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Abstract. Perspective-n-Point camera pose determination, or the PnP problem, has attracted much attention in
the literature. This paper gives a systematic investigation on the PnP problem from both geometric and algebraic
standpoints, and has the following contributions: Firstly, we rigorously prove that the PnP problem under distance-
based definition is equivalent to the PnP problem under orthogonal-transformation-based definition when n >

3, and equivalent to the PnP problem under rotation-transformation-based definition when n = 3. Secondly, we
obtain the upper bounds of the number of solutions for the PnP problem under different definitions. In particular,
we show that for any three non-collinear control points, we can always find out a location of optical center such
that the P3P problem formed by these three control points and the optical center can have 4 solutions, its upper
bound. Additionally a geometric way is provided to construct these 4 solutions. Thirdly, we introduce a depth-ratio
based approach to represent the solutions of the whole PnP problem. This approach is shown to be advantageous
over the traditional elimination techniques. Lastly, degenerated cases for coplanar or collinear control points are
also discussed. Surprisingly enough, it is shown that if all the control points are collinear, the PnP problem under
distance-based definition has a unique solution, but the PnP problem under transformation-based definition is only
determined up to one free parameter.

Keywords: perspective-n-point camera pose determination, distance-based definition, transformation-based def-
inition, depth-ratio based equation, upper bound of the number of solutions

1. Introduction

The aim of Perspective-n-Point camera pose determi-
nation, popularly called the PnP problem, is to deter-
mine the relative position between camera and scene
from n known correspondences of space control points
and image points. The PnP problem finds its important
applications in computer vision and photogrammetry,
and has attracted much attention since its formal
introduction in 1981, for example [1–15] to cite a few.

In the past, the PnP problem was known under two
different definitions, the distance-based definition and
transformation-based definition [11]. Different defini-
tion usually implies different set of solutions, different
computational complexity, and different robustness.
The distance-based definition was first formally in-

troduced by Fishler and Bolles in 1981 [4], and the
transformation-based definition was given by Horaud,
Conio, and Leboulleux in 1989 [10]. Then, the PnP
problem has been extensively studied in the litera-
ture under these two definitions. In 2002, Hu and Wu
[11] noted that these two definitions are in general
not equivalent by a specific example of non-coplanar
P4P problem. What on earth is the difference between
these two definitions for the whole PnP problem? In
Section 3 of this paper, by rigorous mathematical
derivations, we present the relationships of the PnP
problem under different definitions and the convert-
ing ways of solutions between different definitions.
Since under different definitions, the associated com-
putational complexities are usually different, we can
solve the PnP problem by selecting an appropriate
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definition, then compute solutions under other defi-
nitions by the relationships and converting ways pre-
sented in this work (Section 3).

In Hu and Wu [11], an algebraic method for prov-
ing the upper bound of the number of solutions for
the P4P problem is presented. What do the configu-
rations for the multiple solutions look like? Can we
have a geometric proof for the upper bounds of the
number of solutions for the whole PnP problem? In
Section 4, from a geometric standpoint, we obtain the
upper bounds of the PnP problem under different def-
initions, and provide some insights into why different
definitions usually have different bounds. In particular,
for the P3P problem, we show that given 3 arbitrary
non-collinear control points, we can always find out
an optical center such that the P3P problem formed by
these 3 control point and the optical center will have
4 solutions, i.e., the P3P problem can attain its upper
bound of the number of solutions (Section 4).

Quan and Lan [12] gave a linear SVD method to
solve the P4P and P5P problems. Before applying
SVD, univariate equations must be obtained from the
nonlinear equations by resultant eliminations. Here
we propose a depth-ratio based technique to simply
and directly represent the elimination results. By a
combination of our depth-ratio based elimination and
their SVD based method, the PnP problem can be
solved more efficiently. Gao et al. [6] gave a com-
plete solution set for the P3P problem by a alge-
braic way. Our work is rather geometric and more in-
structive. Of course, at this stage, in contrast to their
work, we have not achieved a complete solution set
(Section 5).

Some degenerated cases, i.e., the coplanar control
points, or collinear control points, are also investigated.
It is shown that if all the control points are collinear,
the PnP problem under distance-based definition has a
unique solution, but the solution set of the PnP prob-
lem under transformation-based definition is infinitely
large (Section 6).

Prior to any further discussions, we would at first
point out:

(1) Due to the limited space, except for Result 3, we
do not give proofs for other results, the interested
reader could find them in [15].

(2) Since the PnP problem is under constrained when
n <3, and can be linearly determined when n
≥ 6, we always assume n = 3, 4, 5 in this
work.

2. Preliminaries

In Sections 3, 4, 5, we always assume that no three of
control points are collinear, no four of control points
are coplanar, and the optical center is not coplanar with
any three-control points.

2.1. Notation

A bold capital letter denotes a matrix or a non-
homogeneous 3-vector, a capped bold capital letter
such as M̂, denotes the homogeneous 4-vector for the
non-homogeneous 3-vector M, a bold small letter m
denotes homogeneous image points, and “≈” denotes
the equality up to a scalar.

A 3 × 3 matrix R is an orthogonal matrix if R Rτ = I
and Rτ R = I where I is the 3 × 3 identical matrix.
Moreover, R is a rotation matrix if det(R) = 1 and a
reflection matrix if det(R) = −1.

2.2. Two Definitions and Their Constraint Equations

The distance-based definition of the PnP problem is
defined as [4]:

Given the relative spatial locations of n points Mi ,
i = 1, . . . , n, and given the angle ∠Mi OM j to every
pair of these points from the perspective center O (the
camera’s optical center), find the lengths Xi = |OMi |
of the line segments joining the perspective center to
each of these points.

The constraint equations under this definition, called
Definition 1, are:

X2
i + X2

j − 2Xi X j cos θi j = d2
i j , i �= j (2.1)

where xi, xj are variables, θi j = ∠Mi OM j and di j =
|Mi M j | (the distance between Mi and M j ) are known
parameters.

The transformation-based definition of the PnP
problem is defined as [10]:

Given n points Mi ,= 1, . . . , n with known coordinates
in an object centered frame and their corresponding
projections mi , i = 1, . . . , n onto an image plane, and
given the intrinsic camera parameters K, find the trans-
formation (a rotation matrix R and a translation vector
t) between the object frame and the camera frame.
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The constraint equations under this definition, called
Definition 2, are:

mi ≈ K(R, t)M̂i , with R a rotation matrix (2.2)

where R and t are variables, K, Mi, and mi are known
parameters.

In Definitions 1 and 2, the points Mi, i = 1. . . n are
called control points.

3. Relationships of the PnP Problem Under
Different Definitions

Definition 1 and Definition 2 are generally not equiva-
lent as shown in [11] by a specific example. What on
earth are the differences between these two definitions?
Under what conditions are the two definitions equiva-
lent? How to convert the solutions from one definition
to another? In this section, these questions will be an-
swered through rigorous mathematical derivations.

For the convenience of subsequent discussions,
we set up a new definition, called the orthogonal-
transformation-based definition for the PnP problem
as:

Given n points Mi , i = 1, . . . , n with known coordi-
nates in an object centered frame and their correspond-
ing projections mi , i = 1, . . . , n onto an image plane,
and given the intrinsic camera parameters K, find the
orthogonal transformation (an orthogonal matrix R and
a translation vector t) between the object frame and the
camera frame.

The constraint equations under this definition, called
Definition 3 are:

mi ≈ K(R, t)M̂i , with R a rotation matrix (3.1)

where R and t are variables, and K and Mi, mi are
known parameters.

Evidently when R in (3.1) is a rotation matrix, then
Definition 3 becomes Definition 2, therefore, Defini-
tion 3 includes Definition 2. In order to avoid possible
confusions, the original transformation-based defini-
tion Definition 2 is called the rotation-transformation-
based definition in the following.

(3.1) can be changed to:

xi mi = K(R, t)M̂i

where xi is an unknown scalar, R an orthogonal matrix.
Because for the PnP problem, none of the n control

points is at infinity, this equation can be further changed
into:

xi mi = K(RMi + t), or xi K−1mi = RMi + t

Since K and mi are known, K−1mi, called the nor-
malized image, is also known. Moreover, because no
image point is at infinity, we can always homogenize
K−1mi such that its last coordinate is 1. Thus, in sequel,
mi is always referred to the normalized image points
with 1 as its last coordinate. Then the above equation
becomes:

xi mi = RMi + t (3.2)

It is shown that Mi lies in front of the camera if and
only if the depth det(R)xi > 0 [9, p. 501], hence if R is
a rotation matrix, xi > 0, and xi < 0 if R is a reflection
matrix.

The distance from the optical center to each control
point becomes infinitely large, and the PnP problem
under Definition 1 becomes meaningless if the optical
center O is at infinity. So we assume that the camera
optical center is not at infinity, at the time O = −RT t,
then (3.2) can be rewritten as:

xi Rτ mi = Mi − O (3.3)

By (3.3), the following Result 1 can be obtained.

Result 1. With notations as before, from (3.2) we
have: {

Xi = xi
√

mi · mi , when xi > 0

Xi = −xi
√

mi · mi , when xi < 0
.

and

cos < Mi OM j = mi · m j√
mi · mi

√
m j · m j

By (3.2), for i �= j = 1..n, we have:

xi mi − x j m j = R(Mi − M j )

Since R is an orthogonal matrix, Rτ R = I, there is:

(xi mi − x j m j ) · (xi mi − x j m j ) = d2
i j (3.4)

Because all control points lie in front of the camera,
if one of xi, i = 1,. . .,n, is positive (negative), then all
of them are positive (negative) for a group of solutions
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of xi, i = 1,. . .,n in (3.4). Thus by Result 1, (3.4) is
changed to:

d2
i j = (xi mi − x j m j ) · (xi mi − x j m j )

= x2
i mi · mi − 2xi x j mi · m j + x2

j m j · m j

= X2
i + X2

j − 2Xi X j cos θi j

It is just the Eq. (2.1) under Definition 1. It follows
that the determination of the positive solutions of Xi

by (2.1) is equivalent to determining the solutions of
xi by (3.4) with all control points lying in front of the
camera.

It is clear that if xi, i = 1. . .n, is a group of solutions of
(3.4), so is −xi, i = 1. . .n. Thus we need only consider
the positive solutions of (3.4), which correspond to the
case that all control points lie in front of the camera
when R is a rotation matrix, and all the control points
are behind the camera when R is a reflection matrix.
Based on the above reasoning, we can conclude that
to determine the positive solutions of Xi by (2.1) is
equivalent to determining the positive solutions of xi

by (3.4).

Result 2. From (3.4), for three different i, j, k, we
have:

(xi mi − xkmk) · (x j m j − xkmk)

= d2
ik + d2

jk − d2
i j

2
= dikd jk cos < Mi MkM j

= (Mi − Mk) · (M j − Mk)

Without loss of generality, we set up the object-
centered frame as shown in Fig. 1, where M1 =
(0, 0, 0)τ , M2 = (d12, 0, 0)τ , M3 = (a, b, 0)τ with b >

0. Then (3.2) becomes:


x1m1 = t

x2m2 = d12r1 + t

x3m3 = ar1 + br2 + t

(3.5)

Under this frame and Result 2, we have the following
theorem.

Theorem 1. The P3P problem under distance-based
definition (Definition 1) is equivalent to the P3P
problem under rotation-transformation-based defini-
tion (Definition 2).

Figure 1. The XY-plane for the object frame.

Remark 1. A group of solutions of (x1, x2, x3) by (3.4)
corresponds to a group of solutions of (r1, r2, t) by
(3.5). From r1 and r2, a rotation matrix R = [r1, r2,
r1 × r2] and a reflection matrix R’ = [r1, r2, −r1 ×
r2] can be formed. However, only (R, t) is a group of
solutions under Definition 2, but both (R, t) and (R′, t)
are groups of solutions under Definition 3. Thus, one
group of solutions of (x1, x2, x3) corresponds to one
group of solutions under Definition 2, and two groups
of solutions under Definition 3. The two optical centers
associated with (R, t) and (R′, t) are:

O = −Rτ t =




−rτ
1t

−rτ
2t

−(r1 × r2)τ t


 ,

O′ = −R′τ t =




−rτ
1t

−rτ
2t

(r1 × r2)τ t




That is, the two optical centers O and O′ are symmetric
with respect to XY-plane, or the plane M1M2M3.

As shown in [15], we have the following theorem
for the PnP problem with n ≥ 4.

Theorem 2. When n ≥ 4, the PnP problem under
distance-based definition Definition 1 is equivalent
to the PnP problem under orthogonal-transformation-
based definition Definition 3.

Theorems 1 and 2 clarify the relationships of the PnP
problem under different definitions. Such relationships
are summarized in Fig. 2 for the P3P problem and in
Fig. 3 for the PnP problem with n > 3.

Solutions under different definitions can be con-
verted to each other as:
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Figure 2. The relationships of the P3P problem under different definitions.

Figure 3. The relationships of the PnP problem under different definitions with n > 3.

The details can be found in [15].

4. Upper Bounds of the Number of Solutions

In this section, we give upper bounds under different
definitions from a geometric way.

By Bezout theorem, we know that the equations in
(3.4) for the P3P problem have at most 8 solutions.
When xi, i = 1, 2, 3, is a group of solutions, so is −xi,
i = 1, 2, 3. Hence there are at most 4 groups of positive
solutions of xi. Moreover, since each group of positive
solutions xi corresponds to one group of positive solu-
tions Xi and to one group of solutions (r1, r2,, t), and
vice versa, the P3P problem has at most 4 groups of
solutions under both Definitions 1 and 2, and 8 groups
of solutions under Definition 3 (see Remark 1 in Sec-
tion 3). The following Theorem 3, or [4, 11] show that
these upper bounds can also be attainable.

Besides, in the literature [4, 11], the attainable up-
per bound of the P3P problem is always illustrated by
the example: the three control points forms equilateral
triangle. In fact, the 3 control points could be any three
non-collinear ones.

Theorem 3. For any 3 non-collinear control points,
there always exist an optical center such that the P3P
problem formed by these 3 control points and the op-
tical center has 4 solutions under (Definition 1) or
(Definition 2), and 8 solutions under Definition 3.

The interested reader is referred to [15] for the proof.
The following is a sketch of it:

Note that since the PnP problem is to determine
the relative pose between the camera and objects, for
convenience purpose, we can here let the camera fixed
and the objects varied, such setting is rather unusual
compared with the traditional setting where the camera
is assumed varied and the objects fixed.

Case 1. The triangle M1M2M3 is not a right-angled
one.

Let G be the orthocenter of the triangle and the
optical center O be far from the triangle. If OG is
perpendicular to the plane M1M2M3, then the four
solutions can be constructed as follows:

Rotate the triangle with the axis M2M3. As shown
in Fig. 4, since M2M3 is orthogonal to OM1, the lo-
cus of M1 must intersect the line OM1 at another
point, denoted by M′

1. Similarly, rotate the triangle
with the axis M1M3 and M1M2, we can construct a
point M′

2 on OM2 and a point M′
3 on OM3. Then the

four positive solutions of the P3P problem are: {O,
(M1M2M3)}, {O, (M′

1M2M3)}, {O, (M1M′
2M3)}

and {O, (M1M2M′
3)}. The condition that O is far

away from the plane M1M2M3 ensures that Mi and
M′

i lie in the same side of O on the line OMi.

Case 2. The triangle is a right-angled one, say
∠M2 = 90◦.
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Figure 4. The 4 solutions for a non-right-angled triangle.

Figure 5. The 4 solutions for a right-angled triangle.

Let G be the normal foot at M1M3 of M2,
if OG is perpendicular to the plane M1M2M3,
then the four solutions shown in Fig. 5 are: {O,
(M1M2M3)}, {O, (M1M′

2M3)}, {O, (M′
1M′′

2M′
3)}

and {O, (M′′
1M′′

2M′′
3)}, where M′

2 is constructed
similarly as in Case 1, but M′′

1, M′′
2, M′′

3 are found
by some algebraic method. At this moment, we cannot
yet give a direct geometric construction for the latter
two solutions.

Now let us proceed for the PnP problem with n
> 3. Take the coordinate system as that in Fig. 1.
Suppose that the upper bounds are attainable for the
P3P problem, let (Ri = (r1i, r2i, r1i × r2i), ti), and
(R′

i = (r1i, r2i, −r1i × r2i), ti), i = 1. . .4 be the 8

groups of solutions under Definition 3. Now add other
control points Mi, i = 4. . .n, n ≥ 4 to the P3P problem,
then the possible solutions of the PnP problem under
Definitions 2 and 3 must be among (Ri, ti) and (R′

i,
ti). It follows that the number of solutions for the PnP
problem under Definitions 2 or 3 will be no more than
that for the P3P problem, i.e. 4 or 8. Moreover by
Theorem 2, its number of solutions under Definition 1
will also be no more than 8.

Result 3. Out of the four pairs of solutions ((Ri, ti),
(R′

i, ti)), i = 1. . .4, of the P3P problem, there exists
at most one pair ((Ri0, ti0 ), ( R′

i0 , ti0 )) such that both
( Ri0 , ti0 ) and ( R′

i0 , ti0 ) are the solutions of the PnP
problem, n ≥ 4. If there exists indeed such a pair
((Ri0 , ti0 ), ( R′

i0 , ti0 )), then:

(i) The optical centers Oi0 = −Rτ
i0

ti0 , O′
i0

= −R′
i0

τ ti0 ,
and Mi, i = 4. . .n should be collinear, and the image
points of Mi, i = 4. . .n are all coincident.

(ii) The PnP problem has only two solutions (Ri0 , ti0 )
and ( R′

i0
, ti0 ) with n ≥ 5.

The proof of Result 3 is given in Appendix.
Therefore, we have the following theorem:

Theorem 4.

(1) The number of the solutions of the P4P problem is
at most 4 under Definition 2, at most 5 under both
Definition 1 and 3.

(2) The number of the solutions of the P5P problem is
at most 4 under all three definitions.

Figure 6 is an illustration for the upper bounds: Oi =
−Rτ

i ti , O′
i = −R′

i τ ti , i = 1. . .4 are the 4 pairs of
symmetric optical centers of the P3P problem to the
plane M1M2M3. With other control points Mi, i =
4. . .n added, the optical centers of the solutions of
the PnP problem (n > 3) should be among those Oi,
O′

i i = 1. . .4. Because Oi i = 1. . .4 are the optical
centers of the solutions under Definition 2 and (Oi,
O′

i) i = 1. . .4 are those under Definition 3, and the
PnP problem (n = 4, 5) has at most 4 solutions under
Definition 2. Moreover, by Result 3, there could at most
exist one pair of (Oi, O′

i) as the solutions of the optical
centers, so the P4P problem has at most 5 solutions
under Definition 3. If the upper bound of 5 is attained,
there must exist such a pair as the solutions, and M4

must be on the line through the pair of optical centers. If
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Figure 6. Optical centers and control points for multiple solutions,
if there is a pair of the symmetric optical centers as the solutions,
say as O2, O′

2, then M4, M5 are on the line through them. At the
time, for the P4P problem, there are at most 5 solutions; for the P5P
problem, there are only these two solutions. Where if does not exist
such a pair as the solutions, then both P4P and P5P problem have at
most 4 solutions.

such a pair does exist, by Result 3, the P5P problem has
only two solutions under Definition 3, and their optical
centers must be this pair. Else, the P5P problem has at
most 4 solutions under Definition 3. In summary, the
upper bound of the P5P problem is 4 under Definition 3.
Since Definitions 1 and 3 are equivalent (Theorem 2)
for the P4P problem and P5P problem, their upper
bounds under Definition 1 are the same as those under
Definition 3.

5. Quasi-Analytical Solutions of the PnP Problem

Equations (2.1) under Definition 1 are cyclic, so there
would be some difficulties if we directly solve it by
symbolic method. It follows that many different tech-
niques were introduced in the literature. Here, we
will give a simpler method to directly represent the
PnP problem by an equivalent system of univariate
equations. Since only a system of univariate equa-
tions, rather than explicit solutions, is provided in this
work, the solutions are conventionally dubbed “quasi-
analytical”.

Rather than (2.1), (3.4) is used here.

Since x1 �= 0, by dividing both (3.4) and the equa-
tions in Result 2 from both sides by x2

1 , we have:




(yi mi − y j m j ) · (yi mi − y j m j ) = d2
i j

x2
1

,

(yi mi − ykmk) · (y j m j − ykmk) = d2
ik + d2

jk − d2
i j

2x2
1

,

i, j, k = 1..n, i �= j �= ks (5.1)

where yi = xi
x1

, i = 1. . .n (note that y1 =
1). Since y2m2−m1 �= 0 (otherwise m1 ≈ m2),
(y2m2−m1)·(y2m2−m1) �= 0 follows. So by (y2m2 −
m1) · (y2m2 − m1) = d2

12

x2
1

, there is:

x2
1 = d2

12

(y2m2 − m1) · (y2m2 − m1)
(5.2)

Substituting it into the equations in (5.1), we have:




(yi mi − y j m j ) · (yi mi − y j m j ) = d2
i j

d2
12· (y2m2 − m1)(y2m2 − m1), (i, j) �= (2, 1)

(yi mi − ykmk) · (y j m j − ykmk)

= d2
ik + d2

jk + d2
i j

2d2
12

(y2m2 − m1) · (y2m2 − m1)

(5.3)

It is clear that once a group of positive solutions of yi,
i = 2. . .n is determined by (5.3), the positive solution
of x1 can be uniquely determined by (5.2), and the
positive solutions of xi, i = 2. . .n, can also be uniquely
determined by yi = xi

x1
. Therefore, in the following,

we are limited only to discuss the solutions of yi, i =
2. . .n by (5.3).

Discard the dependent equations in (5.3) (see [15]),
the equivalent form of (5.3) is:




(yi mi − m1) · (yi mi − m1)

= d2
1i

d2
12

(y2m2 − m1) · (y2m2 − m1),

(yi mi − m1) · (y j m j − m1)

= d2
1i + d2

1 j + d2
i j

d2
12

(y2m2 − m1) · (y2m2 − m1),

i = 3..n, j = 2..i �= j (5.4)
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5.1. Quasi-Analytical Solutions
of the P3P Problem

When n = 3, there are two equations in (5.4) as:




(y3m3 − m1) · (y2m2 − m1)

= d2
12 + d2

13 + d2
23

2d2
12

(y2m2 − m1) · (y2m2 − m1),

(y3m3 − m1) · (y3m3 − m1)

= d2
13

d2
12

(y2m2 − m1) · (y2m2 − m1)

(5.5)

The solutions can be classified as the following four
cases. In each case, we directly represent the eliminated
univariate equation system and give the correspond-
ing classification conditions as well as their geometric
meanings. Here a summary is merely provided, the
more details can be found in [15].

Case (i): When m3 · (y2m2 − m1) �= 0, (5.5) can be
expressed as:




y3 =
((

d2
12 + d2

13 + d2
23

)
y2m2 + (

d2
12 − d2

13 + d2
23

)
m1

) · (y2m2 − m1)

2d2
12m3 · y2m2 − m1

,

(y2m2 − m1) · (y2m2 − m1) = d2
12

d2
13

(y3m3 − m1) · (y3m3 − m1)

(C1)

By (3.3), the geometric meaning of m3 · (y2m2 − m1)
�= 0 is that OM3 is not perpendicular to line M1M2.

Case (ii): When m3 · (y2m2 − m1) = 0 but m3 · m2

�= 0, the solution can be obtained by:




y2 = m1 · m3

m2 · m3
,

(y3m3 − m1) · (y3m3 − m1)

= d2
13

d2
12

(y2m2 − m1) · (y2m2 − m1)

(C2)

The geometric meaning of the above conditions is:

OM3⊥M1M2, and ∠M1OM3 < 90◦,

and ∠M2OM3 < 90◦

or

OM3⊥M1M2, and ∠M1OM3 > 90◦,

and ∠M2OM3 > 90◦

Case(iii): When m3 · (y2m2 − m1) = 0, and m3 ·m2

= 0, but d2
12 + d2

13 − d2
23 = 0 (i.e. m3 ·m1 = 0, and m3

·m2 = 0, but d2
12 + d2

13 − d2
23 �= 0), the solution can be

obtained by:




d2
12 + d2

13 − d2
23

2d2
12

(y2m2 − m1) · (y2m2 − m1)

+m1 · (y2m2 − m1) = 0,

y2
3 m3 · m3 = d2

13

d2
12

(y2m2 − m1)

·(y2m2 − m1) − m1 · m1

(C3)

The geometric meaning of the conditions is:

∠M1OM3 = 90◦, and ∠M2OM3 = 90◦,

but ∠M2M1M3 �= 90◦

Case (iv).: When m3 · (y2m2 − m1) = 0, and
m3 ·m2 = 0, and d2

12 + d2
13 − d2

23 = 0 (i.e.

m3 ·m1 = 0, and m3 ·m2 = 0, and d2
12 +d2

13 −d2
23 = 0),

by substituting d2
12 + d2

13 − d2
23 = 0 into (C3), the

solution of (5.5) is given as:


y2 = m1 · m1

m1 · m2
,

y2
3 m3 · m3 = d2

13

d2
12

(y2m2 − m1)

·(y2m2 − m1) − m1 · m1

(C4)

The geometric conditions that (C4) has a unique group
of positive solutions are:

∠M1OM3 = 90◦,

and ∠M2OM3 = 90◦, and ∠M2M1M3 = 90◦,

and ∠M1M3M2 < ∠M1OM2 < 90◦

Remark 2. There is always m1 · m2 �= 0 in (C4). This
is because the space configuration for m3 · m1 = 0,
m3 · m2 = 0, d2

12 + d2
13 − d2

23 = 0, and m1 · m2 = 0
is not realizable in 3D Euclidean space.
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Figure 7. The locus of the optical center determined by collinear
control points.

5.2. Quasi-Analytical Solutions
of the PnP Problem when n ≥ 4

Like in Section 5.1, the quasi-analytical solutions of
the PnP problem with n > 3 can be similarly obtained.
However, due to the limited space, they will not be
reported. The interested reader is referred to [15] for
details. The following is an illustrative example:

When mi · (y2m2 − m1) �= 0, i = 3. . .n, (5.4) can be
changed as:




yi =
((

d2
12 + d2

1i − d2
2i

)
y2m2 + (

d2
12 − d2

1i + d2
2i

)
m1

) · (y2m2 − m1)

2d2
12mi · (y2m2 − m1)

, i = 3 . . . n

d2
1i

d2
12

(y2m2 − m1) · (y2m2 − m1) = (yi mi − m1) · (yi mi − m1), i = 3 . . . n

d2
1i + d2

1 j − d2
i j

2d2
12

(y2m2 − m1) · (y2m2 − m1) = (yi mi − m1) · (y j m j − m1), i, j = 3 . . . n, i �= j

(CN1)

In (CN1), we have in total (n − 2) +
(

n − 2
2

)
=

(n−1)(n−2)
2 univariate quartic equations with respect to

y2. This is the general case discussed in [12].

6. Degenerate Cases for Coplanar or Collinear
Control Points

In the previous sections, we have assumed that no three
of the control points are collinear, no four of the control
points are coplanar. In this section, we consider the
degenerate cases where either all control points are
coplanar or collinear.

6.1. Coplanar Case

If n control points with n ≥ 4 are all coplanar, then the
following determinants are zero:

[M2 − M1, M3 − M1, Mi − M1]

= [x2m2 − x1m1, x3m3 − x1m1, xi mi − x1m1]

= 0, i = · · · n

(6.1)

Theorem 5. When all control points are generically
coplanar (no three of them are collinear), then solving
xi, i = 1. . .n, by (3.4) and (6.1) are equivalent to solving
(R, t) by (3.2) such that R is a rotation matrix.

(3.4) and (6.1) are nonlinear equations with respect
to xi, while, (3.2) are linear with respect to variables xi

and r1, r2, t. When n ≥ 4, from (3.2), these variables
can be linearly solved out up to a scalar. The scalar can
be determined by the property r1 · r2 = 1. So solving
the PnP problem for coplanar case should choose (3.2)
rather than (3.4) or (2.1). But, the complete solutions
of (3.4) and (6.1) can also be obtained easily via the
above Theorem 5.

6.2. Collinear case

Theorem 6. When all control points are generically
collinear (the optical center is not collinear with them),
then the number of solutions (R, t) of (3.2) is infinitely
large, while the distances Xi of (2.1) from the optical
center to control points can be uniquely determined.

In this case, the configuration of the optical cen-
ter and control points is shown in Fig. 7. A detailed
analysis can be found in [15] and here is a summary:
By taking the line through the collinear control points
as X-axis, then only t and r1 are uniquely determined.
Hence only the first coordinate of the optical center
O = −Rτ t is determined uniquely, and O is there-
fore determined up to one degree of freedom. In fact
the locus of O is a circle on the plane orthogonal to
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line through the control points, and its center is the
intersection point of the plane with this line.

7. Conclusions

We clarify the relationships and the upper bounds of
the number of solutions for the whole PnP problem
under different definitions. In addition, a new and sim-
ple elimination method for solving the PnP problem
is provided. Some degenerate cases, such as coplanar
or collinear control points, are also discussed. In our
further work, the optimized algorithm based on the
proposed depth equations and its sensitivity will be
studied.

Appendix A: Proof of Result 3

With the coordinate system as that in Fig. 1, let r1, r2,
t be a group of solutions determined by Mi, i = 1, 2,
3, and let r3 = r1 × r2, R = (r1, r2, r3), R′ = (r1,
r2, −r3). Because no four points are coplanar, the third
coordinates of Mj, j = 4. . .n are nonzero.

If both (R = (r1, r2, r3), t) and (R′ = (r1, r2, −r3),
t) are the solutions, then:

{
x j m j = RM j + t

x ′
j m j = R′M j + t

j = 4 . . . n.

The first equation subtracts the second equation
yields:

(x j − x ′
j )m j = 2c j r3, or m j ≈ r3 (A)

where cj are the third coordinates of Mj, so it is
nonzero. Then, the right side of (A) is nonzero and
it follows that the left side is nonzero too. On the other
hand, there is (Rt)(0010)τ = r3, i.e. r3 is the image
of the point at infinity of Z-axis. So from (A), mj is
also the image of the point at infinity of Z-axis. It is
equivalent to that the line through the optical centers
and Mj should be parallel to Z-axis. Thus, by the used
coordinate system, there are OMj ⊥ M1M2M3, O′Mj

⊥ M1M2M3, where O = −Rτ t, O′ = −R′τ t are the
optical centers symmetric with respect to M1M2M3.

If (R1, R′
1) is another pair of solutions, then the cor-

responding optical centers O1 = −Rτ
1t1, O′

1 = −Rτ ′
1 t1

also satisfy O1Mj ⊥ M1M2M3, O′
1Mj ⊥ M1M2M3

and are symmetric with respect to M1M2M3. There-
fore O, O′ O1, O′

1, and Mj are collinear, see Fig. 8.

Figure 8. O and O′, O1 and O′
1 are two pairs of symmetric

optical centers with respect to M1M2M3. O, O′, O1, O′
1 and Mj are

collinear. If ∠MiOMj = ∠MiO1Mj, then O1 must be O or O′.

Moreover, by Definition 1, the angles to every pair
of control points from the perspective center are
prior known, there should be ∠MiOMj = ∠MiO1Mj

∠MiO′
1Mj, j = 4. . .n, i �= j, i = 1. . .n. But these equal-

ities are not possible unless {O, O′} = {O1, O′
1}. If

{O, O}′ = {O1, O′
1}, we assume O = O1, O′ = O′

1,
then Rτ t = Rτ

1t1, so Rτ
3t = Rτ

31t1 where r3, r31 are the
third columns of R, R1. By (A), we have mj ≈ r3, mj ≈
r31, further by the fact that r3, r31 are of unitary norm,
r3 = r31 is followed. By the result and Rτ

3t = Rτ
31t1,

we have t = t1. Further by Rτ t = Rτ
1t1, R = Rτ

1 is
obtained. Then, R′ = Rτ ′

1 is obtained too. Thus the
solutions t, R and R′ are identical with t1, R1 and R′

1.
If O = O′

1, O′ = O1, the same result can be inferred.
Therefore, there is at most one pair of (Ri, R′

i) that can
be the solutions.

Also, we can see that (i) of Result 3 is true from the
above derivation if there is such a pair as the solutions.

When n ≥ 5, if there is such a pair as the solutions,
then by (A) we have m4 ≈ mj ≈ r3, j = 5. . .n. So M4Mj

⊥ M1M2M3. Also since OMj ⊥ M1M2M3, O′Mj ⊥
M1M2M3, j = 4. . .n, the points O, O′ and Mj with j =
4. . .n are all collinear. Thus, ∠M4OM5 = ∠M4O′M5

= 0. It follows that by the angles to every pair of control
points from the perspective center are prior known, the
possible optical center Ox must be on the line OO′ in
order to be ∠M4OxM5 = 0. Moreover, by the proof
that there is at most one pair O, O′ that can be the
solutions (the paragraph before Fig. 8), we have the
conclusion that there are only the two solutions (R, t)
and (R′, t). Thus, (ii) of Result 3 is also proved.
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