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Abstract

We study the computational complexity of the universal theory of residuated ordered
groupoids, which are algebraic structures corresponding to Nonassociative Lambek
Calculus. We prove that the universal theory is coNP-complete which, as we observe, is
the lowest possible complexity for a universal theory of a non-trivial class of structures.
The universal theories of the classes of unital and integral residuated ordered groupoids
are also shown to be coNP-complete. We also prove the coNP-completeness of the
universal theory of classes of residuated algebras, algebraic structures corresponding
to Generalized Lambek Calculus.

Keywords Residuated ordered groupoid - Universal theory - Partial algebra -
Residuated algebra

1 Introduction

Residuated ordered groupoids! (Fuchs, 1963; Blyth & Janowitz, 1972), for short rogs,
are algebraic models of the Nonassociative Lambek Calculus NL (Lambek, 1961), a
version of the Lambek Calculus (Lambek, 1958) obtained by dropping the implicit
rule of associativity. The atomic theory of rogs, that is, the set of sentences of the form
Vxi1...Vx,(s < 1) valid on every rog, is, in essence, a notational variant of NL, with
atomic sentences corresponding to sequents s - ¢. Similarly, the Horn theory of rogs,
which is the set of Horn sentences Vxi...Vx,(u; < vi&...&uy < vy, = 5 < 1)
valid on every rog, is a notational variant of NL with nonlogical axioms (Buszkowski,

! In alternative terminology, residuated groupoids (Buszkowski, 2005).
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2005). In this modification of NL, proofs are allowed that commence not only with
identity sequents, but also with nonlogical assumptions # + v, where u and v are
arbitrary formulas. These assumptions correspond to the algebraic inequalities u < v
that are premisses of the corresponding Horn sentence. It is worth noting that, in
contrast with NL, the cut-rule is, in general, not eliminable in NL with nonlogical
axioms.

The universal theory of rogs is the set of sentences of the form Vx| ... Vx,¢, where
¢ is a Boolean combination of algebraic inequalities, valid on every rog. The univer-
sal theory is a natural extension of the Horn theory; a proof-theoretic analog thereof
would be a deductive system allowing deductions of a disjunctively interpreted set of
sequents from a conjunctively interpreted set of sequents. Such deductive formalisms,
in the guise of multi-conclusion systems (Sambin et al., 2000; Jefdbek, 2009; Iemhoff,
2015, 2016; Bezhanishvili et al., 2016; Jalali, 2021) and hypersequents (Avron, 1996;
Lellmann, 2016), have recently received considerable attention, even though no such
system capturing the universal theory of rogs has, as far as we know, yet been con-
structed.

Both the atomic and Horn theory of rogs are decidable in polynomial time, as shown
by Aarts and Trautwein (1995) and Buszkowski (2005), respectively. The universal
theory of rogs is shown to be decidable by Farulewski (2008), however, the complexity
has, to date, not been established. In the present paper we fill this gap by showing that
the universal theory of rogs is coNP-complete which, as we observe, is the lowest
possible complexity for a universal theory of a non-trivial class of structures.

In addition to rogs we consider two variations of rogs that have attracted attention,
namely unital and integral rogs. By a unital residuated ordered groupoid, or urog, we
mean a rog that has an identity for the groupoid operation. The class of urogs is an
algebraic semantics for NL with unit. It is shown by Bulifiska (2009) that the Horn
and, hence, atomic theory of urogs is decidable in polynomial time. By an integral
residuated ordered groupoid, or irog, we mean a urog in which the identity is the
greatest element with respect to the order. The class of irogs is considered by Blok
and Van Alten (2005), where it is shown to have the ‘finite embeddability property’,
or fep, meaning that every finite partial substructure of an irog is embeddable into a
finite irog. The fep, together with finite axiomatizability, implies decidability of the
universal theory of irogs. In the present paper, we show that the universal theory of
both urogs and irogs is coNP-complete. We note that decidability of the universal
theory of rogs was established by Farulewski (2008) by proving the fep for the class
of rogs. It is shown there that NL has the strong finite model property, from which the
fep for the class of rogs then follows by Blok and Van Alten (2002).

We shall also consider classes of residuated algebras. These algebras were intro-
duced by Buszkowski (1989) as algebraic semantics for the Generalized Lambek
Calculus [see also (Buszkowski, 1998; Kotowska-Gawiejnowicz, 1997; Kandulski,
1997; Jager, 2004)]. It is shown by Buszkowski (2005) that the Horn and, hence,
atomic theory of each class of residuated algebras is decidable in polynomial time.
The fep, and hence decidability of the universal theory, for each class of residuated
algebras is proved by Buszkowski (2011). In this paper, we extend the methods used
for residuated ordered groupoids to show that the universal theory of each class of
residuated algebras is coNP-complete.
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The upper complexity bounds obtained herein are established using a technique of
partial structures described by Van Alten (2013). For rogs, for example, the technique
requires an intrinsic characterization of partial substructures of rogs, or ‘partial rogs’.
A universal sentence fails to hold in some rog if, and only if, it fails to hold in some
partial rog of size not greater than the size of the given universal sentence. The char-
acterization of partial rogs presented in Theorem 1 can be checked in polynomial
time for a given partial structure; hence, if an arbitrary partial structure is guessed, it
can be decided in polynomial time if it is a partial rog. In this way we obtain a non-
deterministic polynomial-time algorithm for deciding if a partial structure is a partial
rog, from which it follows that the universal theory of rogs is in coNP—the full details
are given in Sect. 4. For the lower complexity bounds we use the observation, stated in
Theorem 4, that the universal theory of any non-trivial class of structures is coNP-hard.

2 Residuated Ordered Groupoids

We consider structures corresponding to the signature o containing binary operation
symbols o, \ and /, as well as a binary relation symbol <; we call such structures
o -structures. We assume throughout the paper that terms are built out of a fixed count-
able set Var of variables, whose members are typically denoted by x, y, z, x1, y1, .. ..

A residuated ordered groupoid, or rog, is a o -structure A = (A, o, \, /, <), where
(A, <) is a partially ordered set and o, \ and / are binary operations on A such that,
foralla, b,c € A,

aob<c <+ b<a\c < a<c/b. (1)

The class of all rogs is denoted by ROG. It follows from (1) that o is order-preserving
in both coordinates, \ is order-reversing in the first coordinate and order-preserving
in the second, while / is order-preserving in the first coordinate and order-reversing
in the second.

IfA = (A, oA \A, /A <A and B = (B, o \B, /B <B) are rogs, then by an
embedding of B into A we mean a map « : B — A such that a <B b if, and only if,
a(a) <M a(b), and a(axBb) = a(a)x®a(b) for every » € {o,\, /} and all a, b € B.
Observe that every embedding is injective since, for all a, b € B, if a # b then either
a€Bborb B a, soa@) €A ab) or a(b) €2 a(a); in particular, a(a) # a(b).

We shall use the following terminology and notation. Let (Q, <) be a partially
ordered set. A subset X of Q is called an upset of (Q, <) ifa € X and a < b imply
b € X, forall a, b € Q. If the order relation on Q is clear from the context, we shall
use U(Q) to denote the set of all upsets of (Q, <) and, for a € Q, by the principal
upset of a, we shall mean the set [a) :={b € Q | a < b}.

We shall rely on the frame representation theory for rogs due to Dunn (1993).
A rog-frame is a structure § = (P, <, R), where (P, <) is a partially ordered set and
R is a ternary relation on P that is monotone in the last coordinate and antitone in the
first two coordinates, i.e., such that, for all f, f’, g, ¢’,h,h’ € P,

R(f.g.M&f'<f&g <g&h<h'= R(f'. g h). 2
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Starting from a rog-frame § = (P, <, R), we obtain a rog that has as its universe
the set U (P), as follows. Define, for all X,Y € U(P),

XoY:={heP|@Af,gecP)feX&gec¥&R(f g M} 3)
X\Y:={geP|(VfheP)[fe X&R(f,g.h)=heY]l; 4
Y/X:={feP|(Ng,heP)ge X&R(f,g.h)=>heY]. (5

Since § satisfies (2), so defined o, \ and / are operations on U (P). The definitions
(3-5) ensure that (1) is satisfied with respect to the partial order € on U (P). Thus,
Az = (U(P),o,\,/, C) is arog, which we call the rog associated with §.

Conversely, starting from a rog A = (A, o, \, /, <), we can obtain a rog-frame, as
follows. Define a ternary relation R on U (A) by

R(f.g.h) & (Ya,be A)lac f&becg=>aobehl 6)

Then R and C satisfy condition (2), hence o = (U(A), S, R) is a rog-frame.
Thus, we may obtain Az, , the rog associated with §a. It is straightforward to check
that the map u: A — U(U(A)) defined by u(a) = {f € U(A) | a € f}is an
embedding of A into Ag,.

3 Partial o-Structures and Partial rogs

In this section, we introduce partial rogs and obtain an intrinsic characterization
thereof; this characterization will play a key role in establishing our complexity results.

A partial o -structure is a structure B = (B, oB, \B, /B, <B), where <Bisa binary
relation on B and o®, \B and /B are partial binary operations on B, i.e., partial functions
from B x B into B. The domains of oP, \B and /P are denoted by, respectively,
dom(o®), dom(\B) and dom(/®). For clarity, we note that for each » € {o,\, /},
dom(*B) C B x B.

A partial rog is a partial o-structure B = (B, oB, \B, /B, <B> which is a partial
substructure of a rog, that is, for which there exists a rog A = (A, o8, \A, /A, <A
such that B C A, <B= <A and axBb = a»Ab for each » € {0, \, /} and (a, b) €
dom(»B).

We note that if B is a partial rog that is a partial substructure of a rog A, then B is not
necessarily the restriction of *2 to B: that is, there may exista, b € Band« € {o, \, /}
for which ax®b € B but (a, b) ¢ dom(xP). This definition is consistent with that of
partial substructure used by Van Alten (2013), but contrasts with the closely related
notion of partial subalgebra used, for example, by Blok and Van Alten (2002).

By an embedding of a partial o-structure B = (B, oB, \B, /B, <B) intoa o-structure
A = (A, oA, \A, /A, <A) we mean a map @ : B — A such that a gB b if, and
only if, a(a) <A «(b), and a(axPbh) = a(a)* a(b) for each » € {o,\,/} and
(a,b) € dom(+PB).

Observe that if B is a partial o-structure and there exists an embedding of B into
arog A, then B is isomorphic to a partial substructure of A, that is, B is (isomorphic
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to) a partial 7og. Using this observation, in the following theorem we give an intrinsic
characterization of partial rogs. The construction used in the proof of the theorem
resembles the construction of the rog associated with §4, i.e., Az, , from a rog A.

Theorem 1 A partial o -structure B = (B, o8, \B, /B, <B) is a partial rog if, and only
if, it satisfies the following conditions:

(i) (B, <B) is a partially ordered set;
(i) (V{a,b), (c,d) € dom(®)[a <Bc&b<Bd= aoPb<BcoPd;
(iii) (Y{a, b) € dom(c®))(V(c, d) € dom(\B))
la <Bc&b<Bc\Bd= aoBb <Bd]
(iv) (Y{a, b) € dom(cB))(¥(c, d) € dom(/B))
[a <B c/Bd&b <Bd=a®b<B
(v) (Y{a, b) € dom(\B))(¥(c, d) € dom(cP))
la <Bc&coBd <Bb= d<Ba\Pb];
i) (Y{a,b), (c,d) € dom(\B)[a <Bc&d<Bb= c\Bd <Ba\BD);
vii) (Y{a,b) € dom(\B))(¥(c, d) € dom(/B))
la<Bc/Bd&c<Bb=—d<Ba\Bb];
(viii) (V{a, b) € dom(/B))(V(c,d) € dom(oB))
b<Pd&coPd <®Ba= c<®a/bb];
(ix) (Y{a, b) € dom(/B))(V(c,d) € dom(\B))
[d<Pa&b<®c\Bd= c<Ba/bh];
(x) (V(a,b), (c,d) € dom(/B))[c <Ba&b<Bd= c/Bd <Ba/Bb].

Proof 1t is straightforward to check that conditions (i—x) hold in every rog. Since these
conditions are universal sentences with quantifiers relativized by the domains of the
partial operations, it follows that (i—x) hold in every partial rog.

Conversely, suppose B = (B, 0B \B, /B <B) is a partial o-structure satisfying
(i—x). We construct a rog into which B is embeddable. Define a ternary relation R® on
the set U (B) of all upsets of (B, <B) by:

RB(f,g.h) < (V(a,b) e dom(o®))[ae f&beg=>ao®beh]
& (V{a,b) e dom(\P))[a € f &a\Bb e g= beh]
& (V{a,b) € dom(/®))[a/Bb e f & be g=achl.

It is straightforward to check that the structure § = (U (B), C, RB) is a rog-frame. Let
Az = (U(U(B)), 0, \,/, C) be the rog associated with § and let u: B — U(U(B))
be the map defined by u(a) = {f € U(B) | a € f}. We show that p is an embedding
of Binto Ag.

Ifa,b € B with a <® b, then every element of w(a) contains b; hence, u(a) <
ub). If a %B b, then the principal upset [a) belongs to u(a) but not to £(b); hence
u(a) € wu(b). Thus, a <B b if, and only if, u(a) € u(b).

Let (a, b) € dom(oP). We show that j(a o® b) = pu(a) o u(b), where

u(@ao®b)y={heUB) |ao®beh)
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and
p@oub)={heUB)| 3f,gcUB)lac f&beg&RPf, g ).

Assume h € p(a)ou(b). Then there exist f, g € U(B) suchthata € f,b € gand
RB(f, g, h). It follows from the definition of R® thatao® b € h, hence h € p(ao®b).
Thus, p(a) o u(b) C w(a o® b).

Next, assume 7 € u(a oB b),ie., a oB b € h. Let f :=la) and g := [b). Clearly,
f.g € UB),a € fand b € g. We show that RB(f, g, h). Suppose that ¢ and d
are arbitrary elements of B for which (c,d) € dom(o®), ¢ € f and d € g. Then,
a <B cand b <B d, hence, by (ii), a o® b <B ¢ B d. Since a o® b € h and h is
an upset, ¢ o d € h. Suppose that ¢ and d are arbitrary elements of B for which
(c,d) € dom(\B),c € fandc\Bd € g. Then,a <B cand b <B ¢\Bd, hence, by (iii),
a o® b <B d, whence d € h. Lastly, suppose that ¢ and d are arbitrary elements of B
for which (c, d) € dom(/B), ¢/Bd € fandd € g. Then,a <® ¢/Bd and b <B d,
hence, by (iv), ao® b <B ¢, whence ¢ € h. Thus, RB(f, g, h). Sincea € fandb € g,
we obtain & € u(a) o u(b), hence u(a o® b) C p(a) o u(b).

Let (a, b) € dom(\®). We show that 1 (a\Bb) = 1(a)\(b), where

1w(@\Pb) = {g e U(B) | a\Pb € g}
and
pw@\ub) ={g e UB) | (Yf,he UB))[ac f & RB(f, g, h) = b ehl}.

Assume g € u(a\Bb), i.e., a\Bb € g. Suppose that, for some f,h € U(B), both
a € fand RB(f, g, h). Since a\Bb € g, by definition of R, we obtain b € h and so
g € (@)\p(b). Thus, u(a\"b) S 1u(a)\n(b).

Next, assume g ¢ wu(a\Bb), ie., a\Bb ¢ g. To prove that g ¢ w(a)\u(b), we
show that there exist f,h € U(B) such that a € f and RB(f, g, h), but b ¢ h.
Let f :=[a)and h ;== {e € B | ¢ §§B b}. Clearly, f,h € U(B),a € f and
b ¢ h. We show that RB(f, g, h). Suppose that ¢ and d are arbitrary elements of B
for which (¢, d) € dom(o®), ¢ € fandd € g. Then, a <® c. Since g is an upset
and a\Bb ¢ g, surely d £B a\Bb, hence, by (v), c B d «£B b, and so c 0B d € h.
Suppose that ¢ and d are arbitrary elements of B for which (c, d) € dom(\B), cef
and c\Bd € g. Thena <B c and c\Bd y{B a\Bb, hence, by (vi), d ;(B b,andsod € h.
Lastly, suppose that ¢ and d are arbitrary elements of B for which (c, d) € dom(/®),
c/Bd € fandd € g. Then,a <B ¢/Bd and d £® a/Bb, hence, by (vii), c £B b, and
soc € h.Thus, RB(f, g, h).Sincea € f and b ¢ h, we obtain g ¢ 11(a)\(b) hence
r@\u(b) < p(a\"b).

For (a,b) € dom(/®), the proof that w(a/Bb) = w(a)/u(b), which relies on
conditions (viii—x), is analogous.

Thus, w1 is an embedding of B into Ag. It follows that B is a partial rog, which
completes the proof. O
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4 Complexity of the Universal Theory of ROG

In this section, we consider the universal theory of ROG and prove its
coNP-completeness.

We recall that universal o -sentences are formulas of the form Vxi ... Vx, ¢, where
¢ is a quantifier-free (first-order) o -formula, i.e., a formula defined by the BNF expres-
sion

p:=@<t)|noty | (¢ &) | (¢org),

with ¢ ranging over o-terms, and containing no variables other than x1, ..., x,.

We omit parentheses around formulas where this does not lead to ambiguity. Hence-
forth, given a quantifier-free o-formula ¢, we write ¢(x1, ..., X;) to indicate that ¢
contains no variables except x1, . .., x,. We denote by Var(¢) and Ter(¢) the sets of,
respectively, variables and terms occurring in ¢.

An assignment on a rog A is amap v : Var — A. The definition of the satisfaction
relation A =Y ¢ between rogs A, assignments v and quantifier-free o-formulas ¢
is standard—see, e.g., Chang and Keisler (1990). A quantifier-free o-formula ¢ is
satisfiable in ROG if A =Y ¢ for some rog A and some assignment v on A; ¢ is
valid on ROG if A ¥ ¢ for every rog A and every assignment v on A. A univer-
sal o-sentence Vxi ...Vx,p is valid on ROG if ¢ is valid on ROG. The universal
theory of ROG is the set of all universal o -sentences valid on ROG. Clearly, a uni-
versal sentence Vx; ... Vx,¢ is valid on ROG if, and only if, not ¢ is not satisfiable
in ROG. Thus, satisfiability of quantifier-free o-formulas in ROG and validity of
universal o -sentences on ROG (i.e., membership in the universal theory of ROG) are
complementary computational problems.

We shall also need the notion of satisfaction of a quantifier-free o-formula in a
partial rog under a partial assignment, i.e., a partial function from Var into the universe
of a partial rog.

For a partial assignment v on a partial rog B, we recursively define, for every o -term
t, the relation B | v(¢) (“the value of 7 in B is defined under v”’) as follows:

Bl v(x;) = x; € dom(v);
B | v(t1xt2) — B | v(t)), B | v(r)and(v(t)), v(fp)) € dom(*B),
where x € {o, \, /}.

Next, for a partial assignment v on a partial rog B, we recursively define, for every
quantifier-free o-formula ¢, the relations B =Y ¢ (“¢ is satisfied in B under v”),
B =¥ ¢ (“p is not satisfied in B under v”) and B R ¢ (“the truth value of ¢ in B
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under v is undefined”) as follows:

BE' (11 <) —  Blu@),Blu) andvn) <P v(n);
B £ (1 < 1) —  Blu@),Blu) andv(n) £° v(n);
B R’ (hh < 1) otherwise;

B =’ notg — BFE' ¢

B =’ notg — BE"¢

B R’ not ¢ otherwise;

B =" (p1 & ¢2) < BE"¢ andB " ¢;

B Y (91 & ¢2) < B ¢ orB =" ¢;

B R (1 & ¢2) otherwise;

B =" (p10r¢) — BE"¢ oBE"@;

B [£" (91 0r ) < B ¢ andB |£" g5

B~ (¢1 or ) otherwise.

We say that a quantifier-free o -formula ¢ is satisfiable in a partial rog B if there exists
a partial assignment v on B such that B =" ¢.

Intuitively, B =" ¢ (respectively, B [~V ¢) means that the relation B | v(¢) holds
for enough terms ¢ € Ter(p) for us to be able to compute the ‘truth value’ of ¢ in B
under v as true (respectively, false).

More precisely, we use, in metalanguage, a 3-valued logic with the values ‘true’,
‘false’ and ‘undefined’ (for short, u). The 3-valued logic we use agrees with the
3-valued Lukasiewicz logic in the definitions of not, & and or, but differs in the
definition of implication: # — u is u in the logic we use, but true in the Lukasiewicz
logic. In our earlier papers (Shkatov & Van Alten, 2019, 2020, 2021), satisfaction in
partial structures was defined slightly differently, in effect using a 3-valued logic where
the result of a logical operation is undefined whenever at least one of the operands is
undefined. The difference between the two approaches has no impact on any of our
results.

We shall use the following observation in the proof of Theorem 2 below. Let B be a
partial rog, ¢ a quantifier-free o-formula and v be a partial assignment on B such that
B Y ¢. Let v’ be a (full) assignment on B extending v. Observe that, if x ¢ Var(e),
then the value of x under v’ is irrelevant to the satisfaction of ¢ in B under v’. Also
observe that, if x € Var(p), but x ¢ dom(v), then the value of x under v’ is, again,
irrelevant to the satisfaction of ¢ in B under v’. Formally, it can be shown by induction
that if B =" ¢ (respectively, B j=¥ ¢), then B =" ¢ (respectively, B = ¢).

We now relate satisfiability in rogs and partial rogs. We define the size of a quantifier-
free o-formula ¢, denoted size(¢), to be the number of variables in ¢ plus the total
number of occurrences of operation symbols in ¢. To be consistent with the literature,
we use the standard measure of the complexity of an input formula ¢, its length, defined
in the standard way as the number of occurrences of symbols in ¢, and denoted by
len(p). The running time of our algorithms is, however, more appropriately measured
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by the size of a formula. Since, evidently, size(¢) < len(¢), whenever we prove
the existence of an algorithm running in O(f (size(¢))) we, thereby, establish the
existence an algorithm running in O(f (len(g))), whatever function f is.

The following theorem is a special case of Van Alten (2013, Theorem 2.1); we
include a proof of this special case for the reader’s convenience.

Theorem 2 A quantifier-free o-formula ¢ is satisfiable in ROG if, and only if, it is
satisfiable in a partial rog whose cardinality does not exceed size(@).

Proof Assume A =" ¢ for some rog A = (A, oA, \A, /A, <A) and some assignment
vonA.Let B={v(t) | t € Ter(¢)}. Observe that |B| < size(¢). Foralla,b € B
and » € {o,\, /}, let (a, b) € dom(*PB) if there exists r1xt> € Ter(p) with a = v(1;)
and b = v(1). Then, for every € {o,\, /} and all (a, b) € dom(*P), set axBb :=
ax®b. Lastly, set <B= gA [B. Then B := (B, oB, \B, /B, gB) is a partial rog. Let
W := v [yar(p). It should be clear that B =" ¢. Thus, ¢ is satisfiable in a partial rog
of the required cardinality.

Conversely, assume B =Y ¢ for some partial rog B and some partial assignment v
on B. Then B is a partial substructure of some rog, say A. Let v’ be a (full) assignment
on B extending v. Then, as observed above, B |=”, @. Since B is a partial substructure
of A, it follows that A I:“/ 0. O

Using the above theorem, together with the characterization of partial rogs given
in Theorem 1, we obtain the upper bound for complexity of satisfiability in ROG and
hence also of the universal theory of ROG.

Theorem 3 Satisfiability of quantifier-free o -formulas in ROG is in NP. The universal
theory of ROG is in coNP.

Proof Let ¢ be a quantifier-free o -formula. Due to Theorem 2, to determine whether ¢
is satisfiable in ROG it suffices to check if it is satisfiable in a partial rog of cardinality
not exceeding size(¢). To that end, we use the following nondeterministic algorithm.

Guess a partial o-structure B = (B, oB, \B, /B, <B) with |B| < size(p) and a
partial assignment v on B. Check whether B is a partial rog and whether B =" ¢. If
both checks succeed, return “yes”; otherwise, return “no.”

In view of Theorem 1, to check whether B is a partial rog it suffices to check
properties (i—x), which can be done in time polynomial in |B| and, hence, size(p).
Checking whether B =" ¢ can be done in time polynomial in size(¢). Thus, the
outlined algorithm runs in time polynomial in size(g).

Satisfiability of quantifier-free o-formulas in ROG is, therefore, in NP. Since, as
we have observed, membership of universal o-sentences in the universal theory of
ROG is a complementary problem, the universal theory of ROG is in coNP. This
completes the proof. O

For the lower bound, we use the following observation stating a simple condition
under which the universal theory of a class of structures is coNP-hard. We say that a
k-ary predicate P on a structure with domain A is non-trivial if P # & and P # Ak,
we say that a structure is non-trivial if it has a non-trivial predicate definable in its
signature.
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Theorem 4 Let IC be a class of structures that contains a non-trivial structure. Then,
satisfiability of quantifier-free first-order formulas in IC is NP-hard and the universal
theory of IC is coNP-hard.

Proof The proof is by reduction from the NP-hard satisfiability problem for Boolean
formulas (Cook, 1971).
Let A be a non-trivial structure in I with non-trivial k-ary predicate P. Then

there exist ay, ..., ax, by, ..., b, in the domain of A with (ay,...,ar) € P and
(b1,...,br) ¢ P, thatis, P(ay,...,ax)istrue and P(by, ..., by) is false.

Let B(p1, ..., pn) be a Boolean formula. For every i € {l,...,n} and every
je{l,... .k}, let q; be a new variable. Recursively define the translation -*:

pi = P(q{,...,q,’;), foreveryi € {1,...,n};
(=y1)" == notyy;
Ay =y &y
nVy) =yl ory;.

Then B* is a quantifier-free formula in the signature of . We show that g is satisfiable
in the two-element Boolean algebra if, and only if, 8* is satisfiable in /.

Assume f is satisfiable in the two-element Boolean algebra 2 with universe {0, 1}
under assignment v. Let w be an assignment on A such that, foralli € {1, ..., n} and
jel{l, ... k},

; aj ifv(p) =1;
w(q]') = b i
;i ifv(p;) =0.

Then, A =¥ pfif v(p;) = 1,and A =Y p7if v(p;) = 0. It follows, recursively,
that A =" B*.

Conversely, suppose B* is satisfiable in /. Then, B = 8* for some B € K and
assignment w on B. Let v be an assignment on the Boolean algebra 2 such that

(o= |1 HTBE" P(ql,....q));
v i) = . .
pi 0 ifB Y P(l.....q)).

It follows that 2 =Y B, as required. O

From Theorems 3 and 4, which is applicable since the signature o contains the
relation symbol <, we obtain the following:

Theorem 5 Satisfiability of quantifier-free o-formulas in ROG is NP-complete. The
universal theory of ROG is coNP-complete.
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5 Unital and Integral Residuated Ordered Groupoids

In this section we extend the methods of the previous sections to show that the universal
theories of the classes of unital and integral rogs are coNP-complete.

We denote by ¢’ the signature that extends the signature o by a constant 1. A unital
residuated ordered grouopid, or urog, is a o’-structure A = (A, o, \, /, 1, <), where
(A, 0,\,/,<)isarogand 1 is an identity for o, i.e., A satisfies x ol = x = 1 ox. The
class of all urogs is denoted by UROG. An integral residuated ordered grouopid, or
irog, is a urog satisfying x < 1. The class of all irogs is denoted by ZROG.

An embedding of a urog (respectively, irog) into another urog (respectively, irog)
is an embedding of an underlying rog that, additionally, preserves the identity.

We extend the frame representation theory for rogs given in Sect. 2 to urogs and
irogs.

First, we consider urogs. A urog-frame is a structure § = (P, e, <, R), where
(P, <, R) is a rog-frame and e € P such that the following hold:

(Vf € P)IR(f.e. f) & R(e. f. /)] (N
(Vf.h e P)IR(f,e,h) = [ < hl; ®)
(Vg.h € P)[R(e, g, h) = g < h]. C))

Let (P, e, <, R) be aurog-frame. Since (P, <, R) is a rog-frame we may construct,
asin Sect. 3, the rog associated with it, that is, (U (P), o, \, /, €), where the operations
o, \ and / are as defined in (3-5). We observe the following result.

Lemma1 If (P, e, <, R) be a urog-frame, then [e) is the identity for the operation o
on U (P) defined in (3).

Proof Let X € U(P); then by (3),
Xole)={heP|@3feX)3gele)R(Sf, g )}

If h € X o [e), then there exists f € X and g € [e) such that R(f, g, h). Since
e < gwehave R(f,e, h),by (2), hence f < h,by (8). Thus,h € X,s0 X o[e) C X.
Conversely, if 1 € X, then, since e € [e) and R(h, e, h),by (7), we getthath € Xo[e).
Thus, X € X o[e). Therefore, X o[e) = X. We can show, similarly, that [e) o X = X,
so [e) is an identity for o. By standard algebraic methods it follows that [e) is the
unique identity for o. O

Thus, if § = (P, e, <, R) is a urog-frame, then Az := (U(P), 0, \,/,[e), S) isa
urog (with [e) = 1); we call it the urog associated with §.

IfA=(A,o,\,/, 1, <)isaurog, then we can obtain a urog-frame, as follows. Let
R be the ternary relation on U (A) defined as in (6). Then the structure (U (A), C, R)
is a rog-frame. It is straightforward to check that §a := (U(A), [1), S, R) satisfies
(7-9); hence, it is a urog-frame.

We next consider the class of irogs. An irog-frame is aurog-frame § = (P, e, <, R)
satisfying

(Vf € P)le < [l (10)
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For any irog-frame § = (P,e, <, R), the urog associated with §, namely,
Az = (U(P),o,\,/,[e), <€), has [e) = P, by (10), which is clearly the greatest
element of U (P). Thus, Ag is an irog, which we call the irog associated with §.

Let A = (A,o,\,/,1,<) be an irog. Let U'(A) be the set of all nonempty
elements of U(A) and R the ternary relation on U’(A) defined as in (6). Then
iy = (U'(A), {1}, S, R) is a urog-frame. As for urogs, the constant element e of
&'y is [1), which is just {1} in this case. In addition, every non-empty upset of A con-
tains 1, so {1} is the smallest element of U’(A). Thus, §, satisfies (10), hence it is an
irog-frame.

A partial o'-structure is a structure B = (B, oB, \B, /B, IB, gB), where gB is
a binary relation on B, while o, \B and /B are partial binary operations on B and
1B € B. (Note that the partiality of the binary operations on B does not apply to
the constant 1B which is always assumed to be an element of B.) A partial urog is
a partial o/-structure B = (B, oB \B, /B 1B <B) that is a partial substructure of a
urog, i.e., for which there exists aurog A = (A, oA, \A, /A, 1A, <A> suchthat B C A,
<B=gA [B, 1B = 12 and axBb = a»b foreach x € {o,\,/}and (a, b) € dom(*B).
Partial irogs are defined analogously.

An embedding of a partial o’-structure B = (B, o8, \B, /B, <B) into a o’-structure
A= (AA\A /A <Misamap o : B — A such that: ¢ <P b if, and only if,
a(a) <A a(b), a(1®) = 12 and a(a+Bb) = a(a)*x a(b) for each » € {o, \, /} and
(a,b) € dom(*B). As in the case of rogs, embeddings can easily be shown to be
injective. In addition, if B is a partial o’-structure and there exists an embedding of B
into a urog (respectively, irog) A, then B is isomorphic to a partial substructure of A,
that is, B is a partial urog (respectively, irog).

In the following two theorems we give intrinsic characterizations of, respectively,
partial urogs and partial irogs.

Theorem 6 A partial o'-structure B = (B, oB, \B, /B, 1B, gB) is a partial urog if,
and only if, it satisfies conditions (i—x) of Theorem 1 and

(xi) (Va € B)[{a, 1B) € dom(oB) = a o® 1B = 4];

(xii) (Ya € B)[(1B, a) € dom(cP) = 1B By =4q].

Proof As observed in the proof of Theorem 1, conditions (i—x) hold in every partial
rog, hence also in every partial urog. Conditions (xi) and (xii) hold in every urog; since
they are universal sentences with quantifiers relativized by the domains of the partial
operations, it follows that they hold in every partial urog.

Conversely, suppose B = (B, o, \B, /B 1B <B)isapartial o'-structure satisfying
the requirements of the theorem. For every a € B, if (18, a) ¢ dom(oP), then we
extend the domain of oP to include (1B, a) and set 1B of ¢ = a. We deal similarly
with every a € B for which (a, 1B) ¢ dom(oP). Then, by (xi) and (xii), a o® 1B =
a = 1B oB g forevery a € B.

As in Theorem 1, we define a ternary relation RE on U(B) as follows:

RB(f,g.h) — (V(a,b) € dom(®)[ae f&becg= ac®beh]
& (V(a,b) e dom(\B))[a € f & a\Bb e g = beh]
& (V(a,b) € dom(/®)[a/Bb e f&be g = ach).

@ Springer



Complexity of the Universal Theory of Residuated... 501

Let§ := (U(B), [lB), c, RB); we show that § is a urog-frame. As noted in the proof
of Theorem 1, (U(B), C, RB) is a rog-frame. We next show that § is a urog-frame,
that is, it satisfies (7-9).

To see that § satisfies (7), let f € U(B); we must show that RB f, [1B), f) and
RB([1B), £, f). Suppose that (a, b) € dom(oP) for some a € f and b € [1B). Then,
1B <B b soao® 1B <B goBb, by (i), hencea <B aoPb,soaoPbe f.Next,
suppose that (a, b) € dom(\B), where a € f and a\Bb € [1B). By an application
of (iii), since a <B a and 1B <B a\Bb, we obtain that a o® 1B <B b, ie.,a <B b.
Thus, b € f, as required. Lastly, suppose that (a, b) € dom(/®), where a/Bb € f
and b € [1B). By an application of (iv) , since a/Bb <B a/Bb and 1B <B b, we obtain
that (a/Bb) B 1B By ie., a/Bb <B 4. Thus, a € f, as required. This show shows
that RB(f, [lB), f); a similar proof shows that RB([IB), f, ).

To see that § satisfies (8), let f,h € U(B) such that RB(f, [1B), h); we must
show that f € h.Leta € f. Since 1B € [1B) and (a, 1B) € dom(oP), we get that
aoP 1B ¢ h. Since a oB 1B = g, it follows that @ € h, as required. A similar argument
shows that § satisfies (9).

Let Az = (U(U(B)),0,\./, [[1B)), C) be the urog associated with §. It can be
shown, as in the proof of Theorem 1, that the map u: B — U (U (B)) defined by
u(a) ={f e U(B) | a € f}is an embedding of B into Ag; we need only check
additionally that ,u(lB) = [[1B)), which is immediate. This completes the proof. O

Theorem 7 A partial o'-structure B = (B, oB, \B, /B, 18, gB) is a partial irog if, and
only if, it satisfies conditions (i—x) of Theorem 1, conditions (xi) and (xii) of Theorem 6
and

(xiii) (Va € B)[a <B 1B)].

Proof Conditions (i—xiii) hold in any irog, hence also in every partial irog.

Conversely, suppose B = (B, oB, \B, /B, 1B, <B) is a partial o’-structure satisfying
the requirements of the theorem. For every a € B, if (lB, a) ¢ dom(oB), then we
extend the domain of oP to include (1B, a) and set 1B o ¢ = a. We deal similarly
with every a € B for which (a, 1B) ¢ dom(o®).

Let U'(B) be the set of all nonempty upsets of (B, <B). Define a ternary relation
RBon U’ (B) as in Theorems 1 and 6. It can be shown, as in the proof of Theorem 6,
that § = (U’(B), {1B}, C, RB) is a urog-frame. By (xiii), every element of U’(B)
contains 1B, hence {lB} is the smallest set in U’ (P), that is, § satisfies (10); hence,
§’ is an irog-frame.

Let Ay = (UWU'(B)),0,\,/, [{1B}), C) be the irog associated with §'. Then
the map u: B — UU’'(B)) defined by u@) = {f € U'(B) | a € f}
is an embedding of B into A’.. This follows as in the proofs of Theorems 1
and 6; we need only check additionally that the upsets utilised in the proofs are
nonempty. In the proof of Theorem 1, where it is shown that g ¢ u(a\Bb) implies
g ¢ u@\u), theset h = {e € B | e ;{B b} is used. This set is empty
in the case that » = 1B, however, we show that it will never be the case that
g ¢ w(@\B1B). Using property (v), since ¢ <B a and a oB 1B <B 1B, we get
1B <B 4\B1B. Thus, a\B1B = 1B, 50 a\B1B € g for every nonempty upset g, and so
g € u(a\B1B). A similar situation exists for /B. |
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Quantifier-free o’-formulas and universal o’-sentences are defined analogously to
quantifier-free o -formulas and universal o -sentences; these may contain the constant
1. The notations and conventions used in this section agree with those introduced in
Sect. 4.

Assignments on urogs and irogs, as well as partial assignments on partial urogs
and irogs, are required to assign the identity of the structure to the constant 1. The
definitions of satisfaction of quantifier-free o’-formulas in urogs and irogs, as well as
in partial urogs and irogs, are analogous to those given in Sect. 4 for rogs.

The size of a quantifier-free o’-formula ¢, denoted size(g), is the number of vari-
ables in ¢ plus the total number of occurrences of operation symbols in ¢, plus one
(for the constant). The following result is an analogue of Theorem 2.

Theorem 8 A quantifier-free o'-formula ¢ is satisfiable in UROG (respectively,
ITROG) if, and only if, it is satisfiable in a partial urog (respectively, irog) whose
cardinality does not exceed size(p).

Relying on the characterizations of partial urogs and partial irogs from Theorems 6
and 7, we obtain the NP-upper bound for satisfiability in UROG and ZROG using an
argument analogous to the proof of Theorem 5. The NP-lower bound for satisfiability
in UROG and ZROG follows from Theorem 4.

Theorem 9 Satisfiability of quantifier-free o’ -formulas in bothUROG and TROG is
NP-complete. The universal theory of both UROG and TROG is coNP-complete.

6 Residuated k-Algebras

In this section and the next, we consider generalizations of rogs in which the o operation
is replaced by an operation t of arity k, where k > 1, and \, / are replaced by k
operations ry, ..., ry of arity k, such that k-ary versions of the residuation property
(1) hold. We shall refer to such at as a (k-ary) ‘fusion’ operation and ry, ..., ry as its
‘residuals’. In Sect. 8 we shall consider ‘residuated algebras’ that may contain finitely
many fusion operations of varying arities together with their residuals. Such algebras
were originally defined by Buszkowski (1989) [see also (Buszkowski, 1998, 2011;
Kotowska-Gawiejnowicz, 1997; Kandulski, 1997; Jager, 2004)].

Let k be an integer with k > 1. We use oy to denote the signature consisting of
k + 1 operation symbols t, ry, ..., r, each of arity k, together with a binary relation
symbol <. A residuated k-algebra, or ray, is a oy -structure A = (A, t, ry, ..., 1%, <),
where (A, <) is a partially ordered set and A satisfies the following k-ary residuation
property: for all ay, ..., ar,c € Aandevery j € {1,...,k},

tay,...,aq) <c < a; <rjai,...,aj_1,¢,aj41,...,0). (1

To make the representation of the properties of rays briefer, we use the following
notation: given a non-empty set A, atuplea € AX aswellasi € {1,...,k}andc € A,
we denote by a [i := c] the k-tuple obtained from a by replacing its i component a;
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by c, i.e., the k-tuple (aj, ..., a;—1, ¢, @j+1, ..., ar). Then (11) can be written as
t(a) <c < a; <rj@alj:=c).

First, we prove some properties of residuated k-algebras.
Lemma2 Let A = (A, t,ry,..., 1, <) be aray. Then the following hold.
(a) tis monotone in each coordinate, i.e., forany b € A, a € A andi € {1,...,k},

b<ai = t@ali := b)) < t(a).

(b) Forevery j € {1,...,k}, r;is monotone in the j™ coordinate, i.e., forany b € A
and a € Ak,

aj <b = rj(@) <r;@lj:=0>b).
(c) Forevery jef{l,...,k}anda € Ak
t@alj:=rj@) <a

(d) For every j € {1,...,k} and i € {1,...,k} — {j}, r; is antitone in the ith
coordinate, i.e., forany b € A and a € A,

b<a; = rj(a <rjli:=D>b]).

Proof (a) Observe that t(a) < t(a) implies, by (11), a; < r;(a[i := t(a)]), whence
b <ri(ali :=t(a)]), and so, by (11), t(a[i := b]) < t(a).

(b) Observe that r;(a) < r;(a) implies, by (11), t(a[j :=r;(a)]) < a;, whence
t@alj:=r;(@]) < b,andso, by (11),r;(a) <rj(alj:=>b]).

(c) Observe thatr;(a) < rj(a) implies, by (11), t(a[j :=r;(@)]) < a

(d) If b < a; then, by (a), t(a[j :=r;(a)][i := b]) < t(a[j :=r;(a)]), hence, by
(o), t(alj :=rj@)][i := b)) < a;.Thus,by (11),r;(a) <r;ali := b]). O

Henceforth, given i, j, £ € {1, ..., k}, we often write, for brevity, i # j instead of
ie{l,....,k}—{jlandi # j,i # £instead of i € {1,...,k} — {j, £}.

Lemma 3 Let k be an integer withk > 1 and A = (A, t,ry, ..., vk, <) a ray. Then,
foralla,c € A¥and j, € € {1,... k},

(@) & a; < ¢ = t(a) < t(c);

(b) ica, <¢ &aj <rj(c) = t(a) <cj;

(© iiijaz ¢ &t(e) <aj = c; <rj(a);

(d) iizja,' <c &ej<aj=rj(c) <rj(a);

(e) i;é;%# ai <ci &ap <ry(e) & cp < aj = ¢j <rj(a).
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Proof (a) This follows by repeated applications of Lemma 2(a).

(b) By the assumptions and Lemma 2(a), t(a) < t(c[j := r;(c)]). Since, by
Lemma 2(c), t(c[j :=r;(c)]) < ¢j, it follows that t(a) < ¢;.

(¢) By the assumptions and Lemma 2(a), t(a[j := c¢;]) < t(c). Thus, by (1),
cj < rj@a[j := t(c)]). By the assumption that t(¢c) < a; and Lemma 2(b),
ri(alj:=t(c)]) <rj(a). Thus,c; <rj(a).

(d) This follows by applications of Lemma 2(b) and Lemma 2(d).

(e) From the assumption that ¢; < a;, foreveryi € {1, ..., k} — {j, £}, we obtain, by
Lemma 2(b), re(c) < re(alj := ¢;][€ := c¢]). Since, by assumption, ag < r¢(c), we
obtain a; < re(alj := c¢;][€ := c¢]), hence, by (11), t(a[j := ¢;]) < c¢. Since, by
assumption ¢, < aj, we obtain t(a[j :=c;]) <aj, hence, by (11),¢; <rj(a). 0O

We extend to rays the frame representation theory for rogs outlined in Sect. 2. A
rayx-frame is a structure § = (P, <, R), where (P, <) is a partially ordered set and
R is a (k + 1)-ary relation on P monotone in the last coordinate and antitone in the
other coordinates, i.e., such that, for all f1, f{,..., fx, fi, h,h’ € P,

k
R(fi,.... fuh) & éclfl-’gﬁ&hgh’=>R(f]’,...,fk’,h’). (12)

Let § = (P, <, R) be a ray-frame and define, for all X;,..., Xy € U(P) and
jel{l,... k},

k
t(X1, ..., Xk) :={heP|(Elfl,...,fkeP)[ézlﬁ eXi & R(f1,.... [k, )]}

and
ri(Xy,....,X0) ={fj € P|(Vfizj,h € P)

;szf, €X; &R(f1,..., fi,h) = h € X;]}.

i#]j
Since § satisfies (12), so defined t, ry, . . ., ry are operations on U (P). The definitions
oft,ry, ..., ry ensure that (11) is satisfied with respect to the partial order C on U (P).
Thus, Az = (U(P), t,rq, ..., 1t, C) is a rag, which we call the ray associated with
5.

IfA = (A, t,ry,..., g, <) is a rag, then we may obtain a ray-frame as follows.

Define a (k + 1)-ary relation R on U (A) by
k
R(f1,..., fkx,h) < (Vae Ak) ['&1@ € fi = t(a) € h}
1=

Then §ao = (U(A), C, R) is a rag-frame.
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7 Partial oy -Structures and Partial ra, s

Let £ be an integer with & > 1. A partial oy-structure is a structure

B = (B, t8, r| ,...,r,lf, gB), where <B is a binary relation on B and t® and
B , for every j € {1,...,k}, are partial k-ary operations on B, i.e., partial func-

thIlS from B* into B. The domains of t® and rB i for every j € {1,...,k}, are
denoted by, respectively, dom(t®) and dom(r?). A partial ray, is a partial oy -structure
B = (B, 8, r]f, .. ,]3, <B) that is a partial substructure of a ray, i.e., for which there
exists a rap A = ( tA r1 e rkA, <A) such that B € A, <B= <A [p and

t8(a) = t*(a) for all a € dom(t®);

r?(a) = r?(a) forevery j € {1,...,k}andalla € dom(r ).

By an embedding of a partial og-structure B = (B, t8, rB rl, ..., r,lf, <B> into a

og-structure A = (A, tA, r‘i‘, ...,r,‘?, <A) we mean a map @ : B — A such that

a <B bif, and only if, o (a) <A «o(b), and

a(tB(a)) = tA(x(a)) for all a € dom(t®);
a(r¥(@)) = ri(a()) forevery j € {1,...,k} and all a € dom(rP),
where «(a) denotes (x(ay), ..., a(ay)).

For clarity we note that the last condition in the above definition of an embedding is
necessary as it does not follow from the other conditions.

We now give an intrinsic characterization of partial rays, similar to the characteri-
zation of partial rogs given in Theorem 1.

Theorem 10 Let k be an integer with k > 1. A partial oy-structure
B = (B, B, I‘1 ey r,]?, <B) is a partial ray if. and only if, it satisfies the follow-
ing conditions, forall j, ¢ € {1,...,k}:

(i") (B, <B) is apartially ordered set;
(ii') (Va, ¢ € dom(tB)) L & a; <B e = tB(a) <B tB(0));

(iii") (Va € dom(tB))(Vc € dom(rB))

[iicj a; <Boci&a; <B r?(c) = t¥a) <B ¢l
(iv') (Ve € dom(tB))(va e dom(r?))

[&a Lo &tte) <Paj = c; L@l
(') (Ve € dom(r}*))(Va € dom(r}‘))

[iicj ai <Pei&c;<Pa = l‘?(c) <B l'?(a)]:
(vi') (Ve € dom(rP))(va e dom(r}‘))(\fc € dom(rP))

[i#;%# ai <Bei&ar <Brpe) &y <Baj=c; <P r?(a)].

Proof By Lemma 3, conditions (i’-vi’) hold in every rag, hence also in every partial
ray.
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Conversely, suppose B = (B, r]f‘, el r,‘?, <B) is a partial og-structure satisfying
(i’=vi’). Define a (k 4 1)-ary relation R® on U (B) by

RP(fi..... fi.h) & (Vae dom(t“))[éai e fi=tP@eh &

k
.&I(Va € dom(r?))[_;gz_a,» € fi &r¥@) e fj = a; € hl.
J= LE]

It is straightforward to check that § = (U(B),C, RB) is a rap-frame. Let
A= (UU(B)),t,ry,...,r;)bethera; associated with §,andlet u: B — U (U (B))
be the map defined by w(a) = {f € U(B) | a € f}. We show that p is an embedding
of B into A. For brevity, for a € B¥, we write p(a) instead of (u(ay), ..., p(ay)).

The proof that a <B pif, and only if, (a) € p(b) is as in the proof of Theorem 1.
Let a € dom(tB). We show that ,u(tB(a)) = t(u(a)), where

n(t®@) = (h e UB) | tB%(a) € h}

and
k
t(inw@)={theUB) | 3f1,..., fx € U(B))[icic1 ai € fi & R®(f1, ..., fi, DI}

First, assume & € t(w(a)). Then there exist fi, ..., fr € U(B) such thata; € fi,
foreveryi € {1,...,k},and RB(fl, .+ fx, h). Thus, by definition of RB., we obtain
tB(a) e handsoh € M(tB(a)). Therefore, t(n(a)) C ,u(tB(a)).

Conversely, assume h € ,u(tB(a)), ie., tB(a) € h. Let fi = la;), for every
i € {1,...,k}; these sets are clearly in U(B). We show that RB(fl, coos Jrs h).
Suppose ¢ € dorn(tB) and¢; € fj,foreveryi € {1, ..., k}. Then, a; <B ¢;, for every
i € {1,...,k}; hence, by (ii’), t®(a) <P t(c). Since tB(a) € h and h € U(B), we
obtain tB(c) € h. Suppose j € {1,...,k},c € dom(rll.‘), as well as ¢; € f;, for every
i # j,and r?(c) € fj. Then, a; < ¢;, foreveryi # j,and a; < r?(c), hence, by
(iii’), tB(a) < ¢j, whence ¢ € h. Thus, RB(fl, ..+, fx, h). Since a; € f;, for every
i €f{l,..., k}, weobtain h € t(u(a)). Therefore, ,u(tB(a)) C t(u(a)).

Let j € {1,...,k} be fixed and let a € dom(r}?). We show that M(r}*(a)) =
r;(u(a)), where

nB@) =1{f; € UB) | @) € f;)

and

rj(u@) ={f; €UB) |
(Vfizjrh € UB) (& ai € fi & R¥(frvo.. fe )] = aj € h).
L7=J
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First, assume f; € u(r?(a)), i.e., r}}(a) € fj. Suppose a; € f;, foralli # j, and
RB(fi,..., f, h). Then, a; € h, by definition of R®, hence f; € r;(u(a)).

Conversely, assume f; ¢ ,u(r}}(a)), ie., r}}(a) ¢ f;. To prove that f; ¢ r;(u(a)),
we show that there exist f; € U(B), wherei € {1,...,k} —{j},and h € U(B) such
thata; € f;, foreveryi # j,aswellas RB(fi, .. fk,h) anda; ¢ h.Let f; := [a;),
foralli e {I,...,k} —{j},andleth := {b € B | b y{B aj}; these sets are clearly
in U(B). It should also be clear that ¢; € f;, foralli # j, and that a; ¢ h. We next
show that RB(f1, ..., fi. h).

Suppose that ¢ € dom(tB) and ¢; € fi, foreveryi € {1, ..., k}. Then, a; <B Ci,
for every i # j. Since, by assumption, r?(a) ¢ fjand f; € U(B), it follows that
cj B r¥(a). Then, by (iv"), t®(c) £® a;. Thus, tB(c) € h, as required.

We show, next, that the second clause of the definition of R® holds for the Jj we
fixed. Suppose ¢ € dom(r?), aswell as¢; € f;, foralli # j, and rf’ (¢) € fj. Then
ai <B ci, forall i # j. Since r? (a) ¢ f;, we also obtain r? (c) ;{B r? (a); hence, by
), ¢j %B aj. Thus, ¢; € h, as required.

We show, last, that the same clause holds for every £ € {1, ..., k} —{ j} Fix such
an £ and suppose thatc € dorn(r‘j ),as well as ¢c; € f;, foralli ;é ¢, and r, (c) € fo.
Then, a; <® ¢; for every i distinct from £ and j, and a; <1, B (¢). Since rB (a) ¢ fj,
we also obtain ¢; 7(3 ?(a), hence, by (vi’), cs 7(3 aj. Thus, ¢; € h, as requlred.

Thus, RB(fl, ..+» fk, h), which implies that f; ¢ r;(u(a)) and, hence, that
rj(u(@) € n(rf ).

Thus, u is an embedding of B into A. It follows that B is a partial ra, which
completes the proof. O

In the case k = 2, the conditions (i’—vi’) of Theorem 10 are equivalent to conditions
(i—x) of Theorem 1. In the case k = 1, the conditions (i’-vi’) may be presented in a
simpler form, as given in the following corollary.

Corollary 1 A partial o1-structure B = (B, t®, ¥, <B) is a partial ra; if, and only if.
it satisfies the following conditions:

(i) (B, <B) is a partially ordered set;

(i) (Va, c € domt®)) [a <B c = tB(a) < tB(0));

(iiiny (Va, c € dom(rB)) la<Bc= rB(a) <B rB(0));

(virr) (Va € dom(tB)) (Ve € dom(r®)) [tB(a) <B ¢ < a <B rB(0)].

8 Complexity of the Universal Theory of Residuated Algebras

In this section we consider classes of residuated algebras over fixed signatures that
may contain finitely many fusion operations and their residuals. We prove that the
universal theory of each such class is coNP-complete.

Let k£ be an integer with k > 1. By a k-residuation tuple, we mean a tuple
(t,ry, ..., %) of k + 1 operation symbols, each of arity k. By a residuation sig-
nature we mean a signature consisting of a binary relation symbol < and a finite set
of residuation tuples.
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Let p be a residuation signature. A residuated p-algebra, or ra,, is a p-structure
A, with universe A and binary relation <A such that (A, <A) is a partially ordered
set and, for each k > 1 and each k-residuation tuple (t, ry, ..., 1) in p, A has k-ary
operations tA, r‘l*, e, r,é such that the structure (A, tA, r‘{‘, e, r,‘?, <A> is a ray, that
is, it satisfies (11). The class of all residuated p-algebras in denoted by R.A,.

Let p be a residuation signature. A partial p-structure is a structure B that has
universe B, a binary relation <B on B and, for each k > 1 and each k-residuation
tuple (t, ry, ..., ry) in p, B has corresponding partial k-ary operations 8, r]f, R r,]?.
The domain of each operation fB in B is denoted by dom (f®). A partial ra o 18 a partial
p-structure B that is a partial substructure of a ra,, that is, there exists a ra, A with

B C A, <B= <? 3 and, for each k > 1 and each k-residuation tuple (t, ry, ..., 1)
in p,

tB(a) = tA(a) for all a € dom(tB);

r?(a) = r]A(a) forevery j € {1,...,k}andalla € dom(r?).

We next give an intrinsic characterization of partial ra,’s.

Theorem 11 Let p be a residuation signature. A partial p-structure B is a partial
ra, if, and only if, condition (i’) of Theorem 10 holds and, for each k > 1 and each
k-residuation tuple (t,ry, ..., %) in p, conditions (ii’—vi’) of Theorem 10 hold.

Proof The proof is an adaptation of the proof of Theorem 10. If B is a partial ra,,
then the required conditions hold. Conversely, suppose that B is a partial p-structure
satisfying the conditions of the theorem. For each residuation tuple in p, we define a
corresponding relation R® on U (B) as in the proof of Theorem 10. Next, construct ra "
A with universe U (U (B)) and operations, corresponding to each relation RB, defined
as in Sect. 6. Then the map u : B — U(U(B)) defined by u(a) = {f € U(B) |
a € f} can be shown to be an embedding of B into A, completing the proof. O

For each residuation signature p, quantifier-free p-formulas and universal
p-sentences are defined as in Sect. 4 for the signature o. The definition of satisfaction
of quantifier-free p-formulas in ra,s and partial ra,s is analogous to that given in
Sect. 4 for rogs. The size of a quantifier-free p-formula ¢, denoted size(p), is defined
as the number of variables in ¢ plus the total number of occurrences of operation
symbols in ¢.

The following result is an analogue of Theorem 2.

Theorem 12 Let p be a residuation signature. A quantifier-free p-formula ¢ is satis-
fiable in RA, if, and only if, it is satisfiable in a partial ra, whose cardinality does

not exceed size(p).

By the above results, following the methods used for rogs, we obtain the following
result.

Theorem 13 Let p be a residuation signature. Satisfiability of quantifier-free
p-formulas in RA, is NP-complete. The universal theory of RA, is coNP-complete.
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9 Conclusion

We conclude by offering some future research directions related to the results presented
here. Firstly, it is common in the study of substructural logics—such as NL—that var-
ious structural rules are considered alongside the existing set of rules. Structural rules
typically correspond to familiar algebraic properties of the related classes of algebras.
For example, the exchange rule corresponds to commutativity of the o operation in
rogs, while the weakening rule corresponds to the integrality property of irogs. The
computational complexity of the universal theory for such extensions of rogs may be
an interesting research direction. For residuated k-algebras, with k > 3, there may
be scope for investigation of structural rules in general, as well as related complexity
questions. Classes of residuated 1-algebras have been investigated in the context of
ordered sets with a pair of residuated unary operations, or Galois operators, where
the ordered set is usually a poset, as in the case here, or a lattice. There seems to be
scope for investigating computational complexity questions for various classes of such
algebras.

Acknowledgements We are grateful to the anonymous reviewers for their comments, which have helped
to improve the paper.
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