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Abstract. Camera calibration and 3D reconstruction are important issues in computer vision. Two applications
of bracket algebra in these two issues are presented in this work. Firstly, a camera calibration method is proposed,
which is from only distance ratios of object points. Thanks to the effective computations of brackets, this method
does not need to set up any world coordinate system and thus can use the geometric information of irregular objects
conveniently. Secondly, we represent the reconstruction solution of plane structure directly from four known control
points and give some new and useful error analysis results. The solution based on brackets is concise and short, and
the error analysis results can act as a theoretical guidance in practice. Simulations and experiments on real images
validate our proposed camera calibration method, direct reconstruction solution and error analysis results.
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1. Introduction

Projective geometric invariant plays a very important
role in computer vision. Due to its effectiveness in the
computation of projective invariants, bracket algebra,
which is the subalgebra of geometric algebra composed
of determinants only, has had some applications in the
field of computer vision [3–5, 10, 14, 16, 17, 21, 25].
Currently in computer vision, the great potential of
bracket algebra is not yet fully developed. This paper
is to present two new applications of bracket algebra
in camera calibration and 3D reconstruction.

Usually, for camera calibration using the geometric
information of spatial points, the methods firstly set
up an object coordinate system, then solve the cam-
era projective matrix or the homography between the
scene and the image, and finally establish the con-
straints on the camera intrinsic parameters from the
obtained camera projective matrix or homography [1,
26]. It is straightforward to set up an object coordi-
nate system if the spatial points distribute regularly. In
order to calibrate camera flexibly using the geometric
information of irregular object, here we propose a new
camera calibration method from only distance ratios of
spatial points without involving any object coordinate

system. Bracket algebra makes easy the representation
and computation of the scene distance ratios. Simu-
lated and real experiments validate this method, and
show its flexibility.

A rectangle pattern or a four-coplanar-control-point
pattern is popular in many vision tasks such as camera
calibration, camera pose determination, and metrology
[2, 11–13, 15, 18, 19, 22, 23]. From a single view of
a plane with a rectangle or at least four control points,
the traditional way of metrology or the reconstruction
is to determine the homography between the space
plane and the image plane at first, then to reconstruct
plane structure via this homography [6–9]. Some
error analysis for the metrology via homography
has been given [7, 9]. Here, we represent directly
the reconstruction solution of plane structure from
four control points (not necessarily the vertexes of
a rectangle). The reconstruction solution is concise
and short. We use it for error analysis, and find out
some new and interesting results from a geometric
standpoint. The error analyses of [7, 9] are also
suitable for our direct reconstruction solution. Simu-
lations and experiments on real data validate the direct
reconstruction solution and our new error analysis
results.
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The organization of this paper is as follows. Some
preliminaries are listed in Section 2. Section 3 gives
the camera calibration method from the scene distance
ratios. The direct reconstruction solution and analytical
error analyses are detailed in Section 4. Simulations
and experiments on real data are reported in Section
5, and Section 6 is some concluding remarks.

2. Preliminaries

A bold number or bold small letter denotes a 3-vector
or 2D homogeneous coordinates, the symbol “| |” de-
notes the absolute value, the bracket “[ ]” denotes the
determinant of vectors in it, and “≈” denotes the equal-
ity up to a scalar.

Bracket algebra is in fact the algebra on deter-
minants, which is the basic algebra tool for com-
puting projective geometric invariants [20, 24]. Ex-
changing two vectors in a bracket will change the
sign of the bracket, for example: [a1a2a3] = −[a2a1

a3]. [a1a2a3] = 0 means that a1, a2, a3 are collinear.
Let Sa123 be the area of the triangle with a1, a2, a3

as the vertexes, then, [a1a2a3] = 2Sa123 when the order
of a1, a2, a3 is counterclockwise; otherwise, [a1a2a3]
= −2Sa123. Thus, [a2a3a4]

[a1a3a4] = Sa234
Sa134

when a1, a2 are in
the same side of the line through a3, a4; and [a2a3a4]

[a1a3a4] =
− Sa234

Sa134
when a1, a2 are in the different side of the line

through a3, a4.
The area Sa123 of the triangle a1a2a3 also can be

represented as:

1

4

√
(da12 + da13 + da23)(−da12 + da13 + da23)(da12 − da13 + da23)(da12 + da13 − da23)

where daij is the distance between ai, aj.
e1x + e2 y + e3 = 0 is a line with (x, y, 1) as variable

vector in 2D plane. Let (x0, y0, 1) be the coordinates of
a point in this plane, then the distance from this point
to this line is:

|e1x0 + e2 y0 + e3|√
e2

1 + e2
2

(1)

For two fixed points a1, a2, the line-coordinates of the
line through them is a1× a2. It follows that by (1),
the distance of a3 to the line a1a2 is |[a1a2a3]|√

(a1×a2)2
x +(a1×a2)2

y

,

where (a1×a2)x, (a1×a2)y are the first and second
coordinates of a1×a2. Denote this distance as d, and
its denominator as s. It can be seen that s is not related
with a3. There is |[a1a2a3]| = sd. Thus, when a1, a2

are fixed and a3 is varying, |[a1a2a3]| can also repre-
sent the varying distance of a3 to the line a1a2 in some
sense.

Under the pinhole camera model, a spatial point Mi

is projected to a point mi in the image plane by:

si mi = K(R, t)Mi , i = 1..6 (2)

where R, t are a 3×3 rotation matrix and a 3-D trans-
lation vector, si is a nonzero scalar, and

K =






f s u0

0 α f v0

0 0 1






is the 3×3 matrix of camera intrinsic parameters, f
is the focal length, α the aspect ratio, s the skew pa-
rameter, (u0, v0) the principal point. In our subsequent
discussions, we always assume the camera model is of
the pinhole one. In other words, possible model distor-
tions will not be considered.

In particular, when we consider only the spatial
points in the x-y plane (we can set up x-y plane in
the scene plane), (2) can be simplified as:

si mi = K(R t)






x

y

0
w






= K(r1 r2 t)






x

y

w




 , (3)

where r1, r2 are the first and second columns of the
rotation matrix R.

The image of the line at infinity of a plane in space
is called a vanishing line.

Let 1, 2, 3, 4, 5 be five points on a scene plane π ,
and mi, i = 1..5 their images under a view. They are
all 2D homogeneous coordinates with the last element
1. We assume that no three of 1, 2, 3, 4 are collinear,
and no three of their images are collinear.

3. Camera Calibration Using only Distance
Ratios without Object Coordinate System

Consider 1, 2, 3, 4 in the scene plane π and their
images mi, i = 1..4 under a view, we have (see
Appendix A):

s2

s1
= [234][m1m3m4]

[134][m2m3m4]
,

s3

s1
= [234][m1m2m4]

[124][m2m3m4]
,

s4

s1
= [234][m1m2m3]

[123][m2m3m4]
. (4)
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Denote them as w2, w3, w4 respectively. Since r1,
r2 are two orthogonal unitary vectors, we obtain (see
Appendix A):

(w2m2 − m1)τ K−τ K−1(w2m2 − m1)

(w3m3 − m1)τ K−τ K−1(w3m3 − m1)
=

(
d12

d13

)2

,

(w2m2 − m1)τ K−τ K−1(w2m2 − m1)

(w4m4 − m1)τ K−τ K−1(w4m4 − m1)
=

(
d12

d14

)2

,

(5)

where dij is the distance between the scene points
i,j. Note that both the right sides of the above two
equations are distance ratios. In addition, each ratio of
[234]
[134] ,

[324]
[124] ,

[423]
[123] in w2, w3, w4 can be expressed as dis-

tance ratios as shown in the third and fourth paragraphs
of Section 2. For example,

[234]

[134]
= δ±

S234

S134
= δ±

√
(r23/34 + r24/34 + 1)(r24/34 + 1 − r23/34)(r23/34 + 1 − r24/34)(r23/34 + r24/34 − 1)

√
(r13/34 + r14/34 + 1)(r14/34 + 1 − r13/34)(r13/34 + 1 − r14/34)(r13/34 + r14/34 − 1)

,

where ri j/kl = di j

dkl
, and δ± = + if 1, 2 are in the same

side of the line 34; otherwise δ± = −. Hence, (5) are
the equations on K from only distance ratios.

Let C = K−T K−1, the two equations in (5) are lin-
ear on C. There are only two independent equations
on the intrinsic parameters from parallel scene planes.
Therefore, camera intrinsic parameters can be recov-
ered linearly and completely from three views (with
different camera orientations) of a plane, or from one
view of three planes with different directions.

Based on (5), here is our algorithm to calibrate a
camera from distance ratios of scene points possibly
distributed irregulary in differenct planes (in each
plane, there are at least four points).

Step 1. In each plane, choose four scene points, which
distribute as evenly as possible, and whose image
points distribute also as evenly as possible. We de-
note them as 1, 2, 3, 4. From their distance ratios
and their images in each view, set up the equations
on C = K−T K−1 by (5).

Step 2. In each view, for each of the rest scene points
5, 6 , . . . , i, M of each plane, set up the equations on
C = K−T K−1 by substituting 4 and m4 with i and
mi in the equations of (5).

Step 3. Solve the equations established in Steps 1 and 2
for C at first for example by SVD method, and then
recover K from C by Cholesky decomposition.

4. Direct Reconstruction of Plane Structure from
Control Points and Error Analysis

Let 1, 2, 3, 4 be four control points with known coor-
dinates. We use subscript x to indicate the first element
of a vector, subscript y to indicate the second element
of a vector.

4.1. Direct Reconstruction Solution

Divide each side of (3) by s1, and let H =
K(r1, r2, t)/s1. Then, we have (m1, w2m2, w3m3) =
H(1, 2, 3), where w2, w3 are as in (4). Thus,

H = (m1, w2m2, w3m3)(1, 2, 3)−1

= 1

[1 2 3]
(m1, w2m2, w3m3)

((2 × 3)T , (3 × 1)T , (1 × 2)T )T ,

H−1 = (1, 2, 3)(m1, w2m2, w3m3)−1

= 1

[m1m2m3]
(1, 2, 3)

(
(m2 × m3)T ,

1

w2
(m3 × m1)T ,

1

w3
(m1 × m2)T

)T
.

So, the direct reconstruction of a scene point 5 from its
image is:

5 ≈ H−1m5 = 1

[m1m2m3]
(1, 2, 3)

(
[m2m3m5],

1

w2
[m3m1m5],

1

w3
[m1m2m5]

)T

= 1

[m1m2m3]

(
[m2m3m5]1

+ 1

w2
[m3m1m5]2 + 1

w3
[m1m2m5]3

)
,

where 1, 2, 3 are homogeneous with the last element
1. Then, the non-homogeneous coordinates of 5 is:

5x = w2w3[m2m3m5]1x + w3[m3m1m5]2x + w2[m1m2m5]3x

w2w3[m2m3m5] + w3[m3m1m5] + w2[m1m2m5]
,

(6)

5y = w2w3[m2m3m5]1y + w3[m3m1m5]2y + w2[m1m2m5]3y

w2w3[m2m3m5] + w3[m3m1m5] + w2[m1m2m5]
.

(7)
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The line-coordinates of the line at infinity of the
scene x-y plane is (0, 0, 1)T , so the line-coordinates of
its image, i.e. the vanishing line, is:

Io = H−T (0, 0, 1)T = 1

[m1m2m3]

(
(m2 × m3),

1

w2

(m3×m1),
1

w3
(m1×m2)

)
(1T, 2T, 3T )T (0, 0, 1)T

= 1

[m1m2m3]

(
(m2 × m3),

1

w2
(m3 × m1),

1

w3
(m1 × m2)

)
(1, 1, 1)T

= 1

[m1m2m3]

(
(m2 × m3) + 1

w2
(m3 × m1),

+ 1

w3
(m1 × m2)

)
. (8)

The denominator in (6) and (7) is equal to
w2w3[m1m2m3] (lo · m5), where lo · m5 is the in-
ner product of lo and m5. By (1), we know that the
absolute value of the denominator can be sd5o, where
s is a scalar independent of m5 and 5, and d5o is the
distance from m5 to the vanishing line lo. Therefore
when m5 moves in the image plane, the closer it is to
lo, the smaller is the absolute value of the denominator.
The denominator is zero, if and only if m5 is on the
vanishing line lo, or 5 is a point at infinity.

The line-coordinates of the scene y-axis x = 0 is (1,
0, 0)T , so the line-coordinates of its image is:

l1 = H−T (1, 0, 0)T = 1

[m1m2m3]
(

(m2 × m3),
1

w2
(m3 × m1),

1

w3
(m1 × m2)

)

(1T , 2T , 3T )T (1, 0, 0)T = 1

[m1m2m3]

(

1x (m2 × m3)

+ 1

w2
2x (m3 × m1) + 1

w3
3x (m1 × m2)

)

.

Similarly, the line-coordinates of the image from x-axis
(0, 1, 0)T is:

l2 = 1

[m1m2m3]

(
1y(m2 × m3) + 1

w2
2y(m3 × m1)

+ 1

w3
3y(m1 × m2)

)
.

Therefore, (6) and (7) are actually:

5x = l1 · m5

lo · m5
, 5y = l2 · m5

lo · m5
(9)

Let v1 = lo × l1 and v2 = lo × l2. We have:

v1 = lo × l1 = H−T (0, 0, 1)T × H−T (1, 0, 0)T

= 1

det(H)
H((0, 0, 1)T × (1, 0, 0)T ) = 1

det(H)

H(0, 1, 0)T = 1

w2w3[m1m2m3]

(m1, w2m2, w3m3) (3x − 2x , 1x − 3x , 2x − 1x )T

= 1

[m1m2m3]

(
(3x − 2x )

w2w3
m1 + (1x − 3x )

w3
m2

+ (2x − 1x )

w2
m3

)
.

Similarly, v2 = lo × l2 = 1
[m1m2m3] (

(3y−2y )
w2w3

m1 +
(1y−3y )

w3
m2 + (2y−1y )

w2
m3).

4.2. Error Analysis for Direct Reconstruction
Solution

There are thorough error analyses on homography H,
on image point localization, and on both of them in [7,
9]. These results can be used straightforward for our
direct reconstruction solution (6) and (7). In sequel, we
are to have an error analysis on (6) and (7) from a new
geometric standpoint.

If the control-point pattern is made appropriately
the image processing for extracting the images of
the control points is simple and gives accurate re-
sults, hence noise may be ignored. In the following
ignoring the noise in the image points of the con-
trol points, we are to assess the reconstruction error
of other points due to their image noise. Suppose
the noise of m5 is �m5 = (�u,�v, 0)T . Let x̂5, ŷ5

be the reconstructed results from m5 + �m5, and
let mu = (1, 0, 0)T , mv = (0, 1, 0)T , then, �m5 =
(�u,�v, 0)T = �umu + �vmv . Thus, by (9) we
have:

|x̂5 − x5|=
∣∣∣∣
l1 · (m5 + �m5)

lo · (m5 + �m5)
− l1 · m5

lo · m5

∣∣∣∣

=
∣∣∣∣
(lo · m5)(l1 · �m5) − (l1 · m5)(lo · �m5)

(lo · m5)(lo · m5 + lo · �m5)

∣∣∣∣

=
∣∣∣∣

(lo × l1) · (m5 × �m5)

(lo · m5)(lo · m5 + lo · �m5)

∣∣∣∣

=
∣∣∣∣

[v1m5�m5]

(lo · m5)(lo · m5 + lo · �m5)

∣∣∣∣ , (10)
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Similarly, there is:

|ŷ5 − y5| =
∣∣∣∣
l2 · (m5 + �m5)

lo · (m5 + �m5)
− l2 · m5

lo · m5

∣∣∣∣

=
∣∣∣∣

[v2m5�m5]

(lo · m5)(lo · m5 + lo · �m5)

∣∣∣∣ . (11)

In the next, we are to analyze (10) and (11) when the
scene plane and the image plane are either parallel or
not parallel.

When the Scene Plane and the Image Plane
are Parallel

If the scene plane π is parallel to the image plane, the
vanishing line lo will be coincident with the line at
infinity of the image plane. At the time, we have lox =
0, loy = 0 (the first and second elements of lo). Let low

be the last element of lo. By lox= 0, loy= 0, we can solve
out [124]

[234] ,
[134]
[234] from (8), then we substitute the results

into low, simplify it, and obtain low = 1 (see Appendix
B). Thus, lo = (0, 0, 1)T . Since the last element of
m5 is 1, there is lo · m5 = (0, 0, 1)T · m5 = 1. Also,
lo · �m5 = (0, 0, 1)T · (�u,�v, 0)T = 0. Therefore,
the absolute errors from (10) and (11) become:

|x̂5 − x5| = |[v1m5�m5]|,
|ŷ5 − y5| = |[v2m5�m5]|.

Because vi = lo × li , i = 1, 2 are points on the line
lo, thus the last elements of vi are zero. Let vi be the
2-vector of the first and second elements of vi ,�m5 be
the 2-vector of the first and second elements of �m5,
i.e. �m̄5 = (�u,�v)T , and let mi , i = 1..4 be the
non-homogeneous coordinates of mi. Then the above
two equations are:

|x̂5 − x5| = |[v1m5�m5]|

=
∣∣∣∣∣

[
v1, m5,�m5

0, 1, 0

]∣∣∣∣∣
= |[v1,�m5],

|ŷ5 − y5| = |[v2m5�m5]|

=
∣∣∣∣∣

[
v2, m5,�m5

0, 1, 0

]∣∣∣∣∣
= |[v2,�m5],

where v1 = 1
[m1m2m3] (

(3x −2x )
w2w3

m1 + (1x −3x )
w3

m2 +
(2x −1x )

w2
m3), v2 = 1

[m1m2m3] (
(3y−2y )
w2w3

m1 + (1y−3y )
w3

m2 +
(2y−1y )

w2
m3) (See the last paragraph of Section 4.1), they

are not dependent on m5.

It follows that:

Result 1. If the scene plane π is parallel to the image
plane:

(1) The absolute errors of both x̂5 and ŷ5X5 and Y5

are linear and homogeneous on the noise �m̄5 =
(�u,�v)T .

(2) The values of the absolute errors are not dependent
on the position of m5. They are only dependent on
the four control points 1, 2, 3, 4, their images mi,
i = 1..4, and the noise �u, �v.

In particularly, when 1, 2, 3, 4 are the vertexes
of a rectangle, we set up the x-y world coordinate
system in such a way that 1 = (0, 0, 1)T , 2 =
(a, 0, 1)T , 3(0, b, 1)T , 4 = (a, b, 1)T , where a, b are
the side lengths of the rectangle. At the time, the abso-
lute errors are (Appendix C):

|x̂5 − x5| = |[v1,�m5]|
= |a|

|[m1m2m3]| |[m3 − m1,�m5]|

= |t3|
| f |

∣∣∣∣
s cos θ + f sin θ

f α
�v − cos θ�u

∣∣∣∣ ,

(12)

|ŷ5 − y5| = |[v2,�m5]|
= |b|

|[m1m2m3]| |[m1 − m2,�m5]|

= |t3|
| f |

∣∣∣∣
s sin θ + f cos θ

f α
�v − sin θ�u

∣∣∣∣ ,

(13)

where f, s, α are the camera intrinsic parameters as in
(2), θ is the rotation angle of the camera, and t3 is the
third element of the translation of the camera. When
the image plane is parallel to the scene plane, |t3| is the
distance of the camera to the scene plane.

Usually, for the intrinsic parameters, there is |s| <

| f |, thus by it, and | cos(θ )| ≤ 1, | sin(θ )| ≤ 1, we
have:

|x̂5 − x5| = |t3|
| f |

∣∣∣∣
s cos θ + f sin θ

f α
�v − cos θ�u

∣∣∣∣

≤ |t3|
| f |

(
2

|α| |�v| + |�u|
)

,

|ŷ5 − y5| = |t3|
| f |

∣∣∣∣
s sin θ + f cos θ

f α
�v − sin θ�u

∣∣∣∣

≤ |t3|
| f |

(
2

|α| |�v| + |�u|
)

.
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If the skew is zero and the aspect ratio is 1, i.e. s = 0,
α = 1, then:

|x̂5 − x5| = |t3|
| f | | sin θ�v − cos θ�u|

≤ |t3|
| f | (|�v| + |�u|),

|ŷ5 − y5| = |t3|
| f | | cos θ�v − sin θ�u|

≤ |t3|
| f | (|�v| + |�u|),

By (12) and (13), the distance between the true point
5 and its reconstructed point is:

�d =
√

(x̂5 − x5)2 + (ŷ5 − y5)2

= |t3|
| f |

√
�v2

α2
+

(
s

f α
�v − �u

)2

≤ |t3|
| f |

√
�v2

α2
+

( |�v|
α

+ |�u|
)2

.

When s = 0, this distance becomes into �d =
|t3|
| f |

√
�v2

α2 + �u2. Furthermore if α = 1, it is �d =
|t3|
| f |

√
�v2 + �u2.

We have the following result:

Result 2. If the scene plane π is parallel to the image
plane, and the four control points are the vertexes of a
rectangle:

(1) The absolute errors for both x and y are not
larger than |t3|

| f | (
2

|α| |�v| + |�u|). If s = 0, α =
1, they are not larger than |t3|

f (|�v| + |�u|). The
geometric distance error �d is not larger than
|t3|
| f |

√
�v2

α2 + ( |�v|
α

+ |�u|)2. Furthermore, if s = 0

and α = 1, �d is the product of |t3|
| f | and the noise

norm
√

�v2 + �u2. When the distance between
the scene plane and the camera, i.e. |t3|, is small,
and the focal length f is large, then |t3|

| f | will be
small, so do the absolute errors of each coordinate
and the geometric error �d.

(2) The absolute error |x̂5 − x5| = |a|
|[m1,m2m3]| |[m3,

−m1,�m5]|, so for the same �m5, m1, m3, and
a, when the distance from m2 to the line m1m3 is
large, the absolute error |x̂5 − x5| will be small.
Similarly, for the same �m5, m1, m2, and b, when
the distance from m3 to m1m2 is large, the error
|ŷ5 − y5| will be small.

(3) The geometric distance error �d is not related
to the rotation angle θ showing that distances of
two points are preserved under different rotation
transformations. If s = 0, �u and �v are not
correlated for �d2.

Simulations (see Section 5) show that the differences
between the given upper error bounds and the errors
are not large. When |t3|

| f | is small, the errors will be
small. This is consistent with people’s experiences in
practice very much.

We also represent the relative error of the estimated
distance between two reconstructed points and find
that if the noise of the two image points is equal,
the error is zero. This is because at the time the two
reconstructed points and the two true points form a
parallelogram. This relative error is also not related to
the rotation angle.

When the Scene Plane and the Image Plane
are not Parallel

When the scene plane and the image plane are not
parallel, the vanishing line lo is not coincident with the
line at infinity in the image plane. Thus, it is a line not
at infinity.

By the first order of Taylor expansion at (0,0) for
(�u, �v), (10) and (11) become into:

|x̂5 − x5| =
∣∣∣∣

[v1m5�m5]

(lo · m5)(lo · m5 + lo · �m5)

∣∣∣∣

≈
∣∣∣∣
[v1m5�m5]

(lo · m5)2

∣∣∣∣

=
∣∣∣∣
[v1m5mu]�u + [v1m5mv]�v

(lo · m5)2

∣∣∣∣ ,

|ŷ5 − y5| =
∣∣∣∣

[v2m5�m5]

(lo · m5)(lo · m5 + lo · �m5)

∣∣∣∣

≈
∣∣∣∣
[v2m5�m5]

(lo · m5)2

∣∣∣∣

=
∣∣∣∣
[v2m5mu]�u + [v2m5mv]�v

(lo · m5)2

∣∣∣∣ .

where mu= (1, 0, 0)T , mv = (0, 1, 0)T , �m5 =
(�u,�v, 0)T = �umu + �vmv .

The distance between the true point 5 and its recon-
structed point is:

�d =
√

(x̂5 − x5)2 + (ŷ5 − y5)2

≈
√

[v1m5�5]2 + [v2m5�m5]2

(lo · m5)2
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Thus, we have:

Result 3.

(1) If m5 is moving on the line v1mu , i.e. the line
through v1 and parallel to u axis, then [v1m5mu] =
0, at the time, the absolute error |x̂5 −x5| is mainly
from �v. Similarly, if m5 is moving on the line
through v1 and parallel to v axis, |x̂5−x5| is mainly
from �u.

(2) If m5 is moving on the line v2mu, i.e. the line
through v2 and parallel to u axis, then [v2 m5 mu]
= 0, at the time, the absolute error |ŷ5 − y5| is
mainly from �v. Similarly, if m5 is moving on
the line through v2 and parallel to v axis, |ŷ5 − y5|
is mainly from �u.

(3) When the noise is small, we can assume �u =
�v = δ. Then, |x̂5 − x5| ≈ |[v1, m5, mu +
mv]|δ/(lo · m5)2, |ŷ5 − y5| ≈ |[v2, m5, mu +
mv]|δ/(1o · m5)2. Let dl, d2, do be the distances
from m5 to the lines v1(mu + mv), v2(mu +
mv), lo respectively. Thus, by (1), there are:
|x̂5 − x5| ≈ s1d1δ/s2

o d2
o , |ŷ5 − y5| ≈ s2d2δ/s2

o d2
o ,

where s1, s2, so are not dependent on m5. In the
region d1 ≤ do, |x̂5 − x5| ≈ s1d1δ/s2

o d2
o ≤ s1s2

o do.
So under the same noise, |x̂5 − x5| tends to
decrease with m5 moving away from lo. Simi-
larly, |ŷ5 − y5| tends to decrease with m5 moving
away from lo in the region of d2 ≤ do. There-
fore, in the region satisfying both d1 ≤ do and

d2 ≤ do, �d ≈
√

(s2
1 d2

1 +s2
2 d2

2 )δ2

s2
o d2

o
≤

√
s2

1 +s2
2 |δ|

s2
2 do

. This
error �d also tends to decrease with m5 moving
away from lo under the same noise.

Remark.

(1) We have done some simulations (see Section 5)
showing that whether d1 ≤ do, d2 ≤ do or not, the
absolute errors tend to decrease with m5 moving
away from lo. But if d1 ≤ do, d2 ≤ do, the errors
decrease fast. Thus, in practice in order to improve
the accuracy of vision task, we can let the image
region be as far as possible from the vanishing
line. When the image plane and scene plane are
parallel, the vanishing line is coincident with the
line at infinity of the image plane, at the time the
distance from the image region to the vanishing
line is maximum.

(2) lo is the vanishing line of the scene plane usually
not appearing in the image region and being far
away from the image region. It is determined by
mi, = 1..4. When m5 moves away from lo, rela-

tively m5 moves close to mi, i = 1..4. Therefore,
the points close to the control points are recon-
structed more precisely.

(3) When considering the noise in the image points
mi, i = 1..4 of the control points, the symbol error
expressions can also be obtained from the given
closed-form solutions (6) and (7). But, the ex-
pressions are complex. So we do error analyses
by repeated experiments. We find that the corre-
sponding item 3 of Result 3 is also right if the noise
levels in the image points of the control points are
all equal, and if the difference between these noise
levels and the noise level in other image point is
larger than a threshold.

5. Experiments

In this section, experiments are carried out to test the
results of Sections 3 and 4.

5.1. Simulations for Calibration Using Distance
Ratios Without Object Coordinate System

This section is to test the camera calibration method of
Section 3 by simulations.

The simulated camera intrinsic parameters are:

K =



fu s u0

0 fv v0

0 0 1



 =






1000 0 512

0 900 384

0 0 1






We take five coplanar scene points (distributed irreg-
ularly), and then project them to the simulated image
planes at three different positions. The images are of
size 500 × 600, 800 × 900, 600 × 1200 pixels, and
shown in Fig. 1. Gaussian noise with mean 0 and stan-
dard deviation ranging from 0 to 2.0 pixels is directly
added to the five image points, and then the intrinsic
parameters are computed from distance ratios by the
method in Section 3. For each noise level, we perform
100 times independent experiments, and the averaged
results are shown in Table 1. The results validate this
method and show its stability. Under noise level 2, the
relative errors of fv, fu, uo, vo are respectively 0.2695,
0.3714, 0.3707, and 0.2198, which are satisfactory.

5.2. Real Experiments for Calibration using
Distance Ratios without Object Coordinate
System

This section is to test the camera calibration method of
Section 3 by real experiments.
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Figure 1. Three simulated images for camera calibration from distance ratios.

We take four images by a COOLPIX5700 camera
as shown in Fig. 2. The image size is of 1024 × 768
pixels. Ten corners in each image are extracted by
OpenCV, and denoted as mi , i = 1..10, as shown in the
first image. The corresponding spatial points of these
image points are denoted as 1,. . .,10. They distribute
irregularly. We use the distance ratios from the spatial
points 1,. . .,6 to calibrate the camera by the method of
Section 3. The result is:

K =






568.91 −39.05 432.89

0 416.57 368.80

0 0 1




 .

In order to verify the estimated K, we use it to compute
some distances djk from 7, 8, 9, 10 by the equations
(see (5)):

d2
1i = s0(wi mi − m1)T K−T K−1(wi mi − m1),

d2
1 j = s0(w j m j − m1)T K−T K−1(w j m j − m1),

d2
i j = s0(wi mi − w j m j )

T K−T K−1(wi mi − w j m j ),

where s0 = d2
1q/(wqmq − m1)T K−T K−1(wqmq −

m1), q = 2..6. Due to noise, we use the average of
these five values of s0 in the distance calculations. And
wi, wj are computed by some distance ratios. For ex-

Table 1. The estimated camera intrinsic parameters from distance
ratios under different noise levels (pixel).

Noise
levels fu fv s u0 v0

0 1000 900 0 512 384

0.4 1016.52 914.66 −2.97 520.77 384.84

0.8 1065.49 965.65 −10.33 551.04 395.20

1 1125.16 1017.65 −23.26 558.84 379.02

1.5 1234.93 1158.20 −42.20 644.95 402.08

2.0 1269.53 1234.25 −58.83 701.82 468.41

ample, w7 = 2.7712 ∗ [m1m3m4]/[m3m4m7], where
2.7712 = d7,34/d1,34, d7,34 is the distance of 7 to the
line 34, and d1,34 is the distance of 1 to the line 34.
Some calculated results are:

d17 = 22.5638 cm, d18 = 21.9373 cm,

d78 = 15.8947 cm, d19 = 25.9094 cm,

d1,10 = 20.5116 cm, d9,10 = 18.1777 cm.

The ground truths for them are:

d17 = 23.3 cm, d18 = 22.2 cm, d78 = 16 cm,

d19 = 25.6 cm, d1,10 = 21.2 cm, d9,10 = 18.3 cm.

We can see that the estimated distances are all quite
close to their ground truths. These indirectly validate
the estimated intrinsic parameters K.

5.3. Simulations for Error Analysis of Direct
Reconstruction Solution

In this section, simulations are performed to test Re-
sults 1, 2 and 3 in Section 4.

For Result 1 (the Scene Plane and the Image Plane
are Parallel)

The simulated camera intrinsic parameters are:

K =



1000 0.1 512

0 900 384
0 0 1



 .

The x-y plane of the world coordinates system is set
up as the scene plane. And, the rotation axis, rotation
angle, and the translation vector of the camera are:

r = (0, 0, 1)T , θ = 60◦, T = (−150,−130,−180)T .
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Figure 2. The real images for camera calibration.

The points (0, 0, 1)T , (40, 0, 1)T , (0, 30, 1)T , (40, 30, 1)T

on the x-y plane are taken as the control points. An im-
age of size 1000 × 1000 shown in Fig. 3 is generated
from the four control points as well as regularly dis-
tributed 144 test points, where the points ‘+’ are from
the four control points and the points ‘◦’ are from the
144 test points.

The noise levels of 0, 0.4, 0.8, 1.2, 1.6, 2 pixels are
directly added to each coordinate of each of the 144
image points, then we perform the reconstruction from
them by (6) and (7), and compute the absolute error of
each coordinates. We find that, under each noise level,

Figure 3. An image of 4 control points and 144 image points.

all of the errors (<1) for the 144 points have the same
first 12 digits, see columns 2 and 3 of Table 2. So,
the absolute errors of reconstruction are independent
of the position of reconstructed points, this validates
the second item of Result 1. Thus, in the following
simulations for Results 1 and 2, we use the mean of the
absolute errors of the 144 points as the absolute error
under each noise level.

We compute the absolute error under each noise
level and plot them with varying noise. The result is
shown in Fig. 4. As it can be seen, the relations of the
absolute errors and noise are linear, which is consistent
with the first item of Result 1.

Table 2. The same first 13,12 digits of absolute errors for x, y,
and the same first 13 digits of the distances �d from the 144 points.

Noise level
(pixel)

The absolute
error of x

The absolute
error of y

The distance
error �d

0 0.000000000000 0.000000000000 0.000000000000

0.4 0.033286032302 0.102346900869 0.107623640823

0.8 0.066572064605 0.204693801738 0.215247281646

1.2 0.099858096908 0.307040702607 0.322870922469

1.6 0.13314412921 0.40938760347 0.430494563292

2 0.166430161513 0.511734504346 0.538118204115
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Table 3. The given upper error bound under each nonzero noise
level.

Noise level (pixel) 0.4 0.8 1.2 1.6 2

Upper error bound for x and y 0.232 0.464 0.696 0.928 1.16

Upper error bound for �d 0.172 0.344 0.515 0.687 0.859

Figure 4. The absolute error vs. noise.

For Result 2 (the Scene Plane and the Image Plane
are Parallel)

We compute the upper error bound |t3|
| f | (

2
|α| |�v|+|�u|)

for both x and y and compute the upper error bound
|t3|
| f |

√
�v2

α2 +( |�µ|
α

+|�u|) for �d given in Result 2 by using the
same simulated data for Result 1 under each nonzero
noise level. The result is shown in Table 3. By com-
paring Table 3 with Table 2, we can see that the given
upper error bounds are always larger than the errors for
x, y and �d under each noise level, but the differences
between them are not large.

We also have done the corresponding simulations to
test the given error analyses when s = 0 and α = 1,
similar results are obtained.

The performance of the absolute errors and the dis-
tance between the true point and its reconstruction with
varying focal length is assessed next. The simulated
camera intrinsic parameters are:

K =






f 0.1 512

0 0.9∗ f 384

0 0 1






with f varying from 900 to 1260 with a step of 40.
The images with f = 900, f = 1260 are shown

in Fig. 5. Their sizes are not larger than 1200 × 1200
pixels.

The performance of the absolute errors and the dis-
tance between the true point and its reconstruction with
varying f under noise level 1.2 pixels is shown in
Fig. 6. As it can be seen, the errors are decreasing
with f increasing. Under other nonzero noise levels,
we have the similar results.

Similarly, we can verify that the errors are decreas-
ing with t3 decreasing.

All of the above are consistent with the first item of
Result 2. The second item of Result 2 is also validated
by the similar simulation as for Result 3. The third item
of Result 3 holds clearly, so we omit the test for it.

For Result 3 (the Scene Plane and the Image Plane
are not Parallel)

It is clear that the first and second items of Result 3
hold. We are to test the third item of Result 3. An image
of size 1200 × 700 is generated as shown in Fig. 7.

Figure 5. Two simulated images for testing the performance of the errors with varying focal length f, where the left one is the image with
f = 900, the right one is the image with f = 1260.
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Figure 6. The absolute errors of x, y, and the distance �d between
the true point and its reconstruction vs. the focal length, where Dd
denotes �d.

Figure 7. A simulated image for Result 3.

The same noise levels as before are added into each
of the 144 image points. Under each noise level, we
compute the distances d1, d2, do from each image
point to the lines v1(mu + mv), v2(mu + mv), and
the vanishing line I o (with notations as before). For
the 144 different image points and different noise,
we find there are always d1< do, d2 >do. We plot the
absolute errors with varying do under each nonzero
noise level, the results are shown in Fig. 8. Although
d2 > do, the absolute error of the second coordinate
y still tends to decrease with do increasing. It is clear
that the absolute error of the first coordinate x tends
to decrease fast with do increasing. There is the same
result for the distance �d between the true point and
its reconstruction. This result is not plotted due to
its nearly coinciding with the result for the absolute
error of x. We can see that the absolute errors of
y are less than those of x so it is natural that the
distances �d for different points are mainly from those
of x.

We also add noise to the image points of the control
points, and find that there are the same results as Fig. 8
if the noise levels in the image points from the control
points are all equal, and if the difference between these
noise levels and the noise level in other image point is
larger than a threshold.

Figure 8. The absolute errors with the image point moving, where the horizontal axis indicates the distance from the image point to the
vanishing line, the vertical axis indicates the absolute errors. These five figures are respectively under noise level of 2, 1.6, 1.2, 0.8, 0.4 pixels.
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Figure 9. Two real indoor images for direct reconstruction solution.

5.4. Real Experiments for the Direct Reconstruction
Solution

We use a Nikon COOLPIX990 camera to take two im-
ages of our lab floor as shown in Fig. 9. The images
are of size 1024 × 768 pixels. We perform two inde-
pendent experiments from each of the two images as
follows.

The points from a rectangle marked by white color
are extracted by the Canny edge detector and then
are fitted by the least squares method as four lines.
The intersections of the four lines are computed as
the images of four control points m1, m2, m3, m4. We
reconstruct the end points of three line segments S1, S2,
S3 (see Fig. 9) by the direct reconstruction solution (6)
and (7) and calculate the lengths of these line segments
from the reconstructed points. The results are shown
in Table 4. In addition, we reconstruct m5, m6, m7 of
the left image and the right image in Fig. 9 by (6) and
(7). The results are shown in Table 5. From Tables 4
and 5, we can see the results are satisfactory.

Outdoor scene is also used to test our direct recon-
struction solution. We take an image of our institute’s
main building by a Nikon COOLPIX5700 camera, as
shown in Fig. 10. The image is of size 2560 × 1920
pixels. We extract 12 corner image points by hand
as shown in Fig. 10, then use the spatial points of
mi , i = 1..4 as the control points to recover the spatial

Table 4. The test results for measurement from Fig. 9.

The left image The right image

Line segment S1 S2 S3 S1 S2 S3

True distance (mm) 980 600 1080 815 2550 2700

Estimated distance
(mm)

974.8 592.8 1068.5 811.6 2486.9 2665.9

Figure 10. A real outdoor image for direct reconstruction solution.

points of mi , i = 5..12 by (6) and (7). The distances
dij between pairs of the recovered spatial points from
mi, mj are computed as:

d35 = 205.2258 cm, d67 = 203.9955 cm,

d37 = 68.9452 cm, d56 = 67.6797 cm,

d78 = 128.7998 cm, d89 = 91.5342 cm,

d10,11 = 1653.6 cm, d12,13 = 815.6833 cm.

Their corresponding ground truths are:

d35 = d67 = 202 cm, d37 = d56 = 64.5 cm,

d78 = 124.5 cm, d89 = 84.5 cm,

d10,11 = 1756.8 cm, d12,13 = 881.6 cm.

We can see that the estimations and their ground truths
are rather close.
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Table 5. The test results for reconstruction from Fig. 9.

Image point The left image The right image

m5 m6 m7 m5 m6 m7

True space coordinates (mm) (600, −600) (1200, 600) (−600, 0) (−600, 0) (0, 1200) (600, 1800)

Estimated space coordinates (mm) (596, −590) (1179, 602) (−591, 4.4) (−586, 5.5) (−1.7, 1202) (594, 1800)

6. Conclusions

With bracket computations, we have presented a new
camera calibration method from only distance ratios
of scene points. This method does not need to set up
any world coordinate system and thus can use the geo-
metric information of irregular objects conveniently.
Moreover, a direct reconstruction solution of plane
structure is provided. Thanks to the bracket-based com-
putations, the solution representation becomes concise
and short, from which some new and useful error anal-
ysis results are obtained. Simulated and real experi-
ments confirm the validity of the camera calibration
method from distance ratios, the direct reconstruction
solution and the error analysis results.

Appendix A

We are to prove (4) and (5).
Let H = K(r1r2t). Then, by (3) we have: si mi =
Hi, where i = 1, 2, 3, 4 and i = 1, 2, 3, 4. Thus,
si s j sn[mi m j mn] = det(H)[ijn]. So, si [mi m j mn ]

sk [mk m j mn ] =
si s j sn [mi m j mn ]
sk s j sn [mk m j mn ] = det (H)[ijn]

det (H)[kjn] = [ijn]
[kjn] . Hence, si

sk
=

[ijn][mk m j mn ]
[kjn][mi m j mn ] and (4) is proved.

Denote
-i as the non-homogeneous coordinates of

-i,
then i = (

-iT , 1)T . Thus, (3) can be changed into:

si K−1mi = (r1r2)
-i + t .

Subtract the equation for i = 1 from the equations
for i = 2, 3, 4, we obtain: K−1(si mi − s1m1) =
(r1r2)(

-i − 1̄), i = 2, 3, 4 and
-i = 2̄, 3̄, 4̄. Since r1, r2

are two orthogonal unitary vectors, we have: (si mi −
s1m1)T K−T K−1(si mi −s1m1) = (

-i− 1̄)T (
-i− 1̄) = d2

l1.
Then, there is:

(si mi − s1m1)T K−T K−1(si mi − s1m1)

(s j m j − s1m1)T K−T K−1(s j m j − s1m1)
= d2

1i

d2
1 j

.

Divide s1 from the numerator and denominator, we
have (5).

Appendix B

We are to prove that the last element of the vanishing
line lo of (8) is 1 when the scene plane and image plane
are parallel. Denote the first, second, last element of lo
as lox , loy, low.

Since the scene plane and image plane are parallel,
the vanishing line is coincident to the line at infinity
of the image plane. So, lox = 0, loy = 0. By (8), we
have:

lox = 1

[m1m2m3]
((m2 × m3)x + 1

w2
(m3 × m1)x

+ 1

w3
(m1 × m2)x ) = 0,

loy = 1

[m1m2m3]
((m2 × m3)y + 1

w2
(m3 × m1)y

+ 1

w3
(m1 × m2)y) = 0 .

By Cramer’s rule from these two equations, we can
solve out:

1

w2
=

[−(m2 × m3)x (m1 × m2)x

−(m2 × m3)y (m1 × m2)y

]

[
(m3 × m1)x (m1 × m2)x

(m3 × m1)y (m1 × m2)y

]

=
((m1 × m2) × (m2 × m3)) ·




0
0
1





((m3 × m1) × (m1 × m2)) ·



0
0
1





=
[m1m2m3]m2 ·




0
0
1





[m1m2m3]m1 ·



0
0
1





= 1 ,
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where the last elements of m1, m2 are 1. Similarly, we
can obtain 1

w3
= 1. Thus, the last element of lo is:

low = 1

[m1m2m3]

(
(m2 × m3)w + 1

w2
(m3 × m1)w

+ 1

w3
(m1 × m2)w)

= 1

[m1m2m3]
((m2 × m3)w + (m3 × m1)w

+ (m1 × m2)w)

=
(m2 × m3 + m3 × m1 + m1 × m2) ·




0
0
1





[m1m2m3]

=
((m2 − m1) × (m3 − m1)) ·




0
0
1





[m1m2m3]

= [m1m2m3]

[m1m2m3]
= 1 .

Appendix C

When 1, 2, 3, 4 are the vertexes of a rectangle, we
set up the x-y world coordinate system such that
1 = (0, 0, 1)T , 2 = (a, 0, 1)T , 3 = (0, b, 1)T , 4 =
(a, b, 1)T , where a, b are the two sides of the rectan-
gle. Furthermore if the scene plane is parallel to the
image plane, we are to prove (12) and (13).

In Appendix B, we have proved that w2 = 1, w3 =
1. Thus by the coordinates of 1, 2, 3, 4, there are (See
the last paragraph of Section 4.1):

v̄1 = 1

[m1m2m3]

(
(3x − 2x )

w2w3
m̄1 + (1x − 3x )

w3
m̄2

+ (2x − 1x )

w2
m̄3

)
= a(m̄3 − m̄1)

[m1m2m3]
,

v̄2 = 1

[m1m2m3]

(
(3y − 2y)

w2w3
m̄1 + (1y − 3y)

w3
m̄2

+ (2y − 1y)

w2
m̄3) = b(m̄1 − m̄2)

[m1m2m3]
.

So,

|x̂5 − x5| = |[v̄1,�m̄5]

= |a|
|[m1m2m3]| |[m̄3 − m̄1,�m̄5]|, (c1)

|ŷ5 − y5| = |[v̄2,�m̄5]

= |b|
|[m1m2m3]| |[m̄1 − m̄2,�m̄5]|. (c2)

Because the scene plane is parallel to the image
plane, then H0 = K(r1r2t) has the form:

H0 = K(r1r2t)

=






f s u0

0 α f v0

0 0 1











cos(θ ) sin(θ ) t1
− sin(θ ) cos(θ ) t2

0 0 t3






where θ is the rotation angle of the camera, t =
(t1 t2 t3)T . Substitute H0 and the coordinates of 1, 2,
3, 4 into (3) and expand each of the equations, we find:
si = t3, i = 1..4 and

m3 − m1 = 1

t3
H(3 − 1)= b

t3




f sin(θ ) + s cos(θ )
α f cos(θ )
0



 ,

m1 − m2 = 1

t3
H(1 − 2)=−a

t3




f cos(θ ) − s sin(θ )
−α f sin(θ )
0



 .

(c3)

Also, there is:

[m1m2m3] = det(H)

t3
3

[123] = abα f 2

t2
3

. (c4)

By substituting (c3), (c4) into (c1) and (c2), we ob-
tain (12) and (13).
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