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Abstract
Although formal system verification has been around for many years, little attention
was given to the casewhere the specification of the system has to be changed. Thismay
occur due to a failure in capturing the clients’ requirements or due to some change in
the domain (think for example of banking systems that have to adapt to different taxes
being imposed). We are interested in having methods not only to verify properties, but
also to suggest how the system model should be changed so that a property would be
satisfied. For this purpose, we will use techniques from the area of Belief Revision,
that deals with the problem of changing a knowledge base in view of new information.
In the last thirty years, several authors have contributed with change operations and
ways of characterizing them. However, most of the work concentrates on knowledge
bases represented using classical propositional logic. In the last decade, there have
been efforts to apply belief revision theory to description and modal logics. In this
work, we analyze what is needed for a theory of belief revision which can be applied
to the temporal logic, such as the Computation Tree Logic (CTL). In particular, we
illustrate different alternatives for formalizing the concept of revision of CTL. Our
interest in this particular logic comes both from practical issues, since it is used for
software specification, as from theoretical issues, as it is a non-compact logic andmost
existing results rely on compactness. We focus here on the revision of CTL models
and present a characterization result for the revision of partial models.

Keywords Belief revision · Temporal logic · Model repair

1 Introduction

System verification is a phase of the development where a system is tested againts
a given set of properties. These properties can describe elementary facts such as “a
division by zero will never occur” and compose what we call system specification.
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Fig. 1 Model verification mechanism. (Adapted from Baier and Katoen 2008)

A system specification establishes what a system should and should not do, being
the basis of any verification activity (Baier &Katoen, 2008). We say there is an error if
the system does not satisfy one ormore of the properties described by the specification.
The system will be correct if it satisfies all desired properties, otherwise it is said to be
incorrect or inconsistent with respect to its specification. It is important to note that
the correctness of a system is not an absolute property, always being relative to the
evaluated specification.

Several formal verificationmethods use systemsmodels instead of using the system
concretely. This allows errors to be discovered in a preliminary development phase,
before starting the development of concrete components of a system. The idea is to
describe a system by mathematically precise models, capable of expressing in an
unambiguous way how their behavior will be implemented. These models are then
subjected to formal verification methods that will verify whether they satisfy all the
properties described in the system specification (see Fig. 1). This type of approach is
called model-based verification or simply model checking.

Model checking has origins in the works of Clarke and Emerson (1982); Clarke et
al. (1986) and Queille and Sifakis (1982). The method consists in verifying whether
a system model satisfies a given property by performing an exhaustive analysis that
systematically explores all possible configurations that a system can assume according
to the model, verifying that in each of these configurations the properties are indeed
satisfied.

An important distinction must be made. In this work, a system specification is a
description of what the system should do (and what it should not do). A system model
is a description of how the system does its actions. The model check then exam-
ines whether the behavior explicitly stated by the model is according to the expected
properties described by the specification. The effectiveness of model checking in pre-
dicting errors in real systems is thus as good as the model describing the system and
as complete as the specification describing the intended properties.

The properties checked by the model checking have typically a qualitative nature
(Baier & Katoen, 2008), such as “Is the final result is correct?”, “Will a deadlock
ever occur?” or “ Will the system complete its activities at some point?”. In formal
verification, these properties need to be expressed accurately, avoiding any possible
ambiguity. Since most of the properties relevant to verification of systems deal with
how they behave during their execution, model verification methods are usually based
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Fig. 2 Model verification mechanism with repair phase

on temporal logics (Clarke & Emerson, 1982; Kozen, 1983; Pnueli, 1977). These
methods are capable of evaluating properties of a system specification described by
formulas in these temporal formalisms.

In the last decades there has been a great improvement in the methods of model
checking, with the optimization of algorithms and the design of new data structures.
This allowed model verification tools in the 90’s to be able to handle search spaces
greater than 1020 states (Burch et al., 1992), against the 108 previously possible states.

Verification tools, when they detect an error, also usually provide information on
how this error occurs. When they detect an inconsistency between model and specifi-
cation, the model verification algorithms return a system execution flow that causes a
violation of a property, which we call a counterexample. A designer can then use this
information to correct the proposed model, improving the behavior of the system.

Figure 2 illustrates a more realistic development process, where the discovery of
an error in the verification phase leads to changes in the original design of the system.
We call this task model repair.

Fixing errors however is not always a simple task. The more complex the system,
the more difficult it can be for a designer to correct inconsistencies. Although there
are tools capable of verifying complex models, in general, these tools do not provide
mechanisms to aid the task of model repair.

Belief revision (Alchourron et al., 1985) is a subarea of formal epistemology that
deals with howwe behave when receiving new information, especially if it is inconsis-
tent with what we currently believe. Belief revision has applications in several areas,
especially in Artificial Intelligence. It can be used, for example, to program an intel-
ligent agent that re-plans its actions in the face of unexpected information such as an
explorer robot that has a map of the environment and that plans a route based on this
map. If it finds an obstacle that prohibits it from proceeding in the planned route, it
can change its beliefs about the environment and trace a new route to reach its goal.

Our main goal in this paper is to explore the application of belief revision to formal
verification in order to develop techniques that can assist in the task of fixing detected
errors. In particular, if we consider the model of a system as what we believe to be
true, when an error is detected (i.e., a property described in the specification that is not
satisfied), we can use belief revision to rationally adapt our model so that such error
no longer occurs.

We can also extend the problem in order to fix specification errors, that is, errors
discovered in the execution of the system and that were not foreseen in its specification.
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594 P. T. Guerra, R. Wassermann

Assuming the specification of the system as our initial beliefs, belief revision could
provide mechanisms of change that imply rational changes in this specification, and
consequently, in the developed system.

An important theoretical issue, however, is that the temporal logics on which most
of verification methods are based do not satisfy properties expected by the classical
belief revision theory. They do not satisfy, for example, the property of compactness,
which together with monotonicity, ensures the correct construction of belief revision
operations (Hansson & Wassermann, 2002).

1.1 RelatedWorks

Buccafurri et al. (1999) have developed a formal framework integrating model veri-
fication and abductive reasoning in order to diagnose and repair errors in concurrent
programs. Abductive reasoning is used to find modifications in the system so that
it satisfies all the properties of a formal specification. In this approach, a system is
modeled according to a Cresswell and Hughes (2012) structure and the modifications
correspond to a sequence of additions or removals of state transitions that makes the
model consistent with the specification.

Although their approach is successful for its purposes of repair of concurrent pro-
grams and protocols, the concept of modification adopted is somewhat narrow, limited
to modifications on the transition relation of a Kripke model. Zhang and Ding (2008)
proposed a framework for model updating that addresses some issues that were not
addressed byBuccafurri et al., such as the addition of new states or singlemodifications
on state labels.

Zhang andDing’s approach is based on the integration ofmodel checking and belief
update (Herzig & Rifi, 1999; Katsuno & Mendelzon, 1991). The authors specified
a minimum change principle for model changes and then defined a concept called
admissible update. The authors also describe a procedure to perform model update
and analyze its semantic and computational properties.

In Guerra and Wassermann (2010), we argue that an approach based on belief
update is not suitable for all cases. We propose the use of belief revision (Alchourron
et al., 1985) as principle to guide model changes when the repair of models occurs in
a static context. Despite the similarity between belief update and belief revision, the
use of the incorrect approach can lead to significant loss of information.

Sousa and Wassermann (2007) addressed the practical use of belief revision for
the repair of incorrect models. The authors created a tool capable of generating repair
suggestions for models described in SMV specification language. However, in this
work the authors do not go into the theoretical analysis of the relationship of their
technique with the classical belief revision theory.

In Guerra and Wassermann (2010) we describe the concept of revision of CTL
models: an approach based on belief revision for the repair of incorrect models in a
static context. We explore semantic properties that relate our proposal to classic works
in belief revision, as well as discussing issues related to its implementation.

In the present work we provide a more complete overview of the use of belief revi-
sion in the formalism of temporal logics. The goal is to provide theoretical foundations
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to perform rational repair of inconsistencies in formal specifications, developing an
approach to revise sets of temporal formulas, as well as an approach to the repair of
models and partial models, applying principles of belief revision to guide structural
changes in systems models.

Some recent work deals with themes related to our work. Van Zee et al. (2015)
propose a time-limiting temporal logic and present a belief revision characterization
in this logic. Previously, Finger and Wassermann (2008) also addressed the revision
of temporal beliefs using this type of time constraint, but exploring aspects related
to bounded model checking. Our goal here is to explore the revision of temporal
beliefs but reasoning over infinite computations, investigating the problem with all the
expressivity potential of classical temporal formalisms.

As already mentioned, Guerra andWassermann (2010) and Zhang and Ding (2008)
address the problemof repairing inconsistencies inmodels. Theseworks howeverwrite
a partial characterization of the rationality of their repair operations. A complete char-
acterization of the revision of a CTL model was presented in Guerra and Wassermann
(2018).

On another line, Chatzieleftheriou et al. (2012), Guerra et al. (2013) and Ribeiro
and Andrade (2015) address the problem of repairing partially specified models. In
Chatzieleftheriou et al. (2012), the authors propose a framework for the refinement of
partial models that represent abstractions of concrete models with a large number of
states. In Guerra et al. (2013) and Ribeiro and Andrade (2015), the authors address the
problem of modifications in partial models from the point of view of the refinements
that this repair generates in the set of concrete models derived from this partial model.
These works also do not present a complete characterization of the rationality of their
operators, having a focus on the implementation of their techniques. In this paper,
we present a characterization of the problem of repair of partial models in terms of
rationality postulates, especially relating it to the problem of model revision discussed
in Guerra and Wassermann (2010) and Guerra and Wassermann (2018).

2 Preliminaries

In this section, we briefly introduce the concepts we use from the areas of Belief
Revision and the temporal logic CTL.

2.1 Belief Revision

Belief revision deals with how to adapt a set of beliefs in order to incorporate new
information, even if inconsistent with what was previously believed. Alchourron et
al. (1985) proposed a set of rationality postulates in order to specify what is expected
from a rational revision function, which became known as the AGM postulates.

These rationality postulates guide the revision operations through aminimal change
principle, in the sense that information is valuable and should be kept whenever pos-
sible. In the AGM theory, the beliefs of an agent are represented as a belief set, a set
of formulas closed under logical consequence (K = Cn(K )). We present bellow the
six basic AGM postulates for revision:
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(K*1) K ∗ α is a belief set.
(K*2) α ∈ K ∗ α.
(K*3) K ∗ α ⊆ K + α.
(K*4) If ¬α /∈ K , then K + α ⊆ K ∗ α.
(K*5) K ∗ α is unsatisfiable if and only if � ¬α.
(K*6) If � α ↔ β, then K ∗ α = K ∗ β.

Postulate (K*1) says that the revision of a belief set must be another belief set.
(K*2) says that the revised belief set must contain the formula by which it is revised.
Postulate (K*3) says that no other information besides the formula should be added.
Postulate (K*4) says that if the new formula is consistent with the current beliefs
no belief should be discarded. Postulate (K*5) says that the revised belief set must
be consistent, unless the formula itself is inconsistent. Postulate (K*6) assures that
equivalent formulas should result in the same revised belief set.

Several constructions for revision functions were proposed observing the AGM
postulates. A well-known construction is called partial meet revision and is based on
the notion of remainders. A remainder set K⊥α contains the maximal subsets of K
that do not imply α:

Definition 1 (Alchourron et al., 1985) Let K be a belief set and α a formula. The
remainder set K⊥α is a collection of sets X such that

1. X ⊆ K
2. X � α

3. For all X ′ such that X ⊂ X ′ ⊆ K , X ′ 	 α.

The idea of a partial meet construction is that there is a mechanism that selects
elements of the remainder set at hand:

Definition 2 (Alchourron &Makinson, 1982) Let K be a belief set and α a new belief,
γ is a selection function for K and α if and only if:

1. ∅ ⊂ γ (K⊥α) ⊆ K⊥α if K⊥α �= ∅
2. γ (K⊥α) = {K } otherwise.
Definition 3 (Alchourron et al., 1985) Let K be a belief set, α a new belief, and γ a
selection function for K and α. A partial meet revision function over K is given by

K ∗ α = Cn
(⋂

γ (K⊥¬α) ∪ {α}
)

Alchourrón, Gärdenfors and Makinson have proven the following result:

Theorem 1 (Alchourron et al., 1985; Hansson, 1999) Let ∗ be a function which, given
a formula α, takes a belief set K into a new belief set K ∗ α. For every theory K , ∗ is
a partial meet revision operation over K if and only if ∗ satisfies the basic postulates
(K*1)–(K*6) for revision.1

This result relies on certain properties of the underlying logic, such as compactness
and the deduction theorem, among others. As we will see in the next subsection, an
interesting logic to which we would like to apply belief revision, CTL, is not compact.

1 Actually, Alchourrón, Gärdenfors andMakinson proved the result for another operation, contraction, and
then later proved the relation between contraction and revision, having this theorem as a corollary.
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2.2 Computation Tree Logic

ComputationTreeLogic (CTL) (Clarke et al., 1986) is a temporal logicwhere the future
is represented by a tree-like structure. Due to its branching characteristic, CTL is used
to formally represent system properties, for example that every possible execution
path eventually ends. CTL syntax is given by the following BNF:

ϕ::=  | ⊥ | p | (¬ϕ) | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | (ϕ → ϕ) | EXϕ |
AXϕ | EFϕ | AFϕ | EGϕ | AGϕ | E[ϕUϕ] | A[ϕUϕ]

where its temporal modalities are composed by path quantifiers (E, “there is a path”,
or A, “for all paths”) and state operators (X, “next state”, U, “until”, G, “globally
in all states” or F, “some future state”). The diagrams in Fig. 3 represent branching
sequences of states whose starting states satisfy the indicated CTL formula. As an
example, consider the formula EXϕ. The E stands for “there is a path”, the X stands
for “in the NeXt state”. Hence, the formula is valid in the initial state if and only is
there is a path starting at this state where in the next state, ϕ holds. If we look at
formula AFϕ, we have that in All paths, there is a Future state in which ϕ holds. The
semantics of U is more complex, involving two formulas: E[ϕUψ] holds if and only
if there is a path in which ϕ holds in all states Until the first state where ψ holds.

The CTL semantic is given through labeled transition system (LTS), described in
Definition 4.

Definition 4 A labeled transition system is a tupleM = 〈AP, S, s0, R, L〉 such that:
1. AP is a countable set of propositional atoms;
2. S is a finite set of states;
3. s0 ∈ S is the initial state;
4. R ⊆ S × S is a transition relations over S;
5. L : AP → P(S) is a labeling function of truth assignment.

Usually CTL semantics is given over Kripke structures, a special kind of LTSwhere
the transition relation is required to be total. A graphical representation of a Kripke
structure is depicted in Fig. 4.

The CTL semantics is then defined inductively as follow.

Definition 5 Let M = 〈AP, S, s0, R, L〉 be a LTS, s ∈ S a state of M and ϕ a CTL
formula. We define M, s � ϕ inductively as follows:

1. M, s � .
2. M, s � p iff s ∈ L(p).
3. M, s � ¬ϕ iffM, s � ϕ.
4. M, s � ϕ1 ∧ ϕ2 iffM, s � ϕ1 and M, s � ϕ2.
5. M, s � EXϕ iff there is s′ ∈ S such that (s, s′) ∈ R and M, s′ � ϕ.
6. M, s � AXϕ iff for all s′ ∈ S such that (s, s′) ∈ R, M, s′ � ϕ.
7. M, s � EFϕ iff there is a path2 π = [s1, s2, . . . ] in M such that s1 = s e

M, si � ϕ for some i ≥ 1.

2 A path π = [s1, s2, . . . , si−1, si , si+1, . . .] is a path in M = 〈AP, S, s0, R, L〉 if and only if ∀s ∈
π, s ∈ S and (si , si+1) ∈ R for all i ≥ 1.
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Fig. 3 Example of CTL formulas

8. M, s � AFϕ iff for all paths π = [s1, s2, . . . ] in M such that s1 = s, M, si � ϕ

for some i ≥ 1.
9. M, s � EGϕ iff there is a path π = [s1, s2, . . . ] in M such that s1 = s and

M, si � ϕ for all i ≥ 1.
10. M, s � AGϕ iff for all paths π = [s1, s2, . . . ] inM such that s1 = s,M, si � ϕ

for all i ≥ 1.
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Fig. 4 Example of Kripke
structure

11. M, s � E[ϕ1 U ϕ2] iff there is a path π = [s1, s2, . . . ] in M such that s1 = s,
∃i ≥ 1, M, si � ϕ2 and ∀ j < i , M, s j � ϕ1.

12. M, s � A[ϕ1 U ϕ2] iff for all paths π = [s1, s2, . . . ] in M such that s1 = s,
∃i ≥ 1, M, si � ϕ2 and ∀ j < i , M, s j � ϕ1.

We say that M � ϕ ifM, s0 � ϕ.

3 Two Approaches for CTL Belief Revision

Belief revision can be used with Computation Tree Logic to compose a framework
capable of managing the consistency of system’s behaviors. By assuming a represen-
tation of a system as the initial beliefs, when an inconsistency is detected between our
the current belief and some desired CTL property, we can use belief revision principles
to minimally adapt our beliefs in order to accommodate this new belief.

There are two main approaches to CTL belief revision, depending on how the set
of beliefs is represented. In the first approach called specification revision, the system
behavior is described by a set of CTL formulas, each one describing a desired property
about the intended evolution of the system through the time. In the second approach
calledmodel revision, the system behavior is described by one ormore possiblemodels
(labeled transition system), where the states and possible transitions among them are
explicitly described.

3.1 Revision of Specifications

On the specification revision approach, the system behavior is described by a set of
CTL formulas representing system properties. These properties may describe things
like liveness, safety, absence of deadlocks, etc. As in classical belief revision, a new
piece of information may be inconsistent with our set of beliefs and we must adapt
our specification with this goal.

Let K be a set of CTL formulas and ϕ a single CTL formula, we say that K
is consistent with ϕ if there is a model that satisfies all formulas in K ∪ {ϕ}. For
example, let K = Cn({EFp,AG(p → q)}), ϕ1 ≡ q and ϕ2 ≡ AG¬q, we have that
K is consistent with ϕ1, but not with ϕ2. Every model that has the initial state labeled
with p and q satisfies both K and ϕ1. However, in every model of K , p eventually
holds (EFp) and so does q (AG(p → q)), hence ϕ2 cannot be satisfied.
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The aim of specification revision is to maximally preserve the original beliefs. The
revision here has a direct correspondence with the classical partial meet construction,
being based on maximal consistent sets.

In the example above, the remainder set K⊥¬ϕ2 is a collection of sets X , X0, X1,
X2, X3, . . ., such that:

1. X = Cn({AG(p → q)}),
2. X0 = Cn({EFp} ∪ {AXn(p → q) | n > 0}),
3. Xi = Cn({EFp} ∪ {AXn(p → q) | n �= i} ∪ {EXi (p → q)}).
where AXnψ is an alias to AXAX . . .AX︸ ︷︷ ︸

n

ψ .

Based on K⊥¬ϕ2, the partial meet revision K ∗ ϕ2 may produce as result

K ∗ ϕ2 = Cn({AG¬q,AG(p → q)}), or

K ∗ ϕ2 = Cn({AG¬q,AX(p → q),AXAX(p → q), ...}), or
K ∗ ϕ2 = Cn({AG¬q})

or several others possibilities depending of the choice of the selection function γ .
When trying to apply AGM-style belief revision for CTL, we see that several

theoretical results cannot be applied due to the absence of compactness. Partial-meet
constructions depend on computing the remainder set, and we have shown in Guerra
and Wassermann (2017) that it is not always feasible. Recently, Ribeiro et al. (2018)
have proposed an alternative construction that does not depend on compactness.

3.2 Revision of Models

Another way to describe the behavior of a system is structurally, explicit representing
states and the transitions between them, which is a natural perspective for system
designers.

Based on Zhang and Ding’s work (2008), we have introduced model revision in
Guerra andWassermann (2010). Themodel revision approach consists in, given struc-
tural models of systems as beliefs, repair these models changing minimally their
structure in order to preserve the information given initially.

This minimality criterion may be an important factor for system designers. In many
applications, the addition of new states may represent the need to develop new com-
ponents, or new transitions that may mean a significant increase in the complexity of
the concrete system.

The idea of CTL model revision is to use principles of belief revision theory to
rationally choose minimal model modifications considering an application on static
contexts. A modification is a composition of ground primitive update operations orig-
inally proposed in Zhang and Ding (2008):

PU1: Adding one pair to the relation R
PU2: Removing one pair from the relation R
PU3: Changing the labeling function on one state
PU4: Adding one state
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PU5: Removing one isolated state.

Models are then compared by their structural similarity: difference of states, transi-
tions, labeling function. Given two CTL Models M = 〈AP, S, s0, R, L〉 and M′ =
〈AP ′, S′, s0′, R′, L ′〉, we denote by Diff PUi (M,M′), for each PUi(i = 1, . . . , 5),
the difference between M and M′, where
– Diff PU1(M,M′) = R′ − R (the set of pairs added to the relation).
– Diff PU2(M,M′) = R − R′ (the set of pairs removed from the relation).
– Diff PU3(M,M′) = {s ∈ S ∪ S′ | s ∈ L(p) − L ′(p) or s ∈ L ′(p) − L(p) for
some p ∈ AP} (the set of states whose labeling function has changed).

– Diff PU4(M,M′) = S′ − S (the set of added states).
– Diff PU5(M,M′) = S − S′ (the set of removed states).

In order to be admissible, a modification must be minimal in relation to all possible
changes, i.e., if for some modification that transforms a model from inconsistent to
consistent with some desired property, there is another modification that also produces
this consistence, but with fewer structural changes w.r.t the original model, the later
must be chosen. This leads to the following ordering definition:

Definition 6 (Guerra & Wassermann, 2010) Let W be a set of CTL models and
M1 = 〈AP, S1, s1, R1, L1〉 and M2 = 〈AP, S2, s2, R2, L2〉 two CTL models, we
say that M1 is at least as near to W as M2, denoted to M1 ≤W M2, if and only
if for every composition of primitive operations PU1–PU5 that transforms a model
M′ ∈ W inM2 there is a composition that transforms a modelM ∈ W inM1 such
that

1. For each i (1 ≤ i ≤ 5), Diff PUi (M,M1) ⊆ Diff PUi (M′,M2)

2. IfDiff PU3(M,M1) = Diff PU3(M′,M2), then for every s inDiff PU3(M,M1),
{p ∈ AP | s ∈ L1(p)} ⊆ {p ∈ AP | s ∈ L2(p)}

We denote by M1 <W M2 ifM1 ≤W M2 and M2 �W M1.

In this way, we can order a set of models according to the structural similarity that
they have with respect to a given referential model. We say that M1 is closer to M
than M2, if (1) M1 is obtained from M by applying primitive operations that cause
fewer changes than those used to obtain M2 and (2) if the same states were affected
by PU3 operations both in M1 and in M2, then there were fewer changes on the set
of propositional atoms of M1 states.

Based on this closeness order, Zhang and Ding define the notion of admissible
update for model repair: a minimum change criterion by comparing the results of
possible structural modifications in the models.

Definition 7 (Zhang & Ding, 2008) Let M = 〈AP, S, s0, R, L〉 be a model and ϕ a
CTL formula that should hold inM. A modification is called admissible, denoted by
Update(M, ϕ), if and only if it produces a model that satisfies:

1. Update(M, ϕ) = M′ and M′ |� ϕ;
2. There is no M′′ such that M′′ |� ϕ and M′′ <M M′.
We denote by Poss(Update(M, ϕ)) the set of all models that could be obtained from
M by admissible modifications.
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Based on the closeness ordering defined by Zhang and Ding (2008), Guerra and
Wassermann (2010) define a change operator ◦c using a belief revision perspective.

Definition 8 (Guerra & Wassermann, 2010) Given two CTL formulas ψ and ϕ, we
denote by ψ ◦c ϕ the result of a revision whose models are defined as

Mod(ψ ◦c ϕ) = MinMod(ψ)(Mod(ϕ))

where MinB(A) denotes the set of all minimal models of A with respect to ≤B.

3.3 Differences BetweenModel and Specification Revision

For classical propositional logic, belief revision produces equivalent results if applied
over sets of formulas or over propositional assignments (models) (Grove, 1988). This
means that it is possible to define revision of belief sets in terms of relations of proxim-
ity of their possible models, and vice-versa. However, for CTL, as we show by means
of an example, this interdefinability does not hold. If it did, it would be possible to
define revision of temporal formulas in terms of current works on revision of models.

Let p1, p2 and p3 be the only propositional symbols in our system. Suppose that
we believe that in our system the following properties are true: p1 holds globally; if p1
does not hold in some next state, a path where p2 holds globally initiates in some of the
next states; the later also holds to p3; and that p1, p2 and p3 are mutually exclusive,
i.e., at most one of them can hold in any state.

According to the above properties, let K be our initial belief base defined as

K = Cn({AGp1,EX¬p1 → EXAGp2,EX¬p1 → EXAGp3, ϕmutex})

wheremutex stands formutually exclusive, and ϕmutex expresses the fact that in no state
in the future we have pi and p j both true, with i �= j :

ϕmutex ≡ ¬EF(p1 ∧ p2) ∧ ¬EF(p1 ∧ p3) ∧ ¬EF(p2 ∧ p3).

Suppose that we realize that p2 or p3 must hold in some next state

EX(p2 ∨ p3).

This new piece of information is inconsistent with our current belief base K , then
we need to revise K by EX(p2∨ p3). In this example we also assume as a fundamental
property the mutual exclusion between the propositions, thus our goal is to ensure

ψ ≡ EX(p2 ∨ p3) ∧ ϕmutex

For the specification revision K ∗ ψ , we need to find all maximal subsets of K that
are consistent with the new property ψ . In this example, EX(p2 ∨ p3) is inconsistent
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Fig. 5 Model of the initial belief
set

with AXp1, inferred from AGp1, so we must give up these beliefs. The only maximal
consistent subset X ∈ K⊥¬ψ is given by

X = Cn({p1,EXp1,AXAXp1,AXAXAXp1, . . . , ϕmutex ,

EX¬p1 → EXAGp2,EX¬p1 → EXAGp3 })

Thus, as K⊥¬ψ is a singleton set, there is just one possible choice for γ and the
only revision result is given by

K ∗ ψ = Cn(X ∪ {EX(p2 ∨ p3) ∧ ϕmutex})

From the model revision perspective, our beliefs are now composed by the set K
of all models that satisfy the belief set K . Due to ϕmutex restriction, every model has
states labeled by at most one of p1, p2 or p3. Due to AGp1, all possible models for
our initial beliefs are bisimilar to M in Fig. 5.

According to the model revision framework, we need to find all minimal structural
modifications on the models of K in order to produce models that satisfy EX(p2 ∨
p3) ∧ ϕmutex . This results in the following revised set of models:

K′ = K ◦c (EX(p2 ∨ p3) ∧ ϕmutex)

Every model M ∈ K could be repaired by just one addition of transition (PU1)
between a state p1 (in an initial p1-loop) to a state p2 or p3 (in a p2-loop or p3-loop,
respectively). Any additional modification is considered redundant according to the
model revision framework. Figure 6 shows examples of model repairs.

The revision result K′ contains only those models that are structurally close to our
original set of models.

Both approaches—revising sets of formulas and revising sets of models—rely on
different notions of minimal change. On one side, there is no model inK′ that satisfies
all formulas in specification revision K ′. Every model in K′ can only satisfy one of
EX¬p1 → EXAGp2 or EX¬p1 → EXAGp3, since only one transition was added.
This results in a non-minimal change with respect to the original set of formulas.

On the other hand, there is no model of K ′ that could be used as a model revision
result. In order to satisfy EX¬p1 → EXAGp2 and EX¬p1 → EXAGp3, all models
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Fig. 6 Solutions to repair M ∈ K
Fig. 7 A non minimal solution
to model revision

of K ′ contain at least two new transitions with respect toK. Figure 7 shows an example
of a model of K ′ that is not minimal, since it is possible to satisfy the property with
fewer modifications (see Fig. 6).

Based on this example, we can see that there is no model for K ′ that preserves the
structural similarity as intended by the model revision. Likewise, there is no model
in K′ that satisfies a subset of the specification that maximally preserves the initial
properties, as intended by specification revision.

This example shows that, unlike belief revision over classical logic, revision over
CTL in the syntactic or semantic levels may lead to different results. There are cases
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where the two approaches coincide. If we remove the ϕmutex restriction from the our
example, the model revision approach will produce at least one model where the
specification result is satisfied (by labeling the initial state with all propositions).

The revision of sets of CTL formulas can be seen as a special case of the framework
developed by Ribeiro et al. (2018) for non-compact logics. In that paper, a different
version of the partial meet construction is proposed and then fully characterized by
AGM-style postulates. In the rest of this paper, we will focus on the other side of the
problem, characterizing model revision.

4 Revising Complete Models

In Guerra and Wassermann (2018), we propose two characterizations of the model
repair operation: one based onAGM-like postulates where belief states are represented
by sets of temporal formulas; and one based on postulates of rationality over structural
changes on models. Our focus in this section is in the later characterization and how
it is applied to describe the minimal change principle in model repair.

In this characterization, a repair operator is represented byone ormore compositions
of atomic modifications:

Definition 9 An atomic modification is a pair 〈O,D〉 such that O ∈ {PU1, . . . ,PU5}
denotes a primitive update and

1. if O = PU1 or O = PU2, then D ∈ S × S, indicating the transition to be added or
removed;

2. if O = PU3, then D ∈ S × AP , indicating a change of a label of a state; or
3. if O = PU4 or O = PU5, then D ∈ S, indicating the state to be added or removed.

For example, 〈PU2, (s0, s1)〉 is an atomic modification that represents the removal
of a relation between the s0 and s1 in a given model.

Definition 10 Let M = 〈AP, S, s0, R, L〉 be a Kripke structure and a an atomic
modification. The application of a toM results in a model M[a] such that:
1. if a = 〈PU1, (si , s j )〉 and si , s j ∈ S, then M[a] = 〈AP, S, s0, R ∪ {(si , s j )}, L〉;
2. if a = 〈PU2, (si , s j )〉 and (si , s j ) ∈ R, thenM[a] = 〈AP, S, s0, R−{(si , s j )}, L〉;
3. ifa = 〈PU3, (s, p)〉 and s /∈ L(p), thenM[a] = 〈AP, S, s0, R, L ′〉, where L ′ = L

except for L ′(p) = L(p) ∪ {s};
4. ifa = 〈PU3, (s, p)〉 and s ∈ L(p), thenM[a] = 〈AP, S, s0, R, L ′〉, where L ′ = L

except for L ′(p) = L(p) − {s};
5. if a = 〈PU4, (s)〉, M[a] = 〈AP, S ∪ {s}, s0, R, L〉;
6. if a = 〈PU5, (s)〉 and for all (si , s j ) ∈ R, s �= si and s �= s j , then M[a] =

〈AP, S − {s}, s0, R, L〉.
7. In all other cases, M[a] = M.

Definition 11 LetM be a model, amodificationΔ inM is a finite sequence of atomic
modifications Δ = 〈a1, a2, . . . , an〉. We represent byM[Δ] the model resulting from
the application of Δ toM, i.e.,M[Δ] = M[a1][a2]...[an]. In the case where Δ = ∅
or that the application of Δ do not preserve Kripke models properties, as the serial
transition relation over states, we have M[Δ] = M.
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Fig. 8 Model after the
application of a modification

A modification Δ then represents a composition of sequence of atomic modifica-
tions. For example, let δ be the following sequence of modifications

Δ = {〈PU4, s3〉, 〈PU3, (s3, p)〉, 〈PU3, (s3, q)〉, 〈PU2, (s0, s2)〉, 〈PU1, (s0, s3)〉,
〈PU1, (s3, s0)〉, 〈PU1, (s3, s0)〉}

and M be the model depicted in Fig. 4. The modification δ applied in M generates
the model M[δ] depicted in Fig. 8. Note that when δ is applied in M, the atomic
modification 〈PU2, (s0, s2)〉 has no effect in the final result.

Let M be a model, α a temporal formula, and R〈M, α〉 a set of modifications
given as a solution to the repair ofM given α. In Guerra and Wassermann (2018), we
proposed the following postulates to define the expected rationality of R〈M, α〉:

(R*1) R〈M, α〉 = ∅ if and only if |� ¬α

(R*2) For all Δ ∈ R〈M, α〉,M[Δ] |� α

(R*3) IfM |� α, then R〈M, α〉 = {∅}
(R*4) For all Δ ∈ R〈M, α〉, if Δ′ ⊂ Δ, then M[Δ′] �|� α

(R*5) For all Δ ∈ R〈M, α〉, there is Δ′ such that M[Δ][Δ′] = M.

Postulate (R*1) states that the lack of a repair only occurs when α is unsatisfiable.
Postulate (R*2) ensures the success of a repair by stating that every modification in
R〈M, α〉 might lead to a model that satisfies α. Postulate (R*3) states that in the case
whereM satisfies α, its structure must be preserved. Postulate (R*4) is related to the
relevance of modifications and states that every possible modification must contains
only relevant atomic modifications to satisfy α. Finally, Postulate (R*5) states the
reversibility of each modification in R〈M, α〉, such that it is possible to recover the
original model. Postulate (R*5) is a parallel to the AGM recovery postulate.3

Theorem 2 states that the described postulates indeed capture the rationality
expected for a model repair operator.

3 In fact, it is trivially satisfied by operations PU1–PU5. However (R*1)–(R*5) were intended to be applied
for any set of primitive operations
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Theorem 2 (Guerra & Wassermann, 2018) Let M be a model and α a temporal for-
mula,M′ ∈ Update(M, α) if and only if there is a set of modificationsR〈M, α〉 that
satisfies (R*1)–(R*5) and M′ = M[Δ], for some Δ ∈ R〈M, α〉.

In this section, we have focused on the repair of a single model. However, we do not
always have a complete specification of a system. In the next section, we generalize the
characterization ofmodel repair in order to deal with partial models, where uncertainty
about parts of the model can be represented.

5 Revising Partial Models

In the previous section, we presented the repair of a single model. In Guerra and
Wassermann (2010), we have presented an approach that generalizes this operation to
deal with sets of inconsistent models. The motivation is that a system designer could
describe the main behaviors of a system, but not all of them, leaving some possibilities
open for the system. For example, a semaphore system could be defined by saying that
a green light must occur after a red light, without mentioning whether a yellow light
should or not occur between them. This modelling leads to a set of possible models
for the system, that we may need to deal with while performing a model repair. This
kind of description is called partial modeling.

Larsen (1990) and Larsen and Thomsen (1988) propose to perform this kind of
system modeling by using a type of structures that allow the distinction between the
required and admissible behavior.

The models proposed by Larsen and Thomsen are a variant of labeled transitions
systems that allow us to express the necessity or the possibility of each transition, and
thus determine obligatory and admissible behaviors, respectively. The transitions are
thus divided into two types:must transitions (required) andmay transitions (possible).
In their model, a necessary behavior corresponds to that behavior that makes use of
only must transitions. In turn, an admissible behavior corresponds to that which makes
use of both may and must transitions.

In Huth et al. (2001), Huth, Jagadeesan and Schmidt propose an extension of these
models to incorporate modalities also in the state labeling. Thus, there are three pos-
sible truth values for a proposition in each state: true, false, or indeterminate. The
models of Huth et al. (2001) are called Kripke Modal Transition Systems (KMTS).

Definition 12 (Huth et al., 2001) A Kripke Modal Transition System (KMTS) is a
tupleM = 〈AP, S, s0, R+, R−, L+, L−〉 such that:

1. AP is a countable set of propositional atoms;
2. S is a finite set of states;
3. s0 is the initial state;
4. R+ ⊆ R− ⊆ S × S are serial transition relations over S;
5. L+ : AP → P(S) and L− : AP → P(S) are state labeling functions such that

L+(p) ⊆ L−(p), for all p ∈ AP .

In Definition 12, R+ and R− define must and may transitions, while L+ and L−
define must and may labeling functions, respectively.
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Fig. 9 Example of KMTS

Example 1 A computer server can be modelled into two main states: idle and per-
forming a required task. It is desired that while in idle state the server keep listening
for requests and that after receiving a request it immediately proceed to perform the
required task. Observe that this information just partially describe the full system
behavior. It is not said for example whether the system should return to the idle state
after performing a task. It is also unclear whether it should keep listening for requests
while performing tasks or not. These two behavior are admissible although none of
them are initially required.

Figure 9 depicts a KMTS that models the partially specified behavior given in
Example 1. In this KMTS, p, q are propositional atoms that represent respectively the
server is listening for requests and the server is performing a task. By convention,
full arrows represent must transitions, while dashed arrows represent transitions that
belong exclusively to the set R−. The may transition from s1 to s0 represents the
possibility of the server to return to its idle state. Note that unlike LTSs, when an
atom does not appear in a state, it is not interpreted as false, but as indeterminate. In
state s1 it might or not be the case whether the server keep listening for requests. This
KMTS is formally defined by M = 〈{p, q}, {s0, s1}, s0, {(s0, s1), (s1, s1)}, {(s0, s1),
(s1, s1), (s1, s0)}, L+, L−〉, where L+(p) = {s0}, L+(q) = {s1}, L−(p) = {s0, s1},
L−(q) = {s1}.

In this work we adopt KMTS as the standard formalism for describing partial
systems models. In this sense, partial models can be seen as a representation of the set
of possible candidate models to implement the actual system behavior. As in Guerra
et al. (2013), we use a KMTS as a compact representation of a set of Kripke models,
building over it a characterization of the model revision operation defined by Guerra
and Wassermann (2010).

We can obtain from a KMTS a set of possible concrete models of a system. We call
this an expansion of a KMTS model (Guerra et al., 2013).

Definition 13 (Guerra et al., 2013) Let M = 〈AP, S, s0, R+, R−, L+, L−〉 be a
KMTS, the expansion ofM into Kripke models is the set K(M) of all modelsM′ =
〈AP ′, S′, s0′, R′, L ′〉 such that AP ′ = AP , S′ = S, s′

0 = s0, R+ ⊆ R′ ⊆ R− and
L+(p) ⊆ L ′(p) ⊆ L−(p), for all p ∈ AP .

The KMTS expansion produces a Kripke model for each indeterminacy in its tran-
sitions and labels. This set thus contains all possible models that may come to describe
the final intended behavior of the system. Figure 10 depicts the expansion of theKMTS
described in Fig. 9.

KMTS provides a compact representation of sets of Kripke models, thus modifying
directly the structure of a KMTS can be more efficient than modifying each model in
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Fig. 10 Example of KMTS expansion

a set of models. In this section, we formalize an approach of how to perform model
revision via KMTS. Our formalization is similar to that defined in Sect. 4 for the repair
of a single Kripke model.

First, following Guerra et al. (2013), we define a new set of primitive operations,
with focus on changes in KMTS:

P1: Add a transition in R− P5: Change one state label in L−
P2: Add a transition in R+ P6: Change one state label in L+
P3: Remove a transition of R− P7: Add a state in S

P4: Remove a transition of R+ P8: Remove a state of S

Analogous to the case ofKripkemodels,we could define the concept ofmodification
over KMTS:

Definition 14 An atomic modification over KMTS is a pair 〈O,D〉 such that O ∈
{P1, . . . ,P8} denotes a primitive update and

1. if O ∈ {P1,P2,P3,P4}, then D ∈ S × S, indicating the transition to be added or
removed;

2. if O ∈ {P5,P6}, then D ∈ S × AP , indicating a change of a state label; or
3. if O ∈ {P7,P8}, then D ∈ S, indicating the state to be added or removed.

Definition 15 Let M = 〈AP, S, s0, R+, R−, L+, L−〉 be a KMTS, the application
of an atomic modification a over M results in a model M[a] such that:

1. if a = 〈P1, (si , s j )〉 and si , s j ∈ S, then M[a] = 〈AP, S, s0, R+, R− ∪
{(si , s j )}, L+, L−}

2. if a = 〈P2, (si , s j )〉 and (si , s j ) ∈ R−, then M[a] = 〈AP, S, s0, R+ ∪
{(si , s j )}, R−, L+, L−}

3. if a = 〈P3, (si , s j )〉 and (si , s j ) /∈ R+, then M[a] = 〈AP, S, s0, R+, R− −
{(si , s j )}, L+, L−}
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4. if a = 〈P4, (si , s j )〉, then M[a] = 〈AP, S, s0, R+ − {(si , s j )}, R−, L+, L−}
5. if a = 〈P5, (s, p)〉 and s /∈ L+(p), then M[a] = 〈AP, S, s0, R+ −

{(si , s j )}, R−, L+, L ′−} such that L ′− = L− except for L ′−(p) where

L ′−(p) =
{
L−(p) − {s}, if s ∈ L−(p)

L−(p) ∪ {s}, otherwise.

6. if a = 〈P6, (s, p)〉 and s ∈ L−(p), then M[a] = 〈AP, S, s0, R+ −
{(si , s j )}, R−, L ′+, L−} such that L ′+ = L+ except for L ′+(p) where

L ′+(p) =
{
L+(p) − {s}, if s ∈ L+(p)

L+(p) ∪ {s}, otherwise.

7. if a = 〈P7, (s)〉, then M[a] = 〈AP, S ∪ {s}, s0, R+, R−, L+, L−}
8. if a = 〈P8, (s)〉 and and for all (si , s j ) ∈ R−, s �= si and s �= s j , then M[a] =

〈AP, S − {s}, s0, R+, R−, L+, L−}
9. In all other cases, M[a] = M.

Note that no primitive operation should violate the KMTS definition. For example,
P2 can only be applied if the transition to be added in R+ is already present in R−.
To completely remove a transition (s, r) ∈ R+ ∩ R− from a KMTS, we need to first
apply P4 to remove (s, r) from R+, then use P3 to remove it from R−, otherwise it
would violate the condition that R+ ⊆ R−.

Similar to the modification in Kripke models, a modification in KMTS is a com-
position of primitive operations P1-P8 capable of generating a new KMTS.

A repair in a KMTS corresponds to a set of modifications that could change amodel
in order to satisfy a desired property. As before, we expect these modifications to be
made rationally, following a principle of minimal structural change. We adopt here as
a criterion of rationality the set of change postulates (R*1)–(R*5) described in Sect. 4.

Definition 16 LetM be a model and α a temporal formula, a repair R〈M, α〉 is said
admissible if and only if it satisfies postulates (R*1)–(R*5).

Our goal however is to show that model revision (Guerra &Wassermann, 2010) can
be performed through modifications in KMTS. In this sense, we need an additional
constraint for KMTS repair, limiting it to modifications which result in KMTS that are
equivalent toKripke structures.4 We express this restriction by the following postulate:

(R*6) For all Δ ∈ R〈M, α〉,M[Δ] is equivalent to a Kripke structure
AKMTS repair that satisfies (R*1)–(R*6) actually produces models that belongs to

the set of models generated by the model update approach of Zhang and Ding (2008).

4 A KMTS is equivalent to a Kripke structure if its expansion generates a set with a single Kripke model.
This occurs when in a KMTS there are no undeterminacies about labels or transitions.
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(a) (b)

Fig. 11 Example of possible results of KMTS repair

Proposition 1 IfR〈M, α〉 satisfies (R*1)–(R*6), then for allΔ ∈ R〈M, α〉,M[Δ] ∈
Poss(Update(M′, α)) for someM′ ∈ K(M).

Proof This result is a consequence of Theorem 2, sinceM[d] is equivalent to a Kripke
structure (Postulate (R*6)) and each primitive modification in Kripke models PU1–
PU5 could be achieved by equivalent modifications P1–P8 in KMTS (for example,
〈PU1, (s, r)〉 is equivalent to perform the following sequence 〈P1, (s, r)〉, 〈P2, (s, r)〉).

��
However, only the addition of postulate (R*6) is not sufficient to ensure that a repair

in KMTS produces the expected result of the model revision approach described in
Guerra and Wassermann (2010).

Example 2 LetM be theKMTS depicted in Fig. 9 and α = EXEX(p∧¬q) a temporal
property. The repair R〈M, α〉 = {Δ} such that Δ = {〈P3, (s1, s0)〉, 〈P5, (s1, p)〉,
〈P7, s2〉, 〈P1, (s1, s2)〉, 〈P2, (s1, s2)〉, 〈P1, (s2, s2)〉, 〈P2, (s2, s2)〉} satisfies postulates
(R*1)–(R*6), however does not result in a model that belongs to the revision of the
set K(M).

Figure 11a depicts the model that produced by the repair described in Example 2.
However, the expansion K(M) already contains a model for which the property
EXEX(p ∧ ¬q) holds (Fig. 11b). In this scenario, model revision criteria tend to
keep the later model instead of producing the first one.

To obtain a model according to the result of model revision, we need to restrict the
modifications in KMTS to those which make the best use of the model uncertanties.
We define this principle of relevance of the modifications by means of a new postulate
of rationality. First, however, we need to define what we call alternative choices of a
modification:

Definition 17 Let Δ be a KMTs modification, the set of alternative choices of Δ,
denoted by ea(Δ), is defined by

ea(Δ) = {〈P2, (s, r)〉 | 〈P3, (s, r)〉 ∈ Δ and (s, r) ∈ R−\R+} ∪
{〈P3, (s, r)〉 | 〈P2, (s, r)〉 ∈ Δ and (s, r) ∈ R−\R+} ∪
{〈P5, (s, p)〉 | 〈P6, (s, p)〉 ∈ Δ and s ∈ L−(p)\L+(p)} ∪
{〈P6, (s, p)〉 | 〈P5, (s, p)〉 ∈ Δ and s ∈ L−(p)\L+(p)}.

In order to produce a KMTS equivalent to a Kripke structure, a modification Δ

must contain changes that refine all undeterminations of the KMTS. In the Example 2,
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when we performed the operation 〈P3, (s1, s0)〉 we chose to remove a may transition
from the KMTS. An alternative choice would be to maintain this transition and add
it to the set of must transitions (〈P2, (s1, s0)〉). Similarly, when we make 〈P5, (s1, p)〉
we choose to transform p from indeterminate to false, alternatively we could make p
true in s1 (〈P6, (s1, p)〉).

The set ea(Δ) contains thus the dual modifications to those present in Δ that
perform refinement of uncertanties. We then use this notion to define a new postulate
of rationality related to the choices made by a repair operator:

(R*7) For all Δ ∈ R〈M, α〉, there is no Δ′ ⊂ Δ such that for some
Δ′′ ⊆ ea(Δ),M[Δ′ ∪ Δ′′] |� α.

Postulate (R*7) states that in order to satisfy a property, different choices about
uncertainties should not make irrelevant parts of a modification, in the sense that if
we adopted a different set of choices for the solution, it would be possible satisfy
the property using a proper subset of this modification. To satisfy this postulate, the
modification Δ of Example 2 could not belong to R〈M, α〉 since that for Δ′ =
{〈P5, (s1, p)〉} and Δea = {P2, (s1, s0)} we have Δ′ ⊂ Δ, Δea ⊆ ea(Δ) and M[Δ′ ∪
Δea] |� α.

In Theorem 3, we show that if the KMTS repair operator satisfies postulates (R*1)–
(R*7), it generates only models belonging to the result of model revision as defined
in Guerra and Wassermann (2010).

Theorem 3 If R〈M, α〉 satisfies (R*1)–(R*7), then for all Δ ∈ R〈M, α〉, M[Δ] ∈
MinK(M)(Mod(α)).

Proof LetM = 〈AP, S, s0, R+, R−, L+, L−〉 be a KMTS and α a temporal formula.
Suppose, for the purpose of contradiction, that R〈M, α〉 satisfies (R*1)–(R*7) and
that there is a d ∈ R〈M, α〉 such that M[d] /∈ MinK(M)(Mod(α)).

SinceR〈M, α〉 satisfies (R*4), we have thatM[d] ∈ Mod(α), thus there must be
M′ ∈ Mod(α) such that M′ <K(M) M[d]. Therefore, there are M1,M2 ∈ K(M)

such that M[d] ∈ Poss(Update(M1, α)), M′ ∈ Poss(Update(M2, α)) and

(i) For all i = 1..5, Diff PUi (M2,M′) ⊆ Diff PUi (M1,M[d]) and, for some j =
1..5, we have Diff PUi (M1,M[d]) � Diff PUi (M2,M′); or

(ii) For all i = 1..5, Diff PUi (M2,M′) = Diff PUi (M1,M[d]) and for all p ∈ AP
and s ∈ Diff PU3(M2,M′), we have that s ∈ diff (L ′(p), L2(p)) implies s ∈
diff (L(p), L1(p)), but for some q ∈ AP and r ∈ diff (L(p), L1(p)), we have
r ∈ diff (L(q), L1(q)) and r /∈ diff (L ′(q), L2(q)).

Let d ′ be a modification in M such that M′ = M[d ′] and that does not contain
irrelevant primitive operations (i.e., there is no subset of d ′ that applied to M also
results inM′). The difference between d ′ and d lies in the following cases:

1. If 〈P1, (s, r)〉 ∈ d ′\d, then 〈P2, (s, r)〉 ∈ d ′, otherwise d ′ would not be min-
imal or M[d ′] would not be a Kripke structure. Thus, we have that (s, r) ∈
Diff PU1(M2,M[d ′]) and (s, r) ∈ Diff PU1(M1,M[d]), therefore 〈P2, (s, r)〉 ∈ d
and 〈P1, (s, r)〉 ∈ d, a contradiction.

2. If 〈P2, (s, r)〉 ∈ d ′\d, then
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(a) If (s, r) /∈ R−, then (s, r) ∈ Diff PU1(M2,M[d ′]) and (s, r) ∈ Diff PU1(M1,

M[d]). Therefore 〈P2, (s, r)〉 ∈ d, a contraction.
(b) If (s, r) ∈ R+, then d ′ would not be minimal, a contraction.
(c) If (s, r) ∈ R−\R+, then 〈P3, (s, r)〉 ∈ d, since 〈P2, (s, r)〉 ∈ d or

〈P3, (s, r)〉 ∈ d, otherwise M[d] would not be a Kripke structure and
R〈M, α〉 would violate postulate (R*6).

3. If 〈P3, (s, r)〉 ∈ d ′\d, then
(a) If (s, r) /∈ R−, then d ′ would not be minimal, a contraction.
(b) If (s, r) ∈ R+, then (s, r) ∈ Diff PU2(M2,M[d ′]) and (s, r) ∈ Diff PU2(M1,

M[d]). Thus 〈P3, (s, r)〉 ∈ d, a contradiction.
(c) If (s, r) ∈ R−\R+, then 〈P2, (s, r)〉 ∈ d, since 〈P2, (s, r)〉 ∈ d or

〈P3, (s, r)〉 ∈ d, otherwise M[d] would not be a Kripke structure and
R〈M, α〉 would violate postulate (R*6).

4. If 〈P4, (s, r)〉 ∈ d ′\d, then 〈P3, (s, r)〉 ∈ d ′, then d ′ would not be mini-
mal or M[d ′] would not be a Kripke structure. Thus, we have that (s, r) ∈
Diff PU2(M2,M[d ′]) and (s, r) ∈ Diff PU2(M1,M[d]), therefore 〈P3, (s, r)〉 ∈ d
and 〈P4, (s, r)〉 ∈ d, a contradiction.

5. If 〈P5, (s, p)〉 ∈ d ′\d, then
(a) If s /∈ L−(p), then also 〈P6, (s, p)〉 ∈ d ′, otherwise M[d ′] would not

be a Kripke structure. Thus, we have that s ∈ Diff PU3(M2,M[d ′]) and
s ∈ Diff PU3(M1,M[d]), therefore 〈P6, (s, p)〉 ∈ d and 〈P5, (s, p)〉 ∈ d,
a contradiction.

(b) If s ∈ L−(p) and s ∈ L+(p), then also 〈P6, (s, p)〉 ∈ d ′, due to the restriction
over primitive update P5. Thus, we have that s ∈ Diff PU3(M2,M[d ′]) and
s ∈ Diff PU3(M1,M[d]), and also 〈P6, (s, p)〉 ∈ d and 〈P5, (s, p)〉 ∈ d, a
contradiction.

(c) If s ∈ L−(p) and s /∈ L+(p), then 〈P6, (s, p)〉 ∈ d, since 〈P5, (s, r)〉 ∈ d
or 〈P6, (s, r)〉 ∈ d, otherwise M[d] would not be a Kripke structure and
R〈M, α〉 would violate postulate (R*6).

6. If 〈P6, (s, p)〉 ∈ d ′\d, then
(a) If s ∈ L+(p), then also 〈P5, (s, p)〉 ∈ d ′, otherwise M[d ′] would not

be a Kripke structure. Thus, we have that s ∈ Diff PU3(M2,M[d ′]) and
s ∈ Diff PU3(M1,M[d]), therefore 〈P5, (s, p)〉 ∈ d and 〈P6, (s, p)〉 ∈ d,
a contradiction.

(b) If s /∈ L+(p) and s /∈ L−(p), then also 〈P5, (s, p)〉 ∈ d ′, due to the restriction
over primitive update P6. Thus, we have that s ∈ Diff PU3(M2,M[d ′]) and
s ∈ Diff PU3(M1,M[d]), and also 〈P5, (s, p)〉 ∈ d and 〈P6, (s, p)〉 ∈ d, a
contradiction.

(c) If s /∈ L+(p) and s ∈ L−(p), then 〈P5, (s, p)〉 ∈ d, since 〈P5, (s, r)〉 ∈ d
or 〈P6, (s, r)〉 ∈ d, otherwise M[d] would not be a Kripke structure and
R〈M, α〉 would violate postulate (R*6).
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7. If 〈P7, s〉 ∈ d ′\d, then s ∈ Diff PU4(M2,M[d ′]) and s ∈ Diff PU4(M1,M[d]),
since 〈P7, s〉 ∈ d, a contradiction.

8. If 〈P8, s〉 ∈ d ′\d, then s ∈ Diff PU5(M2,M[d ′]) and s ∈ Diff PU5(M1,M[d]),
therefore 〈P8, s〉 ∈ d, a contradiction.

In these cases, the only situations that do not lead to contradictions are those where
the modification in d ′ are those that belong to ea(d). However, this violates postulate
(R*7), which contradicts the assumption thatR〈M, α〉 satisfies all postulates. There-
fore there is no such model M′ where M′ <K(M) M[d] and thus M[d] is indeed a
repair solution according to model revision. ��

Theorem 3 shows that we can find repair solutions according to the minimal prin-
ciple of the model revision using KMTS and modifications over them.

5.1 Computational Properties

Zhang and Ding (2008), show that CTL Model Update is co-NP-complete due to the
complexity of checking whether a given model is an admissible update.

Theorem 4 (Zhang & Ding, 2008) Given two CTL models, M and M′, and a CTL
formula α, it is co-NP-complete to decide whetherM′ is an admissible model update
of M to satisfy α.

Although Guerra and Wassermann (2010) do not discuss computational properties
of CTL Model Revision, its approach is at least as hard as CTL Model Update since
Definition 7 is a special case of Definition 6 whereW has a single model,W = {M}.
However,model revision is heavily based on a full set comparison in order to determine
whether a repair candidate is minimal according to ≤W . One main concern is that the
size of the set≤W tends to grow according to the number of uncertainties. The problem
get worse when we need use compact representations like KMTS to define W since
any new uncertainty might doubles the size of W .

Theorem 3 shows however that postulates (R*1)–(R*7) can ensure model revision
results and thus they could be used to perform model revision. Similar to Zhang and
Ding (2008), we show in Theorem 5 that to verify whether a repair satisfies (R*1)–
(R*7) is also co-NP-complete.

Theorem 5 LetM be a KMTS and α a satisfiable CTL formula, it is co-NP-complete
to check whether a given repairR〈M, α〉 satisfies (R*1)–(R*7).
Proof Membership proof First, we need to show that the problem is in co-NP. For
this purpose, we consider the complement problem: checking whether a modification
R〈M, α〉 do not satisfy (R*1)–(R*7). For postulate (R*1), since α is satisfiable,
we make a straightforward verification if R〈M, α〉 = ∅. For postulate (R*2), we
need to compute M[Δ] for Δ ∈ R〈M, α〉 and then verify if M[Δ] �|� α. The first
step consists in rewriting the codification of M according to Δ what can be done in
polynomial time. The second step consists in performing a model checking, that takes
time O(|M| × |α|) (Clarke et al., 1999). Both steps can be performed in polynomial
time. For postulate (R*3), we need to verify ifM |� α, that takes time O(|M|2×|α|)
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(Huth, 2002), andR〈M, α〉 �= {∅}. Both steps can be performed in polynomial time.
For postulate (R*4), we first make a non-deterministic guess of a Δ′ ⊂ Δ and then
check if M[Δ′] |� α, what again can be done in polynomial time. Postulate (R*5) is
always satisfied since primitive operations P1–P8 are reversible. For postulate (R*6)
we check if the expansion of K(M[Δ]) has more than one element. And finally, for
postulate (R*7) we make two non-deterministic guesses, Δ′ ⊂ Δ and Δ′′ ⊆ ea(Δ),
and thenwe check ifM[Δ′] |� α. Therefore, all postulates verification can be achieved
in polynomial time with a non-deterministic Turing machine.

Hardness proof Second, we show a polynomial reduction of a known co-NP-
complete problem. Here, we show a polynomial time reduction from the problem
of deciding whether a propositional formula ϕ is valid to the problem of deciding
whether a set do modifications satisfies the postulates (R*1)–(R*7). Let Aϕ be the
set of all propositional atoms occurring in ϕ and a,b two propositional atoms that do
not occur in ϕ. We then specify a KMTSM = (Aϕ ∪ {a, b}, {s0}, s0, {(s0, s0)}, {(s0,
s0)}, L, L) such that L(a) = L(b) = ∅ and L(p) = {s0} for p ∈ Aϕ . Note that M is
equivalent to a Kripke model with a single state where all atoms in Aϕ are assigned
to true and a, b are assigned to false. Let ψ = ∧

p∈Aϕ
¬p, we define a formula

α = ((ϕ → a) ∧ (b ∧ ψ)) ∨ (¬ϕ ∧ a) and a set of modifications R〈M, α〉 = {Δ}
where Δ = {〈P5, (s0, p)〉 | p ∈ Aϕ ∪ {a, b}} ∪ {〈P6, (s0, p)〉 | p ∈ Aϕ ∪ {a, b}}.
We show that ϕ is valid if and only ifR〈M, α〉 satisfies (R*1)–(R*7).

Postulates (R*1), (R*2), (R*3), (R*5) and (R*6) are trivially satisfied since α is
a satisfiable, R〈M, α〉 �= ∅, M[Δ] |� α, M �|� α, M[Δ][Δ] = M and M[Δ] is
equivalent to a Kripke structure. Postulate (R*7) is equivalent to (R*4) since ea(Δ) =
∅. And finally, for postulates (R*4) we have two cases:
Case 1 If ϕ is valid, then must be the case that M[Δ] satisfy (ϕ → a) ∧ (b ∧ ψ).
Thus postulate (R*4) is satisfied since there is no subset Δ′ ⊂ Δ that makes a, b, ψ
hold in s0, simultaneously, while preserving postulate (R*6).
Case 2 If ϕ is not valid, then there is a subset A′

ϕ ⊆ Aϕ such that A′
ϕ entails ¬ϕ.

Let Δ′ = {〈P5, (s0, p)〉 | p ∈ A′
ϕ ∪ {a}} ∪ {〈P6, (s0, p)〉 | p ∈ A′

ϕ ∪ {a}}, we
have that M[Δ′] |� ¬ϕ ∧ a. Thus postulate (R*4) is not satisfied since Δ′ ⊂ Δ and
M[Δ′] |� α.

Therefore we have that ϕ is valid if and only ifR〈M, α〉 satisfies (R*1)–(R*7). ��

6 Conclusions

In this work, we investigate an approach to repair inconsistencies in formal system
specifications based on belief revision theory (Alchourron et al., 1985). We show
that this problem can be divided into two subproblems: the repair of specifications
described by means of temporal formulas and the repair of systems models by means
of minimal structural changes on theseIn this work, we investigate an approach to
repair inconsistencies in formal system specifications based on belief revision theory
(Alchourron et al., 1985). We show that this problem can be divided into two subprob-
lems: the repair of specifications described by means of temporal formulas and the
repair of systemsmodels bymeans of minimal structural changes on these models.We
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analyzed several issues related to the problem and present a formal characterization
of revision over fully and partially specified models.

We have investigated the problem of model revision based on the approaches pre-
sented on Guerra andWassermann (2010) and Zhang and Ding (2008). In these works,
the authors show that their repair operators satisfy a set of rationality postulates, with-
out however demonstrating that the set of postulates they use completely characterizes
all possible model repair operators.

We use the same principles of model update described in Zhang and Ding (2008)
to formally define a structural change operation over models and then propose a set of
postulates over structural modifications. We show in Guerra and Wassermann (2018)
that the proposed postulates indeed capture the expected rationality for the repair
problem and that they have a direct relation with the postulates for sets of formulas.

Finally we developed an approach focused on partially specified models, based on
a new set of primitive operations. We define rationality criteria for these operators
based on those postulates defined in Guerra andWassermann (2018). We show that by
interpreting a Kripke Modal Transition System as a compact representation of sets of
Kripke models we can perform the model revision of Guerra (2010) through repair on
KMTS. The key point of this definition of rationality is the postulate that establishes
the relevance of modifications with respect to the refinements of uncertainties.

In future work, we plan to propose implementations of model repair operations
as in Guerra and Wassermann (2010); Zhang and Ding (2008) for both complete and
partial representation of systemmodels.We also intend to investigate themodel change
approach beyond structural metrics, evaluating the application of the proposed theory
in more general applications.
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