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Abstract
A unified and modular falsification-aware single-succedent Gentzen-style framework
is introduced for classical, paradefinite, paraconsistent, and paracomplete logics. This
framework is composed of two special inference rules, referred to as the rules of
explosion and excluded middle, which correspond to the principle of explosion and
the law of excluded middle, respectively. Similar to the cut rule in Gentzen’s LK
for classical logic, these rules are admissible in cut-free LK. A falsification-aware
single-succedent Gentzen-style sequent calculus fsCL for classical logic is formalized
based on the proposed framework. The calculus fsCL is obtained from the existing
falsification-aware single-succedent Gentzen-style sequent calculus GN4 for Nelson’s
paradefinite (or paraconsistent) four-valued logic N4 by adding the rules of explosion
and excluded middle. A falsification-aware single-succedent Gentzen-style sequent
calculus GN3 for Nelson’s paracomplete three-valued logic N3 is also obtained from
GN4 by adding the rule of explosion. The cut-elimination theorems for fsCL, GN3,
and some of their neighbors as well as the Glivenko theorem for fsCL are proved.

Keywords Rule of excluded middle · Rule of explosion · Falsification-aware
Gentzen-style sequent calculus · Single-succedent Gentzen-style sequent calculus ·
Cut-elimination theorem

1 Introduction

Rules of Explosion and Excluded Middle: In this study, we introduce a unified and
modular falsification-aware single-succedent Gentzen-style framework for classical,
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144 N. Kamide

paradefinite, paraconsistent, and paracomplete logics. This framework is composed of
the following two special inference rules, which are referred to as the rules of explosion
and excluded middle, respectively.

� ⇒ ¬α � ⇒ α
� ⇒ γ

(explosion)
¬α, � ⇒ γ α, � ⇒ γ

� ⇒ γ
(ex-middle).

The rules (explosion) and (ex-middle) correspond to the principle of explosion
(¬α∧α)→β and the law of excluded middle ¬α∨α, respectively. The rule (explo-
sion) is introduced in this study as the dual counterpart of (ex-middle). The rule
(ex-middle) was originally introduced by von Plato (1999); Negri and von Plato (2001)
in constructing some single-succedentGentzen-style sequent calculi for classical logic.
1

Significance of the Rules of Explosion and Excluded Middle: Similar to the cut
rule in Gentzen’s sequent calculus LK (Gentzen, 1969) for classical logic, the rules
(explosion) and (ex-middle) are admissible in cut-free LK. This means that these rules
are regarded as critical, natural, and plausible components of Gentzen-style sequent
calculi. These rules are similar to the following cut rule in Gentzen’s sequent calculus
LJ (Gentzen, 1969) for intuitionistic logic.

� ⇒ α α, � ⇒ γ

� ⇒ γ
(cut).

The rules (cut), (explosion), and (ex-middle) are, in a sense, regarded as (or intended
to becoming) structural rules 2 and are primarily concerned with critical notions of
consistency, paraconsistency, and paracompleness, respectively. Thus, using the rules
(explosion) and (ex-middle), we can clarify and compare the essential differences and
similarities of classical, paradefinite, paraconsistent, and paracomplete logics.

Results of this Study: In this study, we introduce a falsification-aware single-
succedent Gentzen-style sequent calculus fsCL for classical logic. The proposed
calculus fsCL is obtained from the existing falsification-aware single-succedent
Gentzen-style sequent calculus GN4 for Nelson’s paradefinite (or paraconsistent)
four-valued logic N4 (Almukdad & Nelson, 1984; Nelson, 1949) by adding (explo-
sion), (ex-middle), and the standard right-weakening rule (we-right). In addition, we
introduce two falsification-aware single-succedent Gentzen-style sequent calculi GN3
and GLP for Nelson’s paracomplete three-valued logic N3 (Almukdad & Nelson,
1984; Nelson, 1949) and an extension of the logic of paradox LP (Asenjo, 1966;
Priest, 1979), respectively. The proposed calculus GN3 is obtained from GN4 by
adding (explosion) and (we-right). The proposed calculus GLP is obtained from GN3

1 (ex-middle) and its restricted version were originally introduced by von Plato (1999) and were also
presented in Negri and von Plato (2001).
2 (cut) is well-known to be a structural rule. However, the proposal for saying that (explosion) and (ex-
middle) are structural rules has an issue. These two rules involve the negation and the validity of the rules
depends on the definition of the negation. Thus, in this aspect, they seem to rather logical inference rules.
Besides, the corresponding properties of paraconsistency and paracompleteness are the properties that deal
not only with consequence relation, but also with the negation. Thus, the issue with classification of these
rules is not clear or simple.

123



Rules of Explosion and Excluded Middle... 145

by replacing (explosion) with (ex-middle). We then prove the cut-elimination theo-
rems for fsCL, GN3, and GLP as well as the Glivenko theorem for fsCL. We also
observe that some falsification-aware single-succedent Gentzen-style sequent calculi
for Belnap–Dunn logic BD (Belnap and Dunn’s four-valued logic, first-degree entail-
ment logic, or Dunn–Belnap logic) (Belnap, 1977a, b; Dunn, 1976, 2019), Kleene’s
strong three-valued logic K3 (Kleene, 2009), and the logic of paradox LP (Asenjo,
1966; Priest, 1979) can be obtained as subsystems of the →-less fragment of fsCL by
deleting (explosion), (ex-middle), and/or (we-right).

Nelson’s Paradefinite Four-Valued Logic N4: The logic N4, which is regarded as
an extension of BD by adding →, is obtained from the positive fragment of intu-
itionistic logic by adding the following axiom schemesautoedited,:3 ¬¬α ↔ α,
¬(α∧β) ↔ ¬α∨¬β,¬(α∨β) ↔ ¬α∧¬β, and¬(α→β) ↔ α∧¬β. SomeGentzen-
style sequent calculi for N4 are naturally constructed from the positive fragment of LJ
by adding negated logical inference rules that correspond to the axiom schemes pre-
viously mentioned. These calculi for N4 are formalized based on the single-succedent
(or intuitionistic) sequents of the form � ⇒ γ , where � is a sequence of formulas and
γ is a formula or the empty sequence. These calculi are regarded as single-succedent
Gentzen-style sequent calculi similar to LJ. For more information on Gentzen-style
sequent calculi for N4, see (Kamide & Wansing, 2012, 2015).

Paradefinite, Paraconsistent, and Paracomplete Logics: The logic N4 is known
as a paradefinite logic, which is a specific type of paraconsistent logic (Priest, 2002).
Paradefinite logics incorporate the properties of both paraconsistency, which rejects
the principle of explosion, and paracompleteness, which rejects the law of excluded
middle. Because of these properties, paradefinite logics are useful for handling indef-
inite information (Arieli & Avron, 2016; Avron et al., 2018). They are also known
to have multiple names: referred to as paradefinite logics by Arieli and Avron (2016,
2017), paranormal logics by Béziau (2009), and non-alethic logics by da Costa. In
this study, based on traditional naming, we refer to paraconsistent logics and para-
complete logics as logics that reject the principle of explosion and the law of excluded
middle, respectively. For example, the logic N3, which is regarded as an extension of
K3 by adding →, is regarded as a paracomplete logic because N3 is obtained from
N4 by adding the principle of explosion as an axiom scheme (i.e., N3 has no law of
excluded middle).4 In addition, the logic LP, which is considered an extension of BD
by adding the law of excluded middle, is regarded as a paraconsistent logic because it
has no principle of explosion.

Falsification-Awareness of Logics: Some of the previously proposed Gentzen-
style sequent calculi for N4 and the proposed calculus fsCL are regarded as
falsification-aware. Thus, the notion “falsification-awareness” should be explained.
The notion of falsification and an adequate representation of falsification-aware rea-
soning are critical in the field of philosophy (Wansing, 2010; Horn &Wansing, 2017;

3 The logic N4 was originally introduced as a first-order predicate logic refereed to as N− (Almukdad
& Nelson, 1984; Nelson, 1949) which has the following axiom schemes: ¬∀xα(x) ↔ ∃x¬α(x) and
¬∃xα(x) ↔ ∀x¬α(x).
4 The logic N3 was originally introduced as a first-order predicate logic refereed to as N Almukdad and
Nelson (1984); Nelson (1949). Odintsov (2002) showed that propositional N3 can be faithfully embedded
into propositional N4.
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146 N. Kamide

Kapsner, 2014; Łukowski, 2002; Shramko, 2005). Thus, falsification-aware proof
systems and semantics are required to analyze these philosophical issues. Based on
some traditional studies, Kamide Kamide (2022) has suggested that proof systems
and/or semantics are falsification-aware if they are capable of providing or represent-
ing direct or explicit falsifications or refutations of given negated formulas (excluding
the negated atomic formula).

Falsification-Aware Gentzen-Style Sequent Calculi: The following logics are
traditionally known to have falsification-aware Gentzen-style sequent calculi and
(Kripke-style) semantics, which provide a clear understanding of falsification-aware
reasoning within the underlying logic: Nelson’s N4 and N3 (Almukdad & Nelson,
1984; Nelson, 1949; Wansing, 1993; Kamide, 2005b; Kamide & Wansing, 2012,
2015), Belnap–Dunn logic BD (Belnap, 1977a, b; Dunn, 1976, 2019), bi-intuitionistic
logics (Rauszer, 1974, 1977, 1980; Łukowski, 2002; Wansing, 2010, 2016), and
dual-intuitionistic logics (or falsification logics) (Czermak, 1977; Goodman, 1981;
Urbas, 1996; Shramko, 2005, 2016). In addition, Kamide (2022) introduced two types
of falsification-aware multiple-succedent Gentzen-style sequent calculi for classical
logic. However, a falsification-aware single-succedent Gentzen-style sequent calculus
for classical logic has yet to be proposed. For more information on falsification-aware
Gentzen-style sequent calculi for BD and its extensions and neighbors, see (Kamide,
2018, 2023a, b).

Single-SuccedentGentzen-Style SequentCalculi forClassicalLogic: On the one
hand, Gentzen’s LK for classical logic was formalized based on the standard multiple-
succedent (or classical) sequents of the form� ⇒ �, where� and� are sequences of
formulas. On the other hand, some non-falsification-aware single-succedent Gentzen-
style sequent calculi for classical logic, which are constructed based on Gentzen’s LJ,
were traditionally proposed and studied by Curry (1963); Felscher (1975); Gordeev
(1987); Africk (1992); Negri and von Plato (2001), andKamide (2005a). These single-
succedent calculi for classical logic are useful when the focus is on the essential
differences between classical and intuitionistic logics. For a comprehensive survey of
single-succedent Gentzen-style sequent calculi for classical and intermediate logics,
see Sect. 4.

Paper Structure: The remainder of this paper is organized as follows. In Sect. 2, we
introduce fsCL, compare fsCL and GN4, and present some basic properties of (explo-
sion) and (ex-middle). In addition, we introduce three alternative falsification-aware
single-succedent Gentzen-style sequent calculi fsCLe, fsCLs , and fsCLs for classi-
cal logic, two falsification-aware single-succedent Gentzen-style sequent calculi GN3
and GN3s for N3, and a falsification-aware single-succedent Gentzen-style sequent
calculus GLP for an extension of LP with the sddition of →. We also observe that
falsification-aware single-succedent Gentzen-style sequent calculi for BD, K3, and LP
can be obtained as subsystems of fsCL. In Sect. 3, we present our main theorems. First,
we prove the explosion- and excluded-middle-elimination theorems for LK, which are
theorems for eliminating (explosion) and (ex-middle) in cut-free LK (i.e., these rules
are admissible in cut-free LK). Next, we prove the equivalence between fsCL and clas-
sical logic using the explosion- and excluded-middle-elimination theorems for LK.We
then prove the cut-elimination theorem for fsCL using Africk’s proof method (Africk,
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1992), which is a simple embedding-based method. In addition, we prove the cut-
elimination theorems for fsCLe, fsCLs , GN3, and GLP. We next prove the Glivenko
theorem for fsCL, which is a theorem for embedding fsCL into LJ. In Sect. 4, we
present a comprehensive survey of the traditionally proposed non-falsification-aware
single-succedent Gentzen-style sequent calculi for classical and intermediate logics.
In Sect. 5, we conclude the study and address related works on Łukasiewicz-style
refutation systems,which are regarded as alternative falsification-aware proof systems.

2 Gentzen-Style Sequent Calculi

2.1 Falsification-Aware Single-Succedent Gentzen-Style Sequent Calculus for
Classical Logic

Formulas of the logics discussed in this study are constructed from countably many
propositional variables by the logical connectives∧ (conjunction),∨ (disjunction),→
(implication), and ¬ (negation). Small letters p, q, ... are used to denote propositional
variables, Greek small letters α, β, ... are used to denote formulas, and Greek capital
letters �,�, ... are used to represent finite (possibly empty) multisets of formulas. An
expression ¬� is used to denote the multiset {¬γ | γ ∈ �}. The symbol ≡ is used
to denote the equality of symbols.

A single-succedent (or intuitionistic) sequent (simply called sequent) is an expres-
sion of the form � ⇒ γ where γ is a formula or the empty multiset. An expression
L � S is used to represent that a sequent S is provable in a Gentzen-style sequent
calculus L . In this expression, L will occasionally be omitted. An expression α ⇔ β

is used to represent the abbreviation of the sequents α ⇒ β and β ⇒ α.
Two Gentzen-style sequent calculi L1 and L2 are said to be theorem-equivalent

if {S | L1 � S} = {S | L2 � S}. A rule R of inference is said to be admissible
in a Gentzen-style sequent calculus L if the following condition is satisfied: For any
instance

S1 . . . Sn

S

of R, if L � Si for all i , then L � S. Furthermore, R is said to be derivable in L if
there is a derivation from S1, . . . , Sn to S in L . In this study, a Gentzen-style sequent
calculus is occasionally identified with the logic determined by it.

We introduce a falsification-aware single-succedent Gentzen-style sequent calculus
fsCL for classical logic.

Definition 1 (fsCL) In this definition, we use the symbol γ to represent an arbitrary
formula or the emptymultiset, and the symbol p to represent an arbitrary propositional
variable.

The initial sequents of fsCL are of the form:

p ⇒ p ¬p ⇒ ¬p.
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148 N. Kamide

The explosion and excluded middle inference rules of fsCL are of the form:

� ⇒ ¬α � ⇒ α
� ⇒ γ

(explosion)
¬α, � ⇒ γ α, � ⇒ γ

� ⇒ γ
(ex-middle).

The structural inference rules of fsCL are of the form:

� ⇒ α α, � ⇒ γ

� ⇒ γ
(cut)

α, α, � ⇒ γ

α, � ⇒ γ
(co-left)

� ⇒ γ

α, � ⇒ γ
(we-left) � ⇒

� ⇒ α
(we-right).

The non-negated logical inference rules of fsCL are of the form:

α, � ⇒ γ

α∧β, � ⇒ γ
(∧left1) β, � ⇒ γ

α∧β, � ⇒ γ
(∧left2)

� ⇒ α � ⇒ β

� ⇒ α∧β
(∧right) α, � ⇒ γ β, � ⇒ γ

α∨β, � ⇒ γ
(∨left)

� ⇒ α
� ⇒ α∨β

(∨right1) � ⇒ β

� ⇒ α∨β
(∨right2)

� ⇒ α β, � ⇒ γ

α→β, � ⇒ γ
(→left)

α, � ⇒ β

� ⇒ α→β
(→right).

The negated logical inference rules of fsCL are of the form:

α, � ⇒ γ

¬¬α, � ⇒ γ
(¬¬left) � ⇒ α

� ⇒ ¬¬α
(¬¬right)

¬α, � ⇒ γ ¬β, � ⇒ γ

¬(α∧β), � ⇒ γ
(¬∧left)

� ⇒ ¬α

� ⇒ ¬(α∧β)
(¬∧right1) � ⇒ ¬β

� ⇒ ¬(α∧β)
(¬∧right2)

¬α, � ⇒ γ

¬(α∨β), � ⇒ γ
(¬∨left1) ¬β, � ⇒ γ

¬(α∨β), � ⇒ γ
(¬∨left2)

� ⇒ ¬α � ⇒ ¬β

� ⇒ ¬(α∨β)
(¬∨right)

α, � ⇒ γ

¬(α→β), � ⇒ γ
(¬→left1)

¬β, � ⇒ γ

¬(α→β), � ⇒ γ
(¬→left2)

� ⇒ α � ⇒ ¬β

� ⇒ ¬(α→β)
(¬→right).

We have the following important observation.

Observation 1 (Relationship between classical logic and N4) AGentzen-style sequent
calculus GN4 for Nelson’s paradefinite (paraconsistent) four-valued logic N4 can be
obtained from fsCL by deleting (explosion), (ex-middle), and (we-right).
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Rules of Explosion and Excluded Middle... 149

Remark 1 We make the following remarks.

1. The system fsCL is indeed a system for classical logic. This fact will be shown in
Theorem 15.

2. The system fsCL has no standard negation inference rules (¬left) and (¬right) used
in Gentzen’s LJ for intuitionistic logic. But, we will show in Proposition 12 that
(¬left) and (¬right) are derivable in fsCL.

3. The following is an example proof in fsCL for ⇒ ((p→q)→p)→p where p and
q are distinct propositional variables.

p ⇒ p
p, (p→q)→p ⇒ p

(we-left)

¬(p→q), (p→q)→p ⇒ p
(¬→left1)

.... P
p→q, (p→q)→p ⇒ p

(p→q)→p ⇒ p
(ex-middle)

⇒ ((p→q)→p)→p
(→right)

where P is:

p ⇒ p
q ⇒ q

q, p ⇒ q (we-left)

p, p→q ⇒ q (→left)

p→q ⇒ p→q (→right)
p ⇒ p

p, p→q ⇒ p (we-left)

p→q, (p→q)→p ⇒ p
(→left).

4. Note that the sequent ⇒ ((p→q)→p)→p is also provable in a sequent calculus
GLP = fsCL − (explosion), where GLP is a sequent calculus for an extension of
the logic LP (Asenjo, 1966; Priest, 1979). GLP and the corresponding logic of it
will be discussed.

5. The following basic properties hold for GN4.

(a) For any formula α, GN4 − (cut) � α ⇒ α.
(b) The rule (cut) is admissible in cut-free GN4.

For more detailed information on the latter property (i.e., the cut-elimination
theorem for GN4), see e.g., Kamide and Wansing (2012, 2015).

Next, we show some basic propositions for fsCL.

Proposition 1 For any formula α, fsCL − (cut) � α ⇒ α.

Proof We show this by induction on α. We have to consider the cases for α ≡ p,
α ≡ β1∧β2, α ≡ β1∨β2, α ≡ β1→β2, and α ≡ ¬β. Since the cases for α ≡ p,
α ≡ β1∧β2, α ≡ β1∨β2, and α ≡ β1→β2 are obvious, we show only the case for
α ≡ ¬β. To show this, we have to consider the subcases for β ≡ p, β ≡ γ1∧γ2,
β ≡ γ1∨γ2, β ≡ γ1→γ2, and β ≡ ¬γ . The subcase for β ≡ p is obvious, because
¬p ⇒ ¬p is an initial sequent. In what follows, we show only the subcases for
β ≡ ¬γ and β ≡ γ1→γ2, because the other cases can be treated similarly.
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150 N. Kamide

1. Subcase β ≡ ¬γ :

.... I nd.hyp.
γ ⇒ γ

γ ⇒ ¬¬γ
(¬¬right)

¬¬γ ⇒ ¬¬γ
(¬¬left).

2. Subcase β ≡ γ1→γ2:

.... I nd.hyp.
γ1 ⇒ γ1

¬(γ1→γ2) ⇒ γ1
(¬→left1)

.... I nd.hyp.

¬γ2 ⇒ ¬γ2

¬(γ1→γ2) ⇒ ¬γ2
(¬→left2)

¬(γ1→γ2) ⇒ ¬(γ1→γ2)
(¬→right).

�
Proposition 2 For any formulas α and β,

1. fsCL − (cut) � ⇒ (¬α∧α)→β,
2. fsCL − (cut) � ⇒ ¬α∨α.

Proof

1. Case ⇒ (¬α∧α)→β:

.... Prop. 1
¬α ⇒ ¬α

¬α∧α ⇒ ¬α
(∧left1)

.... Prop. 1
α ⇒ α

¬α∧α ⇒ α
(∧left2)

¬α∧α ⇒ β
(explosion)

⇒ (¬α∧α)→β
(→right).

2. Case ⇒ ¬α∨α:

.... Prop. 1
¬α ⇒ ¬α

¬α ⇒ ¬α∨α
(∨right1)

.... Prop. 1
α ⇒ α

α ⇒ ¬α∨α
(∨right2)

⇒ ¬α∨α
(ex-middle).

�
Proposition 3

1. The rule (explosion) is derivable in explosion-free fsCL using the sequents of the
form ¬α∧α ⇒ γ where α is an arbitrary formula and γ is an arbitrary formula
or the empty multiset.

2. The rule (ex-middle) is derivable in ex-middle-free fsCL using the sequents of the
form ⇒ ¬α∨α where α is an arbitrary formula.
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Proof

1. Case (explosion):

� ⇒ ¬α � ⇒ α

� ⇒ ¬α∧α
(∧right)

¬α∧α ⇒ γ.... (we-left)
¬α∧α, � ⇒ γ

� ⇒ γ
(cut).

2. Case (ex-middle):

⇒ ¬α∨α.... (we-left)
� ⇒ ¬α∨α

¬α, � ⇒ γ α, � ⇒ γ

¬α∨α, � ⇒ γ
(∨left)

� ⇒ γ
(cut).

�

2.2 Alternative Falsification-Aware Single-Succedent Gentzen-Style Sequent
Calculi for Classical and Other Logics

First, we introduce two alternative falsification-aware single-succedent Gentzen-style
sequent calculi fsCLe and fsCLs for classical logic.

Definition 2 (fsCLe and fsCLs) A falsification-aware single-succedent Gentzen-style
sequent calculus fsCLe or fsCLs for classical logic is obtained from fsCL by replacing
(explosion) with the following rule, referred to as the empty explosion rule or the
single-formula explosion rule, respectively.

� ⇒ ¬α � ⇒ α
� ⇒ (e-explosion) � ⇒ ¬α � ⇒ α

� ⇒ β
(s-explosion)

where β is a formula.

Proposition 4 Let L be fsCLe or fsCLs . For any formula α, L − (cut) � α ⇒ α.

Proof Similar to the proof of Proposition 1. �
We obtain the following theorem for fsCLe.

Theorem 5 (Cut-free equivalence between fsCLe and fsCL) For any sequent � ⇒ γ ,
fsCLe − (cut) � � ⇒ γ iff fsCL − (cut) � � ⇒ γ .

Proof This theorem is obtained from the facts that (1) (e-explosion) is an instance of
(explosion) and (2) (explosion) is derivable in cut-free fsCLe by using (e-explosion)
and (we-right). �
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152 N. Kamide

Remark 2 The same theorem as Theorem 5 does not hold for fsCLs . A counterexample
is ¬p, p ⇒ where p is a propositional variable. Actually, this sequent is provable in
cut-free fsCLe, but not provable in cut-free fsCLs . It is unknown whether ¬p, p ⇒
is provable in fsCLs or not, because it is unknown the “full” cut-elimination theorem
for fsCLs holds or not. See Remark 10.

We obtain the following theorem for fsCLs , which represents the formula-based
weak form of equivalence between fsCLs and fsCL.

Theorem 6 (Weak cut-free equivalence between fsCLs and fsCL) For any formula α,
fsCLs − (cut) � ⇒ α iff fsCL − (cut) � ⇒ α.

Proof To prove this theorem, it is sufficient to prove the following statements.

1. For any sequent � ⇒ γ , if fsCLs − (cut) � � ⇒ γ , then fsCL − (cut) � � ⇒ γ .
2. For any formula α, if fsCL − (cut) � ⇒ α, then fsCLs − (cut) � ⇒ α.

The statement (1) is obvious because fsCLs − (cut) is a subsystem of fsCL − (cut).
Thus, we prove (2) by induction on the proofs P of ⇒ α in cut-free fsCL. We distin-
guish the cases according to the last inferences of P . Then, it is sufficient to consider
the case (explosion), especially the case (e-explosion). But, we do not have to con-
sider this case, because (e-explosion) cannot apply to the sequent ⇒ α. Therefore, we
obtain the required fact. �

Next, we introduce two falsification-aware single-succedent Gentzen-style sequent
calculi GN3 and GN3s for Nelson’s paracomplete three-valued logic N3 (Almukdad
& Nelson, 1984; Nelson, 1949).

Definition 3 (GN3 andGN3s) Falsification-aware Gentzen-style sequent calculi GN3
and GN3s for Nelson’s paracomplete three-valued logic N3 are defined as follows.

1. GN3 is obtained from fsCL by deleting (ex-middle).
2. GN3s is obtained from fsCLs by deleting (ex-middle) and (we-right).

Remark 3 We can obtain the following alternative definitions of GN3 and GN3s using
GN4.

1. GN3 is obtained from GN4 by adding (explosion) and (we-right).
2. GN3s is obtained from GN4 by adding (s-explosion).

Proposition 7 Let L be GN3 and GN3s . For any formula α, L − (cut) � α ⇒ α.

Proof Similar to the proof of Proposition 1. �
Remark 4 The logic N3 is obtained from N4 by adding the principle of explosion as
an axiom scheme. Thus, the system GN3s is indeed a Gentzen-style sequent calculus
for N3 because (1) ⇒ (¬α∧α)→β is provable in GN3s as presented in the proof
of Proposition 2 and (2) (s-explosion) is derivable from the sequents of the form
¬α∧α ⇒ β as presented in the proof of Proposition 3.

We obtain the following theorem, which represents the formula-based weak form
of equivalence between GN3 and GN3s .

123



Rules of Explosion and Excluded Middle... 153

Theorem 8 (Weak cut-free equivalence between GN3 and GN3s) For any formula α,
GN3s − (cut) � ⇒ α iff GN3 − (cut) � ⇒ α.

Proof We can prove this theorem in a similar way as for the proof of Theorem 6. Thus,
we consider only the following statement.

For any formula α, if NG3 − (cut) � ⇒ α, then GN3s − (cut) � ⇒ α.

We prove this statement by induction on the proofs P of ⇒ α in cut-free GN3. We
distinguish the cases according to the last inferences of P . Then, it is sufficient to
consider the case (we-right) because the case (explosion) is the same as the proof of
Theorem 6. But, we do not have to consider this case because (we-right) cannot apply
to the sequent⇒ α. Namely, the upper sequent⇒ of⇒ α in (we-right) is not provable
in cut-free GN3. Therefore, we obtain the required fact. �
Remark 5 We make the following remarks.

1. The same statement as that of Theorem 6 cannot be shown for GN3s because, as
shown in the proof of Theorem 8, we need the fact that the upper sequent ⇒ of
⇒ α in (we-right) is not provable in cut-free GN3.

2. We can also consider the following “intermediate” alternative falsification-aware
Gentzen-style sequent calculi for N3: GN4 + (s-explosion) + (we-right) and GN4
+ (explosion). But, we do not discuss them.

Next, we introduce another falsification-aware single-succedent Gentzen-style
sequent calculus fsCLs for classical logic.

Definition 4 (fsCLs) A falsification-aware single-succedent Gentzen-style sequent
calculus fsCLs for classical logic is obtained from fsCL by replacing (ex-middle) with
the following rule, referred to as the the single-formula excluded-middle rule.

¬α, � ⇒ β α, � ⇒ β

� ⇒ β
(s-ex-middle)

where β is a formula.

Proposition 9 For any formula α, fsCLs − (cut) � α ⇒ α.

Proof Similar to the proof of Proposition 1. �
Remark 6 We make the following remarks.

1. The system fsCLs is indeed a falsification-aware single-succedent Gentzen-style
sequent calculus for classical logic. This fact will be shown in Theorem 16.

2. We can also consider the falsification-aware single-succedent Gentzen-style
sequent calculus fsCLe that is obtained from fsCL by replacing (ex-middle) with
the following rule, refereed to as the the empty excluded-middle rule.

¬α, � ⇒ α, � ⇒
� ⇒ (e-ex-middle).

However, fsCLe is not a system for classical logic because the sequents of the form
⇒ ¬p∨p are not provable in cut-free fsCLe.

123



154 N. Kamide

Next, we introduce a falsification-aware single-succedent Gentzen-style sequent
calculus GLP for an extension ELP of the logic of paradox LP (Asenjo, 1966; Priest,
1979), where ELP is obtained from LP by adding →.

Definition 5 (GLP) A falsification-aware single-succedent Gentzen-style sequent cal-
culus GLP for an extension ELP of the logic of paradox LP is obtained from fsCL by
deleting (explosion).

Proposition 10 For any formula α, GLP − (cut) � α ⇒ α.

Proof Similar to the proof of Proposition 1. �
Remark 7 We make the following remarks.

1. We can obtain the following alternative definitions of GLP using GN4 and GN3.

(a) GLP is obtained from GN4 by adding (ex-middle) and (we-right).
(b) GLP is obtained from GN3 by replacing (explosion) with (ex-middle).

2. The →-less fragment of GLP is regarded as a falsification-aware single-succedent
Gentzen-style sequent calculus for LP.We can also consider similar systems such as
the system that is obtained from GLP by replacing (ex-middle) with (s-ex-middle).

3. The logic ELP, the sequent calculus of which is GLP, is not a new logic. It was
referred to as PIs by Batens (1980), RM⊃

3 and Pac by Avron (1986, 1991),5

and PCont by Rozonoer (1989). It was also studied by D’Ottaviano and da Costa
(1970), by da Costa (1974), and by Asenjo and Tamburino (1975). PCont was
also studied by Bolotov and Shangin (2012) and by Kürbis and Petrukhin (2021).

4. Following (Avron, 1991), we now consider a Hilbert-style axiomatic system for
ELP (i.e., PIs , RM⊃

3 , Pac, or PCont). Such a Hilbert-style axiomatic system (for
Pac) is obtained from a Hilbert-style axiomatic system HBe introduced by Avron
(1991) by adding the axiom scheme ¬α∨α or (α→β)→((¬α→β)→β). HBe is
defined in Avron (1991) by the following axiom schemes and inference rule:

(a) α→(β→α),
(b) (α→(β→γ ))→((α→β)→(α→γ )),
(c) ((α→β)→α)→α,
(d) (α∧β)→α,
(e) (α∧β)→β,
(f) α→(β→(α∧β)),
(g) α→(α∨β),
(h) β→(α∨β),
(i) (α→γ )→((β→γ )→((α∨β)→γ ),
(j) ¬(α∨β) ↔ (¬α∧¬β),
(k) ¬(α∧β) ↔ (¬α∨¬β),
(l) ¬¬α ↔ α,

(m) ¬(α→β) ↔ (α∧¬β),

(n)
α α→β

β

5 Avron also used the name Pac for the implication-less fragment of this logic.
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where α ↔ β stands for (α→β)∧(β→α). Note that all the sequents that
correspond to these axiom schemes for Pac are provable in GLP.

5. A multiple-succedent Gentzen-style sequent calculus for ELP (i.e., PIs , RM⊃
3 , Pac,

or PCont) was originally introduced by Avron (2003) as the I -less part of GMt,I
3

where I is a certain constant. This sequent calculus by Avron is defined based on
the sequents of the form � ⇒ � where � and � represent sets of formulas. This
sequent calculus is defined by the standard structural rules of cut and weakening
and the initial sequents and logical inference rules of the form:

α ⇒ α ⇒ ¬α, α

α, β, � ⇒ �

α∧β, � ⇒ �
(∧left) � ⇒ �,α � ⇒ �,β

� ⇒ �,α∧β
(∧right)

α, � ⇒ � β,� ⇒ �

α∨β, � ⇒ �
(∨left) � ⇒ �,α, β

� ⇒ �,α∨β
(∨right)

� ⇒ �,α β, � ⇒ �

α→β, � ⇒ �
(→left)

α, � ⇒ �,β

� ⇒ �,α→β
(→right)

α, � ⇒ �

¬¬α, � ⇒ �
(¬¬left)

� ⇒ �,α

� ⇒ �,¬¬α
(¬¬right)

¬α, � ⇒ � ¬β, � ⇒ �

¬(α∧β), � ⇒ �
(¬∧left) � ⇒ �,¬α,¬β

� ⇒ �,¬(α∧β)
(¬∧right)

¬α,¬β, � ⇒ �

¬(α∨β), � ⇒ �
(¬∨left) � ⇒ �,¬α � ⇒ �,¬β

� ⇒ �,¬(α∨β)
(¬∨right)

α,¬β, � ⇒ �

¬(α→β), � ⇒ �
(¬→left)

� ⇒ �,α � ⇒ �,¬β

� ⇒ �,¬(α→β)
(¬→right).

The rules of GLP are either instances of the rules of this calculus or can be easily
shown to be derivable or admissible in this calculus. For example, (ex-middle) is
derivable using ⇒ ¬α, α by:

⇒ ¬α, α

⇒ ¬α∨α
(∨right) ¬α, � ⇒ γ α, � ⇒ γ

¬α∨α, � ⇒ γ
(∨left)

� ⇒ γ
(cut).

6. By both the just mentioned fact (i.e., GLP is a subsystem of the above system)
and the above-mentioned fact (i.e., all the sequents that correspond to the axiom
schemes of Pac are provable in GLP), we obtain that ELP is logically-equivalent
to Pac, RM⊃

3 , PI
s , and PCont.

7. Avron considered an infinitely-valued logicRM⊃, the three-valuedversionofwhich
is RM⊃

3 . It can be obtained from the above-mentioned Hilbert-style axiomatic
system for ELP by replacing ((α→β)→α)→α and ¬(α→β) ↔ (α∧¬β)

with the axiom schemes of the form: (α∧¬β)→¬(α→β), ¬(α→β)→¬β, and
¬(α→β)→((α→β)→α). As shown in Avron (1986), RM⊃

3 can be obtained
from RM⊃ either by replacing ¬(α→β)→((α→β)→α) with¬(α→β)→α or by
adding ((α→β)→α)→α. Thus, ((α→β)→α)→α is a dependent axiom scheme
in the Hilbert-style axiomatic system for RM⊃

3 .
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2.3 Standard Gentzen-Style Sequent Calculi for Classical and Intuitionistic Logics

In the following, we introduce the standard Gentzen-style sequent calculi LK and LJ
for classical and intuitionistic logics, respectively. These calculi will be used to show
the equivalence between fsCL and classical logic. The systems LJ and LK, which will
be defined in Definitions 6 and 7, are non-essential modifications of Gentzen’s original
LJ and LK (Gentzen, 1969), respectively. We use the same names LJ and LK for these
modified systems as the original ones.

First, we introduce LJ.

Definition 6 (LJ) A Gentzen-style sequent calculus LJ for intuitionistic logic is
obtained from fsCL by replacing (ex-middle), (explosion), the negated logical
inference rules (¬¬left), (¬¬right), (¬∧left), (¬∧right1), (¬∧right2), (¬∨left1),
(¬∨left2), (¬∨right), (¬→left1), (¬→left2), (¬→right), and the initial sequent
¬p ⇒ ¬p with the following logical inference rules:

� ⇒ α

¬α, � ⇒ (¬left)
α, � ⇒
� ⇒ ¬α

(¬right).

Next, we introduce LK. Prior to introducing LK, we have to modify the notion of
sequent as follows. A multiple-succedent (classical) sequent (simply called sequent)
is an expression of the form � ⇒ �. We use the same names for the structural and
logical inference rules for LK as those for fsCL and LJ, although the forms of these
rules are different.

Definition 7 (LK) In this definition, we use the symbol p to represent an arbitrary
propositional variable.

The initial sequents of LK are of the form:

p ⇒ p.

The structural inference rules of LK are of the form:

� ⇒ �,α α, � ⇒ �

� ⇒ �
(cut)

α, α, � ⇒ �

α,� ⇒ �
(co-left)

� ⇒ �,α, α

� ⇒ �,α
(co-right)

� ⇒ �
α,� ⇒ �

(we-left) � ⇒ �
� ⇒ �,α

(we-right).

The logical inference rules of LK are of the form:

α, β, � ⇒ �

α∧β, � ⇒ �
(∧left) � ⇒ �,α � ⇒ �,β

� ⇒ �,α∧β
(∧right)

α, � ⇒ � β,� ⇒ �

α∨β, � ⇒ �
(∨left) � ⇒ �,α, β

� ⇒ �,α∨β
(∨right)
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� ⇒ �,α β, � ⇒ �

α→β, � ⇒ �
(→left)

α, � ⇒ �,β

� ⇒ �,α→β
(→right)

� ⇒ �,α

¬α, � ⇒ �
(¬left)

α, � ⇒ �

� ⇒ �,¬α
(¬right).

Remark 8 The main differences between Gentzen’s LK and our LK are as follows.
In Gentzen’s LK, (1) the sequent � ⇒ � is defined using sequences � and � of
formulas (instead of multisets of formulas), (2) the formula-based initial sequents of
the form α ⇒ α for any formula α (instead of the propositional variable-based initial
sequents) are used, (3) the left and right exchange rules are used, (4) the multiplicative
version of (cut) is used, and (5) the multiplicative version of (→left) is used. These
differences do not change the provability of sequents (i.e., Gentzen’s LK and our LK
are logically-equivalent) and the admissiblity of the cut rule (i.e., the cut-elimination
theorem for Gentzen’s LK implies that of our LK). Similar situations and facts hold
for Gentzen’s LJ and our LJ.

Proposition 11 Let L be LJ or LK.

1. For any formula α, L − (cut) � α ⇒ α.
2. The rule (cut) is admissible in cut-free L.

Proof (1) can be proved by induction on α. (2) is obtained from Gentzen’s original
results (Gentzen, 1969) and the cut-free equivalence between the original systems and
our systems LJ and LK. �

3 Main Theorems

3.1 Equivalence Theorems

Prior to proving a theorem for equivalence between fsCL and classical logic, we have
to show a proposition for fsCL and two theorems for LK.

First, we show the following proposition for fsCL.

Proposition 12 The following rules (¬left) and (¬right) are derivable in cut-free
fsCL:

� ⇒ α

¬α, � ⇒ (¬left)
α, � ⇒
� ⇒ ¬α

(¬right).

Proof

1. Case (¬left):

.... Prop. 1
¬α ⇒ ¬α.... (we-left)

¬α, � ⇒ ¬α

� ⇒ α

¬α, � ⇒ α
(we-left)

¬α, � ⇒ (explosion).
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2. Case (¬right):

.... Prop. 1
¬α ⇒ ¬α.... (we-left)

¬α, � ⇒ ¬α

α, � ⇒
α, � ⇒ ¬α

(we-right)

� ⇒ ¬α
(ex-middle).

�
We then show the following explosion-elimination theorem for LK.

Theorem 13 (Explosion-elimination theorem for cut-free LK) The rule (explosion)
is admissible in cut-free LK.

Proof Suppose LK − (cut) � � ⇒ ¬α and LK − (cut) � � ⇒ α. Then, we obtain
LK � � ⇒ γ using (cut) by:

....
� ⇒ ¬α

....
� ⇒ α

¬α, � ⇒ (¬left)

� ⇒ (cut)

� ⇒ γ
(we-right).

Thus, by the cut-elimination theorem for LK, we obtain the required fact LK − (cut)
� � ⇒ γ . �

Next, we show the following excluded-middle-elimination theorem for LK.

Theorem 14 (Excluded-middle-elimination theorem for cut-free LK) The rule (ex-
middle) is admissible in cut-free LK.

Proof Suppose LK − (cut) � ¬α, � ⇒ γ and LK − (cut) � α, � ⇒ γ . Then, LK �
� ⇒ γ using (cut) by:

....⇒ ¬α∨α.... (we-left)
� ⇒ ¬α∨α

....¬α, � ⇒ γ

....
α, � ⇒ γ

¬α∨α, � ⇒ γ
(∨left)

� ⇒ γ
(cut)

where the fact that LK − (cut) � ⇒ ¬α∨α is obvious and well-known. Thus, by the
cut-elimination theorem for LK, we obtain the required fact LK − (cut) � � ⇒ γ . �
Remark 9 Theorems 13 and 14 can also be obtained using the proofs of Proposition 3
because the proofs of Theorems 13 and 14 also derive LK-proofs with the addition of
the proofs of ⇒ ¬α∨α and ¬α∧α ⇒ γ . The same theorem as Theorem 13 holds for
LJ. But, the same theorem as Theorem 14 does not hold for LJ.
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We then obtain the following equivalence theorem.

Theorem 15 (Equivalence between fsCL and classical logic) The system fsCL is
indeed a Gentzen-style sequent calculus for classical logic.

Proof It is sufficient to show the following two items.

1. First, we show that LK (i.e., classical logic) is stronger than or equals to fsCL
(i.e., fsCL is a Gentzen-style sequent calculus for a logic weaker than or equals
to classical logic). The rule (explosion) of fsCL is admissible in cut-free LK by
Theorem 13 (also derivable in LK by Proposition 3 (2)). The rule (ex-middle)
of fsCL is admissible in cut-free LK by Theorem 14 (also derivable in LK by
Proposition 3 (1)). The negated logical inference rules of fsCL are derivable in
LK. The initial sequents of the form ¬p ⇒ ¬p are provable in LK. Thus, LK is
stronger than or equals to fsCL.

2. Next, we show that fsCL is stronger than or equals to LK (i.e., fsCL is a Gentzen-
style sequent calculus for a logic stronger than or equals to classical logic). By
Proposition 12, it is obvious that fsCL is stronger than LJ (i.e., intuitionistic logic).
Thus, it is sufficient to show that fsCL � ⇒ ¬α∨α, because it is well-known
that classical logic can be obtained from intuitionistic logic by adding the law
of excluded middle ¬α∨α. This is obtained by Proposition 2 (1). Thus, fsCL is
stronger than or equals to LK.

�
Theorem 16 (Equivalence between fsCLs and classical logic)

The system fsCLs is indeed a Gentzen-style sequent calculus for classical logic.

Proof Similar to the proof of Theorem 15. �
Theorem 17 (Equivalence among fsCLe, fsCLs and classical logic) The systems fsCLe

and fsCLs are indeed Gentzen-style sequent calculi for classical logic.

Proof By Theorems 15, 5, and 6. �

3.2 Cut-Elimination Theorems

Next, we prove the cut-elimination theorem for fsCL using Africk’s method (1992).
Prior to proving this theorem, we have to prove the following lemma.

Lemma 18 For any sequent � ⇒ �, if LK − (cut) � � ⇒ �, then fsCL − (cut) �
¬�,� ⇒ .

Proof We prove this lemma by induction on the proofs P of � ⇒ � in cut-free LK.
We show some cases.

1. Case (co-right): The last inference of P is of the form:

� ⇒ �,α, α

� ⇒ �,α
(co-right).
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By induction hypothesis, we have fsCL − (cut) � ¬α,¬α,¬�,� ⇒. Then we
obtain the required fact by:

.... I nd.hyp.

¬α,¬α,¬�,� ⇒
¬α,¬�,� ⇒ (co-left).

2. Case (∧right): The last inference of P is of the form:

� ⇒ �,α � ⇒ �,β

� ⇒ �,α∧β
(∧right).

By induction hypotheses, we have fsCL− (cut) � ¬α,¬�,� ⇒ and fsCL− (cut)
� ¬β,¬�,� ⇒. Then we obtain the required fact by:

.... I nd.hyp.

¬α,¬�,� ⇒
.... I nd.hyp.

¬β,¬�,� ⇒
¬(α∧β),¬�,� ⇒ (¬∧left).

3. Case (∨right): The last inference of P is of the form:

� ⇒ �,α, β

� ⇒ �,α∨β
(∨right).

By induction hypothesis, we have fsCL − (cut) � ¬α,¬β,¬�,� ⇒ Then we
obtain the required fact by:

.... I nd.hyp.

¬α,¬β,¬�,� ⇒
¬α,¬(α∨β),¬�,� ⇒ (¬∨left2)

¬(α∨β),¬(α∨β),¬�,� ⇒ (¬∨left1)
¬(α∨β),¬�,� ⇒ (co-left).

4. Case (→left): The last inference of P is of the form:

� ⇒ �,α β, � ⇒ �

α→β, � ⇒ �
(→left).

123



Rules of Explosion and Excluded Middle... 161

By induction hypotheses, we have fsCL− (cut) � ¬α,¬�,� ⇒ and fsCL− (cut)
� β,¬�,� ⇒. Then we obtain the required fact by:

.... I nd.hyp.

¬α,¬�,� ⇒
¬α,¬�,� ⇒ α

(we-right)

.... Prop. 1
α ⇒ α.... (we-left)

α,¬�,� ⇒ α

¬�,� ⇒ α
(ex-middle)

.... I nd.hyp.

β,¬�,� ⇒
α→β,¬�,� ⇒ (→left).

5. Case (→right): The last inference of P is of the form:

α, � ⇒ �,β

� ⇒ �,α→β
(→right).

By induction hypothesis, we have fsCL − (cut) � α,¬β,¬�,� ⇒. Then we
obtain the required fact by:

.... I nd.hyp.

α,¬β,¬�,� ⇒
¬(α→β),¬β,¬�,� ⇒ (¬→left1)

¬(α→β),¬(α→β),¬�,� ⇒ (¬→left2)

¬(α→β),¬�,� ⇒ (co-left).

6. Case (¬left): The last inference of P is of the form:

� ⇒ �,α

¬α, � ⇒ �
(¬left).

By inductionhypothesis,weobtain the required fact: fsCL− (cut)�¬α,¬�,� ⇒.
7. Case (¬right): The last inference of P is of the form:

α, � ⇒ �

� ⇒ �,¬α
(¬right).

By induction hypothesis, we have fsCL − (cut) � α,¬�,� ⇒. Then we obtain
the required fact by:

.... I nd.hyp.

α,¬�,� ⇒
¬¬α,¬�,� ⇒ (¬¬left).

�
Theorem 19 (Cut-elimination theorem for fsCL) The rule (cut) is admissible in cut-
free fsCL.
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Proof Suppose fsCL � � ⇒ γ for any sequent � ⇒ γ . Then, we have LK � � ⇒ γ

by Theorem 15. We obtain LK − (cut) � � ⇒ γ by the cut-elimination theorem for
LK. We thus obtain fsCL − (cut) � ¬γ, � ⇒ by Lemma 18. Then, we obtain the
required fact fsCL − (cut) � � ⇒ γ as follows. Since the case when γ is the empty
multiset is obvious, we show only the case when γ is a formula.

¬γ, � ⇒
¬γ, � ⇒ γ

(we-right)

.... Prop. 1
γ ⇒ γ.... (we-left)

γ, � ⇒ γ

� ⇒ γ
(ex-middle).

�
We can also obtain the following cut-elimination theorem for fsCLs .

Theorem 20 (Cut-elimination theorem for fsCLs) The rule (cut) is admissible in
cut-free fsCLs .

Proof Similar to the proof of Theorem 19. �
We also obtain the following cut-elimination theorem for fsCLe.

Theorem 21 (Cut-elimination theorem for fsCLe) The rule (cut) is admissible in
cut-free fsCLe.

Proof Suppose fsCLe � � ⇒ γ . Then, we have fsCL � � ⇒ γ because fsCLe is
a subsystem of fsCL. By Theorem 19, we obtain fsCL − (cut) � � ⇒ γ . Thus, we
obtain the required fact fsCLe − (cut) � � ⇒ γ by Theorem 5. �
Remark 10 We can also obtain the following formula-based weak cut-elimination
theorem for fsCLs .

For any formula α, if fsCLs � ⇒ α, then fsCLs − (cut) � ⇒ α.

This theorem can be proved as follows. Suppose fsCLs � ⇒ α. Then, we have fsCL �
⇒ α because fsCLs is a subsystem of fsCL. By Theorem 19, we obtain fsCL − (cut)
� ⇒ α. Thus, we obtain the required fact fsCLs − (cut) � ⇒ α by Theorem 6.

We also obtain the following cut-elimination theorem for GN3.

Theorem 22 (Cut-elimination theorem for GN3) The rule (cut) is admissible in cut-
free GN3.

Proof (Sketch). We can prove this theorem by using a similar method as intro-
duced by Gentzen (1969) for LJ. We now present a rough sketch of the proof. Let
GN3� be a sequent calculus similar to Gentzen’s LJ. Namely, GN3� is based on the
formula-sequence-based sequent, the formula-based initial sequent, the multiplicative
implication left rule, the multiplicative cut rule of the form:

� ⇒ α α,� ⇒ γ

�,� ⇒ γ
(m-cut),
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and the left exchange rule of the form:

�, β, α,� ⇒ γ

�, α, β,� ⇒ γ
(ex-left).

Then,GN3� is logically-equivalent toGN3 and, since (m-cut) and (cut) are deductively
equivalent, the cut-elimination for GN3� implies that for GN3 (i.e., to show the cut-
elimination for GN3, it is sufficient to show that for GN3�). Next, we introduce a
sequent calculus GN3�� that is obtained from GN3� by replacing the multiplicative
cut rule with the following mix rule:

� ⇒ α � ⇒ γ

�,�α ⇒ γ
(mix)

where � has at least one occurrence of α, and �α is a sequence of formulas obtained
from� by deleting all occurrences of α. Then, GN3�� is logically-equivalent to GN3�

and GN3, and the mix-elimination for GN3�� implies the cut-elimination for GN3�

and GN3 (i.e., to show the cut-elimination for GN3, it is sufficient to show the mix-
elimination for GN3�). Thus, we show the admissiblity of (mix) in GN3�� below. The
standard notions of rank and grade are assumed in the following discussion. We now
consider the proof P of the form:

.... P1

� ⇒ α

.... P2

� ⇒ γ

�,�α ⇒ γ
(mix)

where P1 and P2 have no occurrence of (mix). Then, it is sufficient to show that (mix)
can be eliminated by proof transformation. We prove this by double induction on the
rank and grade. We show some cases below.6

1. The last inference of the left upper sequent of (mix) is (explosion):

....
� ⇒ ¬β

....
� ⇒ β

� ⇒ α
(explosion)

....
� ⇒ γ

�,�α ⇒ γ
(mix).

This proof can be transformed into the following mix-free proof:

....
� ⇒ ¬β

....
� ⇒ β

� ⇒ γ
(explosion)

.... (we-left), (ex-left).
�,�α ⇒ γ

6 Since the cut-elimination theorem forGN4holds, it is sufficient to check the additional cases for (we-right)
and (explosion) in GN3.
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2. The last inference of the right upper sequent of (mix) is (explosion):

....
� ⇒ α

....
� ⇒ ¬β

....
� ⇒ β

� ⇒ γ
(explosion)

�,�α ⇒ γ
(mix).

This proof can be transformed into the following proof:

....
� ⇒ α

....
� ⇒ ¬β

�,�α ⇒ ¬β
(mix)

....
� ⇒ β.... (we-left), (ex-left)

�,�α ⇒ β

�,�α ⇒ γ
(explosion).

Then, (mix) in this proof can be eliminated because the rank concerning this mix
is less than that of the proof presented above.

�

Remark 11 We can also obtain the following formula-based weak cut-elimination
theorem for GN3s .

For any formula α, if GN3s � ⇒ α, then GN3s − (cut) � ⇒ α.

This theorem can be proved in a similar way as the proof as presented in Remark 10.
We use Theorems 22 and 8.

We also obtain the following cut-elimination theorem for GLP.

Theorem 23 (Cut-elimination theorem for GLP) The rule (cut) is admissible in cut-
free GLP.

Proof (Sketch). Similar to the proof of Theorem 22. We assume the same setting as
that for GN3. Namely, we introduce the systems GLP� and GLP�� that are logically-
equivalent to GLP. We show the mix-elimination for GLP�� by double induction on
the grade and rank. We show some cases below.

1. The last inference of the left upper sequent of (mix) is (ex-middle):

....¬β, � ⇒ α

....
β, � ⇒ α

� ⇒ α
(ex-middle)

....
� ⇒ γ

�,�α ⇒ γ
(mix).
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This proof can be transformed into the following proof:

....¬β, � ⇒ α

....
� ⇒ γ

¬β, �,�α ⇒ γ
(mix)

....
β, � ⇒ α

....
� ⇒ γ

β, �,�α ⇒ γ
(mix)

�,�α ⇒ γ
(ex-middle).

Then, (mix) in this proof can be eliminated because the rank concerning this mix
is less than that of the proof presented above.

2. The last inference of the right upper sequent of (mix) is (ex-middle):

....
� ⇒ α

....¬β,� ⇒ γ

....
β,� ⇒ γ

� ⇒ γ
(ex-middle)

�,�α ⇒ γ
(mix).

(a) Case α �≡ β and α �≡ ¬β: This proof can be transformed into the following
proof:

....
� ⇒ α

....¬β,� ⇒ γ

�,¬β,�α ⇒ γ
(mix)

.... (ex-left)
¬β, �,�α ⇒ γ

....
� ⇒ α

....
β,� ⇒ γ

�, β,�α ⇒ γ
(mix)

.... (ex-left)
β, �,�α ⇒ γ

�,�α ⇒ γ
(ex-middle).

Then, (mix) in this proof can be eliminated because the rank concerning this
mix is less than that of the proof presented above

(b) Case α ≡ ¬β: This proof can be transformed into the following proof:

....
� ⇒ α

....¬β,� ⇒ γ

�,�α ⇒ γ
(mix)

¬β, �,�α ⇒ γ
(we-left)

....
� ⇒ α

....
β,� ⇒ γ

�, β,�α ⇒ γ
(mix)

.... (ex-left)
β, �,�α ⇒ γ

�,�α ⇒ γ
(ex-middle).

Then, (mix) in this proof can be eliminated because the rank concerning this
mix is less than that of the proof presented above
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(c) Case α ≡ β: This proof can be transformed into the following proof:

....
� ⇒ α

....¬β,� ⇒ γ

�,¬β,�α ⇒ γ
(mix)

.... (ex-left)
¬β, �,�α ⇒ γ

....
� ⇒ α

....
β,� ⇒ γ

�,�α ⇒ γ
(mix)

β, �,�α ⇒ γ
(we-left)

�,�α ⇒ γ
(ex-middle).

Then, (mix) in this proof can be eliminated because the rank concerning this
mix is less than that of the proof presented above.

�
Remark 12 Let GBD, GK3, and GP be the →-less parts of GN4, GN3, and GLP,
respectively. Then, GBD, GK3, and GP are falsification-aware single-succedent
Gentzen-style sequent calculi for the logics BD, K3, and LP, respectively. By the
cut-elimination theorems for GN4, GN3, and GLP, we can obtain the fact that GN4,
GN3, and GLP are conservative extensions of GBD, GK3, and GP, respectively. Then,
we can also obtain the cut-elimination theorems for GBD, GK3, and GP.

3.3 Glivenko Theorem

Next, we prove the Glivenko theorem for fsCL. Prior to proving this theorem, we have
to prove the following lemma.

Lemma 24 For any sequent � ⇒ γ , if fsCL � � ⇒ γ , then LJ � ¬γ, � ⇒.

Proof We prove this lemma by induction on the proofs P of � ⇒ γ in fsCL.We show
some cases.

1. Case (ex-middle): The last inference of P is of the form:

¬α, � ⇒ γ α, � ⇒ γ

� ⇒ γ
(ex-middle).

By induction hypothesis, we have LJ � ¬α,¬γ, � ⇒ and LJ � α,¬γ, � ⇒. Then
we obtain the required fact by:

.... I nd.hyp.

α,¬γ, � ⇒
¬γ, � ⇒ ¬α

(¬right)

.... I nd.hyp.

¬α,¬γ, � ⇒
¬γ, � ⇒ (cut).

2. Case (explosion): The last inference of P is of the form:

� ⇒ ¬α � ⇒ α
� ⇒ γ

(explosion).
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By induction hypothesis, we have LJ � ¬¬α, � ⇒ and LJ � ¬α, � ⇒. Then we
obtain the required fact by:

.... I nd.hyp.

¬α, � ⇒
� ⇒ ¬¬α

(¬right)

.... I nd.hyp.

¬¬α, � ⇒
� ⇒ (cut)

¬γ, � ⇒ (we-left).

3. Case (¬¬left): The last inference of P is of the form:

α, � ⇒ γ

¬¬α, � ⇒ γ
(¬¬left).

By induction hypothesis, we have LJ � α,¬γ, � ⇒. Then we obtain the required
fact by:

.... I nd.hyp.

α,¬γ, � ⇒
¬γ, � ⇒ ¬α

(¬right)

¬¬α,¬γ, � ⇒ (¬left).

4. Case (¬¬right): The last inference of P is of the form:

� ⇒ α

� ⇒ ¬¬α
(¬¬right).

By induction hypothesis, we have LJ � ¬α, � ⇒. Then we obtain the required fact
by:

.... I nd.hyp.

¬α, � ⇒
� ⇒ ¬¬α

(¬right)

¬¬¬α, � ⇒ (¬left).

5. Case (¬∧left): The last inference of P is of the form:

¬α, � ⇒ γ ¬β, � ⇒ γ

¬(α∧β), � ⇒ γ
(¬∧left).
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By induction hypotheses, we have LJ � ¬α,¬γ, � ⇒ and LJ � ¬β,¬γ, � ⇒.
Then we obtain the required fact by:

.... R
¬(α∧β),¬γ, � ⇒ ¬¬α∧¬¬β

.... S
¬(α∧β),¬¬α∧¬¬β ⇒.... (we-left)

¬(α∧β),¬γ, �,¬¬α∧¬¬β ⇒
¬(α∧β),¬γ, � ⇒ (cut)

where R is:

.... I nd.hyp.

¬α,¬γ, � ⇒
¬γ, � ⇒ ¬¬α

(¬right)

.... I nd.hyp.

¬β,¬γ, � ⇒
¬γ, � ⇒ ¬¬β

(¬right)

¬γ, � ⇒ ¬¬α∧¬¬β
(∧right)

¬(α∧β),¬γ, � ⇒ ¬¬α∧¬¬β
(we-left)

and S can be straightforwardly obtained (i.e.,¬(α∧β),¬¬α∧¬¬β ⇒ is provable
in LJ).

6. Case (¬∧right1): The last inference of P is of the form:

� ⇒ ¬α

� ⇒ ¬(α∧β)
(¬∧right1).

By induction hypothesis, we have LJ � ¬¬α, � ⇒. Then we obtain the required
fact by:

.... Q
¬¬(α∧β) ⇒ ¬¬α∧¬¬β.... (we-left)

¬¬(α∧β), � ⇒ ¬¬α∧¬¬β

.... I nd.hyp.

¬¬α, � ⇒
¬¬α∧¬¬β, � ⇒ (∧left1)

¬¬α∧¬¬β,¬¬(α∧β), � ⇒ (we-left)

¬¬(α∧β), � ⇒ (cut)

where Q is:

.... Prop. 11
α ⇒ α

α∧β ⇒ α
(∧left1)

α∧β,¬α ⇒ (¬left)

¬α ⇒ ¬(α∧β)
(¬right)

¬α,¬¬(α∧β) ⇒ (¬left)

¬¬(α∧β) ⇒ ¬¬α
(¬right)

.... Prop. 11
β ⇒ β

α∧β ⇒ β
(∧left2)

α∧β,¬β ⇒ (¬left)

¬β ⇒ ¬(α∧β)
(¬right)

¬β,¬¬(α∧β) ⇒ (¬left)

¬¬(α∧β) ⇒ ¬¬β
(¬right)

¬¬(α∧β) ⇒ ¬¬α∧¬¬β
(∧right).
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7. Case (¬→left1): The last inference of P is of the form:

α, � ⇒ γ

¬(α→β), � ⇒ γ
(¬→left1).

By induction hypothesis, we have LJ � α,¬γ, � ⇒. Then we obtain the required
fact by:

.... I nd.hyp.

α,¬γ, � ⇒
α,¬γ, � ⇒ β

(we-right)

¬γ, � ⇒ α→β
(→right)

¬(α→β),¬γ, � ⇒ (¬left).

8. Case (¬→left2): The last inference of P is of the form:

¬β, � ⇒ γ

¬(α→β), � ⇒ γ
(¬→left2).

By induction hypothesis, we have LJ� ¬β,¬γ, � ⇒. Then we obtain the required
fact by:

.... Q
¬(α→β) ⇒ ¬¬α∧¬¬¬β.... (we-left)

¬(α→β),¬γ, � ⇒ ¬¬α∧¬¬¬β

.... I nd.hyp.

¬β,¬γ, � ⇒
¬γ, � ⇒ ¬¬β

(¬right)

¬¬¬β,¬γ, � ⇒ (¬left)

¬¬α∧¬¬¬β,¬γ, � ⇒ (∧left1)
¬¬α∧¬¬¬β,¬(α→β),¬γ, � ⇒ (we-left)

¬(α→β),¬γ, � ⇒ (cut)

where Q is:

.... Prop. 11
α ⇒ α

α,¬α ⇒ (¬left)

α,¬α ⇒ β
(we-right)

¬α ⇒ α→β
(→right)

¬α,¬(α→β) ⇒ (¬left)

¬(α→β) ⇒ ¬¬α
(¬right)

.... Prop. 11
β ⇒ β

α, β ⇒ β
(we-left)

β ⇒ α→β
(→right)

β,¬(α→β) ⇒ (¬left)

¬(α→β) ⇒ ¬β
(¬right)

¬¬β,¬(α→β) ⇒ (¬left)

¬(α→β) ⇒ ¬¬¬β
(¬right)

¬(α→β) ⇒ ¬¬α∧¬¬¬β
(∧right).
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9. Case (¬→right): The last inference of P is of the form:

� ⇒ α � ⇒ ¬β

� ⇒ ¬(α→β)
(¬→right).

By induction hypotheses, we have LJ � ¬α, � ⇒ and LJ � ¬¬β, � ⇒. Then we
obtain the required fact by:

.... I nd.hyp.

¬α, � ⇒
� ⇒ ¬¬α

(¬right)

.... I nd.hyp.

¬¬β, � ⇒
� ⇒ ¬¬¬β

(¬right)

� ⇒ ¬¬α∧¬¬¬β
(∧right)

¬¬(α→β), � ⇒ ¬¬α∧¬¬¬β
(we-left)

.... Q
¬¬α∧¬¬¬β,¬¬(α→β) ⇒.... (we-left)

¬¬α∧¬¬¬β,¬¬(α→β), � ⇒
¬¬(α→β), � ⇒ (cut)

where Q is:

.... Prop. 11
α ⇒ α

α,¬β ⇒ α
(we-left)

.... Prop. 11
β ⇒ β

β, α ⇒ β
(we-left)

β, α,¬β ⇒ (¬left)

α,¬β, α→β ⇒ (→left)

α,¬β ⇒ ¬(α→β)
(¬right)

α,¬β,¬¬(α→β) ⇒ (¬left)

α,¬¬(α→β) ⇒ ¬¬β
(¬right)

α,¬¬¬β,¬¬(α→β) ⇒ (¬left)

¬¬¬β,¬¬(α→β) ⇒ ¬α
(¬right)

¬¬α,¬¬¬β,¬¬(α→β) ⇒ (¬left)

¬¬α,¬¬α∧¬¬¬β,¬¬(α→β) ⇒ (∧left2)
¬¬α∧¬¬¬β,¬¬α∧¬¬¬β,¬¬(α→β) ⇒ (∧left1)

¬¬α∧¬¬¬β,¬¬(α→β) ⇒ (co-left)

�

Theorem 25 (Glivenko theorem for fsCL) For any formula α, fsCL� ⇒ α if and only
if LJ � ⇒ ¬¬α.

Proof

1. (�⇒): Suppose fsCL � ⇒ α. Then, we have that LJ � ¬α ⇒ by Lemma 24. Thus,
we obtain the required fact LJ � ⇒ ¬¬α by applying (¬right).

2. (⇐�): Suppose LJ � ⇒ ¬¬α. Then, we have fsCL � ⇒ ¬¬α, because LJ (intu-
itionistic logic) is regarded as a subsystem of fsCL (classical logic). Thus, we obtain
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the required fact fsCL � ⇒ α by:

⇒ ¬¬α

.... Prop. 1
α ⇒ α

¬¬α ⇒ α
(¬¬left)

⇒ α (cut).

�

4 RelatedWorks

Some single-succedent Gentzen-style sequent calculi for classical logic can be
obtained from Gentzen’s LJ for intuitionistic logic by adding one of the following
inference rules.7

α→β, � ⇒ α

� ⇒ α
(Peirce)

¬α, � ⇒ α

� ⇒ α
(r-Peirce)

¬α, � ⇒ ⊥
� ⇒ α

(Raa).

The rule (Peirce), which corresponds to the Peirce formula ((α→β)→α)→α, was
introduced and studied by Curry (1963); Felscher (1975); Gordeev (1987); Africk
(1992). The cut-elimination theorem for LJ + (Peirce) was proved and investigated
by them. The subformula property for a version of LJ + (Peirce) without the falsity
constant ⊥ was shown by Gordeev. Specifically, Gordeev (1987) showed that β in
(Peirce) can be restricted to a subformula of formulas in (�, α).

The rule (r-Peirce) was introduced by Curry (1963) and further studied by Gordeev
(1987) and Africk (1992). They then proved the cut-elimination theorem for LJ + (r-
Peirce). Through the cut-elimination theorem, a weak subformula property allowing
negation formulas canbeobtained forLJ+ (r-Peirce).A simple embedding-basedproof
of the cut-elimination theorems for LJ + (Peirce) and LJ + (r-Peirce) was proposed by
Africk (1992). This method is used in the present study to prove the cut-elimination
theorem for fsCL.

7 (Peirce), (r-Peirce), (Raa), as well as (ex-middle) can be seen as the sequent calculus rule versions of
the corresponding natural deduction rules. For example, (Raa) is the sequent calculus rule version of the
well-known natural deduction rule of the form:

[¬α]....⊥
α (RAA).
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The rule (r-Peirce) is regarded as an instance of (ex-middle) because it is derivable
in cut-free fsCL by:

¬α, � ⇒ α

....
α ⇒ α.... (we-left)

α, � ⇒ α

� ⇒ α
(ex-middle).

Similar to (ex-middle), the rule (r-Peirce) is admissible in cut-free LK. This can be
shown in a similar manner as that for (ex-middle) because (r-Peirce) can be derived
using (cut) and (¬right) in LK.

The rule (Raa) was studied by Negri and von Plato (2001). As mentioned in Negri
and von Plato (2001), obtaining a direct proof of cut-elimination theorems for some
Gentzen-style sequent calculi with (Raa) is difficult. They showed that the structural
rules, including the cut rule, are admissible in a Gentzen-style sequent calculus G3ip
(for intuitionistic logic) with an inference rule of the form:

¬p, � ⇒ ⊥
� ⇒ p

(Raa-at)

where p is a propositional variable. They also showed that G3ip + (Raa-at) is not a
system of classical logic but rather a system of intermediate logic referred to as stable
logic.

Some single-succedent Gentzen-style sequent calculi for classical logic can also be
obtained from LJ by adding one of the following inference rules.

¬α, � ⇒ γ α, � ⇒ γ

� ⇒ γ
(ex-middle)

¬p, � ⇒ γ p, � ⇒ γ

� ⇒ γ
(ex-middle-at)

where γ is a formula or the empty multiset and p is a propositional variable.
The rules (ex-middle) and (ex-middle-at) were introduced by von Plato (1999);

Negri and von Plato (2001), and (ex-middle) is re-investigated in the present study. In
von Plato (1999);Negri and vonPlato (2001), he showed that a cut rule and (ex-middle)
are admissible in some versions of cut-free LJ with (ex-middle-at). Through these
results, he proved that a weak subformula property allowing propositional variables
and negations of propositional variables holds for these versions.8

8 In von Plato (1999); Negri and von Plato (2001), he also introduced the following natural deduction rules
(Nem) and (Nem-at) that correspond to (ex-middle) and (ex-middle-at), respectively.

[α]....
γ

[¬α]....
γ

γ (Nem)

[p]....
γ

[¬p]....
γ

γ (Nem-at)

where p is a propositional variable. He construct natural deduction systems (for classical logic) with these
rules and proved a normalization theorem for the natural deduction system with (Nem-at).
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Some single-succedent Gentzen-style sequent calculi for classical logic can also be
obtained from LJ by adding one of the following inference rules, which are slightly
modified versions of the previous rules.

α→β, � ⇒ γ δ→α, � ⇒ γ

� ⇒ γ
(g-Dmt)

α→β, � ⇒ γ α, � ⇒ γ

� ⇒ γ
(g-Peirce)

¬α, � ⇒
� ⇒ α

(s-Peirce)

where γ is a formula or the empty multiset.
The rules (g-Dmt) and (g-Peirce), which Kamide (2005a) referred to as the general-

ized Dummett rule and generalized Peirce rule, respectively, are generalized versions
of (ex-middle). The rule (s-Peirce),which inKamide (2005a)was referred to as the spe-
cialized Peirce rule, is a specialized version of (r-Peirce) and (Raa). The rule (s-Peirce)
was originally studied by Gordeev (1987) based on a different cut-free formulation
of LJ with a specialized negation-cut rule. The rule (s-Peirce) of Gordeev is not very
different from (Raa) of Negri and von Plato, but (s-Peirce) has the advantage of being
able to derive a weak subformula property without ⊥. The cut-elimination theorems
for LJ + (g-Dmt), LJ + (g-Peirce), and LJ + (s-Peirce) were proved by Kamide (2005a)
using Africk’s proof method (1992). He also showed that LJ + (s-Peirce) has a weak
subformula and Craig interpolation properties. Note that β in (g-Dmt) and (g-Peirce)
can be restricted to ⊥ and that δ in (g-Dmt) can be restricted to � (i.e. the provability
is not changed by these restrictions). The cut-elimination theorem holds for LJ with
one of these restricted rules. Similar to (ex-middle), the rule (s-Peirce) is admissible
in cut-free LK. This can be shown in a similar manner as for (ex-middle) because
(s-Peirce) can be derived using (cut) and (¬right) in LK.

A single-succedent Gentzen-style sequent calculus for Dummett’s LC can be
obtained from LJ by adding the following inference rule, which is regarded as an
instance of (g-Dmt).

α→β, � ⇒ γ β→α, � ⇒ γ

� ⇒ γ
(Dmt)

where γ is a formula or the empty multiset. The rule (Dmt) corresponds to the law of
linearity (α→β) ∨ (β→α). The rule (Dmt) and a multiple-succedent Gentzen-style
sequent calculus, G3ipm with (Dmt), for Dummett’s LC were discussed in Negri and
von Plato (2001).

We can consider the following rules, which are restricted and specialized versions
of (Dmt).

α→β, � ⇒ β→α

� ⇒ β→α
(r-Dmt)

α→β, � ⇒
� ⇒ β→α

(s-Dmt)

However, we have yet to obtain the cut-elimination theorems for LJ + (r-Dmt) and LJ
+ (s-Dmt), as they remain open problems.
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A single-succedent Gentzen-style sequent calculus for the logic of weak excluded
middle can be obtained from LJ by adding the following inference rule, which is
regarded as an instance of (ex-middle).

¬¬α, � ⇒ γ ¬α, � ⇒ γ

� ⇒ γ
(we-ex-middle)

where γ is a formula or the empty multiset. The rule (we-ex-middle) corresponds to
the law of weak excluded middle ¬¬α∨¬α. The cut-elimination theorem for LJ +
(we-ex-middle) was shown by Negri and von Plato (2001).

We can consider the following rules, which are restricted and specialized versions
of (we-ex-middle).

¬¬α, � ⇒ ¬α

� ⇒ ¬α
(w-r-Peirce)

¬¬α, � ⇒
� ⇒ ¬α

(w-s-Peirce)

However, we have yet to obtain the cut-elimination theorems for LJ + (w-r-Peirce)
and LJ + (w-s-Peirce), as they remain open problems.

5 Concluding Remarks

In this study, we introduced the falsification-aware single-succedent Gentzen-style
sequent calculus fsCL for classical logic. The proposed calculus fsCL was obtained in
a simple manner from the existing falsification-aware single-succedent Gentzen-style
sequent calculus GN4 for Nelson’s paradefinite (or paraconsistent) four-valued logic
N4 (Almukdad & Nelson, 1984; Nelson, 1949) by adding the rules (explosion), (ex-
middle), and (we-right). The rules (explosion) and (ex-middle), which are referred to as
the rules of explosion and excluded middle, correspond to the principle of explosion
and the law of excluded middle, respectively. Similar to the cut rule in Gentzen’s
LK for classical logic, we addressed the explosion- and excluded-middle-elimination
theorems for LK. These theorems state that the rules (explosion) and (ex-middle) are
admissible in cut-free LK.We then proved the cut-elimination and Glivenko theorems
for fsCL.

We also introduced the falsification-aware single-succedent Gentzen-style sequent
calculi GN3 and GLP for Nelson’s paracomplete three-valued logic N3 (Almukdad
& Nelson, 1984; Nelson, 1949) and an extension ELP (i.e., PIs (Batens, 1980), RM⊃

3
(Avron, 1986), Pac (Avron, 1991), or PCont (Rozonoer, 1989)) of the logic of para-
dox LP (Asenjo, 1966; Priest, 1979), respectively. The proposed calculus GN3 was
obtained from GN4 by adding (explosion) and (we-right), and the proposed calculus
GLP was obtained from GN3 by replacing (explosion) with (ex-middle). We then
proved the cut-elimination theorems for GN3 and GLP.

We also observed that some falsification-aware single-succedent Gentzen-style
sequent calculi for Belnap–Dunn logic BD (Belnap, 1977a, b; Dunn, 1976, 2019),
Kleene’s strong three-valued logic K3 (Kleene, 2009), and the logic of paradox LP
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Fig. 1 Relationship among logics

(Priest, 1979) can be obtained as subsystems of the→-less fragment of fsCL by delet-
ing (explosion), (ex-middle), and/or (we-right). Thus, we showed that the proposed
falsification-aware single-succedent Gentzen-style framework, which is constructed
based on (explosion) and (ex-middle), is regarded as a unified and modular framework
for formalizing and handling classical, paradefinite, paraconsistent, and paracomplete
logics.

Figure 1 shows the relationship among the logics discussed in this study. CL and
CL− in Fig. 1 denote classical logic and the→-less fragment of classical logic, respec-
tively. In addition, exp and ex-m in Fig. 1 denote the principle of explosion and the law
of excluded middle, respectively. The arrow denoted as L1 −→ L2 in Fig. 1 indicates
that L2 is an extension of L1 (i.e., L1 ⊆ L2). For example, K3 and LP are obtained
from BD by adding the principle of explosion and the law of excluded middle, respec-
tively, and BD, K3, and LP are regarded as the →-less fragment of N4, the →-less
fragment of N3, and the →-less fragment of ELP, respectively.

In the following, we illustrate another approach to falsification-aware formal
systems. Some falsification-aware systems based on Łukasiewicz-style refutation
systems have been proposed (Łukasiewicz, 1987; Goranko, 1994; Skura, 1995,
2002, 2011, 2017; Goranko, 2019; Goranko et al., 2020; Moore, 2021). Compared
with the proposed falsification-aware single-succedent Gentzen-style sequent calculi,
Łukasiewicz-style refutation systems have the following inference rules, referred to
as reverse substitution and reverse modus ponense, respectively.

� e(α)

� α

� α→β � β

� α

where � and � represent refutation and verification, respectively, and e(α) represents
a substitution instance of α. The rule of reverse modus ponense intuitively means
that if a conditional is provable and its consequent is refutable, then its antecedent is
refutable.

For example, some Łukasiewicz-style refutation systems (Łukasiewicz, 1987) for
modal logics including S4 were introduced in Goranko (1994); Skura (1995, 2002).
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A Łukasiewicz-style refutation system for Wansing’s nonmonotonic modal logic W
(Wansing, 1995) was introduced by Skura (2017), wherein the decidability and finite
model propertywere proved forWusing the refutation system. The logicW is regarded
as an extension of Nelson’s N4. A basic theory (and a meta proof theory) for hybrid
deductive-refutation systems was proposed by Goranko (2019), wherein the concept
of a hybrid derivation system of natural deduction for classical logic was illustrated.
Hybrid deductive-refutation systems for FDE-based logics (i.e., logics based on first-
degree entailment logic or Belnap–Dunn logic) were introduced and investigated by
Moore (2021), wherein a unified framework for formalizing and handling classical,
paradefinite, paraconsistent, and paracomplete FDE-based logics was obtained. The
present study was inspired by this idea of a unified framework. For a comprehensive
survey of Łukasiewicz-style refutation systems, see (Goranko et al., 2020).

Finally, we address certain problems that have yet to be solved. The first problem
is to construct a cut-free falsification-aware single-succedent Gentzen-style sequent
calculus for intuitionistic logic. This type of calculus cannot be obtained based onGN4
because Gentzen’s LJ is not an extension of GN4. The second problem is to construct
cut-free falsification-aware single-succedent Gentzen-style sequent calculi for some
intermediate logics including Dummett’s LC and the logic of weak excluded middle.
The final problem is to construct modal extensions of fsCL, GN4, and GN3.
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