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Abstract. Methods for reconstruction and camera estimation from miminal data are often used to boot-strap
robust (RANSAC and LMS) and optimal (bundle adjustment) structure and motion estimates. Minimal methods are
known for projective reconstruction from two or more uncalibrated images, and for “5 point” relative orientation
and Euclidean reconstruction from two calibrated parameters, but we know of no efficient minimal method for
three or more calibrated cameras except the uniqueness proof by Holt and Netravali. We reformulate the problem
of Euclidean reconstruction from minimal data of four points in three or more calibrated images, and develop a
random rational simulation method to show some new results on this problem. In addition to an alternative proof
of the uniqueness of the solutions in general cases, we further show that unknown coplanar configurations are not
singular, but the true solution is a double root. The solution from a known coplanar configuration is also generally
unique. Some especially symmetric point-camera configurations lead to multiple solutions, but only symmetry of
points or the cameras gives a unique solution.

Keywords: 3D reconstruction, relative orientation, structure from motion, polynomial methods, algebraic
geometry

1. Introduction

The estimation of camera motion (“relative orienta-
tion”) and scene structure from image point correspon-
dences is a common task in computer vision and pho-
togrammetry. Reliable methods for handling minimal
cases—cases where the omission of one point in one
image would give an infinite number of solutions—are
important both theoretically and in practice. In partic-
ular, they are used to bootstrap robust estimation algo-
rithms such as RANSAC and Least Median Squares
[10, 32, 35], and optimal estimation algorithms such
as bundle adjustment. Perspective projection is essen-
tially an algebraic model, so minimal reconstruction

problems usually reduce to formulating and solving a
polynomial system.

The minimal data required for projective reconstruc-
tion is well-known [8, 12, 28, 30]. For two views,
seven points are needed and Sturm’s method [31] (re-
introduced into computer vision in [8, 9, 22]) can be
used, giving at most three real solutions. For three
views, six points suffice and there are again at most 3
solutions [26]. These two problems are actually duals
under a formal point/camera centre duality [2].

For Euclidean reconstruction from calibrated cam-
eras, Kruppa’s method for 5 points in 2 images was
re-introduced and studied in [9], where it was shown
that there are in general as many as 10 solutions [5, 6, 9,
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13, 33]. A recent robust and real-time implementation
of this algorithm is presented in [24]. But the progress
on minimal cases for three or more calibrated images
is much slower. Longuet-Higgins [21] described an
iterative method of finding the solutions to the case
of 4 points in 3 perspective images by starting from
the solution obtained in the simplifed approximate 3
scaled orthographic images. Holt and Netravali [14]
proved that “there is, in general, a unique solution for
the relative orientation.... However, multiple solutions
are possible, in rare cases, even when the four feature
points are not coplanar [14]”. They used some results
from algebraic geometry to draw general conclusions
regarding the number of solutions by considering a sin-
gle example. This is certainly one step further to show
the general uniqueness of the solutions, but still many
questions remain unanswered and efficient algorithms
do not exist for this problem. We will first reformulate
this problem using Euclidean depths of points based on
Euclidean invariants to form a polynomial system. By
characterising the algebraic variety determined by the
polynomials with computer algebra tools on random
rational simulations, in addition to the uniqueness of
Euclidean reconstruction from 4 corresponding points
in N ≥ 3 views [14], we show that

• Euclidean reconstruction from 4 corresponding
points that come from unknown coplanar points has
a unique double solution in 3 views, but is generally
unique in N > 3 views.

• Euclidean reconstruction from 4 corresponding
points that come from known coplanar points is gen-
erally unique in N ≥ 3 views.

• Euclidean reconstruction is generally unique for
only symmetry of either camera configuration or the
four points configuration, but has up to 56 solutions
for the simultaneous symmetries of the cameras and
points.

Apart from the ability to initialize from fewer scene
points, three camera methods are likely to have several
practical advantages. Three-image matching is much
more discriminant than two-image matching, so there
should be fewer outliers in a RANSAC run. Also, it
is well known in photogrammetry that a triangle of
three widely spaced cameras gives much stabler and
more reliable geometry estimates than classical two
image stereo, essentially because errors within epipolar
planes are uncontrollable under stereo [11].

The paper is organized as follows. Section 2 for-
mulates the minimal data problem for calibrated re-
construction. Section 3 describes our symbolic cal-
culations and Section 4 presents the major theoretical

results. Some concluding remarks and future directions
are given in Section 5.

Throughout the paper, vectors are denoted in lower
case bold and matrices in upper case bold. Scalars are
any plain letters or lower case Greek.

2. Problem Formulation

2.1. Minimal Data for Euclidean Reconstruction

For Euclidean reconstruction from image points, each
image point gives 2 constraints, each 3D point intro-
duces 3 degrees of freedom (d.o.f.) and each camera
pose introduces 6 d.o.f., but there are 7 free d.o.f. in the
3D coordinate system (6 for the Euclidean coordinate
frame and 1 for the scene scale).

So a system of P points visible in N calibrated images
yields 2NP constraints in 3P + 6N − 7 unknowns.
To have at most finitely many solutions, we therefore
need:

2N P ≥ 3P + 6N − 7. (1)

Minimal cases are given by equality here, so we look
for integer solutions for N and P satisfying:

P = 3 + 2

2N − 3
.

For N = 2, P = 5, so a minimum of five points
is required for a two-image relative orientation and
Euclidean reconstruction. Relative orientation from 5
points has been widely studied in photogrammetry,
computer vision and applied mathematics [5, 7, 9,
15, 18, 19, 23, 25, 33]. The corresponding polyno-
mial system has at most 20 real algebraic solutions
which fall into 10 ‘twisted pairs’: each physical so-
lution has an unphysical ‘twisted’ partner with neg-
ative point depths, corresponding to invisible points
behind the camera. So at most 10 (and more often 1–5
[25, 33]) of the 20 solutions are feasible.

For any N ≥ 3, P is between 3 and 4, so at least 4
points are required for N ≥ 3-view Euclidean recon-
struction from unknown space points. In fact, 4 points
in 3 images suffice to fix the 3D structure, after which
just 3 points are needed in each subsequent image to
fix the camera pose (the standard 3 point pose problem
[29]). So at least 4 points are always required for Eu-
clidean reconstruction, and of the minimal N ≥ 3 cases,
the 4 point 3 image problem is the most interesting.

Note that for 4 points in 3 images, (1) becomes
2NP = 24 ≥ 3P + 6N − 7 = 23. So constraint count-
ing suggests that the problem is overspecified. An over-
specified polynomial system generically has no solu-
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tions, but here (in the noiseless case) we know that
there is at least one (the physical one). It is tempting
to conclude that the solution is unique. In an appro-
priate formulation this does in fact turn out to be the
case, but it needs to be proved rigorously. For exam-
ple in the two image case, the ‘twisted’ partner of the
physical solution persists no matter how many points
are used, so the system becomes redundant but always
has two solutions. The issue is general. Owing to the
redundancy, for arbitrary image points there is no so-
lution at all. To have at least one solution, the image
points must satisfy some (here one, unknown and very
complicated) polynomial constraints saying that they
are possible projections of a possible 3D geometry.
When these constraints on the constraints (i.e. on the
image points) are correctly incorporated, the constraint
counting argument inevitably gives an exactly speci-
fied system not an overspecified one. To find out how
many roots actually occur, the only reliable method is
detailed polynomial calculations.

Affine camera case. Structure and motion from
orthographic or weak perspective views is a well-
established topic. 4 noncoplanar points in 3 views suf-
fice to uniquely determine motion and structure, mod-
ulo the unrecoverable signs and values of the overall
camera-object distances [16, 17, 34]. Many algorithms
have been published for this problem, including lin-
ear methods in [16, 20], nonlinear algebric methods in
[1, 17] and a nonlinear numerical method in [27]. A
good review can be found in [27].

2.2. Parameterizing the Minimal Problem

Uncalibrated relative orientation from 7 points in 2
images is usually formulated using the fundamental
matrix which encodes motion parameters. Similarly,
most formulations of relative orientation from 5 points
in 2 calibrated images again use motion parameters, ei-
ther explicitly or via the essential matrix. However, as
further images are added, the number of motion param-
eters increases while (for minimal problems) the num-
ber of structure ones remains constant or decreases, and
it seems to be the case that for minimal problems with
3 or more images, structure-based parameterizations
are simpler than motion-based ones. For 6 points in 3
uncalibrated images, the usual formulation is based on
the projective invariants of the 6 point space configu-
ration. And here, for 4 points in 3 calibrated images,
our formulation will be based on Euclidean point-point
and point-camera distances.

Figure 1. The basic geometric constraint for a pair of points based
on Euclidean depths and distance.

We will assume that the calibration matrices

K =




αu 0 u0

0 αv v0

0 0 1




of the cameras are known, and that the measured image
point coordinates u = (u, v, 1)T have been normalised
by the inverse calibration, x = K−1u. This converts
them into 3D direction vectors expressed in the 3D
camera frame, that point towards the corresponding
3D points. For convenience, we will also assume that
they have been normalised to unit vectors, so by im-
age points, we actually mean unit-norm 3D direction
vectors x. The 3D point corresponding to an image
point/direction x is determined by a 3D depth (point-
camera distance) λ as λx. So the 3D points in the cam-
era centered frame are just properly re-scaled image
direction vectors.

Basic Euclidean constraint. The distance between
two 3D points represented by 3-vectors p and q is
given by the cosine rule:

‖p − q‖2 = ‖p‖2 + ‖q‖2 − 2pT q

Applying this to the normalized direction vectors rep-
resenting the 3D points in the camera frame, and using
the fact that ‖xp‖ = 1, gives:

λ2
p + λ2

q − cpqλpλq = δ2
pq

where cpq = 2xT
i x j = 2 cos(θpq ) is a known constant

from the image points, and δpq is the unknown distance
between the space points. These cosine-rule constraints
are also used in calibrated camera pose from known
3D points [10, 29], except that here the inter-point
distances δpq are not knowns, but unknowns that must
be eliminated.
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Figure 2. The configuration of 4 non-coplanar points in space.

4 point configuration. A set of four 3D points has 6
independent Euclidean invariants—3 × 4 = 12 d.o.f.,
modulo the 6 d.o.f. of a Euclidean transformation—
and it is convenient to take these to be the (4

2) = 6
inter-point distances δpq, i.e. the edge lengths of the
tetrahedron in Fig. 2. This structure parameterization
is very convenient here, as the δpq appear explicitly
in the cosine-rule polynomials. However, it would be
less convenient if there were more than 4 points, as the
inter-point distances would not all be independent.

Polynomial system for the problem. For N images
of 4 points, we obtain a system of 6N homogeneous
cosine-rule polynomials in 4N unknowns λip and 6
unknowns δij:

f (λi p, λiq , δpq ) = 0, i = 1, . . . , N ,

p < q = 1, . . . , 4

The unknown inter-point distances δij can be elimi-
nated by equating cosine-rule polynomials from dif-
ferent images

λ2
i p + λ2

iq − ci
pqλi pλiq = λ2

j p + λ2
jq

− c j
pqλ j pλ jq (= δpq ).

leaving a system of 6(N − 1) homogeneous quadratics
in 4N homogeneous unknowns λip.

For N = 3 images we obtain 18 homogeneous poly-
nomials f (λi p, λiq , δpq ) = 0 in 18 unknowns λip, δij,
or equivalently 12 homogeneous polynomials in 12
unknowns λip. Dehomogenizing (removing the overall
3D scale factor) leaves just 11 inhomogeneous un-
knowns, so as expected, equation counting suggests
that the system is slightly redundant.

3. Random Rational Simulation Method

The most general polynomial solver for fi (x j ) = 0 is
to use Gröbner basis to characterize the variety of the

ideal generated by the polynomials 〈 fi (x j )〉 [3, 4]. The
polynomial system has only finitely many solutions if
the dimension of the variety is zero, infinite number
of solutions for positive dimension, and no consistent
solutions for negative dimension. Generally, we ex-
pect to have only a finite number of solutions for a
well-defined geometric problem when the dimension
of the variety is zero. Combining elimination from lex-
icographic Gröbner bases with numerical root-inding
for one-variable polynomials conceptually gives a gen-
eral polynomial solver. But it is often impossible sim-
ply because Gröbner bases could not be computed
with limited computer resources. This is true for our
polynomial system g(λi p, λiq , λ j p, λ jq ) with paramet-
ric coefficients ci

pq . We choose the approach offered
by Macaulay (http://www.math.uiuc.edu/Macaulay2)
among other computer algebra systems, which allows
the computation with coefficients in modular arith-
metic (a finite prime field k = Z/〈p〉) to speed up
computation and minimize memory requirements. We
first create projections of random space points with
random camera poses.

Random rational simulation. 3D space points Xi,
i = 1,..., 4 are represented by homogeneous 4-vectors
and can be randomly generated in integers modulo a
given modulus. A calibrated camera can always be
assumed to be a 3 × 4 image projection matrices Pi

= (Ri | ti) where Ri is a 3 × 3 rotation, and ti is a
3D translation. Random rational 3 × 3 rotation matrix
can be generated using random rational Pythagorean
pairs. A random rational Pythagorean pair a2 +b2 = 1
for rotation can be generated from a pair of random
integers l and m by 2lm

l2+m2 ,
l2−m2

l2+m2 . The 3-vector image
points in homogeneous coordinates are obtained by
xi p = Pi Xp up to scales. Each homogeneous image
point xip represents the 3D direction vector to its 3D
point at its camera center.

The method is summarized as follows:

• Creating random configuration of 4 points and N
cameras in integer coordinates and rational rota-
tions;

• Applying the cosine rule to image points to build the
system of 6(N − 1) polynomials;

• Dehomogenizing the system and mapping the ratio-
nals into modular arithmetic for a given modulus;

• Computing Gröbner bases with Macaulay2 in mod-
ular arithmetics;

• Characterizing the variety from the computed
Gröbner basis for each random test.
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For each problem, the simulation is run on differ-
ent random configurations and different moduli. If
the characterisation of the variety remains stable, it
is meant that the computed stable characterisation is
generically equivalent to that of the original system.

Solution feasibility. The dehomogenized polyno-
mial systems have relative point depths yip and relative
image scales zj as unknown variables. It is straight-
forward to notice that none of the unknowns can be
zero. This says that a feasible solution of the system
must be toric! Toric solutions are roots in (C∗)n for
n-dimensional solution space, which means that none
of the coordinates can be zero.

Quadratic symmetry and symmetric dehomogenisa-
tion. As the unknowns are the depths of the points
relative to the camera center, if λip is a solution depth,
so is −λip. The symmetric solution gives a reconstruc-
tion behind the camera. The polynomial system can
be de-homogenized by introducing relative depths for
points of the same image

yip = λi p

λi1
, i = 1, . . . , N , p = 2, . . . , 4,

and relative scales (squared) for images

z j = λ2
j1

λ2
11

, j = 2, . . . , N .

This amounts to fixing the scales yi1 = 1, i =
1, . . . , N , and z1 = 1.

Imposing λ11 = 1 to fix the global reconstruction
scale gives the new dehomogenized ideal 〈g(yip, z j )〉
with 4N − 1 = 3N + (N − 1) inhomogeneous un-
knowns

{yip, z j |i = 1, . . . , N , p = 2, . . . , 4, j = 2, . . . , N }.

This transformation eliminates the quadratic sym-
metry solutions

λi p �→ −λi p,

for p = 1, . . . , 4 in each image.
As the same point is used in different images for the

relative depths of points of the same image, we call
this symmetric dehomogenisation.

Asymmetric dehomogenisation. The above deho-
mogenisation is a natural choice of fixing scales, but
the following computation will show that this de-
homogenisation contains many spurious solutions. It
might be inconvenient for further efforts of develop-
ing effective algorithms for digging the real solution
out of the system. This motivates us to use an alterna-
tive asymmetric dehomogenisation, i.e. take different
points in different images to define the relative depths
for points of the same image:

yip = λi p

λi i
, i = 1, 2, 3, p = 1, . . . , 4,

and relative scales (squared) for images

z j = λ2
j1

λ2
11

, j = 2, . . . , N ,

this amounts to fixing the scales yii = 1 and z1 = 1.
Imposing λ11 = 1 to fix the global reconstruction

scale gives the new dehomogenized ideal 〈g′(yip, z j )〉
with 4N − 1 = 3N + (N − 1) inhomogeneous un-
knowns

{yip, z j |i = 1, . . . , N , p = 1, . . . , 4,

i 
= p, j = 2, . . . , N }.

4. Results for Different Cases

4.1. The Case of 3 Images

Symmetric dehomogenisation. For the case of 3 im-
ages, with the projection from a random set of 4 points
in 3 images, the computation on the dehomogenized
system of 12 equations in 11 unknowns turns out a
Gröbner basis with 66 generators, 57 of them of degree
2 and 9 of degree 3. The variety is zero-dimensional
and has 21 points.

As feasible solutions are toric, by computing the
quotient ideal by the product of unknown variables,
we show that 20 out of 21 solutions are non-toric,
therefore infeasible solutions. It can be further verified
that (0, . . . , 0, 1, 1) is a solution of the system and by
saturating the ideal with respect to yip, it can be shown
that it is the only trivial solution with the algebraic
multiplicity of 20.

Asymmetric dehomogenisation. However the vari-
ety defined by the asymmetric dehomogenised system
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characterized by its Grübner basis is indeed of dimen-
sion 0 and has a unique point, this unique point is the
true solution of the polynomial system.

We may conclude that

Euclidean reconstruction from a minimum of 4
points in 3 images is generally unique, but it may
have 20 infeasible solutions if the symmetric deho-
mogenized system is used to characterise the variety.

4.2. The Case of More than 3 Images

With the projection from a random set of 4 points in N
images, the computation on the symmetric dehomog-
enized system always turns out a zero dimensional
variety which has 25 points for N = 4 and 41 points for
N = 5. Unsurprisingly, all except one are non-feasible
solutions. The asymmetric dehomogenized system
however turns out the unique feasible solution.

This allows us to establish the following more gen-
eral result:

Euclidean reconstruction from a minimum of 4
points in N ≥ 3 images is in general unique but
may have spurious solutions if using the symmetric
dehomogenised polynomial systems.

4.3. The Case of Coplanar Points

Unknown coplanarity. Four points in space may be
coplanar, all the constraints from the cosine rule still
hold for coplanar points. We then generate random
coplanar points for N images and compute Grübner
bases to characterize the variety defined by the ideal
〈g(yip, z j )〉 without other additional constraints. It
turns out the variety has always 0 dimension and 22
points for N = 3. Similarly we could quotient out 20
non-toric solutions, which are necessarily infeasible.
By computing the radical quotient ideal, we can show
that it has a double feasible solution. Again with the
asymmetric demogenized system, the only double so-
lution is obtained. In summary,

Euclidean reconstruction from a minimum of 4 un-
known coplanar points in 3 images is in general a
double solution.

Euclidean reconstruction from a minimum of 4 un-
known coplanar points in more than 3 images is in
general unique.

Known coplanarity. Obviously, not only are all the
constraints from the cosine rule still valid, but also
additional constraints are available for known coplanar
points. The explicit coplanarity constraint for 4 points
is given by the vanishing determinant of the re-scaled
image points in each image, i.e.

h(λi p) =
∣∣∣∣∣
λi1xi1 λi2xi2 λi3xi3 λi4xi4

1 1 1 1

∣∣∣∣∣ = 0,

for each image i = 1, 2, 3.
This turns out three homogeneous polynomials of

degree 3 in λi j or in yip = λi p/λi1.
We generate random coplanar points and compute

Grübner bases to characterize both the variety de-
fined by 〈g(yip, z j ), h(yip)〉 with the explicit copla-
narity constraints. We find that

Euclidean reconstruction from a minimum of 4
known coplanar points in N ≥ 3 images is unique.

4.4. The Case of Symmetric Configurations

One symmetric configuration of points and cameras is
shown in Fig. 3. The 4 points are 4 corners of a cube
and the 3 cameras are orthogonal each other and to the
cube faces. Such a symmetric configuration consider-
ably increases the number of feasible solutions. The
computation shows that

Euclidean reconstruction from a symmetric camera-
point configuration of 4 points in 3 images as illus-
trated in Fig. 3 may have 56 feasible solutions. The
reconstruction becomes unique if only the cameras

Figure 3. One symmetric configuration of points and cameras.
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are symmetric or the points are symmetric, but not
simultaneously the two.

5. Discussion and Future Work

This paper gives the first systematic investigation on
the difficult topic of Euclidean reconstruction from the
minimal data of 4 points in more than 2 calibrated im-
ages. The formulation based on Euclidean depths is
intrinsic for 4 points. The major results we have es-
tablished are that the reconstruction from a minimum
of 4 points is essentially unique in terms of feasible
solutions, even though the underlying algebraic sys-
tems may have non-feasible solutions if the system is
not properly dehomogenized. We also shown that the
coplanar configurations are not in principle singular,
but the true solution becomes a double root in the case
of three images. Only symmetric camera configura-
tion or symmetric point configuration do not introduce
more solutions, but the simultaneous symmetric cam-
era and point configuration has 56 solutions in the case
of 3 images. The development was based on modern
computer algebra tools in modular arithmetics due to
the problem complexity. These results set ground for
investigation of more parctical issues of these prob-
lems. We are working on the development of efficient
numerical algorithms for solving this problem.

Acknowledgment

The work was supported by Hong Kong RGC Grant
HKUST6182/04E.

References

1. B.M. Bennet, D.D. Hoffman, J.E. Nicola, and C. Prakash,
“Structure from two orthographic views of rigid motion,”
Journal of the Optical Society of America, Vol. 6, No. 7, pp.
1052–1069, 1989.

2. S. Carlsson and D. Weinshall, “Dual computation of projective
shape and camera positions from multiple images,” Interna-
tional Journal of Computer Vision, Vol. 27, No. 3, pp. 227–241,
1998.

3. D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and
Algorithms, Springer, 1998.

4. D. Cox, J. Little, and D.O’Shea. Using Algebraic Geometry,
Springer, 1998.

5. M. Demazure, “Sur deux problèmes de reconstruction,”
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