-
tial geometers use upper-stars to indicate pullbacks—
objects �∗ξ on M constructed from � and an object
ξ on N—and lower-stars to indicate push-forwards of
objects defined on M to objects defined on N. Example
1: If p ∈ M and v ∈ Tp M , the derivative �∗p pushes-
forward vectors in TpM to vectors in T�(p) N . Example
2: If ψ is a real-valued function on N, its pullpack to
M is defined by �∗ψ := ψ ◦ � : M → R. Example
3: If ψ is a 1-form on N, its pullback to M is the 1-
form defined by 〈(�∗ψ)|p, v〉 = 〈ψ�(p),�∗pv〉 for all
p ∈ M, v ∈ Tp M . Example 4: If g is a Riemannian
metric on N, its pullback to M is the Riemannian met-
ric defined by (�∗g)p(v,w) = g�(p)(�∗pv,�∗pw) for
all p ∈ M, v, w ∈ Tp M . Example 5: If E is a vector
bundle over N, the pulled-back bundle �∗E is defined
by declaring the fiber over p ∈ M to be the fiber of E
over �(p) ∈ N .

A Riemannian manifold is a pair (N, g) where N is
a manifold and g is a (weak) Riemannian metric on N.
An important special case is Euclidean space with the
standard inner product on vectors based at the same
point.

A (weak) Riemannian metric g on a manifold N is
an assignment gp of an inner product on each tangent
space TpN, smoothly varying with p. “Weak” is a tech-
nical term that applies only if N is infinite-dimensional.

A section s of a fiber bundle (M, N, π ) is an assign-
ment of an element of π−1(p) ⊂ M to each p ∈ N .
In the literature, definitions usually require s to be
smooth, or at least continuous. Example: a vector field
(respectively, 1-form) on N is a section of the tangent
bundle TN (resp., cotangent bundle T∗N). All vector
bundles have infinitely many continuous sections, but
many fiber bundles have no continuous sections (there
are topological obstructions).
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A smooth map is one that is Ck (i.e., has continu-
ous derivatives up through order k) for some author-
dependent k ≥ 1 (usually k = 1 or ∞). In this paper, k =
1 suffices; often in the differential-geometry literature,
“smooth” means “C∞”.

The tangent space TpN at a point of a manifold N is
the vector space of infinitesimal variations of p within
N; its elements are called tangent vectors. When N is
a submanifold of Euclidean space, TpN can be viewed
as the dim(N)-dimensional hyperplane tangent to N at
p, with p treated as the origin.

A topological vector space V is a vector space
equipped with a topology for which the vector-space
operations are continuous. A norm on V determines
a topology, and if V is finite-dimensional, all norms
yield the same topology (the norm topology); thus in
the finite-dimensional case, “vector space” is taken to
mean “topological vector space with the norm topol-
ogy”. For infinite-dimensional vector spaces, different
norms can yield different topologies, and some impor-
tant topologies do not come from any norm.

“upper-star” notation, e.g. “F∗”: see pullbacks and
push-forwards.

vector bundle: see fiber bundle.
A vector field X on a manifold N is an assignment

of a tangent vector X p ∈ Tp N to each p in N. In
the differential-geometry literature, definitions usually
require X to be smooth, or at least continuous.

Note

1. The cited equations in [3] simplify to ours, modulo an unim-
portant overall factor-of-2 discrepancy between the definition of
the metric used in [3, Sections 2.3 and 2.4] and our definition,
because the matrix-valued functions called G (our Zamb) in [3,
Sections 2.2 and 2.4] are symmetric on the domain of the flow.
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