
Journal of Logic, Language and Information (2023) 32:275–295
https://doi.org/10.1007/s10849-022-09383-w

Type Polymorphism, Natural Language Semantics, and TIL

Ivo Pezlar1

Accepted: 24 August 2022 / Published online: 7 October 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Transparent intensional logic (TIL) is a well-explored type-theoretical framework
for semantics of natural language. However, its treatment of polymorphic functions,
which are essential for the analysis of various natural language phenomena, is still
underdeveloped. In this paper, we address this issue and propose an extension of TIL
that introduces polymorphism via type variables ranging over types and generalized
variables ranging over constructions and types. Furthermore, we offer an analysis of
sentences involving non-specific notional attitudes of the general form ‘A considers
(believes, desires, wants, seeks, …) something’.

Keywords Notional attitudes · Polymorphism · Type theory · Transparent intensional
logic

1 Introduction

Analysis of notional attitudes exemplified by the following cases1:

– I am thinking of Pegasus.
– Ponce de Leon searched for the fountain of youth.
– Schliemann sought the site of Troy.
– Ctesias is hunting unicorns.

has a long tradition in the semantic analysis of natural language. In this paper, we
will be interested in a more general class of these sentences that can be obtained by

1 Examples taken from Church (1951, p. 111, 1956, p. 8) and Quine (1956, p. 177).

Work on this paper was supported by Grant No. 19-12420S from the Czech Science Foundation, GA ČR.

B Ivo Pezlar
pezlar@flu.cas.cz

1 Czech Academy of Sciences, Institute of Philosophy, Jilská 1, 110 00 Prague 1, Czechia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10849-022-09383-w&domain=pdf
http://orcid.org/0000-0003-1965-2159

276 I. Pezlar

replacing the concrete objects2 of the respective attitudes (thinking, searching, hunting,
etc.) with non-specific ones:

– I am thinking of something.
– Ponce de Leon searched for something.
– Schliemann sought the site of something.
– Ctesias is hunting something.

This represents a specific challenge to type-theoretic approaches to natural language
semantics for obvious reasons: since we cannot know in advance what type of object is
being referred to by ‘something’ (e.g., I can be thinking of people, trees, houses, places,
…, numbers, sets, types, functions, etc.) we have to adopt polymorphic properties
that can be applied to an unspecified range of objects. In other words, we have to
introduce polymorphism into the system. There are two general approaches to how
to treat polymorphism which we might call syntactic polymorphism and semantic
polymorphism.3

The first approach treats polymorphism just as a meta-language tool for referring
to a wide range of similar functions. Usually a meta-language symbol is introduced,
e.g., ‘α’, that ranges over all the possible variations. For example, we might encounter
a function isEqual of the type (α → α → Bool) which takes two objects of type α

as arguments and returns True if they are equal and False otherwise. This approach
entails, among other things, that we have similar yet different functions specific for
each type. For example, if we are dealing with the equality of individuals, we get the
function isEqual_I nd of the type (I nd → I nd → Bool), if we are dealing with
natural numbers, we get the function isEqual_Nat of the type (Nat → Nat →
Bool), etc. But, generally speaking, there is no ‘the’ equality function, only itsmultiple
instances tailored for each type. Hence, (α → α → Bool) is not a type, just a notation
shorthand for various types.

The second approach treats polymorphism as a semantic feature of the system itself.
In practice, thismeans extending the definition of types and allowing the type variables
to appear on the object level of the framework. For example, using this approach
the type (α → α → Bool) is a proper type of the system (or more specifically,
type constructor/type-valued function) and the general properly polymorphic function
isEqual can thus be entertained and applied to objects of any type. For instance, if
we apply the type constructor (α → α → Bool) to the type I nd, we get the type
(I nd → I nd → Bool), etc.

In this paper, we investigate the issue of non-specific notional attitudes from the
perspective of transparent intensional logic (TIL; Tichỳ, 1988). TIL is a well-explored
type-theoretic framework for the semantics of natural language, however, it relies

2 Similarly to Church (1951), we consider the objects of notional attitudes to be abstract entities rather than
mental ones. For an alternative approach, compare, e.g., with Moltmann (2008) and recently Moltmann
(2017) utilizing truthmaker semantics.
3 Fox and Lappin (2005) relies on a similar distinction between schematic and genuine polymorphism,Duží
(1993) uses the terms weak and strong polymorphism, and others can no doubt be found as well. It is worth
noting that from the perspective of Cardelli and Wegner (1985) the classification (based on Strachey, 2000)
of both these kinds of polymorphismwould fall under their category of universal/parametric polymorphism.
In comparison to Cardelli and Wegner (1985), we rely on a rather strict notion of polymorphism, since they
also include in the kinds of polymorphism, e.g., subtyping and overloading.

123

Type Polymorphism, Natural Language Semantics, and TIL 277

on the syntactic approach to polymorphism where the type variables are treated just
as placeholders. This puts them outside of the semantic framework of TIL and thus
providesmuch less interesting analyses in return. In this paper,wepropose an extension
of TIL that handles polymorphism semantically via type variables ranging over types
and generalized variables ranging over constructions and types. Furthermore, we offer
the analysis of sentences involving non-specific notional attitudes of the general form
‘A considers (believes, desires, wants, seeks, …) something’.

This paper is structured as follows: in Sect. 2 we present the basics of TIL, in Sect. 3
we examine closely the treatment of polymorphism and variables in TIL, in Sect. 4
we introduce type variables and in the final section, Sect. 5, we introduce generalized
variables, offer an extension to the ramified type theory of TIL, and propose a semantic
analysis of non-specific notional attitudes.

Remark 1 The problem of polymorphism is closely related to the problem of ‘nomi-
nalization’, i.e., the process of the transformation of non-noun phrases (verb phrases,
common nouns, …) into noun phrases and the problem of flexible predicates such as
‘good’, ‘fun’, ‘interesting’, ‘boring’, etc. that are predicable over a variety of types
of objects (‘Sleep is good’, ‘Sleeping is good’, ‘To sleep is good’, ‘That they sleep
is good’, etc.). Also, as was already observed by Chierchia (1982), type theory in
general enforces constraints on the structure of natural language that is not directly
observable. In natural language it seems to be the case that we are using ‘one size fits
all’ predicates, e.g., ‘is interesting’ can be applied to cakes just as to mathematical
results. As Chierchia put it:

A theory [of types] imposes various limitations on the categorial structure of
English syntax. As we will see, in type theory properties (like, say, to be fun)
have to be ranked differently in the type hierarchy according to whether they
are attributed to individuals (as in ‘John is fun’) or to properties (as in, say, ‘to
dance is fun’). Such ranking doesn’t seem to have any overt correlate in the
syntactic behavior of predicate nominals like fun in natural languages. So, those
limitations that type theory imposes on English syntax are likely to turn out to
be artificial (Chierchia, 1982, p. 305).

On the other hand, it seems certainly true that in both cases we are encountering differ-
ent kinds of ‘interestingness’ with various applicability criteria (an interesting cake is
probably interesting in a different sense than amathematical theorem) andmany-sorted
type-theoretical approaches are well-equipped to handle these differences. Briefly put,
although type-theoretical approaches to natural language semantics without a doubt
come with their own set of challenges, the benefits of utilizing them (e.g., block-
ing paradoxical behavior due to violations of the vicious circle principle, avoiding
categorical mistakes, etc.) seem to generally outweigh their potential drawbacks.

2 Brief Introduction to TIL

Transparent intensional logic (TIL; Tichý, 1988; Duží et al., 2010; Raclavský et al.,
2015) is a theory of abstract constructions that utilizes the extended language of typed

123

278 I. Pezlar

lambda calculus with partial functions and focuses on the semantics of natural lan-
guage.4 In spirit, it sharesmany similaritieswithMontague semantics but themeanings
of natural language expressions are understood rather in terms of algorithms (hyperin-
tensions) than in terms of functions from possible worlds (intensions), which takes it
closer to the systemswith an interpreted formal syntax such asMartin-Löf constructive
type theory (see, e.g., Pezlar, 2017).

Syntactically, TIL’s theory of constructions can be captured using the following
four construction terms, namely variables, compositions, closures, and n-executions,
respectively:

constructions := x | [C C1 . . .Cm] | [λx1 . . . xmC] | n X

where Ci is any construction, X is either a construction or a non-construction (e.g., a
truth value, an individual, a number, etc.).5

The first three constructions roughly correspond to variables, function applications,
and function abstractions as known from λ-calculus. Construction n-execution allows
us to either execute constructions to determine what object they construct, if any
(if n > 0),6 or not execute them, i.e., leave them as they are (if n = 0).7 What
constructions construct might depend on a valuation v, i.e., an assignment of values
to free variables. In that case, we say that they v-construct. If a construction C v-
constructs nothing at all, we will say that it is a v-improper construction. Otherwise,
we say that C is a v-proper construction. If we have two constructions C1 and C2 that
v-construct the same object X , or they are both v-improper, we will say that C1 and
C2 are v-congruent constructions, denoted as C1 ∼= C2. If they are v-congruent for
all valuations v, we will say that C1 and C2 are equivalent constructions, denoted as
C1 = C2.

In standard TIL, there are four atomic types forming the type base B: truth values,
individuals, real numbers/time moments, and possible worlds, denoted as o, ι, τ, ω,
respectively.8 These basic types are then expanded with types of n-th order construc-
tions, denoted as ∗n . If α and β1, . . . , βm are types, then we can form a function type

4 It is worth noting that, strictly speaking, TIL itself is just an applied instance of Tichý’s type theory (which
is a modification of Church’s type theory) intended for the purposes of logical analysis of natural language
(similarly to, e.g., transparent hyperintensional logic (THL) recently employed in Raclavský, 2020).
5 For a proper specification, see Appendix 7. For the definition of n-execution, see Pezlar (2019).
6 It is important to note that if we allow n-executions with n ≥ 2, the Church–Rosser theorem is no longer
valid in TIL, as was recently demonstrated by Kosterec (2020).
7 In a standard TIL presentation, the cases of n = 0 (i.e., 0-execution also known as trivialization) and
n > 0 are strictly kept apart to emphasize their different conceptual roles, most importantly, 0-execution
supplies objects (of any type) for compound constructions, while (n > 0)-execution is used for executing
constructions. Furthermore, 0-execution can raise a context of a construction up to the hyperintensional
level, while, e.g., 2-execution can decrease the context down (see, e.g., Duží and Horák, 2019). For more
about TIL and the three kinds of contexts, see Duží et al. (2010), Sect. 2.6.
8 TIL is and open-ended framework and other atomic types can be added, e.g., we can add ν as the type of
natural numbers.

123

Type Polymorphism, Natural Language Semantics, and TIL 279

(αβ1 . . . βm). Specifically, it is a type of function from the elements of type β1, . . . , βm

to the elements of type α.9

Since constructions can v-construct other objects or be v-constructed by other
constructions they receive two-dimensional typing: the first dimension is the type of
the construction itself, denoted as C/t ype, the second dimension is the type of the
object the construction is supposed to construct, denoted as C : t ype. We can also
chain these notations to get C/t ype1 : t ype2. For example, [0+ 05 07]/∗1 : ν which
can be read as ‘[0+ 05 07] is a first-order construction typed to construct natural
numbers’.10

To simplify notation, we denote 0-execution by boldface font, with the exception
of standard logical and mathematical symbols such as ‘+’, ‘=’, ‘∀’, ‘⊃’, etc. which
we keep in normal font with 0-execution implicitly assumed. Also, we will use infix
notation whenever expected. For example, instead of ‘[0+ 05 07]’ we will write
‘[5 + 7]’ and instead of ‘[0⊃ A B]’ we will write ‘[A ⊃ B]’. Furthermore, we
extend the standard notation of closure construction by including explicit typing of
variables and omit the outer most brackets whenever possible. Thus, we will write
λx1 : α1 . . . xm : αm Y instead of [λx1 . . . xm Y].11
Example 1 (Sample analysis) The sentence:

(s) Alice believes there is a natural number greater than four but smaller than five.

can be analysed as follows (see Fig. 1 for the corresponding type-checking tree):

λw : ω λt : τ [Believe∗
wt Alice

0[∃x : ν[[x > 4] ∧ [x < 5]]]]

Reading this construction from left to right (with some minor simplifications):

– ‘λw : ω λt : τ ’ binds the world and time parameters w and t—which receives
the function Believe∗ as two of its four arguments (see below)—and displays
their type annotations, i.e., the variable w ranges over objects of type ω (possible
worlds) and the variable t ranges over objects of type τ (time moments captured
as real numbers),

– Believe∗ is a construction (specifically a trivialization also known as 0-execution)
that constructs the function Believe∗ of type (((oι∗n)τ)ω), usually shortened as
(oι∗n)τω. The superscript ∗ indicates that this is a constructional/hyperintensional
belief (i.e., a belief that a given construction v-constructs a proposition that is true
in a given world and time of evaluation, or that a given construction v-constructs
a truth value true, in the case of mathematics and logic), which is different from

9 Note that TIL relies on the Church notation (αβ) for function types. In a more standard notation, this
would be written as β → α. Furthermore, due to the presence of partial functions, we cannot generally
assume that all multiargument functions can be reduced to a series of functions taking a single argument.
In other words, Schönfinkel’s reduction does not hold. For a proof, see Tichý (1982).
10 In TIL literature the symbol ‘→’ is used instead of ‘:’, however, we choose the latter because it leads to a
clearer notation once explicit typing is adopted. Also note that the symbol ‘/’ is used for typing annotations
of non-constructions as well. For example, if wewant to declare that addition function+ on natural numbers
ν has type (ννν), we can write it as +/(ννν).
11 It is worth mentioning that Tichý (1988) used explicit subscripts with ‘λ’ to indicate the type of the
output of the constructed function. For example, [λox [Odd x]].

123

280 I. Pezlar

Fig. 1 Type-checking tree

other types of belief (e.g., a sentential belief, i.e., a belief that a given proposition
is true in a given world and time, which would have type (oι(oτω))τω). Informally,
Believe∗ is a function that takes a possible world, a specific time moment in that
world, an individual, and a construction of a proposition/truth value, and returns
true if that individual believes that the construction produces (a proposition that
takes) the truth value true, otherwise f alse.

– ‘wt ’ is used as a shorthand for consecutive applications of world and time param-
eters to the function Believe∗. In full, it should be written as: [[Believe∗ w] t],

– Alice is a construction (a trivialization, see above) that constructs the individual
Alice of type ι.

– 0[∃x : ν [[x > 4] ∧ [x < 5]]] is a higher-order construction (due to trivialization)
that constructs a first-order construction, namely the composition construction
[∃x : ν [[x > 4] ∧ [x < 5]]]. ‘∃x : ν . . .’ is an abbreviation for ‘[∃ λx : ν [. . .]]’
where ∃ is the existential quantifier of type (o(oν)) applied to the class of numbers
λx : ν [. . .] and returns true if the class is non-empty, otherwise f alse.

3 Polymorphism in TIL

3.1 The Problem

Let us try to analyse our initial examples involving notional attitudes. Since all of the
sentences share an analogous form ‘[subject] + [notional attitude] + [object]’, we will
focus only on the first sentence ‘I am thinking of something’. Furthermore, to slightly
simplify it, we replace the personal pronoun ‘I’ with a proper noun ‘Alice’ and obtain:

(1’) Alice is thinking of something.

123

Type Polymorphism, Natural Language Semantics, and TIL 281

In TIL, we can analyze it, e.g., in the following manner:

λw : ω λt : τ ∃x : ? [Thinkwt Alice x]

which constructs the proposition (a function frompossibleworldsw and timemoments
t to truth values) that is true if there is something Alice is thinking of, otherwise it is
false. However, we encounter problems once we start checking types of the involved
objects. Namely, it is unclear over what type of objects should the variable x range
and, consequently, what the type of the function Think should be.

For specific instances this is straightforward. For example, assuming Alice is think-
ing of some individual (e.g., ‘Bob’), we can simply restrict the variable x to the
type ι, i.e., x : ι, and the type of the function Think would become (oιι)τω, i.e.,
Think/(oιι)τω. If she is thinking of some property of natural numbers (e.g., ‘being
prime’), we would have x : (oν) and Think/(oι(oν))τω, etc. But in more general
cases, such as ‘Alice is thinking of something’, where no specific type of object of
Alice’s contemplation is known or can be known, difficulties arise. In particular, we
have no appropriate type to assign to the variable x , which we symbolized by ‘?’ in
the corresponding analysis above. Thus, we need variables that range over objects of
any type, not just over objects of some specific type.12

3.2 TIL: Current State

In TIL,we can encountermany type-theoretically polymorphic functions (see Table 1),
but what exactly are they? Duží et al. (2010) we are given the following informal
explanation in a footnote:

By ‘type-theoretically polymorphous functions’ we mean a set of functions that
are defined and thus behave in the same way, independently of their type. For
instance, anymember of the set of functionsCardinali t y associates a finite class
with the number of its elements. Hence this definition is polymorphous; there are
actually infinitely many cardinality functions, one for each type:Card1/(τ(oι))
– the number of a set of individuals, Card2/(τ(oτ)) – the number of a set
of numbers, etc., which we indicate by using a type variable α in the type of
Cardinali t y/(τ(oα)). (Duží et al., 2010, p. 86)

From the above description it is clear that the symbol ‘α’ plays the role of type variable.
Thus, we can view type-theoretically polymorphic functions as functions whose types
involve at least one occurrence of a type variable. This seems straightforward, unfor-
tunately, it is not obvious what exactly a type variable from the TIL perspective is.
The only available variables in standard TIL are variables understood as construction
and these do not range over types themselves, only over objects of specific types.

So how should we understand type variables? As already discussed above, there
are essentially only two options how to approach them:

12 The need for type variables was also discussed in Raclavský et al. (2015).

123

282 I. Pezlar

Table 1 Examples of polymorphic functions of TIL

Function/symbol Type Description

∀, ∃ (o(oα)) Universal and existential quantifiers

Sing (α(oα)) Singulariser (a function taking a singleton set
and returning its only member)

Card (τ (oα)) Cardinality function

All, Some, No ((o(oα))(oα)) Restricted quantifiers

= (oαα) Identity function

Tr (∗nα) Trivialization function

Exist (oατω)τω Existence as a property of an intension

Seek (oιατω)τω Notional/intentional attitude of seeking

1. Type variables as metavariables: this is the easier, but also the less interesting
answer. Type variables become just syntactic placeholders, which means that they
are beyond the semantic framework of TIL.

2. Type variables as variables: this is the more attractive answer, yet also the more
demanding. Since ‘standard’ variables are considered as constructions, it seems
reasonable to consider type variables as some kind of constructions as well. This
way, type variables would enrich the semantic framework of TIL. However, a new
kind of construction v-constructing types would have to be introduced.

Regarding type variables as metavariables seems to be the implicit approach taken
in Duží et al. (2010).13 Type variable ‘α’ is not considered as a part of TIL’s ramified
type theory, rather as a metalanguage device. See, e.g.,:

Remark. α-sets of elements of type α are modelled by their characteristic functions. Thus they are
(oα)-objects. For instance, a set of individuals is an object of type (oι), a set of real numbers is an
object of type (oτ), a set of couples of real numbers (i.e., a binary relation over reals) is an object of
type (oττ). (Duží et al., 2010, p. 44).

It gets the job done, however, it is somewhat undesirable given the fact that one of
the basic credos of TIL is that it has no use for metalanguage: “TIL does not need a
metalanguage, since [it has] a ramified type hierarchy instead” (see Duží et al., 2010,
p. 55).

Understanding type variables as constructions seems to be the approach most in
line with TIL semantic doctrine. After all, type variables are variables, and variables
are treated as constructions in TIL, thus type variables should be treated as construc-
tions as well.14 Furthermore, this would allow us to regard type variables as proper
entities of the semantic framework of TIL (with appropriately extended ramified type
theory). First, however, we explore TIL’s standard notion of variables as constructions
developed by Tichý (1988, pp. 60–62) and then we propose how to extend it to cover
even type variables and generalized variables.

13 TIL-Script, the software variant of TIL, also treats type variables simply as syntactic placeholders and
whenever they appear type checking is simply skipped. See e.g., Duží and Fait (2019, p. 223).
14 An alternative syntactic rule-based approach is, however, also possible. For a brief sketch, see
Appendix 7.3.

123

Type Polymorphism, Natural Language Semantics, and TIL 283

3.3 Variables

As discussed above, variables are basic constructions of TIL and they construct objects
dependently on a valuation function v. This means, among other things, that variables
are taken as extra-linguistic entities, whose procedural content consists in retrieving
values, i.e., variables are not just symbolic placeholders. To better understand this
approach to variables,wewill examineTichý’s original definition fromTichý (1988).15

Definition 1 (Variable) (Tichý, 1988, p. 60) Let R be an arbitrary non-empty collec-
tion. By an R-sequence we shall understand any infinite sequence:

(s) X1, X2, X3, X4, . . .

(with or without repetitions) of members of R.
For any natural number n let |R|n be the (incomplete) [i.e., depending on external

sequence] constructionwhich consists in retrieving the n-thmember of an R-sequence.
Constructions of this form will be called variables.

Definition 2 (Valuation) (Tichý, 1988, p. 61) In [a] more general case [where various
logical types are needed] we shall need whole arrays of sequences containing an
Ri -sequence for each type Ri . We shall call such arrays valuations. Thus, where
R1, R2, R3, R4, . . . is an enumeration (without repetitions) of all the types, a valuation
is an array of the form

(v)

X1
1, X

1
2, X

1
3, X

1
4, . . .

X2
1, X

2
2, X

2
3, X

2
4, . . .

X3
1, X

3
2, X

3
3, X

3
4, . . .

X4
1, X

4
2, X

4
3, X

4
4, . . .

...

where Xi
1, X

i
2, X

i
3, X

i
4, . . . is an Ri -sequence. Let v be this valuation. Relative to v,

the variable |Ri |n constructs Xi
n , i.e., the n-th term of the Ri -sequence occurring in v.

Thus, a valuation array is, simply put, a sequence of sequences—to make this more
apparent, we will utilize the following list notation:

v =

⎡
⎢⎢⎢⎢⎢⎢⎣

[
X1
1 , X1

2 , X1
3 , X1

4 , . . .
]
,[

X2
1 , X2

2 , X2
3 , X2

4 , . . .
]
,[

X3
1 , X3

2 , X3
3 , X3

4 , . . .
]
,[

X4
1 , X4

2 , X4
3 , X4

4 , . . .
]
,

.

.

.

⎤
⎥⎥⎥⎥⎥⎥⎦

15 Parts of the exposition of the variable construction follow my PhD thesis, see Pezlar (2016), pp. 6–8.

123

284 I. Pezlar

For example, let us have the following toy valuation array (or valuation for short) v1:

v1 =

⎡
⎢⎢⎢⎢⎣

[
true11 , f alse12

]
,[

121 , 222 , 322 , . . .
]
,[

Alice31 , Bob32 , Cecil33 , Dana34 , . . .
]
,

.

.

.

⎤
⎥⎥⎥⎥⎦

In this case, the variable |R1|2 receives through v1 the value f alse, |R3|1 retrieves
Alice, etc. So what is a variable from Tichý’s point of view? It is essentially a search
and retrieve mechanism that takes the coordinates 〈i, n〉 and some valuation array vm
as input and returns the object located at that position as output.

From a type-theoretical perspective, the valuation array v1 looks as follows:

v1t =
⎡
⎢⎣

[o , o] ,
[ν , ν , ν , . . .] ,
[ι , ι , ι , ι , . . .] ,
.
.
.

⎤
⎥⎦

where o, ν, ι represent types of truth values, natural numbers, and individuals, respec-
tively.16 But what about the variables |Ri |n themselves? What type do they belong to?
Tichý gives the following answer:

(cn i) Let τ be any type of order n over B. Every variable ranging over τ is a
construction of order n over B. If X is of (i.e., belongs to) type τ then 0X, 1X,
and 2X are constructions of order n over B.
Let ∗n be the collection of constructions of order n over B. (Tichý, 1988, p. 61)

Let types o, ν, ι fromour example above constitute the type baseB1. Then, by definition
16.1.– 1.(t1i) (see Tichý, 1988, p. 66) o, ν, ι are types of order 1. Further, let us have
variables |R1|1, |R2|1, |R3|1 that range over types o, ν, ι, respectively. By definition
16.1.–2.(cn i) above, they are constructions of order 1 and hence they all belong to the
same type ∗1.

Due to the dependency of variables on valuation arrays, Tichý describes them as
incomplete (or heteronomous) constructions (Tichý, 1988, p. 60). In other words,
variables need some ‘external’ building material, in this case valuation arrays, to be
able to construct anything. This might sound odd at first, but remember that in TIL,
variables are not placeholders for values but general procedures for fetching them, so
it makes sense that they need some independent database to get their values from.

Also note that if we want to learn what type of objects variables are v-constructing,
we have to check not the type of the variables themselves, but the type of objects
they are typed to construct within the ramified type hierarchy (see Appendix 7). For
example, from the information given above, we can infer that variable |R2|1 is typed
to v-construct objects of type ν (the superscript ‘2’ points our attention to the second

16 We obtain v1t from v1 by replacing objects in the array by their corresponding types, e.g., true is
replaced by o, etc.

123

Type Polymorphism, Natural Language Semantics, and TIL 285

row (R-sequence) of v1, which is the type of natural numbers), i.e., |R2|1/∗1 : ν,
which can be read as “|R2|1 is a first-order construction (a variable) that is typed to
v-construct an object of type ν”. In other words, it is the parameter i in conjunction
with some specific valuation v that sets the range of the variable |Ri |n by pointing it
to a specific row of v, which represents some type.

In the rest of the paper, wewill write variables |Ri |n , |Ri |n+1, . . . simply as x, y, . . .
to use a less cluttered notation.17

4 Type Variables

Recall that standard variables are restricted to objects of a certain type. For example, a
variable x : o is restricted to the type of truth values. In other words, standard variables
are locked to a single row in our valuation arrays and they v-construct only the objects
of this specific row. However, we want them to range not over objects but over types.
Thus, type variables should, in a way, range over columns of vt as opposed to standard
variables that range over rows of v.

The definitions of variables and valuations presented above lead naturally to the
following definition of type variables:

Definition 3 (Type variable) Let T be a collection of base types together with types
of constructions and function types generated inductively from them (see Definition
16.1. in Tichý, 1988). By a T -sequence we shall understand any infinite sequence

(s’) t1, t2, t3, t4, . . .

(with or without repetitions) of members of T .
For any natural number n let |T |n be the (incomplete) construction which consists

in retrieving the n-th member of an T -sequence. Constructions of this form will be
called type variables.

Each valuation array v determines a T -sequence. It consists of the collection of types
to which the objects of v belong and these types are linearly ordered in the same way
as the rows of v to which they correspond are. For example, in the case of v1t the
T -sequence would be [o, ν, ι, . . .], since the first three rows of v correspond to types
of truth values, natural numbers, and individuals, respectively.18

Thus, the range of a type variable is the collection of all types of ramified type theory
of TIL (see Appendix 7) ordered in a T -sequence. For example, the type variable |T 1|
will v-construct the type o (i.e., the type represented by the first row of the valuation-
array v1t), |T 2| will v-construct ν, etc.

It is worth emphasizing that we can keep the original structure of valuation arrays
from Definition 1, we just need to adjust the ‘crawl’ mechanism accordingly to
the above explanation. We can do this as follows: first, we will search v1t that can

17 Note that when we type a variable to a certain type (i.e., specify its range), we are essentially just
assigning a concrete number to i . If i = 1, then the variable at hand is typed to construct truth values o, if
i = 2, then it constructs natural numbers, etc.
18 Thus, this T -sequence is essentially obtained by transposing v1t : from
[[o, o], [ν, ν, ν, . . .], [ι, ι, ι, . . .], . . .] we get [[o, ν, ι, . . .]].

123

286 I. Pezlar

be obtained from the corresponding valuation array v1, then: type variable |T |n v-
constructs tn , i.e., the n-th type of the T -sequence occurring in vt .19 Hereinafter, we
will write type variables |T |n, |T |n+1, . . . simply as α, β,

Oncewe start treating types as objects, we introduce a new type denoted Typewhich
is essentially the collection of all types. Thus, e.g., o/Type, ν/Type, …, ∗1/Type, etc.
Furthermore, note that this type of types is not part of our valuation arrays, hence, we
cannot have type variables ranging over it (it is not the case that Type/Type).20

Now, let us return to our initial example, specifically to the analysis of the sentence
‘Alice is thinking of something’, which we already attempted unsuccessfully earlier.
With type variables adopted, we could analyze it as follows:

λw : ω λt : τ ∃α : Type [Thinkswt Alice α]

Note, however, that this analysis is not general enough. It can be interpreted as ‘Alice
is thinking of some type’, since α is a type variable only. But the original sentence was
‘Alice is thinking of something’, which means she might be considering objects of
various types, not just various types. Hence, a more general analysis will be necessary.
Specifically, note that so far we have treated variables (ranging over constructions and
non-constructions) and type variables (ranging over types) separately. Considering two
different sorts of variables (valuations, etc.) can be, however, restricting sometimes,
as we have just seen above. Thus, in the next section, we introduce a generalized
notion of a variable that can range over objects belonging to any type (including the
construction types ∗n) and types as well.

5 Generalized Variables

So far, we have introduced i) standard variables ranging over constructions (and non-
constructions) and operatingwith valuation arrays v and ii) type variables ranging over
types and operatingwith type valuation arrays vt . It follows that if wewant to introduce
variables that range over both constructions (and non-constructions) and types, the
associated valuation arrays will have to contain the information from both arrays v

and vt . This can be simply done by taking v and enriching it with the corresponding
type information contained in vt . Note that since the types are constant throughout the
whole rows of vt (recall, e.g., v1t with the second row [ν , ν , ν , . . .]), we do not
need to incorporate the whole rows of vt into v, we just need to incorporate their first
elements, since they already carry all the type information we need. Thus, valuation
arrays for generalized variables will still be two-dimensional, but their first element
will now be the type of all the subsequent elements.

19 Strictly speaking, we should be distinguishing between valuation and type valuation, but we conflate
them to simplify the presentation.
20 Of course, we could expand valuation arrays to accommodate even them.

123

Type Polymorphism, Natural Language Semantics, and TIL 287

Definition 4 (Generalized Variable) Let W be an arbitrary non-empty collection. By
a W -array we shall understand any infinite sequence:

[X0, X1, X2, X3, X4, . . .]
such that the first member X0 of the sequence is a type, while the other members Xn ,
n > 0, are the entities belonging to the type X0.

Then, for any natural number n, let |W |n be the (incomplete) construction that
consists in retrieving the member Xn of the given Wi -array, i.e., the element on the
coordinates 〈i, n〉. The construction |W |n is a generalised variable.21

Definition 5 (Generalized valuation) In a more general case we will need a two-
dimensional array containing aWi -array [Xi

0, X
i
1, X

i
2, X

i
3, X

i
4, . . .] for each type. We

shall call such arrays generalized valuations. Thus, whereW 1,W 2,W 3,W 4, . . . is an
enumeration of all the types, a generalized valuation is a two-dimensional array of the
form:

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

[
X1
0 , X1

1 , X1
2 , X1

3 , . . .
]
,[

X2
0 , X2

1 , X2
2 , X2

3 , . . .
]
,[

X3
0 , X3

1 , X3
2 , X3

3 , . . .
]
,[

X4
0 , X4

1 , X4
2 , X4

3 , . . .
]
,

.

.

.

⎤
⎥⎥⎥⎥⎥⎥⎦

Let V be this valuation. Relative to V , variable |Wi |n constructs Xi
n , i.e., the n-th

member of the Wi -array occurring in V .

For example, let us have the following generalized toy valuation array V1:

V 1 =

⎡
⎢⎢⎢⎢⎣

[
o10 , true11 , f alse12

]
,[

ν20 , 121 , 222 , 323 , . . .
]
,[

ι30 , Alice31 , Bob32 , Cecil33 , Dana34 , . . .
]
,

.

.

.

⎤
⎥⎥⎥⎥⎦

Then, e.g., the variable |W 1|2 constructs through V1 as value f alse, but through |W 1|0
it constructs o, |W 3|1 constructs Alice, |W 3|0 constructs ι, etc.

To keep the notation simple, we will use the letters ‘x’, ‘y’, …for generalized
variables as well and it should always be clear from the context whether a standard or
generalized variable is used.

5.1 Extending Ramified Type Theory

We have already described the mechanism of generalized variables that v-construct an
object or a type to which the object belongs and their relation to expanded valuations,

21 An earlier version of this paper contained a more complicated definition of a generalized variable and I
would like to thank an anonymous reviewer for suggesting a simplification.

123

288 I. Pezlar

which closely mirrors the rationale behind standard variables. Next, we extend the
definition of ramified type theory (see Appendix 7) to accommodate them accordingly.

The extension of ramified type theory will involve an introduction of an additional
dimension to the ramification that will subsume the standard ramified type theory.22

This will allow us to have (generalized) variables that range over constructions (and
non-constructions) as well as over all the types of the ‘lower’ dimensions.

First, we briefly introduce the ramified type theory of TIL. The core of the ramified
type theory of TIL is its step-wise stratification of types by orders (for a proper spec-
ification, see Appendix 7). We start with first-order types (types inhabited by objects
involving no constructions), then we define second-order types which are inhabited
by constructions, including variables ranging over first-order types. Naturally, we can
go further and introduce third-order types with constructions including variables that
v-construct objects belonging to second or first-order types, and so on.

For example, assume our first-order types are natural numbers ν and truth values
o. With these types, we can, e.g., form a new function type (oν) which is the type of
properties of natural numbers. As an example of a function of this type, consider the
function Prime that takes a natural number and returns true if it is a prime number and
f alse otherwise. Thus, e.g., the construction [Prime 3] constructs true and [Prime 4]
constructs f alse. Note that Prime is still an object of the first-order type.

Next, assume we introduce a variable x ranging over natural numbers, i.e., x : ν.
Now, we can form a construction [Prime x] which constructs true if the variable x
gets assigned a prime number, otherwise it constructs f alse. Since this object contains
a variable ranging over objects of the first-order type, it is an object of the second-order
type.23 Furthermore, we can introduce a variable y ranging over objects of the second-
order type. For example, assume a higher-order predicate HasVariable that takes a
construction of the second-order type and constructs true if it contains at least one
occurrence of a variable (free or bound) and f alse otherwise. Thus, [HasVariable y]
constructs f alse, if the variable y gets assigned the construction [Prime 3] and it
returns true if it gets assigned the construction [Prime x]. Note that in this case, the
variable y ranges over objects of the second-order type, hence it itself is an object of
the third-order types. Analogously, we could introduce even fourth-, fifth-, sixth-order
variables and so on.

Now, the limitation of ramified type theory in its current form is that it does not
regard types as proper objects, and, consequently, does not allow variables ranging
over types. However, this is exactlywhat we need to adequately analyze sentences con-
taining semantic polymorphism. As mentioned above, we extend the current ramified
type theory with a new dimension that will allow us to introduce generalized variables
that can range over both constructions (and non-constructions) and types. We start
with basic ramified type theory, whose objects (including types) will be assigned a

22 A similar extension of ramified type theory was already briefly discussed in Duží (1993).
23 Of course, as an anonymous reviewer remarked, the presence of variables is not necessary for forming
higher-order objects. For example, the other constructions [Prime 3] or [Prime 4] also belong to the
second-order type even though they do not contain variables ranging over objects of the first-order type.
They belong to the second-order type because they are constructions of order 1 that v-construct objects
of a type of order 1 (see Appendix 7, Definition 2). The same holds for constructions belonging to the
third-order type, etc. as well.

123

Type Polymorphism, Natural Language Semantics, and TIL 289

new common type called kind, then we introduce variables ranging over all objects
of this supertype. Note that this modification mirrors the definition of ramified type
theory where we begin with simple type theory and then expand it. Now, we start with
ramified type theory and extend it.

Definition 6 [Extended ramified type theory of TIL (eRTT)] Let Type be a base, i.e., a
set of types defined by ramified type theory (RTT).

(k1i) Every member of Type or an entity belonging to that member is a kind of order
1 over Type, denoted as �1.

(Ck i) Let A be any kind of order k over Type. Every generalized variable ranging
over A is a construction of kind of order k over Type. If X is of (i.e., belongs
to) kind A but is not itself a member of Type, i.e., it is an entity belonging to
some member of Type, then 0X , 1X , and 2X are constructions of kind of order
k over Type.

(Ck ii) If 0 < m and X0, X1, . . . , Xm are constructions of kind of order k, then
[X0 X1 . . . Xm] is a construction of kind of order k over Type. If 0 < m, A is
a kind of order k over Type, and Y as well as the distinct variables x1, . . . , xm
are constructions of kind of order k over Type, then [λA x1 . . . xm Y] is a
construction of kind of order k over Type.

(Ck iii) Nothing is a construction of kind of order k over Type unless it follows from
(Ck i) and (Ck ii).

Let �k (k > 1) be the collection of generalized constructions of kind order k over
Type. The collection of kinds of order k + 1 over Type is defined as follows:

(Kk+1i) Every kind of order k, denoted �k (k ≥ 1), is a kind of order k + 1.
(Kk+1ii) If 0 < m and A, B1, . . . , Bm are kinds of order k + 1 over Type, then

the collection (AB1 . . . Bm) of all m-ary (total and partial) mappings from
B1, . . . , Bm to A is also a kind of order k + 1 over Type.

(Kk+1iii) Nothing is a kind of order k + 1 over Type unless it follows from (Kk+1i)
and (Kk+1ii).

So, simply put, first-order kinds are types of objects involving no generalized
variables or constructions containing them. In other words, a kind of first-order
is the type of all members of Type or entities belonging to those members.24

For example, Alice/ι, Alice/∗1, 0Alice/∗2, ι/Type are all first-order kinds, i.e.,
Alice,Alice, 0Alice, ι/�1. But, e.g., a generalized variable x ranging over objects
of first-order kind has type �2, i.e., x/�2 : �1.

Second-order kinds are types of objects containing generalized variables ranging
over first-order kinds and constructions containing such variables. Analogously, we
can have third-order kindswith variables ranging over objects of second-order kind and
so on. Furthermore, analogously to RTT’s cumulativity of types, we have cumulativity
of kinds, i.e., objects of kind �n are also objects of kind �n+1.

Extended ramified type theory gives us tools to properly analyze our motivating
examples containing instances of semantic polymorphism. As an example, let us try
to offer a more appropriate analysis of the simplified variant of (1):

24 Note, however, that Type is not a proper object of eRTT, hence, e.g., a generalized variable x can
construct o, but not its type Type.

123

290 I. Pezlar

Fig. 2 Type-checking tree

(1’) Alice is thinking of something.

All we need to do to properly analyze (1’) is to use a generalized variable and adjust
the type of the involved function accordingly. The analysis we obtain is as follows:

λw : ω λt : τ ∃x : �1[Thinkwt Alice x]

whereThink constructs a function of type (oι�1)τω,Alice constructs an individual of
type ι and variable x ranges over first-order kinds.Within eRTT, thewhole construction
will receive the type �2 (i.e., second-order kind) because it contains a generalized
variable. For the corresponding type checking tree, see Fig. 2.25 Analyses of (1), (2),
(3), and (4) would proceed analogously.26

Remark 2 Note that we can now properly type even the inadequate analysis of (1’)
from earlier which corresponded rather to the sentence ‘Alice is thinking of some
type’. If we consider type variables only (no generalized variables), then we will have
the following types: ThinkT : (oιType)τω and α/�2 : Type. The analysis would then
be: λw : ω λt : τ ∃α : Type [Thinkwt Alice α].

Of course, even this analysis is potentially insufficient. Since Alice can be thinking
of anything, she might be thinking, e.g., of the type of all types, kinds, or eRTT itself,
etc., which our current analysis cannot cover since we have no variables that could
range over these types of objects, so we would have to introduce yet another expansion
of eRTT. In other words, it might always turn out that we need some larger type or
kind than we currently have. However, for the analysis of everyday natural language
phenomena the level of generality provided by eRTT seems to be more than sufficient.

25 Recall that ‘∃x : α . . .’ is a notation shortcut for ‘[∃ λx : α [. . .]]’.
26 For more about a standard TIL-based analysis of notional attitudes such as seeking, finding, etc., see
section 5.2 Notional attitudes in Duží et al. (2010).

123

Type Polymorphism, Natural Language Semantics, and TIL 291

Remark 3 Some might argue that the role of generalized variables is too overloaded
and that we are trying to do too much with them.27 Wouldn’t it be better to keep
standard variables and type variables separate as is, e.g., common in polymorphic
lambda calculus? Of course, we could do that. We do not need to go all the way
towards generalized variables. We can just stop with the introduction of type vari-
ables from the previous section and be satisfied with that (assuming we appropriately
extend the definition of ramified type theory). However, recall that our goal was to
adequately analyze the sentence (1’). And for that purpose, considering separately
standard variables and type variables seem insufficient. In practice, it might turn out
that an implementation of generalized variables is indeed an overkill and thus their
adoption should be carefully considered, however, semantically speaking, they allow
us analyses otherwise unattainable.

6 Conclusion

In this paper, we have investigated the treatment of polymorphic functions in TIL,
which relies on type variables understood as syntactic placeholders. This approach,
however, carries certain disadvantages, most importantly it puts type variables outside
of semantic theory of TIL. In practice, this leads, e.g., to our inability to properly
analyse sentences involving non-specific notional attitudes such as ‘Alice is thinking
of something’, etc.

To alleviate these issues, we have proposed an alternative approach that treats type
variables as proper variables in the sense of TIL, i.e., as semantic objects that can
v-construct other objects. To address the issue of analysis of non-specific notional
attitudes we furthermore introduced generalized variables that act as both standard
variables as well as type variables by ranging over both constructions (and non-
constructions) and types. This led to the introduction of generalized valuations arrays
and to the extended definition of ramified type theory which introduces new ‘large’
types called kinds.

Acknowledgements I would like to thank Prof. Marie Duží and Prof. Jiří Raclavský for their valuable
comments that helped to significantly improve this paper.

7 Appendix

7.1 Constructions

The original definition of TIL constructions was given by Tichý (1988), here we follow
Duží et al. (2010) (an alternative formulation can be found in Raclavský et al., 2015):

Definition 7 (Constructions)

1. The variable x is a construction that constructs an object O of the respective type
dependently on a valuation. We say that it v-constructs O .

27 This issue was raised by an anonymous reviewer.

123

292 I. Pezlar

2. Where X is any object, 0X is the construction trivialization. It constructs X without
any change.

3. The composition [X0 X1 . . . Xm] is the following construction. If X v-constructs a
function f of type (αβ1 . . . βm) and X1 . . . Xm v-construct objects b1, . . . , bm of
types β1, . . . , βm , respectively, then the composition [X0 X1 . . . Xm] v-constructs
the value (an object of type α, if any) of f on the tuple-argument 〈b1, . . . , bm〉.
Otherwise, it is a v-improper construction, i.e., construction that does not construct
anything.

4. The closure [λx1 . . . xm Y] is the following construction. Let x1, . . . xm be pairwise
distinct variables v-constructing objects of types β1, . . . , βm and Y a construction
v-constructing an object of type α. Then [λx1 . . . xm Y] is the construction closure.
It v-constructs the following function f of type (αβ1 . . . βm): let 〈b1, . . . , bm〉 be a
tuple of objects of types β1 . . . βm , respectively, and v′ be a valuation that associates
xi with bi and is identical to v otherwise. Then the value of function f on argument
tuple 〈b1, . . . , bm〉 is the object of type α v′-constructed by Y . If Y is v′-improper,
then f is undefined on 〈b1, . . . , bm〉.

5. The single execution 1X is the construction that either v-constructs the object v-
constructed by X or, if X v-constructs nothing, is v-improper.

6. The double execution 2X is the following construction: let X be any object, the
double execution 2X is v-improper if X is a non-construction or if X does not v-
construct a construction or if X v-constructs a v-improper construction. Otherwise,
let X v-construct a construction X ′ and let X ′ v-construct and object X ′′, then 2K
v-constructs X ′′.

7. Nothing other is a construction, unless it follows from 1 to 6.

7.2 Ramified Type Theory

We follow the specification from Tichý (1988):

Definition 8 (Ramified type theory of TIL)
Let B be a base, i.e., a set of atomic types.

1. (t1i) Every member of B is a type of order 1 over B.
(t1ii) If 0 < m and α, β1, . . . , βm are types of order 1 over B, then the collection

(αβ1 . . . βm) of all m-ary (total and partial) mappings from β1, . . . , βm to α is
also a type of order 1 over B.

(t1iii) Nothing is a type of order 1 over B unless it follows from (t1i) and (t1ii).
2. (ck i) Let α be any type of order k over B. Every variable ranging over α is a con-

struction of order k over B. If X is of (i.e., belongs to) type α, then 0X , 1X ,
and 2X are constructions of order k over B.

(ck ii) If 0 < m and X0, X1, . . . , Xm are constructions of order k, then [X0 X1 . . .

Xm] is a construction of order k over B. If 0 < m, α is a type of order k over
B, and Y as well as the distinct variables x1, . . . , xm are constructions of order
k over B, then [λα x1 . . . xm Y] is a construction of order k over B.

(ck iii) Nothing is a construction of order k over B unless it follows from (ck i) and
(ck ii).

123

Type Polymorphism, Natural Language Semantics, and TIL 293

Let ∗k be the collection of constructions of order k over B. The collection of types of
order k + 1 over B is defined as follows:

(tk+1i) ∗k and every type of order k is a type of order k + 1.
(tk+1ii) If 0 < m andα, β1, . . . , βm are types of order k+1 over B, then the collection

(αβ1 . . . βm) of all m-ary (total and partial) mappings from β1, . . . , βm to α

is also a type of order k + 1 over B.
(tk+1iii) Nothing is a type of order k + 1 over B unless it follows from (tk+1i) and

(tk+1ii).

7.3 Types and Rules

In this paper, we have explored a semantic treatment of type variables in TIL. Alter-
natively, we could attempt a syntactic rule-based analysis as well. However, since
this topic is outside the scope of the present paper, we sketch only the basics of this
approach. The key observation is that type variables generally appear in two kinds of
judgments in TIL literature:

C : ∗n → σ(α)

X : σ(α)

which can be read as ‘a construction C belonging to a type ∗n is typed to v-construct
an object of type σ ’ and ‘a non-construction X belongs to a type α’, respectively,
where σ may contain α as a free type variable. For example28:

Cardinali t yτ : (τ (oτ))

Cardinali t yα : (τ (oα))

Trα : (∗nα)

X : ∗n → ((ατ)ω)

z : ∗1 → α

Furthermore, note that these judgments are composed of three parts: a typed object (i.e.,
either a construction C or a non-construction X), a typing relation ‘:’ and a type term
(i.e., either ∗n → σ(α) in case of constructions or σ(α) in case of non-constructions).

Now, as we mentioned above, type terms might depend on some variable α of type
Type (the type of all types). We can explicitly capture this dependency by abstracting
type terms fromα viaλ abstractor and getλα : Type.∗n → σ(α) andλα : Type.σ (α).
Consequently, every free occurrence of α in σ becomes bound in λα : Type.∗n →
σ(α) and λα : Type.σ (α). The obvious complement to abstraction is, of course,
application. Thus, the rules we obtain are as follows:29

α : Type C : ∗n → σ(α)
abs-C

C : ∗n → λα : Type.σ (α)

C : ∗n → λα : Type.σ (α) κ : Type
app-C

C : ∗n → σ [κ/α]
α : Type X : σ(α)

abs-X
X : λα : Type.σ (α)

X : λα : Type.σ (α) κ : Type
app-X

X : σ [κ/α]
28 Examples taken from Duží et al. (2010).
29 Note that in contrast to, e.g., second-order lambda calculus (Girard 1972; Reynolds 1974), the logic of
construction-terms and type-terms remains separated.

123

294 I. Pezlar

where σ [κ/α] is the result of substituting κ for all occurrences of α in σ .
Note that the premises of abs-C and abs-X rules are hypothetical judgments, i.e.,

judgments made in a certain context. Thus, we can read α : Type C : ∗n → σ(α)

as ‘a judgment C : ∗n → σ(α) is assertable given that we have some type term α of
type Type’. Analogously for the hypothetical judgment α : Type X : σ(α).

These rules can help us to explain syntactically the general process of instantiation
of type terms containing type variables to some specific type, a process which was
investigated semantically in this paper via the use of expanded valuation arrays.

References

Cardelli, L., & Wegner, P. (1985). On understanding types, data abstraction, and polymorphism. ACM
Computing Surveys, 17(4), 471–523. https://doi.org/10.1145/6041.6042

Chierchia, G. (1982). Nominalization and Montague grammar: A semantics without types for natural lan-
guages. Linguistics and Philosophy, 5(3), 303–354. https://doi.org/10.1007/BF00351458

Church,A. (1951). The need for abstract entities in semantic analysis.Proceedings of theAmericanAcademy
of Arts and Sciences, 80(1), 100–112.

Church, A. (1956). Introduction to mathematical logic. Princeton University Press.
Duží, M. (1993). Frege, notional attitudes, and the problem of polymorphism. In M. Stelzner &W. Stelzner

(Eds.), Logik und mathematik Frege-Kolloquium Jena (pp. 314–323). de Gruyter.
Duží, M., & Fait, M. (2019). Type checking algorithm for the TIL-Script language. In T. Endrjukaite,

A. Dudko, H. Jaakkola, B. Thalheim, Y. Kiyoki, & N. Yoshida (Eds.), Information modelling and
knowledge bases XXX, frontiers edn. IOS Press. https://doi.org/10.3233/978-1-61499-933-1-219

Duží, M., & Horák, A. (2019). Hyperintensional reasoning based on natural language knowledge base.
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. http://arxiv.org/abs/
1906.07562.

Duží,M., Jespersen,B.,&Materna, P. (2010).Procedural semantics for hyperintensional logic: Foundations
and applications of Transparent Intensional Logic. Springer. https://doi.org/10.1007/978-90-481-
8812-3

Fox, C., & Lappin, S. (2005). Foundations of intensional semantics. Blackwell.
Girard, J. Y. (1972). Interprétation fonctionnelle et Élimination des coupure de l’arithmétique d’ordre

supérieur. Ph.D thesis, Université Paris VII.
Kosterec, M. (2020). Substitution contradiction, its resolution and the Church–Rosser Theorem in TIL.

Journal of Philosophical Logic, 49(1), 121–133. https://doi.org/10.1007/s10992-019-09514-y
Moltmann, F. (2008). Intensional verbs and their intentional objects. Natural Language Semantics, 16(3),

239–270. https://doi.org/10.1007/s11050-008-9031-5
Moltmann, F. (2017). Cognitive products and the semantics of attitude verbs and deontic modals. In F.

Moltmann & M. Textor (Eds.), Act-based conceptions of propositional content. (Vol. 408). Oxford
University Press.

Pezlar, I. (2016). Investigations into Transparent Intensional Logic: A rule-based approach. Ph.D thesis,
Masaryk University. https://is.muni.cz/th/hhhga/pezlar_phd_thesis.pdf

Pezlar, I. (2017). Algorithmic theories of problems. A constructive and a non-constructive approach. Logic
and Logical Philosophy, 26(4), 473–508. https://doi.org/10.12775/LLP.2017.010

Pezlar, I. (2019). On two notions of computation in Transparent Intensional Logic. Axiomathes. https://doi.
org/10.1007/s10516-018-9401-7

Quine, W. V. O. (1956). Quantifiers and propositional attitudes. Journal of Philosophy, 53(5), 177–187.
https://doi.org/10.2307/2022451

Raclavský, J. (2020). Belief attitudes, fine-grained hyperintensionality and type-theoretic logic. College
Publications.

Raclavský, J., Kuchyňka, P., & Pezlar, I. (2015). Transparentní intenzionální logika jako characteristica
universalis a calculus ratiocinator. Masaryk University Press (Munipress).

Reynolds, J. C. (1974). Towards a theory of type structure. In Colloquium on programming, Paris, 9–11
April 1974 (pp. 1–18).

123

https://doi.org/10.1145/6041.6042
https://doi.org/10.1007/BF00351458
https://doi.org/10.3233/978-1-61499-933-1-219
http://arxiv.org/abs/1906.07562
http://arxiv.org/abs/1906.07562
https://doi.org/10.1007/978-90-481-8812-3
https://doi.org/10.1007/978-90-481-8812-3
https://doi.org/10.1007/s10992-019-09514-y
https://doi.org/10.1007/s11050-008-9031-5
https://is.muni.cz/th/hhhga/pezlar_phd_thesis.pdf
https://doi.org/10.12775/LLP.2017.010
https://doi.org/10.1007/s10516-018-9401-7
https://doi.org/10.1007/s10516-018-9401-7
https://doi.org/10.2307/2022451

Type Polymorphism, Natural Language Semantics, and TIL 295

Strachey, C. (2000). Fundamental concepts in programming languages. Higher-Order and Symbolic Com-
putation, 13(1/2), 11–49. https://doi.org/10.1023/A:1010000313106

Tichý, P. (1982). Foundations of partial type theory. Reports on Mathematical Logic, 14, 59–72. https://doi.
org/10.1007/BF00370346

Tichý, P. (1988). The foundations of Frege’s logic. de Gruyter.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

123

https://doi.org/10.1023/A:1010000313106
https://doi.org/10.1007/BF00370346
https://doi.org/10.1007/BF00370346

	Type Polymorphism, Natural Language Semantics, and TIL
	Abstract
	1 Introduction
	2 Brief Introduction to TIL
	3 Polymorphism in TIL
	3.1 The Problem
	3.2 TIL: Current State
	3.3 Variables

	4 Type Variables
	5 Generalized Variables
	5.1 Extending Ramified Type Theory

	6 Conclusion
	Acknowledgements
	7 Appendix
	7.1 Constructions
	7.2 Ramified Type Theory
	7.3 Types and Rules

	References

