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Abstract
R. Suszko’s Sentential Calculus with Identity SCI results from classical propositional
calculus CPC by adding a new connective ≡ and axioms for identity ϕ ≡ ψ (which
we interpret here as ‘propositional identity’). We reformulate the original semantics
of SCI using Boolean prealgebras which, introduced in different ways, are known
in the literature as structures for the modeling of (hyper-) intensional semantics. We
regard intensionality here as a measure for the discernibility of propositions (and
hyperintensionality as a high degree of intensionality). As concrete examples of SCI-
based intensional modeling, we review and study algebraic semantics of some Lewis-
style modal logics in the vicinity of S3 and present conditions under which those
modal systems can be restored, in a precise sense, as certain axiomatic extensions
of SCI . This generalizes work of Suszko which is focused on the modal systems S4
and S5. Our approach is particularly intended as a proposal to consider and to further
study SCI (and its extensions) as a general framework for the modeling of (hyper-)
intensional semantics.

Keywords Non-Fregean logic · Boolean prealgebra · Intensional semantics ·
Hyperintensional semantics · Modal logic

1 Introduction

1.1 The Sentential Calculus with Identity SCI

Roman Suszko’s introduction (Bloom&Suszko, 1972) of the Sentential Calculus with
Identity (SCI), was a consequence of his work on non-Fregean logics (see, e.g. Suszko,
1975). According to Gottlob Frege, the denotation (referent, Bedeutung) of a sentence
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(a formula) is nothing but a truth-value. This principle, called by Suszko the Fregean
Axiom, can be formalized as (ϕ ↔ ψ) → (ϕ ≡ ψ) where ϕ ≡ ψ reads: ‘ϕ and ψ

have the same denotation’. The essential feature of a non-Fregean logic is the failure
of that Fregean Axiom: even if two formulas ϕ,ψ have the same truth-value in a given
model, i.e. ϕ ↔ ψ is satisfied, they may have different denotations, i.e. ϕ �≡ ψ . SCI
can be seen as a basic non-Fregean logic that extends classical propositional logicCPC
by an identity connective ≡ along with corresponding axioms. More precisely, the set
Fm≡ of formulas of SCI is inductively defined over an infinite set V of propositional
variables x0, x1, . . ., logical (i.e. truth-functional) connectives ⊥, �, ¬, ∨, ∧, → and
an identity connective ≡ for formulas of the form (ϕ ≡ ψ). The axioms of SCI then
are given by all formulas having the form of a theorem of CPC or are axioms of
(propositional) identity according to the following schemes:

• (id1) ϕ ≡ ϕ

• (id2) (ϕ ≡ ψ) → (ϕ → ψ)

• (id3) (ϕ ≡ ψ) → (¬ϕ ≡ ¬ψ)

• (id4)–(id7) ((ϕ1 ≡ ψ1) ∧ (ϕ2 ≡ ψ2)) → ((ϕ1 ∗ ϕ2) ≡ (ψ1 ∗ ψ2)),
where ∗ ∈ {∨,∧,→,≡}, respectively.
With Modus Ponens MP as the only inference rule, the notion of derivation is

defined in the usual way. We write Φ �SCI ϕ if there is a derivation of ϕ ∈ Fm≡ from
a set Φ ⊆ Fm≡.

There are slightly different axiomatizations of SCI in the literature, and the partic-
ular choice of classical connectives for the underlying object language has a certain
impact on its expressiveness [the language given in our main reference Bloom and
Suszko (1972) is based on ¬, → besides the identity connective]. For example,
(ϕ ∨ ψ) ≡ (¬ϕ → ψ) is not a theorem, i.e. ϕ ∨ ψ and ¬ϕ → ψ may have dif-
ferent semantics although they are logically equivalent. However, all relevant results
on logic SCI are independent from the actual choice of logical connectives, see also
footnote 2 of Bloom and Suszko (1972). We will therefore assume that logic SCI is
generally defined as in the present paper.

The identity axioms ensure that propositional identity≡ forms a congruence relation
on formulas which refines material equivalence ↔. Indeed, (ϕ ≡ ψ) → (ϕ ↔ ψ) as
well as (ϕ ≡ ψ) → (ψ ≡ ϕ) and ((ϕ ≡ ψ) ∧ (ψ ≡ χ)) → (ϕ ≡ χ) are derivable.
The ‘compatibility’ of the defined equivalence relation with all connectives of the
language is expressed by axioms (id3) and (id4)–(id7). As already observed in Bloom
and Suszko (1972), replacing (id3)–(id7) by the single scheme1

(ϕ ≡ ψ) → (χ [x := ϕ] ≡ χ [x := ψ]), (1)

which we call the Substitution Principle SP, results in a deductively equivalent sys-
tem. SP essentially says that formulas with the same denotation can be replaced by
each other in any context. This principle can be seen as a particular instance of a
general ontological law known in the literature as the indiscernibility of identicals or

1 χ [x := ϕ] is the result of substituting ϕ for every occurrence of variable x in χ . The concept can be
formally defined in the obvious way by induction on the construction of χ .
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Leibniz’s law. SP also represents a necessary condition for the existence of a natural
propositional semantics. In fact, if we interpret logical connectives and further oper-
ators of the object language semantically as functions on propositions, then SP says
that all these functions are well-defined: identical arguments yield identical function
values. For instance, SP holds in classical and intuitionistic propositional logic if we
interpret propositional identity ϕ ≡ ψ by ϕ ↔ ψ . In the language of modal logic,
we can introduce an identity connective defining (ϕ ≡ ψ) := �(ϕ ↔ ψ). Under
this assumption, SP then holds in the Lewis modal systems S3, S4 and S5 though it is
not valid in the weaker Lewis systems S1 and S2, cf. (Lewitzka, 2015, 2016; Suszko,
1971). We shall discuss that point in more detail in chapter 4 [Lewis modal logics
S1–S5 were introduced as axiomatic systems in Lewis and Langford (1959); a study
of these systems, including semantic aspects, can be found in Hughes and Cresswell
(1996)].

1.2 Intensionality as a Measure for the Discernibility of Propositions

We strictly distinguish between formulas (as syntactic objects of the underlying formal
language) and propositions (as semantic objects given as elements of some model-
theoretic universe). Formulas denote propositions, i.e. the semantics (denotation) of a
formula is a proposition. When we say “proposition ϕ”, then we actually mean “the
proposition denoted by ϕ”. In the case of classical propositional logic CPC, there are
only two propositions, the True and the False, and the denotation of a formula can
be identified with its truth-value (this corresponds to Frege’s view). In the opposite
extreme, any two different formulas denote different propositions. In this case, the
denotation of a formula can be identified with its intension (cf. Examples 2.13 and
2.14 below).2

The phenomena of extensionality, intensionality and hyperintensionality are often
explained in the followingway (we consider here only classical logics, i.e. the classical
interpretation of logical connectives), cf. Leitgeb (2019).An operator is extensional (or
creates an extensional context) if its application to formulas with the same truth-value
(extension) results again in formulas having the same truth-value. Considering the
scenario of possible worlds semantics, an operator is viewed as intensional if it is not
extensional and if additionally its application to formulas having the same truth-values
at all accessibleworlds results in formulaswith the same truth-value at the givenworld.
If the latter condition is not satisfied, then the operator is regarded as hyperintensional
[the notion of hypterintensionalitywas originally introduced byCresswell (1975)]. For
instance, the modal operator � of normal modal logics creates an intensional context:
the fact that two formulas ϕ andψ have the same truth-value at a given world does not
imply that the truth-values of�ϕ and�ψ are equal, too; however, if�(ϕ ↔ ψ) is true
at the givenworld, i.e. ϕ andψ have the same truth-values at all accessible worlds, then
�ϕ and�ψ have the same truth-value at the givenworld – this is ensured by axiomKof

2 The intension (sense) of a formula is amental content expressed by the formula’s syntax: e.g. x∧y and y∧x
have different intensions. However, intension and syntax are not always in one-to-one correspondence. In a
logic with propositional quantifiers, one may argue that the distinct formulas ∀x(x → x) and ∀y(y → y)

have the same intension.
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normal modal logics. It follows that � is not hyperintensional. Hyperintensionality is
particularly given if the application of an operator to two logically equivalent formulas
may result in formulas with different truth-values; in Cresswell’s words (Cresswell,
1975): “Hyperintensional contexts are simply contexts which do not respect logical
equivalence”. Intuitively, in a hyperintensional context there exist more denotations,
i.e. propositions, than in the context described by standard possible worlds semantics:
in fact, if the application of an operator to ϕ and ψ results in formulas with different
truth-values, then we may assume that ϕ and ψ refer to different propositions.3

We propose here an explanation of the three contexts by means of the discerni-
bility of propositions. An extensional context is given if only two propositions can
be distinguished, namely the two classical truth-values (extensions): the True and the
False. The operators of the language then are extensional in the above sense and can
be interpreted as Boolean functions on two truth-values. In normal modal logics, a
proposition is given as a set of possible worlds: the proposition denoted by ϕ is the set
of those worlds which are accessible from the given world and where ϕ is satisfied.
Then more than two (actually, infinitely many) propositions can be distinguished: ϕ

and ψ denote the same proposition iff �(ϕ ↔ ψ) is true at the given world (i.e. ϕ

and ψ are true at exactly the same accessible worlds). Of course, logically equiva-
lent formulas always denote the same proposition. The context is hyperintensional if
more propositions can be discerned than in the framework of standard possible worlds
semantics. This happens in the case of SCI where, for instance, logically equivalent
formulas may denote different propositions: e.g. ¬¬x ≡ x is not valid in SCI , i.e.
there is a model where ¬¬x and x denote different propositions (different elements
of the model-theoretic universe).

An intension (or sense) refers to a mental content (which is more than a truth-
value), and we understand intensionality as the possibility or capability of a system
to deal semantically with intensions. We regard hyperintensionality here as a strong
form of intensionality (this interpretation slightly deviates from the usual view where
hyperintensionality is regarded as something that goes beyond intensionality). We
assume the existence of different degrees of intensionality: the more propositions
can be discerned the higher is the degree of intensionality. In the extensional case of
CPC, there are only two propositions (cf. Example 2.13 below), the Fregean Axiom
(ϕ ≡ ψ) ↔ (ϕ ↔ ψ) is valid. Whenever the Fregean axiom fails, we have a certain
degree of intensionality as it is the case in normalmodal logics.However, normalmodal
logics still validate the principle (ϕ ≡ ψ) ↔ �(ϕ ↔ ψ) which can be restored in
certain extensions of SCI (see Sect. 4). If this principle also fails andmore propositions
can be discerned than in modal logic where propositional identity is given by strict
equivalence �(ϕ ↔ ψ), then we have a hyperintensional context, a high degree of
intensionality. The highest degree of intensionality is achieved if the intension of any
formula can be identified with its denotation. In our basic propositional language, that
is the case if any two different formulas denote different propositions, a context which
also can be represented in SCI by an intensional model, cf. Example 2.14 below. Thus,

3 The epistemic notion of belief, represented by an operator B, is usually viewed as hyperintensional: even
if ϕ and ψ are logically equivalent, Bϕ and Bψ may have different truth-values depending on the agents
mental state. Such a context could be formalized adequately by a model where ϕ and ψ denote different
propositions.
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in an intensional model, the intension of a formula (i.e. a mental content expressed by
the formula’s syntax) is in one-to-one correspondence with the formula’s semantics.
We assume the existence of further degrees of intensionality which can be formalized
either by appropriate axiomatic extensions of SCI or by similar logics having an
identity connective such as studied in Ishii (1998).

1.3 Some Lewis-Style Modal Logics as Examples of Intensional Logics Modeled as
Specific SCI-Extensions

We review and study some Lewis-style modal logics as particular examples of inten-
sional logics that can bemodeled in the object language of SCI as axiomatic extensions
of the logic SCI . We shall refer to such extensions as SCI-extensions. As already men-
tioned above, in the language of propositional modal logic, scheme SP of SCI is valid
in Lewis modal logics S3–S5 if the identity connective is defined as strict equivalence:
(ϕ ≡ ψ) := �(ϕ ↔ ψ). Adding SP to Lewis modal system S1 results in a logic
introduced in Lewitzka (2016) under the name S1+SP. In the present paper, we will
refer to it as S1SP. We then get the hierarchy S1SP � S3 � S4 � S5 of Lewis
(-style) modal logics for which there is a unifying framework of algebraic semantics
based on Boolean algebras. We shall explore that semantics in some detail in Sect. 4.
The strong connection between certain SCI-extensions and Lewis modal systems was
already observed in Suszko (1971); Bloom and Suszko (1972)where a correspondence
between specific extensions of SCI and the modal logics S4 and S5 is established.

In the present paper, we study a kind of equivalences between SCI-extensions
and Lewis-style modal systems (not restricted to S4 and S5) in a systematic way
and establish precise criteria for these equivalences. We consider here both object
languages separately – the language of SCI versus the language of propositional modal
logic – and define appropriate translations between them. Results due to Suszko (1971)
then can be interpreted as special cases of our general approach.

Themain aim of this investigation is to present the logic SCI as a general framework
for the modeling of (hyper-) intensional semantics. For this purpose, we reformulate
Suszko’s original semantics and define SCI-models explicitly as Boolean prealgebras
(Boolean prelattices). Such structures are defined in different ways in the literature
and are considered appropriate for themodeling of (hyper-) intensional reasoning: see,
e.g. Fox and Lappin (2005), Pollard (2008), also Lewitzka (2015). Our presentation
then establishes an explicit connection between SCI and recent research on intensional
semantics.

2 Boolean Prealgebras as Models of SCI

Recall that a preorder on a set M is a binary relation on M satisfying reflexivity and
transitivity (if the relation is in addition antisymmetric, then we are dealing with a
partial order). We also expect the reader to be familiar with basic concepts concerning
Boolean algebras such as filters and ultrafilters and quotient algebras.
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Definition 2.1 A structure

B = (B,∨B,∧B,¬B,⊥B,�B,→B,�B)

of type (2, 2, 1, 0, 0, 2) with a preorder �B on universe B is a Boolean prealgebra if
the following two conditions are satisfied:

• The relation≈ defined by a ≈ b :⇔ (a �B b and b �B a) is a congruence relation
on B such that the quotient

B/≈ = (B/≈,∨B/≈,∧B/≈,¬B/≈,⊥B/≈,�B/≈,→B/≈)

is a Boolean algebra, where B/≈ = {a | a ∈ B} is the universe of congruence
classes a of elements a ∈ B modulo ≈, and the operations ∨B/≈, ∧B/≈, etc. are
defined in the usual way.

• For all a, b ∈ B:
a �B b ⇔ a ≤B/≈ b,

where ≤B/≈ is the underlying lattice order of Boolean algebra B/≈.

Given a Boolean prealgebra B, we refer to the quotient B/≈ as the associated Boolean
algebra. If the context is clear, we usually omit superscripts and write ∨ instead of ∨B
etc.

Of course, every Boolean algebra together with its lattice order (regarded as a pre-
order) is trivially a Boolean prealgebra. However, even if a given Boolean prealgebra
with given preorder � is a Boolean algebra, its lattice order ≤ may differ from � (cf.
Lemma 2.4 below). Recall that every Boolean algebra is a Heyting algebra. Those
Heyting algebras which are not Boolean algebras are non-trivial, natural examples
of Boolean prealgebras. In order to see this, consider any designated ultrafilter U of
a given Heyting algebra (which exists by Zorn’s Lemma) and the preorder a � b
:⇔ a → b ∈ U , where a → b is the relative pseudo-complement of a w.r.t. b.
Then the resulting quotient algebra modulo ≈ is the two-element Boolean algebra (of
course, there may exist further congruence relations on a given Heyting algebra that
result in a Boolean quotient algebra). Finally, one easily verifies that also the condition
a � b ⇔ a ≤ b holds for all elements a, b of the Heyting algebra, where ≤ is here
the lattice order of the two-element quotient algebra.

Note that we cannot do without the second condition of Definition 2.1 since it is not
implied by the first condition. Consider, for instance, the 4-element Boolean algebra
Pow(2) with the preorder � given by set-theoretic inclusion on Pow(2) extended by
the tuple ({1}, {2}). So we have in particular {1} � {2}. Relation ≈ is the identity on
Pow(2) and the resulting quotient algebra is, of course, again the Boolean algebra
Pow(2) with lattice order ⊆. However, the second condition of Definition 2.1 fails
since we have {1} � {2}, though {1} � {2}.

If one deals with Boolean algebras, then one usually works with a reduced (‘func-
tionally complete’) set of operations since others are definable such as in the case of
implication: a → b := ¬a ∨ b. This, however, does not hold in general in Boolean
prealgebras. For instance, although a → b ≈ ¬a ∨ b is valid in the class of Boolean
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prealgebras, there exist Boolean prealgebras where a → b �= ¬a ∨ b holds true.
Considering such structures as semantic domains for (classical) propositional logics
enables us to assign different denotations to logically equivalent formulas such as
ϕ → ψ and ¬ϕ ∨ ψ . This results in a hyperintensional semantics.

Definition 2.2 Let B be a Boolean prealgebra with associated Boolean algebra B/≈,
and let F ⊆ B be closed under ≈, i.e. a ∈ F ⇔ b ∈ F whenever a ≈ b, for any
a, b ∈ B. Then we say that F is a filter of B if the set FB/≈ = {a | a ∈ F} is a filter (in
the usual sense) of Boolean algebra B/≈. The notions of proper filter and ultrafilter
of a Boolean prealgebra are defined analogously.

The statements of the following Corollary are immediate consequences from the
definitions and known facts about filters in Boolean (or Heyting) algebras (cf. Chagrov
& Zakharyaschev, 1997).

Corollary 2.3 Let B be a Boolean prealgebra and let F ⊆ B be closed under ≈. Then
the following conditions are equivalent.

• F is a filter of B.
• For all a, b ∈ B, the following two conditions are satisfied. If a, b ∈ F, then

a ∧ b ∈ F. If a ∈ F and a � b, then b ∈ F.
• F �= ∅, and for all a, b ∈ B, if a ∈ F and a → b ∈ F, then b ∈ F.

Let F be a filter. Then F is a proper filter iff F �= B iff ⊥ /∈ F. Furthermore, F is an
ultrafilter iff F is a maximal element (w.r.t. set-theoretic inclusion) among all proper
filters iff a ∈ F or ¬a ∈ F, for any a ∈ B.

Lemma 2.4 Let B be a Boolean prealgebra. If B is itself a Boolean algebra, then its
lattice order ≤ refines the given preorder �, i.e. for all a, b ∈ B: a ≤ b implies a � b.

Proof Suppose the Boolean prealgebra B is a Boolean algebra. Then applying Defini-
tion 2.1 and facts about Boolean algebras, we get for all a, b ∈ B: a ≤ b ⇔ a = a ∧b
⇒ a ≈ a ∧ b ⇔ a = a ∧ b ⇔ a ≤B/≈ b ⇔ a � b. ��

The concept of SCI-model was originally introduced in Bloom and Suszko (1972).
We are now able to present a different definition based on our notion of Boolean
prealgebra.

Definition 2.5 An SCI-model is a structure

M = (M, TRUE,∨M,∧M,¬M,⊥M,�M,→M,≡M,�M)

such that the reduct (M,∨M,∧M,¬M,⊥M,�M,→M,�M) is a Boolean preal-
gebra with some (designated) ultrafilter TRUE ⊆ M , and ≡M is a binary operation
such that for all m, m′ ∈ M the following holds:

m ≡M m′ ∈ TRUE ⇔ m = m′.

The elements of universe M are called propositions, and TRUE is the designated set
of true propositions. (As before, we usually omit superscripts if the context is clear.)
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An assignment (or valuation) of an SCI-model M is a function γ : V → M .
Its canonical extension from Fm≡ to M , to which we refer again as γ , satisfies
the following: γ (⊥) = ⊥M, γ (�) = �M, and γ (ϕ ∗ ψ) = γ (ϕ) ∗M γ (ψ) for
∗ ∈ {∨,∧,→,≡}, i.e., γ : Fm≡ → M can be seen as an ‘homomorphism’ from the
object language to a given SCI-model M.

Definition 2.6 If M is an SCI-model and γ is an assignment of M, then we call the
tuple (M, γ ) an SCI-interpretation. The satisfaction relation between interpretations
and formulas is defined as follows:

(M, γ ) � ϕ :⇔ γ (ϕ) ∈ TRUE.

If (M, γ ) � ϕ for all assignments γ ∈ MV , then we write M � ϕ and say that M
validates ϕ (or ϕ is valid in M). As usual, a set of formulas is satisfied (validated) if
all its elements are satisfied (validated). The relation of logical consequence is defined
in the standard way: Φ �SCI ϕ :⇔ Mod(Φ) ⊆ Mod({ϕ}), where Mod(Ψ ) is the
class of all SCI-interpretations satisfying Ψ .

Corollary 2.7 The connective of propositional identity has the intended meaning, i.e.
for any interpretation (M, γ ) and any ϕ,ψ ∈ Fm≡: (M, γ ) � ϕ ≡ ψ iff γ (ϕ) =
γ (ψ) iff ϕ and ψ denote the same proposition in (M, γ ).

Proof (M, γ ) � ϕ ≡ ψ iff γ (ϕ ≡ ψ) ∈ TRUE iff γ (ϕ) ≡M γ (ψ) ∈ TRUE iff
γ (ϕ) = γ (ψ), by definition of operation ≡M. ��

In Bloom and Suszko (1972), the authors consider only the logical connectives ¬
and →, and consequently they define an SCI-model as a structureA = (A,¬,→,≡)

that satisfies certain conditions according to Bloom and Suszko (1972, Definition
1.6). In the following, we adapt that definition to our notation in order to show that
the original definition from Bloom and Suszko (1972) is equivalent to our notion
presented inDefinition 2.5 above. The equivalence is not obvious since both definitions
are conceptually different. In particular, the original approach of Bloom and Suszko
(1972) hides the prelattice structure which is an essential aspect of our notion of
SCI-model and crucial for modeling (hyper-) intensionality explicitly.

The original concept of SCI-model from Bloom and Suszko (1972), adapted to our
notations, can be defined in the following way:

Definition 2.8 Let us call a structure

M = (M, TRUE,∨,∧,¬,⊥,�,→,≡)

an original SCI-model if it is an algebra of type (2, 2, 1, 0, 0, 2, 2)with a proper subset
TRUE � M of its universe such that the following conditions are satisfied.

• The set TRUE is admissible, i.e. for any valuation γ : Fm≡ → M and any axiom
ϕ of SCI , it holds that γ (ϕ) ∈ TRUE.4

4 Actually, this notion is stronger than the notion of admissible defined in Bloom and Suszko (1972,
Definition 1.6) where only a finite set of axiom schemes of CPC is considered (recall that we consider here
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• TRUE is closed, i.e. for any a, b ∈ M : a ∈ TRUE and a → b ∈ TRUE implies
b ∈ TRUE.

• TRUE is prime, i.e. for any a ∈ M : a ∈ TRUE or ¬a ∈ TRUE.
• TRUE is normal, i.e. for any a, b ∈ M : a ≡ b ∈ TRUE iff a = b.

In terms of the original definition (Bloom & Suszko, 1972, Definition 1.6), the
conditions of the above Definition 2.8 express that TRUE is a prime, normal filter
of the underlying SCI-algebra, where a filter is defined as a proper subset that is
admissible and closed. Thus, Definition 2.8 restores precisely the concept of a model
of SCI originally introduced in Bloom and Suszko (1972, Definition 1.6). The fact that
we are working with a richer propositional language (the object language in Bloom
and Suszko (1972) is based on the smaller set of logical connectives ¬,→) is not
really relevant: all definitions and results can be adapted in the obvious way to the
actually given set of primitive connectives.

The following remark emphasizes that a prime, normal filter has the expected prop-
erties of an ultrafilter. The first two properties are stated in (Proposition 1.15(a), Bloom
and Suszko 1972), and the remaining two follow similarly using classical propositional
logic and the fact that TRUE is admissible and closed.

Remark 2.9 In every original SCI-model, any prime, normal filter TRUE has the
following properties. For all elements a, b:

• a → b ∈ TRUE ⇔ a ∈ TRUE implies b ∈ TRUE.
• a /∈ TRUE ⇔ ¬a ∈ TRUE.
• a ∨ b ∈ TRUE ⇔ a ∈ TRUE or b ∈ TRUE.
• a ∧ b ∈ TRUE ⇔ a ∈ TRUE and b ∈ TRUE.

Theorem 2.10 (Equivalence of the two semantics) The semantics based on Boolean
prealgebras is equivalent to the original semantics given in Bloom and Suszko (1972)
in the following sense.

(i) If M = (M, TRUE,∨,∧,¬,⊥,�,→,≡,�) is an SCI-model according to
Definition 2.5, then the reduct M− = (M, TRUE,∨,∧,¬,⊥,�,→,≡) is an
original SCI-model according to Definition 2.8, i.e. an SCI-model in the sense
of Bloom and Suszko (1972) (with operators for the additional connectives ∨,
∧, ⊥, �).

(ii) If M− = (M, TRUE,∨,∧,¬,⊥,�,→,≡) is an original SCI-model accord-
ing to Definition 2.8 [i.e. a model in the sense of Bloom and Suszko (1972)],
then the expansion M which extends M− by the relation � defined by
a � b :⇔ a → b ∈ TRUE, is an SCI-model according to Definition 2.5.

(iii) The models M and M− in (i) and in (ii) satisfy exactly the same formulas. That
is, for the models in both items (i) and (ii), the following holds: (M, γ ) � ϕ ⇔
(M−, γ ) � ϕ, for any ϕ ∈ Fm≡ and any valuation γ : V → M.

the set of all theorems of CPC as axioms of SCI). However, if TRUE is also closed (see the next item),
then both definitions coincide. In fact, if TRUE is closed and admissible in the sense of Bloom and Suszko
(1972, ), and ϕ has the form of a theorem of CPC, then by induction on the length of derivations it follows
that γ (ϕ) ∈ TRUE (interpret the condition of being closed as modus ponens).
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Proof (i): LetM = (M, TRUE, f∨, f∧, f¬, f⊥, f�, f→, f≡,�) be an SCI-model in
our sense. Then one easily checks that the set TRUE satisfies all the conditions given
in Definition 2.8 (one has to switch between the Boolean prealgebra B underlying
M and the associated Boolean algebra B/≈). For instance, towards admissibility,
we show for the identity axiom (id2) that γ ((ϕ ≡ ψ) → (ϕ → ψ)) ∈ TRUE, for
any given valuation γ . It is enough to show that γ ((ϕ ≡ ψ) → (ϕ → ψ)) belongs
to the corresponding ultrafilter TRUEB/≈ of the associated Boolean algebra. But if
γ (ϕ ≡ ψ) belongs to that ultrafilter, then γ (ϕ ≡ ψ) ∈ TRUE, i.e. γ (ϕ) = γ (ψ), and
thus γ (ϕ) → γ (ψ) ∈ TRUE. The latter implies γ (ϕ → ψ) ∈ TRUEB/≈, whence the
claim follows. The remaining conditions follow in a similar way or from properties of
(ultra-) filters, see also Corollary 2.3. Thus, M− is an original SCI-model.
(ii): LetM− = (M, TRUE,∨,∧,¬,⊥,�,→,≡) be an original SCI-model accord-
ing to Definition 2.8. For a, b ∈ M , we define a � b :⇔ a → b ∈ TRUE.
Furthermore, a ≈ b :⇔ (a � b and b � a). Since TRUE satisfies the conditions of
Definition 2.8, one recognizes that TRUE is ‘deductively closed’, i.e. if γ (Φ) ⊆ TRUE
and Φ �SCI ϕ, then γ (ϕ) ∈ TRUE, for any set Φ ∪ {ϕ} of formulas and any valuation
γ of M−. It follows that � is reflexive and transitive, i.e. a preorder on M , and ≈
is a congruence. In particular, for any propositional formulas ϕ,ψ (without identity
connective), if ϕ ↔ ψ is a theorem of CPC, then γ (ϕ) ≈ γ (ψ), for any valuation γ .
Thus, all Boolean equations are valid in the quotient structureM−/≈which therefore
is a Boolean algebra (actually, it is the two-element Boolean algebra with top element
� = TRUE). In order to verify the second condition of Definition 2.1, it is enough to
show that the equivalence

a � b ⇔ a ∧ b ≈ a

is valid.
“⇒”: Supposea � b. Of course,a∧b � a is always true since the formula (x∧y) → x
is a classical tautology and therefore denotes an element of TRUE under any valuation,
in particular under x �→ a, y �→ b. Now let us verify a � a ∧ b, i.e. a → (a ∧ b) ∈
TRUE. From hypothesis a � b, i.e. a → b ∈ TRUE, and condition (ii) of Definition
2.8 it follows that a ∈ TRUE implies {a, b} ⊆ TRUE. Since TRUE is ‘deductively
closed’, we get that a ∈ TRUE implies a∧b ∈ TRUE. By Remark 2.9(a), we conclude
a → (a ∧ b) ∈ TRUE, i.e. a � a ∧ b.
“⇐”: Suppose a ∧ b ≈ a, in particular, a → (a ∧ b) ∈ TRUE. Since TRUE is
‘deductively closed’, we get a → b ∈ TRUE, i.e. a � b.
Hence,M− together with relation � is a Boolean prealgebra according to Definition
2.1. Finally, the equivalence a ≡ b ∈ TRUE ⇔ a = b is ensured by condition (iii) of
Definition 2.8. Thus, the structure M which results from M− by adding relation �
is an SCI-model according to Definition 2.5 above.
(iii): This follows immediately from the definitions of satisfaction:

(M, γ ) � ϕ ⇔ γ (ϕ) ∈ TRUE ⇔ (M−, γ ) � ϕ. ��
Remark 2.11 (a) Theorem 2.10 shows that for every original SCI model [amodel in the
sense of BloomandSuszko (1972)] there is an SCI-model in the sense of ourDefinition
2.5, and vice-versa, such that exactly the same formulas are satisfied by both models.
Actually, the models of both semantics are essentially the same algebraic structures
interpreted in different ways. Our approach emphasizes the view on SCI-models as
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Boolean prealgebras with an explicitly given preorder. Such objects are crucial for our
understanding and modeling of (hyper-) intensional semantics. In general, a Boolean
prealgebra can be a free algebraic structure in the sense that no equations between for-
mulas are satisfied a priori: if ϕ �= ψ , then ϕ ≡ ψ is false, i.e. ϕ andψ denote different
propositions (see Example 2.14 below for such a model). Nevertheless, constraints in
form of equations may be imposed and (intensional) semantics can be modeled in a
flexible way (e.g. one could require that formulas ϕ and ¬¬ϕ always have the same
semantics, or that all tautologies denote the sameproposition in everymodel). Theorem
2.10 particularly shows that original SCI-models are essentially Boolean prealgebras.
(b) Note that the translations between models given in (i) and (ii) of Theorem 2.10 are
in general not inverse to each other since the underlying preorders may change. For
example, if M is an SCI-model in our sense, then the reduct M− according to (i) is
an original SCI-model. However, if we consider the expansionM∗ ofM− according
to (ii), then the preorder �∗ ofM∗ may be strictly coarser than the preorder � ofM
although both models are based on the same algebraic structure. In any case,� refines
�∗. In fact, a � b implies a ≤ b implies a→b = � implies a → b ∈ TRUE implies
a �∗ b, where ≤ is the lattice order, → is the implication and � is the top element
of the associated Boolean algebra. This proves in particular that the preorder defined
in (ii) of the above theorem is always the coarsest (the largest) possible preorder for a
Boolean prealgebra.5

As SCI is sound and complete with respect to the original semantics presented in
Bloom and Suszko (1972), Theorem 2.10 yields the corresponding result w.r.t. our
equivalent semantics.

Corollary 2.12 (Soundness and Completeness) For any set Φ ∪ {ϕ} ⊆ Fm≡, the
following holds: Φ �SCI ϕ ⇔ Φ �SCI ϕ.

In the following, we are going to sketch out a direct proof of completeness which
will be useful below. Following the usual strategy, it is enough to show that every
consistent set of formulas has a model. Suppose Φ is consistent in SCI . By Zorn’s
Lemma, there is an extension Ψ ⊇ Φ which is maximal consistent in the logic SCI .
By the axioms of propositional identity, the relation ∼= defined by

ϕ ∼= ψ :⇔ (ϕ ≡ ψ) ∈ Ψ

is a congruence relation on Fm≡ (symmetry, transitivity and compatibility with oper-
ations follow from applications of (1), i.e. the Substitution Property SP). Moreover,
by (id2), ϕ ∼= ψ implies: ϕ ∈ Ψ ⇔ ψ ∈ Ψ . For ϕ ∈ Fm≡, let [ϕ] be the congruence
class of ϕ modulo ∼=. Then we put M := {[ϕ] | ϕ ∈ Fm≡}, TRUE := {[ϕ] | ϕ ∈ Ψ }
and define operations ¬[ϕ] := [¬ϕ], ([ϕ] ∗ [ψ]) := [ϕ ∗ ψ], for ∗ ∈ {∨,∧,→,≡},
5 There is, in general, no unique preorder witnessing that the algebraic structure is a Boolean prealgebra.
Actually, we could modify our definition of Boolean prealgebra by requiring the existence of an appropriate
preorder instead of presenting a particular one. However, since such an alternative definition would involve
further conceptual changes and technical difficulties, we decided to work with Definition 2.1 where a
particular preorder is explicitly given.
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and ⊥ := [⊥], � := [�]. The relation � on M defined by

[ϕ] � [ψ] :⇔ ϕ → ψ ∈ Ψ

is a preorder on M . By SP, � is well-defined. Next we show that the structure

M′ = (M,∨,∧,¬,⊥,�,→,�)

is a Boolean prealgebra. The relation ≈ given by

[ϕ] ≈ [ψ] :⇔ ϕ ↔ ψ ∈ Ψ ⇔ ([ϕ] � [ψ] and [ψ] � [ϕ])

is obviously a congruence relation ofM′. Since Ψ is maximal consistent, it contains
in particular all equivalences ϕ ↔ ψ which are valid in CPC. These equivalences
axiomatize as equations ‘ϕ = ψ’ the class of Boolean algebras. It follows that the
quotient of M′ modulo ≈ is a Boolean algebra whose elements are the congruence
classes [ϕ] of the elements [ϕ] ∈ M modulo ≈. Moreover, for any elements [ϕ], [ψ]
we have: [ϕ] � [ψ] iff ϕ → ψ ∈ Ψ iff (ϕ ∧ ψ) ↔ ϕ ∈ Ψ iff [ϕ] ∧ [ψ] ≈ [ϕ]
iff [ϕ] ∧ [ψ] = [ϕ] iff [ϕ] ≤ [ψ], where ≤ is the lattice order of the associated
Boolean algebra. Hence, M′ is a Boolean prealgebra.6 By construction, we have for
any elements [ϕ], [ψ]: [ϕ] = [ψ] iff ϕ ∼= ψ iff ϕ ≡ ψ ∈ Ψ iff [ϕ ≡ ψ] = [ϕ] ≡
[ψ] ∈ TRUE. Thus,

M := (M, TRUE,∨,∧,¬,⊥,�,→,≡,�)

is an SCI-model. We consider the assignment γ ∈ MV defined by x �→ [x]. By
induction on formulas, it follows that γ (ϕ) = [ϕ]. Then we have

(M, γ ) � ϕ ⇔ γ (ϕ) = [ϕ] ∈ TRUE ⇔ ϕ ∈ Ψ.

In particular, (M, γ ) � Φ and whence Φ is satisfiable. Applying standard arguments
and classical propositional logic, it follows that SCI is complete w.r.t. the semantics
given by the class of our SCI-models. ��

Classical propositional logic CPC is extensional in the sense that the denotation
(reference, Bedeutung) of any formula is already determined by its truth-value relative
to the underlying assignment: either true or false. Consequently, the Fregean Axiom
holds: (ϕ ↔ ψ) ↔ (ϕ ≡ ψ). It is known that this situation can be modeled in SCI
by presenting a two-element model where all true formulas denote one element (the
true proposition) and all false formulas denote the other one (the false proposition).

Example 2.13 There exists an extensional SCI-model, i.e. a two-element model M
where the denotation of a formula is nothing but a classical truth-value: for every

6 M′ is not necessarily a Boolean algebra. For example, [ϕ] ∨ [ψ] = [ϕ ∨ ψ] �= [ψ ∨ ϕ] = [ψ] ∨ [ϕ]
is possible. Even if M′ is a Boolean algebra, the preorder � may be strictly coarser than the underlying
lattice order (cf. Lemma 2.4). In fact,� is the lattice order iffΨ contains all instances of the Fregean Axiom
(ϕ ≡ ψ) ↔ (ϕ ↔ ψ).
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assignment γ : V → {0, 1} and all ϕ,ψ ∈ Fm, (M, γ ) � ϕ ≡ ψ iff (M, γ ) � ϕ ↔
ψ iff ϕ and ψ have the same classical truth-value.

Proof Of course, the desired extensional model will be based (up to isomorphism) on
the two-elementBoolean algebraBwith universe {0, 1}. Let� be the natural total order
on {0, 1}. The resulting relation ≈ is the identity and the associated quotient algebra
is B itself. We define an additional Boolean operation ≡: {0, 1} × {0, 1} → {0, 1}
by (x ≡ y) = 1 :⇔ x = y (as usual, we consider infix notation for the operation
≡). Then B together with ≡ and � and the unique ultrafilter TRUE := {1} yields an
SCI-model M. Obviously, for any assignment γ : V → {0, 1} and for any formulas
ϕ,ψ ∈ Fm≡, we have (M, γ ) � ϕ ≡ ψ iff γ (ϕ) = γ (ψ) iff ϕ and ψ have the same
classical truth-value. ��

It is clear that the above two-valued SCI-model along with all possible assignments
yields the standard two-valued semantics of classical propositional logic CPC. In fact,
CPC is represented by the SCI-extension SCIext that results from SCI by adding the
Fregean Axiom (ϕ ↔ ψ) → (ϕ ≡ ψ). The extension SCIext contains (ϕ ↔ ψ) ↔
(ϕ ≡ ψ) and thus (ϕ ↔ ψ) ≡ (ϕ ≡ ψ) as theorems. By SP, (ϕ ↔ ψ) and (ϕ ≡ ψ)

then can be replaced by each other in every context. One easily shows that SCIext is
sound and complete w.r.t. the class of all extensional (i.e. two-element) SCI-models.
We have for any ϕ ∈ Fm≡:

�SCIext ϕ ⇔ �CPC ϕ∗,

where ϕ∗ is the result of replacing every subformula of the form ψ ≡ χ in ϕ by
ψ ↔ χ .

Another important example of SCI-model, as opposed to an extensional model, is
an intensional model where the denotation of a formula is determined by its inten-
sion, i.e. essentially by its syntax.7 In such a model, any two (syntactically) different
formulas have different denotations, so the denotation of a formula can be identified
with its intension. In the following, we present a construction of such a model. Inten-
sional models have also been constructed for a logic that extends SCI by propositional
quantifiers and a truth predicate [see, e.g. the discussion and a construction presented
in Lewitzka (2012)].8

Example 2.14 There exists an intensional SCI-model, i.e. a model M along with an
assignment γ such that for all ϕ,ψ ∈ Fm≡,

(M, γ ) � ϕ ≡ ψ ⇔ ϕ = ψ.

7 The model is called intensional because different intensions (different formulas) correspond to different
denotations (propositions), so intensions and denotations are in one-to-one correspondence. Of course, such
a model can be particularly viewed as hyperintensional since even logically equivalent formulas ϕ �= ψ

have different semantics.
8 The construction of an intensional model for such a first-order logic is not trivial because of the impred-
icativity of propositional quantifiers. Note that the bound variable x in the formula ∀xϕ ranges over a
propositional universe which contains the proposition denoted by ∀xϕ itself.
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Proof In order to construct themodelM, we define a rank R : Fm≡ → N on formulas
as follows:

• R(x) = R(⊥) = R(�) = R(ϕ ≡ ψ) = 0, for any x ∈ V and ϕ,ψ ∈ Fm≡.
• If ϕ,ψ ∈ Fm≡ such that R(ϕ) and R(ψ) are already defined, then R(¬ϕ) =

R(ϕ) + 1 and R(ϕ ∗ ψ) = max{R(ϕ), R(ψ)} + 1, where ∗ ∈ {∨,∧,→}.
We consider the given enumeration of the set of variables V = {x0, x1, x2, . . .} and
define the set TRUE by induction on rank R as the smallest set such that the following
conditions are satisfied:

• For formulas of rank 0, we have: ⊥ /∈ TRUE, � ∈ TRUE, xi ∈ TRUE iff i is an
even index, ϕ ≡ ψ ∈ TRUE iff ϕ = ψ .

• Suppose membership of all formulas of rank ≤ n ∈ N w.r.t. TRUE is already
determined. Let ϕ, ψ be formulas such that max{R(ϕ), R(ψ)} = n. Then:

– ϕ ∧ ψ ∈ TRUE if ϕ ∈ TRUE and ψ ∈ TRUE
– ϕ ∨ ψ ∈ TRUE if ϕ ∈ TRUE or ψ ∈ TRUE
– ¬ϕ ∈ TRUE if ϕ /∈ TRUE
– ϕ → ψ ∈ TRUE if ϕ /∈ TRUE or ψ ∈ TRUE

Membership of TRUE then determines classical truth-values for all formulas. The
relation � on M := Fm≡ defined by ϕ � ψ :⇔ ϕ → ψ ∈ TRUE is a preorder.
Moreover, the relation ≈ defined by ϕ ≈ ψ :⇔ (ϕ � ψ and ψ � ϕ) ⇔ ‘both ϕ and
ψ belong to TRUE or both ϕ and ψ belong to M � TRUE’ is a congruence relation
on the structure (M,∨,∧,¬,⊥,�,→). The associated quotient algebra is the two-
element Boolean algebra {0, 1} where 1 is the image of TRUE under the canonical
homomorphism. Thus, any congruence class ϕ equals 0 or 1. Moreover, ϕ � ψ ⇔
ϕ → ψ ∈ TRUE ⇔ [(ϕ ∧ ψ) → ϕ ∈ TRUE and ϕ → (ϕ ∧ ψ) ∈ TRUE] ⇔
(ϕ ∧ ψ) ≈ ϕ ⇔ ϕ ≤ ψ . Hence,

M′ = (M,∨,∧,¬,⊥,�,→,�)

is a Boolean prealgebra. Together with ultrafilter TRUE and the operation ≡ on M =
Fm≡ defined by the identity connective itself, we then obtain the SCI-model

M = (M, TRUE,∨,∧,¬,⊥,�,→,≡,�).

Consider the assignment γ : V → Fm≡, x �→ x . Then, by induction on formulas,
γ (ϕ) = ϕ for any ϕ ∈ Fm≡. Furthermore, for all ϕ,ψ ∈ Fm≡:

(M, γ ) � ϕ ≡ ψ ⇔ γ (ϕ ≡ ψ) = ϕ ≡ ψ ∈ TRUE ⇔ ϕ = ψ.

��
As a consequence, already derived in a different way in (Corollary 2.14, Bloom

and Suszko 1972), we conclude that only trivial equations are theorems:

Corollary 2.15 For all ϕ,ψ ∈ Fm≡, �SCI ϕ ≡ ψ ⇔ ϕ = ψ .
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Proof If ϕ = ψ , then by identity axiom (id1): �SCI ϕ ≡ ψ . Now, we suppose ϕ �= ψ .
Then we have (M, γ ) � ϕ ≡ ψ for the intensional model constructed above and thus
ϕ ≡ ψ is not logically valid. Soundness yields �SCI ϕ ≡ ψ . ��

In the remainder of this section, we show that some relevant modal principles can be
restored in SCI without additional axioms. The representation of certain Lewis-style
modal systems by means of appropriate SCI-extensions will be the topic of the next
section.

For ϕ ∈ Fm≡, we define
�ϕ := (ϕ ≡ �). (2)

Theorem 2.16 Let M be an SCI-model. Then the following are equivalent:

(i) M is based on a Boolean algebra, i.e. the {∨,∧,¬,⊥,�,→}-reduct of M is a
Boolean algebra.

(ii) For all formulas χ having the form of a theorem of CPC, and for all formulas ϕ

and ψ , model M validates �χ and (ϕ ≡ ψ) ↔ �(ϕ ↔ ψ).

Proof IfM is a Boolean algebra, then all theorems ofCPC, aswell as their substitution
instances, are evaluated by the top element � under any assignment. It is also known
that the equivalencem → m′ = �⇔m ≤ m′ holds in everyBoolean algebra (actually,
in every Heyting algebra). Then it is clear that (i) implies (ii). Now, suppose (ii) holds
true. Then M validates in particular �(ϕ ↔ ψ) whenever ϕ ↔ ψ is a classical
tautology. Since (ϕ ≡ ψ) ↔ �(ϕ ↔ ψ) is valid in M, we have M � ϕ ≡ ψ for all
Boolean equations ϕ ≡ ψ that axiomatize the class of Boolean algebras. Hence, M
itself is based on a Boolean algebra. ��
Definition 2.17 SCI+ is the logic that results fromSCI byadding the following axioms:

• �χ whenever χ has the form of a classical tautology (theorem of CPC),
• (ϕ ≡ ψ) ↔ �(ϕ ↔ ψ).

The next result then follows from Theorem 2.16.

Corollary 2.18 The SCI-extension SCI+ is sound and complete w.r.t. the class of those
SCI-models which are based on Boolean algebras.

As a consequence, SCI+ coincides with the known SCI-extension WB which is
discussed as a specific theory of SCI in some works on non-Fregean logic [see, e.g.
Wawrzynczak (1973) for a detailed presentation].

The question arises whether the extension SCI+ implies further interesting modal
laws. Using Corollary 2.18, we may argue semantically showing that the following
formulas are theorems of SCI+:

• �ϕ → ϕ

• �(ϕ → ψ) → (�ϕ → �ψ).

In fact, given a Boolean algebra, the top element � is contained in every ultrafilter;
and for any elements m, m′: if m ≤ m′, then m = � implies m′ = �. Thus, the above
formulas are valid in SCI+. However, some principles of normal Lewis systems are
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not valid. For instance, the full necessitation rule does not hold. As a counter-example,
we consider the Boolean algebra 22 with elements ∅, {0}, {1}, {0, 1} and set-theoretic
inclusion as lattice order, along with the ultrafilter TRUE = {{0}, {0, 1}} and operation
≡ defined by (m ≡ m′) := {0} ∈ TRUE if m = m′, and (m ≡ m′) = {1} /∈ TRUE
otherwise. Then �{0} = ({0} ≡ �) = {1} �≤ {0}. Thus, �(�ϕ → ϕ) is not valid.

Definition 2.19 In some analogy to Lewis modal system S3, we define the following
extension of SCI+: SCI3 is the logic that results from SCI+ by adding all formulas of
the form �(ϕ → ψ) → �(�ϕ → �ψ) as theorems.

Note, however, that the alleged analogy to Lewis system S3 is rather weak. For
instance, �(�(ϕ → ψ) → �(�ϕ → �ψ)) is a theorem of S3 but not of SCI3.

Definition 2.20 An SCI-modelM is called an SCI3-model ifM is based on a Boolean
algebra and satisfies the following condition for all m, m′ ∈ M :

m ≤ m′ ⇒ �m ≤ �m′,

where �m := (m ≡ �). That is, � is a monotonic operation on M .

Corollary 2.21 Logic SCI3 is sound and complete w.r.t. the class of SCI3-models.

Proof One easily checks that every SCI3-model validates formulas of the form�(ϕ →
ψ) → �(�ϕ → �ψ). In order to prove completeness, it is enough to show that the
constructed model in our direct completeness proof above satisfies the condition of
monotonicity of �. Since SCI3 contains SCI+, we already know that that model is
a Boolean algebra. So for two elements [ϕ] and [ψ], suppose [ϕ] ≤ [ψ] (where ≤
is the lattice order). Then (ϕ → ψ) ≡ � ∈ Ψ . That is, �(ϕ → ψ) ∈ Ψ and thus
�(�ϕ → �ψ) ∈ Ψ . But then (�ϕ → �ψ) ≡ � ∈ Ψ and thus [�ϕ → �ψ] = [�],
i.e. �[ϕ] = [�ϕ] ≤ [�ψ] = �[ψ]. ��

We are interested in conditions that ensure, in some precise sense, complete restora-
tions of some Lewis-style modal systems, in particular of S3–S5. It turns out that
principle (ϕ ≡ ψ) ↔ �(ϕ ↔ ψ), valid in SCI+, is too weak for this purpose. In
fact, we must postulate the equation (ϕ ≡ ψ) ≡ �(ϕ ↔ ψ), i.e. we must identify
propositional identity with strict equivalence. These topics will be studied in Sect. 4.

3 Some Lewis-Style Modal Systems and Their Algebraic Semantics

The goal of this section is to review some Lewis-style modal systems in the vicinity
of S3 (more precisely, systems based on a logic called S1SP) which in the subse-
quent section then will be shown to be equivalent, in some precise sense, to certain
axiomatic extensions of logic SCI . Our object language is now the language of propo-
sitional modal logic Fm�, i.e. the set of formulas inductively defined over the set
of variables V = {x0, x1, . . .}, logical connectives ⊥,�,∨,∧,¬,→ and the modal
operator �. Thus, the languages Fm≡ and Fm� share the ‘pure’ propositional part
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based on the logical connectives. We introduce an ‘identity connective’ defined by
strict equivalence:

(ϕ ≡ ψ) := (�(ϕ → ψ) ∧ �(ψ → ϕ)). (3)

It is evident that under this interpretation, all Lewis modal systems S1–S5 satisfy
Suszko’s identity axioms (id1) ϕ ≡ ϕ and (id2) (ϕ ≡ ψ) → (ϕ → ψ). Moreover, S3
also satisfies the remaining identity axioms, i.e. SP ( where, of course, identity is given
as strict equivalence according to (3) above). S3 is the weakest Lewis modal system
containing SP (cf. (Lewitzka, 2016, 2015)). In the following, we recall definitions
of some relevant Lewis-style modal systems and consider an algebraic semantics
which can be immediately translated into SCI-semantics, and vice-versa. We adopt
that particular approach to algebraic semantics from Lewitzka (2016).

Lewis system S1 can be defined in the followingway (see, e.g. Hughes&Cresswell,
1996). All formulas of the following form are axioms:

• tautologies of CPC (and their substitution-instances in the modal language)
• �ϕ → ϕ

• (�(ϕ → ψ) ∧ �(ψ → χ)) → �(ϕ → χ) (transitivity of strict implication)

The inference rules areModus PonensMP, AxiomNecessitation AN “If ϕ is an axiom,
then �ϕ is a theorem”, and Substitution of Proved Strict Equivalents SPSE “If ϕ ≡ ψ

is a theorem, then so is χ [x := ϕ] ≡ χ [x := ψ]”. Lewis system S3 results from S1
by adding

(S3) �(ϕ → ψ) → �(�ϕ → �ψ)

as an axiom scheme to S1. Of course, rule AN now applies also to (S3).
Rule SPSE can be ignored since it is derivable from the rest. Lewis system
S4 results from S3 by adding

(S4) �ϕ → ��ϕ

as an axiom scheme (rule AN now applies also to (S4)). Finally, S5 results
from S4 by adding

(S5) ¬�ϕ → �¬�ϕ

as an axiom scheme (of course, rule AN now extends to instances of (S5)). We do not
consider system S2 here since it seems to be not susceptible to our style of algebraic
semantics [however, it is known that S2 can be captured by a non-normal Kripke-style
semantics, cf. Hughes and Cresswell (1996)]. There is no known natural semantics
for system S1, cf. Hughes and Cresswell (1996). If we add SP, (ϕ ≡ ψ) → (χ [x :=
ϕ] ≡ χ [x := ψ]), as a theorem scheme to S1 (recall that rule AN is not applicable to
theorems, also note that SP is stronger than the S1-rule SPSE), then we obtain modal
system S1 + SP which was introduced and studied in Lewitzka (2016). Simplifying
notation, we will refer to that system as S1SP instead of S1 + SP. In contrast to S1, the
stronger system S1SP has a natural model-theoretic semantics which we will recall
below.

In systemS1, derivations from the empty set, i.e. derivations of theorems, are defined
as usual. For L ∈ {S1SP, S3, S4, S5} and Φ ∪ {ϕ} ⊆ Fm�, we write Φ �L ϕ if there
is a derivation of ϕ fromΦ, i.e. a finite sequence ϕ1, . . . , ϕn = ϕ such that for each ϕi ,
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1 ≤ i ≤ n, the following holds: ϕi ∈ Φ or ϕi is an axiom ofL or ϕi is obtained by AN
(i.e. ϕi = �ψ for some axiom ψ of L) or ϕi is obtained by MP applied to preceding
formulas of the sequence. Note that we can do without the full Necessitation Rule “If
ϕ is a theorem, then so is �ϕ”. In fact, by induction on derivations one shows that the
full Necessitation Rule is derivable in S4.

The following result was originally shown in the context of logic S1SP, cf. Lewitzka
(2016, Lemma 2.3). The proof given there makes use of SP. However, one recognizes
that SP can be replaced by the S1-rule SPSE in the proof. Hence, the result also holds
in the weaker system S1.

Lemma 3.1 (Lewitzka, 2016) Every instance of the following principle N is a theorem
of S1:

�ϕ ↔ (ϕ ≡ �).

N expresses the fact that there exists exactly one necessary proposition, namely
the proposition denoted by �. N would easily follow from distribution principle K,
�(ϕ → ψ) → (�ϕ → �ψ).9 However, K is not available in S1. Nevertheless, using
N and SP we are able to show the following, cf. (Lewitzka 2016, Lemma 2.4):

Lemma 3.2 (Lewitzka, 2016) Distribution principle K holds in S1SP, i.e. formulas of
the form

�(ϕ → ψ) → (�ϕ → �ψ)

are theorems of S1SP.

Lemma 3.3 �(ϕ ∧ ψ) ↔ (�ϕ ∧ �ψ) is a theorem of S1SP.

Proof We obtain the following sequence of theorems:
�(ϕ ∧ ψ) ↔ ((ϕ ∧ ψ) ≡ �), i.e. �(ϕ ∧ ψ) → �(� → (ϕ ∧ ψ)), by Lemma 3.1
(�(� → (ϕ ∧ ψ)) ∧ �((ϕ ∧ ψ) → ϕ)) → �(� → ϕ), by the transitivity axiom of
strict implication of S1
�((ϕ ∧ ψ) → ϕ)), by rule AN
�(ϕ ∧ ψ) → �(� → ϕ), i.e. �(ϕ ∧ ψ) → (ϕ ≡ �), by transitivity of implication
�(ϕ ∧ ψ) → �ϕ, by the last derivation and principle N, i.e. Lemma 3.1
�(ϕ ∧ ψ) → �ψ is obtained similarly
(A) �(ϕ ∧ ψ) → (�ϕ ∧ �ψ), follows from the above
�ψ ↔ (ψ ≡ �), instance of principle N
(ψ ≡ �) → �(ϕ ∧ y)[y := ψ] ≡ �(ϕ ∧ y)[y := �], instance of SP (where y is a
fresh variable)
�ψ → (�(ϕ ∧ ψ) ≡ �(ϕ ∧ �)), by transitivity of implication
�ψ → (�(ϕ ∧ �) → �(ϕ ∧ ψ)), follows from the above along with propositional
logic
ϕ ≡ (ϕ ∧ �), by rule AN
�ψ → (�ϕ → �(ϕ ∧ ψ)), by applying S1-rule SPSE (or the stronger SP)
(B) (�ϕ ∧ �ψ) → �(ϕ ∧ ψ), by propositional logic
�(ϕ ∧ ψ) ↔ (�ϕ ∧ �ψ), by combining (A) and (B). ��
9 Consider classical tautology ϕ ↔ (ϕ ↔ �), rule AN, principle K and MP.
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By Lemma 3.3, we may write strict equivalence �(ϕ → ψ) ∧ �(ψ → ϕ) equiv-
alently and shorter as �(ϕ ↔ ψ) in systems containing S1SP. In S1SP, we may also
strengthen the result of Lemma 3.1 as follows.

Lemma 3.4 The following scheme �N is derivable in S1SP:

�ϕ ≡ (ϕ ≡ �).

Proof Consider the following sequence of theorems:
ϕ ↔ (ϕ ↔ �) is a propositional tautology.
�(ϕ ↔ (ϕ ↔ �)), i.e. ϕ ≡ (ϕ ↔ �), results from rule AN.
(ϕ ≡ (ϕ ↔ �)) → (�x[x := ϕ] ≡ �x[x := (ϕ ↔ �)] is an instance of SP.
�ϕ ≡ �(ϕ ↔ �) then results from Modus Ponens. ��
Definition 3.5 By a Boolean model we mean a Boolean algebra with a designated
ultrafilter TRUE and an additional unary operation�. As before, the underlying lattice
order is denoted by ≤.

Definition 3.6 Let M be a Boolean model satisfying the following conditions for all
a, b, c ∈ M :

(1) �a ∈ TRUE ⇔ a = �
(2) �a ≤ a
(3) �(a → b) ∧ �(b → c) ≤ �(a → c)

Then we call M an S1SP-model.

Note that conditions (2) and (3) reflect corresponding axioms of S1.

Lemma 3.7 In every S1SP-model it holds that

�(a ∧ b) ∈ TRUE ⇔ (�a ∧ �b) ∈ TRUE,

for all elements a, b, i.e. formulas of the form �(ϕ ∧ ψ) ↔ (�ϕ ∧ �ψ) are valid in
the class of S1SP-models. Moreover, principle K , �(ϕ → ψ) → (�ϕ → �ψ), is
valid in the class of S1SP-models.

Proof By (1), �(a ∧ b) ∈ TRUE ⇔ a = � and b = � ⇔ �a ∈ TRUE and
�b ∈ TRUE ⇔ �a ∧ �b ∈ TRUE. The second assertion can be shown as follows:
For a given S1SP-model, suppose �(a → b) ∈ TRUE and �a ∈ TRUE. The former
implies a → b = �, i.e. a ≤ b. The latter implies a = �. It follows b = � and thus
�b ∈ TRUE. ��

Notice that validity of modal principle K in the class of S1SP-models does not
mean that all instances of K are interpreted by the top element of the given Boolean
algebra (as it is the case in normal modal logics). It only means that such instances
are interpreted by some element of the ultrafilter TRUE, a designated ultrafilter that
contains in particular the element ��. Actually, we cannot choose an arbitrary ultra-
filter TRUE of the Boolean algebra because (1) of Definition 3.6 must be fulfilled. In
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this aspect, our semantic approach differs from the standard one where the class of
modal algebras usually forms an equational class, i.e. a variety of algebras. Recall that
a modal algebra, in the usual sense, is a Boolean algebra with an operator � satisfying
the following stronger conditions for all elements a, b:

�(a ∧ b) = �a ∧ �b, and

�� = �.

The variety of all modal algebras, given in this way, forms the standard algebraic
semantics for normal modal logic K .

Given themodal language Fm� and anS1SP-modelM, the notionof an assignment
(valuation) γ : V → M is defined as before as a ‘homomorphism’ from Fm� toM, in
particular: γ (�ϕ) = �(γ (ϕ)). Also the notion of satisfaction is given in the sameway:
(M, γ ) � ϕ ⇔ γ (ϕ) ∈ TRUE. S1SP-models were introduced in Lewitzka (2016)
(using another terminology) to provide a kind of algebraic semantics for Lewis-style
modal logic S1SP:

Theorem 3.8 (Lewitzka, 2016) S1SP is (strongly) sound and complete with respect to
the class of all S1SP-models.

Definition 3.9 We call a Boolean model M an S3-model if the following hold for all
a, b ∈ M :

(1) �a ∈ TRUE ⇔ a = �
(2) �a ≤ a

(S3) �(a → b) ≤ �(�a → �b)

Lemma 3.10 Every S3-model is an S1SP-model, i.e. condition (3) of Definition 3.6 is
satisfied. Moreover, in every S3-model, modal operator � is a monotone function and
the following holds for all elements a, b:

�(a ∧ b) = �a ∧ �b.

Proof Condition (S3) ensures that � is a monotone function: a ≤ b iff a → b = �
iff �(a → b) ∈ TRUE

(S3)⇒ �(�a → �b) ∈ TRUE iff �a → �b = � iff �a ≤ �b.
Note that a ∧ b ≤ a and a ∧ b ≤ b. Monotonicity implies

�(a ∧ b) ≤ �a ∧ �b.

On the other hand, ϕ → (ψ → (ϕ ∧ ψ)) is a propositional tautology and therefore
denotes the top element, under any assignment. Thus, for all elements a, b:
�(a → (b → (a ∧ b))) ∈ TRUE.
By condition (S3) along with ’Modus Ponens’:
�(�a → �(b → (a ∧ b))) ∈ TRUE, i.e. �a ≤ �(b → (a ∧ b)).
Then by (S3): �(b → (a ∧ b)) ≤ �(�b → �(a ∧ b)). Thus,

�a ≤ �(�b → �(a ∧ b)) ≤ �b → �(a ∧ b), and hence

�a → (�b → �(a ∧ b)) = �.
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The term on the left hand side of the last equation is an interpretation of the formula
x → (y → z) which is logically equivalent to (x ∧ y) → z.
Hence, (�a ∧ �b) → �(a ∧ b) = �, i.e.

�a ∧ �b ≤ �(a ∧ b).

Finally, �a ∧ �b = �(a ∧ b).
In order to see that every S3-model is an S1SP-model, it is enough to show that
condition (3) of Definition 3.6 follows from the conditions of Definition 3.9:
((ϕ → ψ) ∧ (ψ → χ)) → (ϕ → χ) is a propositional tautology and is therefore
interpreted by the top element of any model. Then by (1),

�(((a → b) ∧ (b → c)) → (a → c)) ∈ TRUE.

Applying (S3) and ‘Modus Ponens’, we get

�(�((a → b) ∧ (b → c)) → �(a → c)) ∈ TRUE

Since �a ∧ �b = �(a ∧ b), as shown above, we obtain the following:
�((�(a → b) ∧ �(b → c)) → �(a → c)) ∈ TRUE. Applying condition (1)
yields

(�(a → b) ∧ �(b → c)) → �(a → c) = �,

i.e. �(a → b) ∧ �(b → c) ≤ �(a → c), which is condition (3) of Definition 3.6. ��
Definition 3.11 We call a Boolean modelM an S4-model if the following conditions
hold for all elements a, b:

(1) �a ∈ TRUE ⇔ a = �
(2) �a ≤ a
(K) �(a → b) ≤ �a → �b
(S4) �a ≤ ��a

Lemma 3.12 Every S4-model is an S3-model.

Proof It is enough to show that condition (S3) holds in every S4-model.
�� = �, by conditions (1) and (S4)
�(�(a → b) → (�a → �b)) = �, by (K)
��(a → b) → �(�a → �b) = �, by (K)
��(a → b) ≤ �(�a → �b), by properties of Boolean algebras
�(a → b) ≤ �(�a → �b), by (S4). This is condition (S3). ��

In the literature, an S4-algebra, also known as a topological Boolean algebra or
an interior algebra, is defined as a Boolean algebra with an operator � such that the
following conditions (IA1)–(IA4) are satisfied by all elements a, b:

(IA1) �a ≤ a
(IA2) ��a = �a
(IA3) �(a ∧ b) = �a ∧ �b

123



462 S. Lewitzka

(IA4) �� = �.

The operator � then is called an interior operator in analogy to a corresponding
situation in topology. The class of interior algebras is a subvariety of the variety of
modal algebras.

Theorem 3.13 Every S4-model is an S4-algebra.

Proof Suppose M is a S4-model in the sense of Definition 3.11. Then (IA1) above
holds trivially. (IA2) follows from (IA1) along with condition (S4). (IA3) is warranted
by Lemmata 3.12 and 3.10. Finally, (IA4) follows from conditions (1) and (S4) of
Definition 3.11. ��

The converse of Theorem 3.13 is not true. As a counter-example we consider any
Boolean algebra with more than two elements and an interior operator � given as
the identity: a �→ �a = a. This yields an interior algebra, i.e. an S4-algebra. Any
ultrafilter U of that algebra contains some element a < �. Then condition (1) of
Definition 3.11 cannot be satisfied by all elements. An interior algebra gives rise to
an S4-model in our sense if it has an ultrafilter TRUE such that for any element a
of the algebra, a < � implies �a /∈ TRUE. Thus, the class of S4-models is strictly
contained in the class of all S4-algebras. The variety of all S4-algebras forms the
standard algebraic semantics of modal system S4. Nevertheless, strong soundness and
completeness of S4 can already be established w.r.t. the subclass of S4-models, cf.
Lewitzka (2016, 2017).

Definition 3.14 We call a Boolean model M an S5-model if the following holds for
all elements a ∈ M :

�a =
{

�, if a = �
⊥, else.

Note that Definition 3.14 does not impose any condition on the designated ultrafilter
TRUE of M. This fact is reflected by the next result.

Lemma 3.15 Let M be a Boolean algebra with an operator �. The following
conditions are equivalent:

(i) M along with a particular ultrafilter is an S5-model.
(ii) M along with any arbitrary ultrafilter is an S5-model.
(iii) M along with any arbitrary ultrafilter is an S4-model.

Proof (i) implies (ii): It is clear that the condition of Definition 3.14 is independent
from any particular ultrafilter.
(ii) implies (iii): If M (together with some ultrafilter) is an S5-model, then there are
exactly two possibilities for any a ∈ M : �a = � or �a = ⊥. Now one easily verifies
that the conditions of Definition 3.11 are satisfied with respect to every ultrafilter of
M.
(iii) implies (i): Suppose (iii) is true. Then by conditions (1) and (S4) of Definition
3.11,we get�� = �. It remains to show that�a = ⊥whenever a < �. So let a < �.
Suppose �a > ⊥. Then there exists some ultrafilter TRUE such that �a ∈ TRUE. By
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hypothesis,M together with TRUE is an S4-model. Since �a ∈ TRUE, condition (1)
of an S4-model then implies a = �, a contradiction to our assumption a < �. Thus,
�a = ⊥. ��

In particular, every S5-model is an S4-model and thus an interior algebra. S5-models
validate the equation ♦�a = �a, where ♦a := ¬�¬a is regarded a closure operator.
If added to the equations (IA1)–(IA4) above, that equation defines a subvariety of
interior algebras called S5-algebras in the literature. Thus, S5-models in the sense of
Definition 3.14 are S5-algebras (we believe that the converse is false).

Recall that the relation of satisfaction between S1SP-interpretations and formulas
of Fm� is defined similarly as for SCI models and formulas of language Fm≡. Also
the concept of logical consequence is defined analogously. Extending the proof of
Theorem 3.8 in a straightforward way [see also Lewitzka (2017) for some details] and
resuming this section, we then may conclude the following.

Theorem 3.16 Let L ∈ {S1SP, S3, S4, S5}. Then logic L is strongly sound and
complete w.r.t. the class of all L-models.

4 Equivalences Between SCI-Extensions and Lewis-Style Modal Logics

The goal of this section is to show that under certain assumptions, some Lewis-style
modal logics are, in a precise sense, equivalent to certain axiomatic extensions of SCI .
The crucial conditions for these equivalences are the following:

(I) ‘The SCI principles of propositional identity hold. In particular, SP is valid.’
(II) ‘Propositional identity = strict equivalence’, i.e. (ϕ ≡ ψ) ≡ �(ϕ ↔ ψ) holds.
(III) ‘Necessity = identity with proposition �. In particular, there is exactly one

necessary proposition: the proposition denoted by �’, i.e. �ϕ ≡ (ϕ ≡ �)

holds.
(IV) ‘All classical tautologies are necessary: If ϕ is a classical tautology (i.e. an

instance of a theorem of CPC), then �ϕ is valid.’

From a semantic point of view, (III) and (IV) will ensure that the involved SCI-
models are Boolean algebras (cf. Theorem 2.16 and the remark in the last paragraph
of Sect. 2.)

We remark here that a similar type of equivalences between propositional logics
with an identity connective and normal modal systems is established by Ishii (1998).
His propositional calculus PCI is also defined in the language of SCI though the
axioms (and rules) for the identity connective differ in some aspects from SCI . Ishii
shows equivalence between PCI and normal system K , as well as a series of further
equavalences between extensions of PCI and corresponding normal modal systems.

There are several notions of equivalence between logical systems introduced in the
literature and there seems to be no standard definition of such a concept. However,
these notions usually have the following in common: given two logics, there are two
mappings (translations) between the respective languageswhich are, in a precise sense,
inverse to each other and preserve the relation of derivability (or logical consequence).
A typical example of such a notion of equivalence between deductive systems, defined
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in the context of abstract algebraic logics, can be found inBlok and Pigozzi (2001,Def-
inition 4.1).We consider in the following a similar notion which, however, is restricted
to two specific translations and is stronger in the sense that it involves propositional
identity instead of interderivability and thus respects also contexts which are not only
extensional but (hyper-) intensional. First, we define two specific translations: box
from Fm≡ to Fm�, and id from Fm� to Fm≡. Then we show that under certain
assumptions these translations are inverse to each other (Theorem 4.2). This corre-
sponds to the interderivability condition of Blok and Pigozzi (2001, Definition 4.1).
Though, our condition is stronger since it is based on propositional identity instead
of interderivability. In this context, we shall say that an axiomatic extension of SCI
and a Lewis-style modal system are equivalent if the translations box and id, which
are inverse to each other, also preserve derivations (Definition 4.3). So equivalence
in our specific sense then also implies the corresponding criteria of the usual notion
of equivalence between deductive systems such as given in Blok and Pigozzi (2001,
Definition 4.1).

Definition 4.1 The translation box : Fm≡ → Fm� is inductively defined as follows:

box(x) := x

box(⊥) := ⊥
box(�) := �
box(¬ϕ) := ¬box(ϕ)

box(ϕ ∗ ψ) := (box(ϕ) ∗ box(ψ)), for ∗ ∈ {∧,∨,→}
box(ϕ ≡ ψ) := �(box(ϕ) ↔ box(ψ)).

On the other hand, the translation id : Fm� → Fm≡ is inductively defined as follows:

id(x) := x

id(⊥) := ⊥
id(�) := �
id(¬ϕ) := ¬id(ϕ)

id(ϕ ∗ ψ) := (id(ϕ) ∗ id(ψ)), for ∗ ∈ {∧,∨,→}
id(�ϕ) := (id(ϕ) ≡ �).

For Φ ⊆ Fm≡, we let box(Φ) := {box(ψ) | ψ ∈ Φ}; and for Φ ⊆ Fm�, we let
id(Φ) = {id(ψ) | ψ ∈ Φ}.

Induction on formulas ensures that box(ϕ) ∈ Fm� for any ϕ ∈ Fm≡; and
id(ϕ) ∈ Fm≡ for any ϕ ∈ Fm�. If the underlying logics are strong enough, then the
translations box and id are inverse to each other in the sense of the next result. Recall
that we are working with the following abbreviations: In the language of modal logic
Fm�, we put (ϕ ≡ ψ) := �(ϕ ↔ ψ) (cf. (3) at the beginning of Sect. 3), and in the
language L≡ of SCI , we put �ϕ := (ϕ ≡ �) (cf. (2) before Theorem 2.16).
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Theorem 4.2 • Let L be a modal logic in the language Fm� containing S1SP. Then
for any ϕ ∈ Fm�10

�L ϕ ≡ box(id(ϕ)).

• LetL≡ be an axiomatic extension of SCI in the language Fm≡ containing theorems
of the form

(χ ≡ ψ) ≡ �(χ ↔ ψ), i.e. (χ ≡ ψ) ≡ ((χ ↔ ψ) ≡ �).

Then for any ϕ ∈ Fm≡11

�L≡ ϕ ≡ id(box(ϕ)).

Proof Under the assumptions of the first item, we show the assertion by induction on
ϕ ∈ Fm�. If ϕ is an atomic formula, we get box(id(ϕ)) = ϕ. Then the assertion holds
because �(ϕ ↔ ϕ) is a theorem of L (apply the rule AN to ϕ ↔ ϕ). Now suppose
ϕ = �ψ for some ψ ∈ Fm�.

box(id(ϕ)) = box(id(�ψ))

= box(id(ψ) ≡ �), by definition of id

= �(box(id(ψ) ↔ �)), by definition of box

≡L �(ψ ↔ �), by induction hypothesis and SP

= (ψ ≡ �)

≡L �ψ, recall that �ψ ≡ (ψ ≡ �) is a theorem of S1SP

= ϕ

Hence, ϕ ≡L box(id(ϕ)), i.e. �L ϕ ≡ box(id(ϕ)). The remaining cases of the
induction step follow straightforwardly. Now, we assume the hypotheses of the second
item and show its assertion by induction on ϕ ∈ Fm≡. The induction base is clear;
and in the induction step, only the case ϕ = (ψ ≡ χ) requires some attention:

id(box(ϕ)) = id(box(ψ ≡ χ))

= id(�(box(ψ) ↔ box(χ))), by definition of box

= (id(box(ψ)) ↔ id(box(χ))) ≡ �, by definition of id

≡L≡ (id(box(ψ)) ≡ id(box(χ))), by assumptions on L≡
≡L≡ (ψ ≡ χ), by induction hypothesis and SP

= ϕ

��
IfL is a modal logic andL≡ is an SCI-extension satisfying the hypotheses required

in Theorem 4.2, then we are able to establish a condition (actually, two equivalent
conditions) under which both logics have, in a precise sense, the same expressive
power and are called equivalent:

10 In the following, we will write such an expression also as ϕ ≡L box(id(ϕ)).
11 We will write such an expression also as ϕ ≡L≡ id(box(ϕ)).
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Definition 4.3 Let L be a modal logic in the language Fm� containing S1SP. Let L≡
be an extension of SCI in the language Fm≡ containing theorems of the form

(χ ≡ ψ) ≡ �(χ ↔ ψ).

Furthermore, suppose one of the following two conditions is true:

(i) For any Φ ∪ {ϕ} ⊆ Fm≡: Φ �L≡ ϕ ⇐⇒ box(Φ) �L box(ϕ).
(ii) For any Φ ∪ {ϕ} ⊆ Fm�: Φ �L ϕ ⇐⇒ id(Φ) �L≡ id(ϕ).

Then we say that the modal logic L and the SCI-extension L≡ are equivalent.

The next result justifies that in Defnition 4.3 it is enough to require only one of the
conditions (i), (ii).

Lemma 4.4 LetL be a modal logic and letL≡ be an SCI-extension which is equivalent
to L in the sense of Definition 4.3. Then both conditions (i) and (ii) of Definition 4.3
are satisfied.

Proof Let L≡ be the SCI-extension equivalent to modal system L and suppose that
fact is witnessed by condition (i) of Definition 4.3.We show that condition (ii) follows.
Let Φ ∪ {ϕ} ⊆ Fm� and suppose Φ �L ϕ. There are ϕ1, . . . , ϕn ∈ Φ such that the
following hold:
�L (ϕ1 ∧ · · · ∧ ϕn) → ϕ

�L box(id((ϕ1 ∧ · · · ∧ ϕn) → ϕ)), by Theorem 4.2
�L≡ id((ϕ1 ∧ · · · ∧ ϕn) → ϕ), by condition (i).
By definition of id, we may conclude id(Φ) �L≡ id(ϕ).
The implication from right-to-left of (ii) follows similarly. Analogously, one estab-
lishes condition (i) under the assumption that condition (ii) holds true. ��
Lemma 4.5 Let L be a modal logic and let L≡ be an SCI-extension equivalent to L.
Then the following hold:

• For any ϕ ∈ Fm≡: �L box(�ϕ) ≡ �box(ϕ), i.e. box(�ϕ) ≡L �box(ϕ).
• For any ϕ,ψ ∈ Fm�: �L≡ id(ϕ ≡ ψ) ≡ (id(ϕ) ≡ id(ψ)), which we also write

as id(ϕ ≡ ψ) ≡L≡ (id(ϕ) ≡ id(ψ)).

Proof Under the given assumptions, we have:
box(�ϕ) = box(ϕ ≡ �) = �(box(ϕ) ↔ �) = (box(ϕ) ≡ �) ≡L �box(ϕ). The
last equation holds because �ψ ≡ (ψ ≡ �) is a theorem of S1SP and thus of L.
On the other hand:
id(ϕ ≡ ψ) = id(�(ϕ ↔ ψ)) = (id(ϕ) ↔ id(ψ)) ≡ �) ≡L≡ (id(ϕ) ≡ id(ψ)).
The last equation holds because (χ ≡ ξ) ≡ ((χ ↔ ξ) ≡ �) is a theorem of L≡. ��

As expected, particular examples of Definition 4.3 are axiomatic extensions of SCI
equivalent to the modal systems S1SP, S3, S4 and S5, respectively, which we are going
to define in the following.
Recall that the modal operator is defined as �ϕ := (ϕ ≡ �).
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Definition 4.6 We consider the language Fm≡ of SCI and define deductive systems
on the base of the following axiom schemes (CPC) + (1)–(5):
(CPC) any formula ϕ having the form of a classical tautology

(1) (χ ≡ ψ) ↔ �(χ ↔ ψ)

(2) �ϕ → ϕ

(3’) (�(ϕ → ψ) ∧ �(ψ → χ)) → �(ϕ → χ)

(3) �(ϕ → ψ) → �(�ϕ → �ψ)

(4) �ϕ → ��ϕ

(5) ¬�ϕ → �¬�ϕ.

Then logic S1SP≡ is axiomatized by the axiom schemes (CPC), (1), (2), (3’) together
with the scheme of theorems SP (ϕ ≡ ψ) → (χ [x := ϕ] ≡ χ [x := ψ]). That is,
S1SP≡ is given by the following deductive system. For Φ ∪ {ϕ} ⊆ Fm≡, we write
Φ �S1SP≡ ϕ if there is a corresponding derivation, i.e. a sequence ϕ1, . . . , ϕn = ϕ,
such that for every ϕi , 1 ≤ i ≤ n: ϕi ∈ Φ or ϕi is an instance of (CPC), (1)–(3’) or
SP or ϕi is obtained by rule MP or ϕi is obtained by rule AN (i.e. there is some axiom
ϕ j , 1 ≤ j < i , given as an instance of (CPC) + (1)–(3’), such that ϕi = �ϕ j ).

The deductive system S3≡ is defined analogously but with axiom schemes (CPC),
(1), (2), (3) (and without theorem scheme SP). Similarly, logic S4≡ is given by the
axioms (CPC) and (1)–(4). If additionally we consider axiom scheme (5), then we
obtain systemS5≡ (of course, ruleANonly applies to the given axiomsof the respective
underlying system).

Lemma 4.7 (χ ≡ ψ) ≡ �(χ ↔ ψ) is a theorem of S1SP≡.

Proof We obtain the following sequence of theorems:
�((χ ≡ ψ) ↔ �(χ ↔ ψ)) results from AN applied to (1).
((χ ≡ ψ) ≡ �(χ ↔ ψ)) ↔ �((χ ≡ ψ) ↔ �(χ ↔ ψ)) is an instance of (1).
Modus Ponens yields (χ ≡ ψ) ≡ �(χ ↔ ψ). ��
Theorem 4.8 SCI ⊆ SCI+ ⊆ S1SP≡ ⊆ S3≡ ⊆ S4≡ ⊆ S5≡.

Proof The first inclusion is trivial by the definitions (cf. Definition 2.17).
Claim 1: SCI+ ⊆ S1SP≡.
It is enough to show SCI ⊆ S1SP≡ since the additional axioms of SCI+ are already
contained in S1SP by definition. Recall that SP is equivalent to the identity axioms
(id3)–(id7) (modulo the rest of SCI). So we only need to show that

(id1) ϕ ≡ ϕ and
(id2) (ϕ ≡ ψ) → (ϕ → ψ) are theorems of S1SP≡.
(id1) derives considering axiom ϕ ↔ ϕ, rule AN and scheme (1). (id2) derives from

(1)+(2). Thus Claim 1 is true.

Claim 2: �(ϕ ∧ ψ) ↔ (�ϕ ∧ �ψ) is a theorem of S3≡.
We may derive that theorem exactly as in normal modal system K using only classi-
cal propositional calculus, rule AN and modal principle K of distribution which, by
schemes (3) and (2), is contained in S1SP≡ (with �ϕ defined as ϕ ≡ �). Such a
derivation can be found, e.g., in Hughes and Cresswell (1996).
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Claim 3: S1SP≡ ⊆ S3≡.
It is enough to show that scheme (3) is stronger than (3’), and that scheme SP is
derivable in S3≡.
(ϕ → ψ) → ((ψ → χ) → (ϕ → χ)) is an axiom.
�(ϕ → ψ) → (�(ψ → χ) → �(ϕ → χ)) is obtained by applying rule AN, (3),
(2) and Modus Ponens. Modulo CPC, that is equivalent to (3’). Thus, (3) is stronger
than (3’) (modulo the rest). Finally, in order to show that principle SP is derivable, we
derive the identity axioms (id3)–(id7) of SCI which are equivalent to SP modulo the
rest:
(ϕ ↔ ψ) → (¬ϕ ↔ ¬ψ) is an axiom.
�(ϕ ↔ ψ) → �(¬ϕ ↔ ¬ψ) results from applications of AN, (3), (2) and MP.
(ϕ ≡ ψ) → (¬ϕ ≡ ¬ψ), i.e. (id3), follows by scheme (1) and transitivity of
implication.
(ϕ ↔ ψ) → ((ϕ′ ↔ ψ ′) → ((ϕ ∨ ϕ′) ↔ (ψ ∨ ψ ′))) is an axiom.
�(ϕ ↔ ψ) → (�(ϕ′ ↔ ψ ′) → �((ϕ ∨ ϕ′) ↔ (ψ ∨ ψ ′))), by AN and appropriate
axioms.
(ϕ ≡ ψ) → ((ϕ′ ≡ ψ ′) → ((ϕ ∨ ϕ′) ≡ (ψ ∨ ψ ′))) results from replacing formulas
of the form �(χ1 ↔ χ2) by χ1 ≡ χ2, according to (1).
((ϕ ≡ ψ)∧ (ϕ′ ≡ ψ ′)) → ((ϕ ∨ϕ′) ≡ (ψ ∨ψ ′)), i.e. (id4), follows by propositional
calculus. Similarly, we derive (id5) and (id6). Finally, let us derive (id7).
(ϕ ↔ ψ) → ((ϕ′ ↔ ψ ′) → ((ϕ ↔ ϕ′) ↔ (ψ ↔ ψ ′))) is an axiom.
(*) �(ϕ ↔ ψ) → (�(ϕ′ ↔ ψ ′) → �((ϕ ↔ ϕ′) ↔ (ψ ↔ ψ ′))), by AN and
appropriate axioms.
�((ϕ ↔ ϕ′) → (ψ ↔ ψ ′)) → �(�(ϕ ↔ ϕ′) → �(ψ ↔ ψ ′)), instance of (3).
�((ψ ↔ ψ ′) → (ϕ ↔ ϕ′)) → �(�(ψ ↔ ψ ′) → �(ϕ ↔ ϕ′)), instance of (3).
�((ϕ ↔ ϕ′) ↔ (ψ ↔ ψ ′)) → �(�(ϕ ↔ ϕ′) ↔ �(ψ ↔ ψ ′)), apply Claim 2 to
the last two theorems.
�(ϕ ↔ ψ) → (�(ϕ′ ↔ ψ ′) → �(�(ϕ ↔ ϕ′) ↔ �(ψ ↔ ψ ′))), by (*) and
transitivity of implication.
Now, in the same way as before, we apply (1) and corresponding replacements to
derive
(**) (ϕ ≡ ψ) → ((ϕ′ ≡ ψ ′) → (�(ϕ ↔ ϕ′) ≡ �(ψ ↔ ψ ′))). Note that the proof of
Lemma 4.7 also works in S3≡. By schemes (3’) and (1), the connective ≡ is transitive
in S3≡. Putting these observations together and considering the equations
‘(ϕ ≡ ϕ′) ≡ �(ϕ ↔ ϕ′) ≡ �(ψ ↔ ψ ′) ≡ (ψ ≡ ψ ′)’,
we are able to derive
(�(ϕ ↔ ϕ′) ≡ �(ψ ↔ ψ ′)) → ((ϕ ≡ ϕ′) ≡ (ψ ≡ ψ ′)). This together with (**)
and transitivity of implication yields
(ϕ ≡ ψ) → ((ϕ′ ≡ ψ ′) → ((ϕ ≡ ϕ′) ≡ (ψ ≡ ψ ′))) which is equivalent to (id7).
Thus, Claim 3 is true. Finally, the inclusions S3≡ ⊆ S4≡ ⊆ S5≡ are clear byDefinition
4.6. ��

We are now able to establish the intended equivalences between some of our SCI-
extensions and corresponding modal systems.
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Theorem 4.9 The logics S1SP≡, S3≡, S4≡ and S5≡ introduced in Definition 4.6
are SCI-extensions which are equivalent to the modal logics S1SP, S3, S4 and S5,
respectively.

Proof We prove the equivalence between S3 and S3≡. The remaining equivalences are
shown in a similar way. First, let us check that the logics L := S3 and L≡ := S3≡
satisfy the conditions of Definition 4.3. On the one hand, we know that S3 is the
weakest Lewis modal system containing principle SP (cf. Lewitzka (2015, 2016)) and
thus contains S1SP. On the other hand, by Theorem 4.8 and Lemma 4.7, we know that
L≡ = S3≡ contains SCI and theorems (χ ≡ ψ) ≡ �(χ ↔ ψ). It remains to check
one of the equivalent conditions (i) or (ii) of Definition 4.3. We show that (i) holds.
So let Φ ∪ {ϕ} ⊆ Fm≡ and suppose Φ �S3≡ ϕ. We show box(Φ) �S3 box(ϕ) by
induction on the length n ≥ 1 of derivations of ϕ from Φ in S3≡. If n = 1, then we
distinguish the following cases (a)–(e).

(a) ϕ ∈ Φ. Then trivially box(ϕ) ∈ box(Φ) and thus box(Φ) �S3 box(ϕ).
(b) ϕ has the form of a classical tautology. Since translation box preserves logical

connectives, it follows that box(ϕ) is of the same form, i.e. has the form of a
classical tautology, too, and as such is an axiom of S3.

(c) ϕ is an instance of scheme (1), say ϕ = (χ ≡ ψ) ↔ ((χ ↔ ψ) ≡ �). By
definition of box:

box(ϕ) = �(box(χ) ↔ box(ψ)) ↔ �((box(χ) ↔ box(ψ)) ↔ �).

Considering the definition of the identity connective (ϕ1 ≡ ϕ2) := �(ϕ1 ↔ ϕ2)

in S3, this yields

box(ϕ) = (box(χ) ≡ box(ψ)) ↔ ((box(χ) ↔ box(ψ)) ≡ �).

By Lemma 3.4, �(box(χ) ↔ box(ψ)) ≡ ((box(χ) ↔ box(ψ)) ≡ �) is a
theorem of S3. Applying SP, we get

box(ϕ) ≡S3 ((box(χ) ≡ box(ψ)) ↔ �(box(χ) ↔ box(ψ)))

= (box(χ) ≡ box(ψ)) ↔ (box(χ) ≡ box(ψ)).

Of course, any such trivial biconditional is a theorem of S3 and so is box(ϕ).
(d) ϕ is an instance of scheme (2), say ϕ = (�ψ → ψ). By Lemma 4.5,

box(ϕ) ≡S3 �box(ψ) → box(ψ).

The formula of the right hand side of that equation is an axiom of S3.
(e) ϕ is an instance of scheme (3), say ϕ = �(ψ → χ) → �(�ψ → �χ). As in

(d), we apply Lemma 4.5 and get

box(ϕ) ≡S3 �(box(ψ) → box(χ)) → �(�box(ψ) → �box(χ)),
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which again results in an axiom of S3.12

Examining the cases (b)–(e) above, we conclude in particular the following
Fact: For any axiom χ of S3≡, we have box(χ) ≡S3 χ ′, where χ ′ is an axiom of
modal system S3.
Now, suppose ϕ is derived in n + 1 steps and the assertion is true for all derivations
of length ≤ n. We may assume that ϕ is obtained by an application of the rules MP
or AN. In the former case, there are ψ and ψ → ϕ derived in ≤ n steps, and the
induction hypothesis yields box(Φ) �S3 box(ϕ). In the latter case, ϕ = �χ for some
axiom χ of S3≡ that occurs in the given derivation. By Lemma 4.5 and the Fact above,
box(ϕ) ≡S3 �box(χ) and box(χ) ≡S3 χ ′, where χ ′ is an axiom of modal system S3.
Since SP holds in S3, we may replace box(χ) by χ ′ in every context. Then we get
box(ϕ) ≡S3 �χ ′. Since χ ′ is an axiom of S3, formula �χ ′ is a theorem of S3 by the
rule of Axiom Necessitation. Hence, box(ϕ) is a theorem of S3. We have finished the
induction and thus the proof of the Theorem. ��

We have established equivalences between some particular SCI-extensions and
corresponding Lewis-stylemodal logics bymeans of the respective deductive systems.
How can these equivalences be described semantically? One easily recognizes that a
given S1SP-model can be transformed into an SCI-model defining (a ≡ b) := �(a ↔
b). This corresponds to theorem (ϕ ≡ ψ) ≡ �(ϕ ↔ ψ) of S1SP. The resulting
SCI-model then will be a model of S1SP≡. The other way round, any given SCI-
model which is a model of S1SP≡ can be transformed into an S1SP-model defining
�a := (a ≡ �). This corresponds to theorem �ϕ ≡ (ϕ ≡ �) of modal system S1SP.
We conclude that the SCI-extension S1SP≡ is sound and complete w.r.t. the class of
exactly those SCI-models which can be obtained from S1SP-models by the above
presented transformation. So from a semantic point of view, the equivalence between
SCI-extension S1SP≡ and modal system S1SP is given by those respective classes of
models (and the transformations in both directions). Analogously, we can describe the
remaining equivalences semantically. Detailed proofs derive straightforwardly from
the above results.

Our view on intensionality as a measure for the discernibility of propositions (‘the
more propositions can be distinguished in models of the underlying logic the higher
degree of intensionality’) is presented here in a rather informal and intuitive way. An
interesting task for futureworkwould be to give a precise formalization of that concept.
The general framework of equivalences between SCI-extensions and certain modal
logics established in this paper generalizes and extends earlier results (e.g. Bloom &
Suszko, 1972; Lewitzka, 2016). There are further approaches to equivalences between
modal systems and propositional logics with identity connective found in the literature
(cf. Ishii, 1998) where, however, the axioms of the identity connective differ from
those of logic SCI . The question arises which further (hyper-) intensional logics can
be modeled by appropriate SCI-extensions or similar logics with identity connective.
Can any (hyper-) intensional logic be captured by an appropriate axiomatization of
propositional identity? These and related questions remain to be further investigated.

12 Note that the same argument is applicable if we consider the axioms (3’), (4), (5). If ϕ is such an axiom,
then box(ϕ) is the corresponding axiom of modal system S1SP, S4, S5, respectively.
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