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Abstract
The notion of a context in formal concept analysis and that of an approximation space
in rough set theory are unified in this study to define a Kripke context. For any context
(G,M,I), a relation on the set G of objects and a relation on the set M of properties are
included, giving a structure of the form ((G,R), (M,S), I). A Kripke context gives rise
to complex algebras based on the collections of protoconcepts and semiconcepts of the
underlying context.On abstraction, doubleBoolean algebras (dBas)with operators and
topological dBas are defined. Representation results for these algebras are established
in terms of the complex algebras of an appropriate Kripke context. As a natural next
step, logics corresponding to classes of these algebras are formulated. A sequent
calculus is proposed for contextual dBas, modal extensions of which give logics for
contextual dBas with operators and topological contextual dBas. The representation
theorems for the algebras result in a protoconcept-based semantics for these logics.

Keywords Formal concept analysis · Rough set theory · Boolean algebra with
operators · Double Boolean algebra · Modal logic

Mathematics Subject Classification 06E25 · 03Gxx · 03G05 · 03B60 · 03B45

1 Introduction

Formal concept analysis (FCA) (Wille, 1982) and rough set theory (Pawlak, 1982) are
both well-established areas of study with applications in several domains including
knowledge representation and data analysis. There has also been a lot of study con-
necting and comparing the two areas, e.g. in Yao (2004), Meschke (2010), Hu et al.
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(2001), Ganter and Meschke (2011), Yao and Chen (2006), Kent (1994), Howlader
and Banerjee (2018), Howlader and Banerjee (2020a), Saquer andDeogun (2001), and
the work presented here is motivated by such studies from the perspective of algebra
and logic.

The central objects of FCA are contexts and concepts of a context (Ganter &
Wille, 1999). A context is a triple K := (G, M, I ), where G is the set of objects,
and M is the set of attributes and I ⊆ G × M . For any A ⊆ G, B ⊆ M , the
following sets are defined: A′ := {m ∈ M : for all g ∈ G(g ∈ A �⇒ gRm)}, and
B ′ := {g ∈ G : for allm ∈ M(m ∈ M �⇒ gRm)}. A pair (A, B) is called a concept
of K, if A′ = B and B ′ = A. For a concept (A, B), A is its extent and B its intent.
B(K) denotes the set of all concepts of K. An order relation ≤ is obtained on B(K)

as follows: for (A1, B1), (A2, B2) ∈ B(K), (A1, B1) ≤ (A2, B2) if and only if A1 ⊆
A2 (equivalent to B2 ⊆ B1).

The notion of a concept was generalized to that of semiconcepts and protoconcepts
in Luksch andWille (1991), Wille (2000). A pair (A, B) is called a semiconcept ofK,
if A′ = B or B ′ = A. (A, B) is called a protoconcept of K, if A′′ = B ′ (equivalently
A′ = B ′′).H(K) andP(K) denote the sets of all semiconcepts and protoconcepts ofK
respectively. It is observed that B(K) ⊆ H(K) ⊆ P(K). The partial order ≤ on B(K)

is extended to the set P(K) as: for any (A, B), (C, D) ∈ P(K), (A, B) � (C, D) if
and only if A ⊆ C and D ⊆ B.
The following operations are defined on P(K). For (A1, B1), (A2, B2) in P(K),

(A1, B1) 	 (A2, B2) := (A1 ∩ A2, (A1 ∩ A2)
′
),

(A1, B1) � (A2, B2) := ((B1 ∩ B2)
′
, B1 ∩ B2),

¬(A, B) := (G\A, (G\A)
′
),

�(A, B) := ((M\B)
′
, M\B),

� := (G,∅),

⊥ := (∅, M).

With these operations, the protoconcepts of any context form an algebraic structure
called double Boolean algebra (dBa) (Wille, 2000). The structure of a dBa is such
that there are two negation operators in it, which result in two Boolean algebras
being derived from it—justifying the name. The set of semiconcepts, with the same
operations as above, forms a subalgebra of the algebra of protoconcepts. In this work,
our interest lies in contextual and pure dBas (Vormbrock &Wille, 2005; Wille, 2000),
the structures formed by protoconcepts and semiconcepts respectively.

There may be circumstances in which the objects and properties defining a context
are indistinguishable with respect to certain attributes. For example, two diseases may
be indistinguishable by the symptoms available. Indistinguishability of objects and
properties have motivated authors (Kent, 1994, 1996; Saquer & Deogun, 2001; Hu
et al., 2001) to study “indiscernibility” relations on the set of objects and the set of
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properties. Rough set-theoretic notions of approximation spaces and approximation
operators (Pawlak, 1982, 1991) are then introduced in FCA.

A Pawlakian approximation space is a pair (W , E), where W is a set and E is an
equivalence relation on W . This is generalised to a pair (W , E) with E any binary
relation on W , and called a generalised approximation space (Yao & Lin, 1996).
For x ∈ W , E(x) := {y ∈ W : x Ry}. The lower and upper approximations
of any A(⊆ W ) are defined respectively as AE := {x ∈ W : E(x) ⊆ A}, and
A
E := {x ∈ W : E(x) ∩ A �= ∅}. Kent introduced the notion of approximation

space into FCA (Kent, 1994, 1996), and defined lower and upper approximations of
contexts and concepts. The work of Saquer and Deogun (2001) differs from that of
Kent in choosing the “indiscernibility” relations. Kent considers an indiscernibility
relation on the set G of objects which is externally given by some agent, whereas
Saquer and Deogun consider a relation that is determined by the given context. For a
given context K := (G, M, I ), relations E1, E2 are defined on the set G of objects
and the set M of properties respectively, as follows.

(a) For g1, g2 ∈ G, g1E1g2 if and only if I (g1) = I (g2).
(b) For m1,m2 ∈ M , m1E2m2 if and only if I−1(m1) = I−1(m2).

Furthermore, for A ⊆ G, B ⊆ M , lower and upper approximations are defined in
terms of concepts ofK, and using these, approximations of any pair (A, B) that is not
a concept, are given.Apart fromHu et al. (2001) introduce approximation spaces on the
sets of objects and properties. In Hu et al. (2001), for a given contextK := (G, M, I ),
relations J1, J2 are defined on G and M respectively, as follows.

(a) For g1, g2 ∈ G, g1 J1g2 if and only if I (g1) ⊆ I (g2).
(b) For m1,m2 ∈ M , m1 J2m2 if and only if I−1(m1) ⊆ I−1(m2).

The relations E1, E2 are equivalence relations (Saquer & Deogun, 2001), while the
relations J1, J2 are partial order relations (Hu et al., 2001). These observations have
motivated us to define the Kripke context, which unifies within a single framework,
the notions of a context of FCA and approximation space of rough set theory.

Definition 1 A Kripke context based on a context K := (G, M, I ) is a triple KC :=
((G, R), (M, S), I ), where R, S are relations on G and M respectively.

So a Kripke context consists of a context of FCA and two Kripke frames, which in the
terminology of rough set theory, are generalised approximation spaces. Note that for
a context K := (G, M, I ), we get a Kripke context KCDS := ((G, E1), (M, E2), I ).
Moreover, KCDS is an example such that the relations E1 and E2 are reflexive, sym-
metric and transitive. This observation has led us to define reflexive, symmetric or
transitive Kripke contexts, where the relations R and S are reflexive, symmetric or
transitive.

It is shown that, using the lower and upper approximation operators induced by the
approximation space (G, R), (M, S) in a Kripke contextKC := ((G, R), (M, S), I ),
one can define unary operators fR and fS on the set P(K) of protoconcepts of the
underlying context K := (G, M, I ) such that fR is an interior-type operator, while
fS is a closure-type operator. The Kripke context thus leads to complex algebras.
The algebra of protoconcepts with the operators fR and fS , is called the full complex
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algebra ofKC. Any subalgebra of the full complex algebra ofKC is called a complex
algebra. For a Kripke context KC, the algebra of semiconcepts H(K) with operators
fR�H(K) and fS�H(K) is an instance of a complex algebra of KC. We show how, in
terms of approximation spaces and operators fE1 and fE2 , the full complex algebra of
the Kripke context KCDS can be utilised to compute all the approximation operators
defined in the work of Saquer and Deogun (2001).

To understand the equational theory of the full complex algebra of protoconcepts
and the complex algebra of semiconcepts, abstractions of these structures are defined:
these are the double Boolean algebras with operators (dBao) and topological dBas
respectively. An immediate example of a dBao is a Boolean algebra with operators
(Blackburn et al., 2001); a topological Boolean algebra (Jonsson&Tarski, 1951) gives
an instance of a topological dBa. It is shown that the full complex algebra ofKC forms
a contextual dBao, while the complex algebra of semiconcepts forms a pure dBao. For
a reflexive and transitive Kripke context, the full complex algebra forms a topological
contextual dBa and the complex algebra of semiconcepts forms a topological pure
dBa. Representation theorems for these classes of algebras are then proved, in terms
of the complex algebras of protoconcepts and semiconcepts of an appropriate Kripke
context. The results are based on the representations obtained for dBas byWille (2000)
and Balbiani (2012).

As a natural next step, logics corresponding to dBaos are formulated. A sequent
calculus, denoted CDBL, is proposed for contextual dBas. CDBL is extended to
MCDBL and MCDBL4 for the contextual dBaos and topological contextual dBas
respectively. Due to the representation theorems for the algebras, one is able to get
another semantics for these logics, based on protoconcepts of contexts.

Section 2 gives the preliminaries required for this work. Kripke contexts, their
examples and the related complex algebras are studied in Sect. 3. In particular, we
indicate in Sect. 3.1 how the various approximations defined in Saquer and Deogun
(2001) can be expressed using terms of the full complex algebra ofKCDS . The dBaos
and the topological dBa along with the representation results are presented in Sect. 4.
In Sect. 5, the logics corresponding to the algebras are studied. CDBL for the class of
contextual dBas is discussed in Sect. 5.1; in Sect. 5.2, CDBL is extended toMCDBL
and MCDBL4. In Sect. 5.3, the protoconcept-based semantics for the logics is given.
Section 6 concludes the article.

In our presentation, the symbols ⇒,⇔, and, or and not will be used with the usual
meanings in the metalanguage. Throughout, for a map f on X , f � A denotes the
restriction of the map f on A ⊆ X , P(X) denotes the power set of any set X , and the
complement of A ⊆ X in a set X is denoted Ac. For basic notions on universal algebra
and lattices, we refer to Burris and Sankappanavar (1981), Davey and Priestley (2002).

2 Preliminaries

In the following subsections, we present basic notions and results related to dBas,
Boolean algebras with operators and approximation operators. Our primary references
are Ganter and Wille (1999), Wille (2000), Balbiani (2012), Blackburn et al. (2001),
Jonsson and Tarski (1951), Saquer and Deogun (2001).
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2.1 Double Boolean Algebra

A double Boolean algebra is defined as follows.

Definition 2 (Wille, 2000) An algebra D := (D,�,	,¬, �,�,⊥), satisfying the fol-
lowing properties is called a double Boolean algebra (dBa). For any x, y, z ∈ D,

(1a) (x 	 x) 	 y = x 	 y (1b) (x � x) � y = x � y
(2a) x 	 y = y 	 x (2b) x � y = y � x
(3a) x 	 (y 	 z) = (x 	 y) 	 z (3b) x � (y � z) = (x � y) � z
(4a) ¬(x 	 x) = ¬x (4b) �(x � x) =�x
(5a) x 	 (x � y) = x 	 x (5b) x � (x 	 y) = x � x
(6a) x 	 (y ∨ z) = (x 	 y) ∨ (x 	 z) (6b) x � (y ∧ z) = (x � y) ∧ (x � z)
(7a) x 	 (x ∨ y) = x 	 x (7b) x � (x ∧ y) = x � x
(8a) ¬¬(x 	 y) = x 	 y (8b) ��(x � y) = x � y
(9a) x 	 ¬x = ⊥ (9b) x��x = �
(10a) ¬⊥ = � 	 � (10b) �� = ⊥ � ⊥
(11a) ¬� = ⊥ (11b) �⊥ = �
(12) (x 	 x) � (x 	 x) = (x � x) 	 (x � x),
where x ∨ y := ¬(¬x 	 ¬y), and x ∧ y :=�(�x��y). A quasi-order relation � on D
is defined as follows: x � y if and only if x 	 y = x 	 x and x � y = y � y, for any
x, y ∈ D.

A dBa D is called contextual if � is a partial order. A contextual dBa is also known as
a regular dBa (Breckner & Săcărea, 2019). D is pure if for all x ∈ D, either x 	 x = x
or x � x = x . In the following, let D := (D,�,	,¬, �,�,⊥) be a dBa. Let us give
some notations that shall be used:
D	 := {x ∈ D : x 	 x = x}, D� := {x ∈ D : x � x = x}, Dp := D	 ∪ D�.
For x ∈ D, x	 := x 	 x and x� := x � x .

Proposition 1 (Wille, 2000) Dp := (Dp,�,	,¬, �,�,⊥) is the largest pure subal-
gebra of D. Moreover, if D is pure, Dp = D.

Proposition 2 (Balbiani, 2012) Every pure dBa D is contextual.

Proposition 3 (Vormbrock, 2007)

1. D	 := (D	,	,∨,¬,⊥,¬⊥) is a Boolean algebra whose order relation is the
restriction of � to D	 and is denoted by �	.

2. D� := (D�,�,∧, �,�, ��) is a Boolean algebra whose order relation is the
restriction of � to D� and it is denoted by ��.

3. x � y if and only if x 	 x � y 	 y and x � x � y � y for x, y ∈ D, that is,
x	 �	 y	 and x� � y�.

Proposition 4 (Kwuida, 2007) Let x, y, a ∈ D. Then the following hold.

1. x 	 ⊥ = ⊥ and x � ⊥ = x � x that is ⊥ � x.
2. x � � = � and x 	 � = x 	 x that is x � �.
3. x = y implies that x � y and y � x.
4. x � y and y � x if and only if x 	 x = y 	 y and x � x = y � y.
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5. x 	 y � x, y � x � y, x 	 y � y, x � x � y.
6. x � y implies x 	 a � y 	 a and x � a � y � a.

Proposition 5 (Howlader & Banerjee, 2020b) For any x, y ∈ D, the following hold.

1. ¬x 	 ¬x = ¬x and �x��x =�x, that is, ¬x = (¬x)	 ∈ D	, �x = (�x)� ∈ D�.
2. x � y if and only if ¬y � ¬x and �y ��x.
3. ¬¬x = x 	 x and ��x = x � x.
4. x ∨ y ∈ D	, x ∧ y ∈ D�.
5. ¬¬⊥ = ⊥, and ��� = �.
6. ¬(x 	 y) = ¬x ∨ ¬y and �(x � y) =�x∧�y.

Definition 3 A subset F of D is a filter in D if and only if x 	 y ∈ F for all x, y ∈ F ,
and for all z ∈ D and x ∈ F, x � z implies that z ∈ F . An ideal in a dBa is defined
dually.
A filter F (ideal I ) is proper if and only if F �= D (I �= D). A proper filter F (ideal
I ) is called primary if and only if x ∈ F or ¬x ∈ F (x ∈ I or �x ∈ I ), for all x ∈ D.
The set of primary filters is denoted byFpr (D); the set of all primary ideals is denoted
by Ipr (D).
A base F0 for a filter F is a subset of D such that F = {x ∈ D : z � x for some z ∈
F0}. A base for an ideal is defined similarly.
For a subset X of D, F(X) and I (X) denote the filter and ideal generated by X
respectively.

Lemma 1 (Kwuida, 2007) Let F be a filter and I an ideal of D. Then for any element
x ∈ D,

1. F(F ∪ {x}) = {a ∈ D : x 	 w � a for some w ∈ F}.
2. I (I ∪ {x}) = {a ∈ D : a � x � w for some w ∈ I }.
The following are introduced in Wille (2000) to prove representation theorems for
dBas.
Fp(D) := {F ⊆ D : F is a filter of D and F ∩ D	 is a prime filter in D	}.
Ip(D) := {I ⊆ D : I is an ideal of D and I ∩ D� is a prime ideal in D�}.
Proposition 6 (Howlader & Banerjee, 2020b) Fp(D) = Fpr (D) and Ip(D) =
Ipr (D).

Lemma 2 (Wille, 2000)

1. For any filter F of D, F ∩ D	 and F ∩ D� are filters of the Boolean algebras D	,
D� respectively.

2. Each filter F0 of the Boolean algebra D	 is the base of some filter F of D such
that F0 = F ∩ D	. Moreover if F0 is prime, F ∈ Fp(D).

It is straightforward to show that similar results hold for ideals of dBas.

For a context K := (G, M, I ) and sets A ⊆ G, B,⊆ M , recall the sets A′, B ′ and
the operations on protoconcepts of K defined in Sect. 1.

Lemma 3 (Davey & Priestley, 2002)
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1. A ⊆ A′′ and B ⊆ B ′′.
2. A ⊆ X implies that X ′ ⊆ A′, B ⊆ Y implies that Y ′ ⊆ B ′, for any X ⊆ G and

Y ⊆ M.

Theorem 7 (Wille, 2000)

1. P(K) := (P(K),	,�,¬, �,�,⊥) is a contextual dBa.
2. H(K) := (H(K),	,�,¬, �,�,⊥) is a pure dBa. Moreover, H(K) = P(K)p.

Theorem 8 (Wille, 2000)

1. The power set Boolean algebra (P(G),∩,∪,c ,G,∅) is isomorphic to the Boolean
algebra P(K)	 := (P(K)	,	,∨,¬,⊥,¬⊥), where any A(⊆ G) is mapped to
(A, A′) ∈ P(K)	.

2. The power set Boolean algebra (P(M),∪,∩,c , M,∅) is anti-isomorphic to the
Boolean algebra P(K)� := (P(K)�,�,∧, �,�, ��), where any B(⊆ M) is
mapped to (B ′, B) ∈ P(K)�.

Let us now move to representation theorems for dBas. The following notations and
results are needed. Let D be a dBa. For any x ∈ D,
Fx := {F ∈ Fp(D) : x ∈ F} and Ix := {I ∈ Ip(D) : x ∈ I }.
Lemma 4 (Wille, 2000; Howlader & Banerjee, 2020a) Let x ∈ D. Then the following
hold.

1. (Fx )c = F¬x and (Ix )c = I�x .
2. Fx	y = Fx ∩ Fy and Ix�y = Ix ∩ Iy .

To prove the representation theorem,Wille uses the standard context corresponding
to the dBa D, defined as K(D) := (Fp(D), Ip(D),�), where for all F ∈ Fp(D) and
I ∈ Ip(D), F�I if and only if F ∩ I = ∅. Then we have

Lemma 5 (Wille, 2000) For all x ∈ D, F ′
x = Ix	� and I ′

x = Fx�	 .

Theorem 9 (Wille, 2000) The map h : D → P(K(D)) defined by h(x) := (Fx , Ix )
for all x ∈ D is a quasi-embedding.

As a consequence of the above theorem, we have

Corollary 1 For a contextual dBa D, the map h : D → P(K(D)) defined by h(x) :=
(Fx , Ix ) for all x ∈ D is an embedding.

Theorem 10 (Balbiani, 2012) Let D be a pure dBa. The map h : D → H(K(D))

defined by h(x) := (Fx , Ix ) for all x ∈ D is an embedding.

2.2 Boolean Algebras with Operators

In the literature, there are several definitions of Boolean algebras with additional
operators. In this section, we mention the ones to be used in this work.
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Definition 4 (Blackburn et al., 2001) A Boolean algebra with operators (Bao) is an
algebra A := (B,∨,∧,¬, 0, f ) such that (B,∨,∧,¬, 0) is a Boolean algebra and
f : B → B satisfies the following.

Normality : f (0) = 0, Additivity : f (x ∨ y) = f (x) ∨ f (y).

Note that Blackburn et al. (2001) gives a general definition of Baos with more than
one operator. In Jonsson and Tarski (1951), a Boolean algebra (B,∨,∧,¬, 0) with
only an additive operator f is taken as the definition of Bao.

Definition 5 (Jonsson & Tarski, 1951) An algebra A := (B,∨,∧,¬, 0, f ) is called a
closure algebra if (B,∨,∧,¬, 0) is a Boolean algebra and for all x, y ∈ B, f : B →
B satisfies the following conditions.

1. f (0) = 0. 2. f (x ∨ y) = f (x) ∨ f (y).
3. f f (x) = f (x). 4. x ≤ f (x).

Note that for a closure algebra A := (B,∨,∧,¬, 0, f ), one can define an operator g
on B as: g(x) := ¬ f (¬x), for all x ∈ B. Then for all x, y ∈ B,

1′. g(1) = 1. 2′. g(x ∧ y) = g(x) ∧ g(y).
3′. gg(x) = g(x). 4′. g(x) ≤ x .

An algebra A := (B,∨,∧,¬, 0, g), where (B,∨,∧,¬, 0) is a Boolean algebra and
g satisfies 1′, 2′, 3′, 4′ is called a topological Boolean algebra in Rasiowa (1974).
Moreover, for a topological Boolean algebra A := (B,∨,∧,¬, 0, g), one can define
an operator gδ(x) := ¬g(¬x), for all x ∈ D such that A := (B,∨,∧,¬, 0, gδ) is a
closure algebra. In other words, a closure algebra and a topological Boolean algebra
of Rasiowa (1974) are dual to each other and one can be obtained from the other. In
this work, by a topological Boolean algebra, we shall mean a closure algebra.

2.3 Approximation Operators

Recall the definitions of lower and upper approximation operators in an approximation
space given in Sect. 1. If the relation is clear from the context, we shall omit the

subscript and denote AE by A, A
E
by A.

Proposition 11 (Yao & Lin, 1996)

I. For an approximation space (W , E), the following hold.

(i) A = ((Ac))c, A = ((Ac))c.
(ii) W = W.
(iii) A ∩ B = A ∩ B, A ∪ B = A ∪ B.
(iv) A ⊆ B implies that A ⊆ B, A ⊆ B.

II.Moreover if E is a reflexive and transitive relation then the following hold.

(i) A ⊆ A and A ⊆ A.

(ii) (A) = A and (A) = A.

Let K := (G, M, I ) be a context and recall the approximation spaces (G, E1) and
(M, E2) mentioned in Sect. 1. In Saquer and Deogun (2001), A ⊆ G and B ⊆ M are
called feasible if A′′ = A and B ′′ = B. Then the concept approximation(s) of A are
defined as follows.
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– If A is feasible, the concept approximation of A is (A, A′).
– If A is not feasible, A is considered as s rough set of the approximation space

(G, E1), and its concept approximations are defined with the help of its lower

approximation AE1
and upper approximation A

E1 . The lower concept approxima-
tion of A is the pair ((AE1

)′′, (AE1
)′), while its upper concept approximation is

((A
E1

)′′, (AE1
)′).

For B ⊆ M :

– if B is feasible, the concept approximation of B is (B ′, B);
– if B is non-feasible, the lower and upper concept approximations of B are defined

by ((B
E2

)′, (BE2
)′′) and ((BE2

)′, (BE2
)′′) respectively.

A pair (A, B) is called a non-definable concept, if it is not a concept of the context
K. A concept is said to approximate such a pair (A, B), if its extent approximates
A and intent approximates B. The four possible cases for A, B are considered: (i)
both A and B are feasible, (ii) A is feasible and B is not, (iii) B is feasible and A is
not, and (iv) both A and B are not feasible. In case both A and B are feasible and
A′ = B then the pair (A, B) itself constitutes a concept and no approximations are
needed. For the other cases, the lower approximation of (A, B) is obtained in terms of
the meet of the lower concept approximations of its individual components, while the
upper approximation of (A, B) is obtained in terms of the join of the upper concept
approximations of its individual components. For example, consider case (iv), when
both A and B are not feasible.
The lower approximation of (A, B) is defined by (A, B) := ((AE1

)′′, (AE1
)′) 	

((B
E2

)′, (BE2
)′′) = ((AE1

)′′ ∩ (B
E2

)′, ((AE1
)′′ ∩ (B

E2
)′)′).

The upper approximation of (A, B) is defined by (A, B) := ((A
E1

)′′, (AE1
)′) �

((BE2
)′, (BE2

)′′) = (((A
E1

)′ ∩ (BE2
)′′)′, (AE1

)′ ∩ (BE2
)′′).

Let us illustrate these notions by an example. The following context (G, M, I ) is a
subcontext of a context given by Ganter and Wille (1999) with some modifications.
G := {Leech, Bream, Frog, Dog,Cat} and M := {a, b, c, g}, where a:= needs
water to live, b:= lives in water, c:= lives on land, g:=can move around. I is given
by Table 1, where * as an entry corresponding to object x and property y means x I y
holds.
Observe that the properties a and g are indiscernible by objects, while Leech andBream
as well as Dog and Cat are indiscernible by properties. The induced approximation
spaces are (G, {{Leech, Bream}, {Frog}, {Dog,Cat}}) and (M, {{a, g}, {b}, {c}}).

Table 1 Context K a b c g
Leech * * *
Bream * * *
Frog * * * *
Dog * * *
Cat * * *
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Let A := {Leech, Bream, Dog} and B := {a, c}. A is not feasible, as A′′ �= A. B
is also non-feasible. The upper and lower concept approximations of A are (G, {a, g})
and ({Leech, Bream, Frog}, {a, b, g}), respectively. The upper and lower concept
approximations of B are both given by ({Frog, Dog,Cat}, {a, g, c}). Moreover,
(A, B) is a non-definable concept. The lower approximation of (A, B) is ({Frog}, M)

and the upper approximation is (G, {a, g}).

3 Kripke Context

Asgiven byDefinition 1 in Sect. 1, aKripke context based on a contextK := (G, M, I )
is a triple KC := ((G, R), (M, S), I ), where R, S are binary relations on G and M
respectively. Let us give a couple of examples of Kripke contexts. The first example
is based on Pawlakian approximation spaces.

Example 1 KC := ((G, R), (M, S), I ), where G := {D1, D2, D3, D4} represents a
collection of diseases and M := {S1, S2, S3, S4, S5} a collection of symptoms. Di I S j

holds if disease Di has symptom S j , and I is given by Table 2. Equivalence relations
R on G and S on M are then induced as follows, relating respectively, the diseases
that have the same set of symptoms, and the symptoms that apply to the same set of
diseases:
Di RD j , if and only if I (Di ) = I (Dj ), i, j ∈ {1, 2, 3, 4} and Si RS j , if and only if
I−1(Si ) = I−1(S j ), i, j ∈ {1, 2, 3, 4, 5}.
One thus gets the approximation spaces (G, R) and (M, S).

Our next example ismotivated by the notion of bisimulation betweenKripke frames
(Blackburn et al., 2001). It gives a Kripke context KC := ((G, R), (M, S), I ) such
that the relation I is in fact, a bisimulation between the Kripke frames (G, R) and
(M, S), that is, it satisfies the back and forth conditions: for all g ∈ G and m ∈ M ,
for all g1 ∈ G (gRg1 and gIm �⇒ there exists m1 ∈ M(mSm1 and g1 Im1));
for all m1 ∈ M (mSm1 and gIm �⇒ there exists g1 ∈ M(gRg1 and g1 Im1)).

Example 2 KC := ((G, R), (M, S), I ), where G := {c, d, e}, M := {a, b}, R :=
{(d, e), (c, d)} and S := {(a, b), (b, a)}. I is given by Table 3. Figure 1 depicts the
objects, properties and the three relations R, S, I . Each circular node represents an
object and each rectangular node a property. Two circular nodes are connected by an
arrow if they are related by R. Similarly for the rectangular nodes. The dotted arrow
represents the relation I . From the figure it is clear that I satisfies the back and forth
conditions.

Table 2 Context K S1 S2 S3 S4 S5

D1 * * *
D2 * *
D3 * * *
D4 * * *
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Table 3 Context K a b
c *
d *
e *

Fig. 1 Kripke Context KC a

b

e

d

c

In a Kripke context KC := ((G, R), (M, S), I ), if (G, R) is a Pawlakian approx-
imation space, one gets an interior operator −R : P(G) → P(G) defined as
−R(A) := AR for all A ∈ P(G) (Proposition 11). Similarly, one has the interior
operator −S : P(M) → P(M) defined by −M (B) := BS for all B ∈ P(M), if
(M, S) is a Pawlakian approximation space. Now from Theorem 8, we get the iso-
morphism f : P(G) → P(K)	 given by f (A) := (A, A′) for all A ∈ P(G) and the
anti-isomorphism g : P(M) → P(K)� given by g(B) := (B ′, B) for all B ∈ P(M).
Taking a cue from the compositions of f ,−R and g,−S , we can define two unary
operators fR and fS onP(K) as given below. It will be seen in Theorem 12 that fR is
an interior-type operator on P(K), while gS is a closure-type operator on P(K). For
any (A, B) ∈ P(K),

• fR((A, B)) := (AR, (AR)′),
• fS((A, B)) := ((BS)

′, BS).

fR, fS are well-defined, as (AR, (AR)′) and ((BS)
′, BS) are both semiconcepts and

hence protoconcepts of K. This implies that the set P(K) of protoconcepts is closed
under the operators fR, fS . We have

Definition 6 Let KC := ((G, R), (M, S), I ) be a Kripke context. The full complex
algebra of KC, P+(KC) := (P(K),�,	,¬, �,�,⊥, fR, fS), is the expansion of
the algebra P(K) of protoconcepts with the operators fR and fS .
Any subalgebra of P+(KC) is called a complex algebra of KC.

Let f δ
R, f δ

S denote the operators on P(K) that are dual to fR, fS respectively. In
other words, for each x := (A, B) ∈ P(K),
f δ
R(x) := ¬ fR(¬x) = ¬ fR((Ac, Ac′)) = ¬(Ac

R, (Ac
R)′) = ((Ac

R)c, (Ac
R)c′) =

(A
R
, (A

R
)′), by Proposition 11(i).

Similarly f δ
S (x) :=� fS(�x) = ((B

S
)′, BS

).

Again, note that f δ
R(x) = (A

R
, (A

R
)′) and f δ

S (x) = ((B
S
)′, BS

) are semiconcepts of
K. Let us now list some properties of fR and fS .
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Theorem 12 For all x, y ∈ P(K), the following hold.

1. fR(x 	 y) = fR(x) 	 fR(y) and fS(x � y) = fS(x) � fS(y).
2. fR(x 	 x) = fR(x) and fS(x � x) = fS(x).
3. fR(¬⊥) = ¬⊥ and fS(��) =��.
4. fR(¬x) = ¬ f δ

R(x) and fS(�x) =� f δ
S (x).

Proof Let x := (A, B) and y := (C, D).
1. We use Proposition 11(iii) in the following equations. fR((A, B) 	 (C, D)) =
fR(A ∩ C, (A ∩ C)′) = (A ∩ CR, (A ∩ CR)′) = (AR ∩ CR, (AR ∩ CR)′) =
(AR, (AR)′) 	 (CR, (CR)′) = fR((A, B)) 	 fR((C, D)).
fS((A, B)�(C, D)) = fS((B∩D)′, B∩D) = ((B ∩ DS)

′, B ∩ DS) = fS((A, B))�
fS((C, D)).
2. fR((A, B) 	 (A, B)) = fR((A, A′)) = (AR, (AR)′) = fR((A, B)). Similarly, one
can show that fS((A, B) � (A, B)) = ((BS)

′, BS).
3. fR(¬⊥) = fR((G,G ′)) = (GR, (GR)′) = (G,G ′) = ¬⊥, by Proposition 11(ii).
Similarly, one gets fS(��) =��.

4. fR(¬(A, B)) = fR(Ac, Ac′) = (Ac
R, (Ac

R)′) = ((A
R
)c, (A

R
)c′) by Proposition

11(i). So fR(¬(A, B)) = ¬(A
R
, (A

R
)′) = ¬ f δ

R((A, B)). Similarly, one can show
that fS(�(A, B)) =� f δ

S ((A, B)). 	�
Using Theorem 12(1,3,4), one obtains

Corollary 2 For all x, y ∈ P(K),

1. f δ
R(x ∨ y) = f δ

R(x) ∨ f δ
R(y) and f δ

S (x ∧ y) = f δ
S (x) ∧ f δ

S (y).
2. f δ

R(⊥) = ⊥ and f δ
S (�) = �.

Consider the restriction maps fR � P(K)	 and fS � P(K)�. From Theorem 12(2),
it follows that P(K)	 and P(K)� are closed under fR � P(K)	 and fS � P(K)�
respectively. Using Theorem 12(1,3) and Corollary 2, we get

Corollary 3 P(KC)+	 := (P(K)	,	,∨,¬,⊥, f δ
R � P(K)	) and P(KC)+� :=

(P(K)�,�,∧, �,�, fS � P(K)�) are Baos.

We next consider a Kripke contextKC := ((G, R), (M, S), I ) where the relations
R, S satisfy certain properties that are of particular relevance here.

Definition 7

1. KC is reflexive from the left, if R is reflexive.
2. KC is reflexive from the right, if S is reflexive.
3. KC is reflexive, if it is reflexive from both left and right.

The cases for symmetry and transitivity of KC are similarly defined.

Observe that the Kripke context in Example 2 is symmetric from the right.

Theorem 13 LetKC := ((G, R), (M, S), I ) be a reflexive and transitive Kripke con-
text. Then for all x ∈ P(K), the following hold.
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1. fR(x) � x and x � fS(x).
2. fR fR(x) = fR(x) and fS fS(x) = fS(x).

Proof 1. Let (A, B) ∈ P(K). By Proposition 11(v) AR ⊆ A and BS ⊆ B, which
implies that A′ ⊆ (AR)′ and B ′ ⊆ (BS)

′. Now B ′′ = A′ and A′′ = B ′, as (A, B) ∈
P(K). By Lemma 3, A ⊆ A′′ and B ⊆ B ′′. So A ⊆ B ′ and B ⊆ A′, which implies
that B ⊆ (AR)′ and A ⊆ (BS)

′. Therefore fR((A, B)) = (AR, (AR)′) � (A, B) and
(A, B) � fS((A, B)) = ((BS)

′, BS).
2. fR fR((A, B)) = fR((AR, (AR)′)) = ((AR)

R
, ((AR)

R
)′) = (AR, (AR)′) =

fR((A, B)), by Proposition 11(vi). Similarly, one can show that fS fS((A, B)) =
fS((A, B)). 	�
Theorems 13 and 12(4) give

Corollary 4 For all x ∈ P(K), x � f δ
R(x) and f δ

R f δ
R(x) = f δ

R(x).

Further, using Theorems 12, 13 and Corollaries 2, 4, we get

Corollary 5 P(KC)+	 := (P(K)	,	,∨,¬,⊥, f δ
R � P(K)	) and P(KC)+� :=

(P(K)�,�,∧, �,�, fS � P(K)�) are topological Boolean algebras.

3.1 Complex Algebra to Concept Approximation

Recall the Kripke context KCDS := ((G, E1), (M, E2), I ) defined in Sect. 1, where
(G, E1), (M, E2) are Pawlakian approximation spaces. We observe that terms of the
full complex algebra P+(KCDS) are able to express the various notions of con-
cept approximations mentioned in Sect. 2.3. Indeed, for KCDS , we get the operators
fE1 , fE2 : P(K) → P(K) as above, that is, fE1((A, B)) := (AE1

, (AE1
)′), and

fE2((A, B)) := ((BE2
)′, BE2

) for any (A, B) ∈ P(K). Moreover, f δ
E1

((A, B)) =
(A

E1
, (A

E1
)′) and f δ

E2
((A, B)) = ((B

E2
)′, BE2

). Let A ⊆ G and B ⊆ M .
If A and B are feasible then the concept approximations of A and B are (A, A′) and
(B ′, B) respectively and these are elements of P(K).
Suppose A and B are both non-feasible sets. Let x, y ∈ P(K) be such that the extent
of x is A and intent of y is B. Then we have the following.
The lower concept approximation of A, ((AE1

)′′, (AE1
)′) = (AE1

, (AE1
)′) �

(AE1
, (AE1

)′) = fE1(x) � fE1(x).

The upper concept approximation of A, ((A
E1

)′′, (AE1
)′) = (A

E1
, (A

E1
)′) �

(A
E1

, (A
E1

)′) = f δ
E1

(x) � f δ
E1

(x).

The lower concept approximation of B, ((B
E2

)′, (BE2
)′′) = ((B

E2
)′, BE2

) 	
((B

E2
)′, BE2

) = f δ
E2

(y) 	 f δ
E2

(y).
The upper concept approximation of B, ((BE2

)′, (BE2
)′′) = ((BE2

)′, BE2
) 	

((BE2
)′, BE2

) = fE2(y) 	 fE2(y).
Now by definition, approximations of any pair (A, B) are obtained using the concept
approximations of A and B. As shown above, the latter are all expressible by the terms
of the full complex algebra, and hence we have the observation. For instance, suppose,
(A, B) is a non-definable concept of K with A and B non-feasible.
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The lower approximation of (A, B), ((AE1
)′′ ∩ (B

E2
)′, ((AE1

)′′ ∩ (B
E2

)′)′) =
( fE1(x) � fE1(x)) 	 ( f δ

E2
(y) 	 f δ

E2
(y)) = ( fE1(x) � fE1(x)) 	 f δ

E2
(y).

The upper approximation of (A, B), (((A
E1

)′ ∩ (BE2
)′′)′, (AE1

)′ ∩ (BE2
)′′) =

( f δ
E1

(x) � f δ
E1

(x)) � ( fE2(y) 	 fE2(y)) = ( fE2(y) 	 fE2(y)) � f δ
E1

(x).

4 The Algebras

In this section, we study abstractions of the algebraic structure P+(KC) obtained in
Sect. 3. These are dBas with operators (Definition 8), and topological dBas (Defini-
tion 9).

4.1 Double Boolean Algebras with Operators

Definition 8 A structure O := (D,�,	,¬, �,�,⊥, I,C) is a dBa with operators
(dBao) provided
1. (D,�,	,¬, �,�,⊥) is a dBa and
2. I,C are monotonic operators on D satisfying the following for any x, y ∈ D.

1a I(x 	 y) = I(x) 	 I(y) 1b C(x � y) = C(x) � C(y)
2a I(¬⊥) = ¬⊥ 2b C(��) =��
3a I(x 	 x) = I(x) 3b C(x � x) = C(x)

A contextual dBao is a dBao in which the underlying dBa is contextual. If the under-
lying dBa is pure, the dBao is called a pure dBao.
The duals of I andCwith respect to¬, � are defined as Iδ(a) := ¬I(¬a) andCδ(a) :=
�C(�a) for all a ∈ D.

Any Bao provides a trivial example of a contextual and pure dBao. Indeed, in a
Bao (B,	,�,¬,�,⊥, f ), setting � = ¬, C := f and I := f δ , one obtains the
dBao (B,	,�,¬, �,�,⊥, I,C). Due to the idempotence of the operators 	,� in the
Boolean algebra (B,	,�,¬,�,⊥), the dBa (B,	,�,¬, �,�,⊥) is pure; as B	 =
B� = B, the dBa is contextual as well.

An immediate consequence is the following.

Theorem 14 Let O := (D,�,	,¬, �,�,⊥, I,C) be a dBao. Then

1. Op := (Dp,�,	,¬, �,�,⊥, I � Dp,C � Dp) is the largest pure subalgebra of
O.

2. If O is pure, it is contextual and moreover, O = Op.

Proof 1. From Proposition 1 it follows that (Dp,�,	,¬, �,�,⊥) is the largest pure
subalgebra of D. To complete the proof it is sufficient to show that Dp is closed under
I and C, which follows from Definition 8(1a, 3a, 1b, 3b).
2. Proposition 2 gives the first part. For any pure dBa, D = Dp. 	�

As intended, the sets of protoconcepts and semiconcepts of a context provide exam-
ples of dBaos:
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Theorem 15 LetKC := ((G, R), (M, S), I ) be a Kripke context based on the context
K := (G, M, I ). Then the following hold.

1. P+(KC) := (P(K),�,	,¬, �,�,⊥, fR, fS) is a contextual dBao.
2. H+(KC) := (H(K),�,	,¬, �,�,⊥, fR � H(K), fS � H(K)) is a pure dBao. It

is the largest pure subalgebra of P+(KC), that is, P+(KC)p = H+(KC).

Proof 1. From Theorem 7 it follows that (P(K),�,	,¬, �,�,⊥) is a dBa. To show
monotonicity of fR, fS , let (A, B), (C, D) ∈ P(K) and (A, B) � (C, D). Then, by
definition of�, A ⊆ C and D ⊆ B, and by using Proposition 11(iv), AR ⊆ CR , which
implies (CR)′ ⊆ (AR)′. Hence fR((A, B)) � fR((C, D)). Similar to the above, we
can show the monotonicity of fS . Rest of the proof follows from Theorem 12.
2. From Theorem 7, it follows thatP(K)p = H(K). By Theorem 14(2),P+(KC)p =
H+(KC) is the largest pure subalgebra of P+(KC). 	�

The following lists some basic properties of the operators I,C and their duals in a
dBao.

Lemma 6 Let O := (D,�,	,¬, �,�,⊥, I,C) be a dBao. Then the following hold
for any a, x, y ∈ D.

1. ¬Iδ(¬a) = Ia and �Cδ(�a) = C(a).
2. I(¬a) = ¬Iδ(a) and Iδ(¬a) = ¬I(a).
3. C(�a) =�Cδ(a) and Cδ(�a) =�C(a).
4. Iδ and Cδ both are monotonic.
5. Iδ(a 	 a) = Iδ(a) and Cδ(a � a) = Cδ(a).
6. Iδ(x ∨ y) = Iδ(x) ∨ Iδ(y) and Cδ(x ∧ y) = Cδ(x) ∧ Cδ(y).
7. Iδ(⊥) = ⊥ and Cδ(�) = �.
8. Iδ(x) 	 Iδ(x) = Iδ(x) and Cδ(x) � Cδ(x) = Cδ(x).

Proof The proof is obtained in a straightforward manner. We use 1, 2, 3 and 5 of
Proposition 5, (8a), (8b) of Definition 2 and 3a, 3b of Definition 8. 	�

We noted earlier that a Bao provides an example of a dBao. The converse question
is addressed in Theorems 16 and 17 below.

Theorem 16 Let O := (D,�,	,¬, �,�,⊥, I,C) be a dBao such that for all a ∈ D
¬a =�a,¬¬a = a. Then (D,�,	,¬,�,⊥,C) and (D,�,	,¬,�,⊥, Iδ) are Baos.

Proof That (D,�,	,¬,�,⊥) forms a Boolean algebra is not difficult to prove, and
the proof is given in the “Appendix”. In particular, one can show that y� z = y∨ z and
y 	 z = y ∧ z for any y, z ∈ D. It is then easy to verify that C and Iδ are additive and
normal. Indeed, Definition 8(1b) implies thatC is additive. As �� = ⊥, by Definition
8(3b), it is normal. On the other hand, as y � z = y ∨ z for all y, z ∈ D, from Lemma
6(6) it follows that Iδ(x � y) = Iδ(x ∨ y) = Iδ(x)∨ Iδ(y) = Iδ(x)� Iδ(y). Iδ(⊥) = ⊥
by Lemma 6(7). 	�
Theorem 17 Let O := (D,�,	,¬, �,�,⊥, I,C) be a dBao. Then O	 :=
(D	,	,∨,¬,⊥, Iδ � D	) and O� := (D�,�,∧, �,�,C � D�) are Baos.
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Proof By Proposition 3, D	 and D� are Boolean algebras. Let x ∈ D	. Then Iδ �
D	(x) 	 Iδ � D	(x) = Iδ(x) 	 Iδ(x) = Iδ(x) = Iδ � D	(x), by Lemma 6(8). So D	
is closed under Iδ � D	. Similarly, D� is closed under C � D�. That both Iδ � D	 and
C � D� are additive and normal follows from Lemma 6(6,7) and Definition 8. 	�

The following result addresses the converse of Theorem 17.

Theorem 18 LetD := (D,�,	,¬, �,�,⊥, )beadBa such thatO	 := (D	,	,∨,¬,

⊥, I) andO� := (D�,�,∧, �,�,C) areBaos. ThenO := (D,�,	,¬, �,�,⊥, I,C)

is a dBao, where I(x) := ¬I(¬x) and C(x) := C(x � x) for all x ∈ D.

Proof Let x, y ∈ D. Using Proposition 5(6), I(x 	 y) = ¬I(¬(x 	 y)) = ¬I(¬x ∨
¬y) = ¬(I(¬x) ∨ I(¬y)), as ¬x,¬y ∈ D	 by Proposition 5(1). As I(¬x), I(¬y) ∈
D	, using definition of ∨ we have I(x 	 y) = ¬I(¬x) 	 ¬I(¬y) = I(x) 	 I(y).
Using Proposition 5(5), I(¬⊥) = ¬I(¬¬⊥) = ¬I(⊥) = ¬⊥. By Definition 2(4a),
I(x 	 x) = ¬I(¬(x 	 x)) = ¬I(¬x) = I(x).
C(��) = C(�����) = C(��) =��, as � ∈ D�. That C(x � x) = C(x) is
immediate from Definition 2. Finally, one shows that C(x � y) = C(x) �C(y) for all
x, y ∈ D. Let x, y ∈ D. Using commutativity and associativity of � and Definition
2(1b), additivity of C and the fact that x � x, y � y ∈ D�, we have the following
equalities.C(x�y) = C((x�y)�(x�y)) = C((x�x)�(y�y)) = C(x�x)�C(y�y) =
C(x) � C(y). So O is a dBao. 	�

We end this part by noting a close connection between the full complex alge-
bra of a Kripke frame and that of a corresponding Kripke context. Let (W , R) be
a Kripke frame and F+ := (P(W ),∩,∪,c ,W ,∅,mR) be the full complex alge-
bra (Blackburn et al., 2001), where for all A ∈ P(W ), mR(A) := {w ∈ W :
R(w) ∩ A �= ∅} = A

R
. This is a Bao, and as observed earlier, yields the dBao

(P(W ),∩,∪,c ,W ,∅,mδ
R,mR). For the Kripke frame (W , R), let us define the

Kripke context KC0 := ((W , R), (W , R), �=). By Definition 6, we have the full
complex algebra of KC0 as P+(KC0) := (P(K),�,	,¬, �,�,⊥, f1, f2), where
f1((A, B)) := (AR, (AR)′), f2((A, B)) := ((BR)′, BR) for all (A, B) ∈ P(K).
Then we get

Theorem 19 For the full complex algebra P+(KC0), the following hold.

1. ¬x =�x, ¬¬x = x and f1(x) = ¬ f2(¬x) for all x ∈ P(K).
2. (P(K),�,	,¬,�,⊥, f2) is a Bao, which is isomorphic to F+.

Proof 1. Let A ⊆ W and x ∈ Ac. Then for all a ∈ A, x �= a, which implies that
x ∈ A′. Now let x ∈ A′. Then x �= a, for all a ∈ A, which implies that x ∈ Ac.
So A′ = Ac, and A′′ = Ac′ = Acc = A. Therefore (A, B) ∈ P(K) if and only if
A = Bc, which is equivalent to Ac = B.
Let (A, Ac) ∈ P(K). Then ¬(A, Ac) = (Ac, A) =�(A, Ac) and ¬¬(A, Ac) =
(A, Ac). f2((A, Ac)) := ((Ac)′

R
, (Ac)

R
), giving

¬ f2(¬(A, Ac)) = ¬ f2((Ac, A)) = ¬((AR)′, AR) = ((AR)′c, (AR)′c′) =
(AR, (AR)′).
So f1((A, Ac)) = (AR, (AR)′) = ¬ f2(¬(A, Ac)).
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2. By Theorem 16 it follows that (P(K),�,	,¬,�,⊥, f2) is a Bao.
Let us define a map f from P(W ) to P(K) by f (A) := (A, Ac) for all A ⊆ W .
It is clear that f is well-defined. To show f is a homomorphism, let A, B ⊆ W .
f (A∩B) = (A∩B, (A∩B)c) = (A, Ac)	(B, Bc) = f (A)	 f (B) and f (A∪B) =
(A ∪ B, (A ∪ B)c) = (A, Ac) � (B, Bc) = f (A) � f (B). f (Ac) = (Ac, A) =
¬ f (A) =� f (A) and f (W ) = (W ,∅) = � f (∅) = (∅,W ) = ⊥. f (mR(A)) =
(A

R
, (A

R
)c) = ((Ac

R
)c, Ac

R
) = f2((A, Ac)) = f2( f (A)).

Injectivity and surjectivity of f follow trivially. 	�
From Theorem 19, we may conclude that the dBaoP+(KC0) is identifiable with the
Bao F+.

4.1.1 Representation Theorems for dBaos

For every dBaoO := (D,�,	,¬, �,�,⊥, I,C), we construct a Kripke context based
on the standard contextK(D) := (Fp(D), Ip(D),�) corresponding to the underlying
dBa D. For that, relations R and S are defined on Fp(D) and Ip(D) respectively as
follows.
For all u, u1 ∈ Fp(D), uRu1 if and only if Iδ(a) ∈ u for all a ∈ u1.
For all v, v1 ∈ Ip(D), vSv1 if and only if Cδ(a) ∈ v for all a ∈ v1.
The following results are required to get (Representation) Theorem 20.

Lemma 7 If F is a primary filter (ideal) of a dBa D, then for any x ∈ D, exactly one
of the elements x and ¬x belongs to F.

Proof Proof follows from the definition of a primary filter (ideal).

Lemma 8 Let O := (D,�,	,¬, �,�,⊥, I,C) be a dBao. The following hold.

1. For all u, u1 ∈ Fp(D), uRu1 if and only if for all a ∈ D, Ia ∈ u implies that
a ∈ u1.

2. For all v, v1 ∈ Ip(D), vSv1 if and only if for all a ∈ D, Ca ∈ v implies that
a ∈ v1.

Proof 1. For all a ∈ D, suppose Ia ∈ u implies that a ∈ u1. If possible, assume u�Ru1.
Then there exists a1 ∈ u1 such that Iδ(a1) /∈ u. So ¬Iδ(a1) ∈ u, which implies that
I(¬a1) ∈ u by Lemma 6(2). As a1 ∈ u1,¬a1 /∈ u1, which contradicts that I(¬a1) ∈ u.
Hence uRu1.

Now, we assume that uRu1 and let a1 ∈ D such that Ia1 ∈ u. If possible, suppose
a1 /∈ u1. Then¬a1 ∈ u1. So Iδ(¬a1) ∈ u as uRu1. Therefore by Lemma 6, Iδ(¬a1) =
¬I(a1) ∈ u, which is a contradiction by Lemma 7. Hence a1 ∈ u1.
Proof of 2 is similar to the above. 	�
Lemma 9 Let D := (D,�,	,¬, �,�,⊥) be a dBa. For all a, b ∈ D, the following
hold.

1. If a 	 b = ⊥ then a 	 a � ¬b.
2. If a 	 a � ¬b then a 	 b � ⊥.
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3. If a � b = � then �b � a � a.
4. If �b � a � a then � � a � b.

In particular, if D is a contextual dBa then a 	 b = ⊥ if and only if a 	 a � ¬b, and
a � b = � if and only if �b � a � a.

Proof 1. Let a, b ∈ D and a 	 b = ⊥. Then by Definition 2(1a) and the associative
law, ⊥ = (a 	 a) 	 (b 	 b). So ⊥ ∨ ¬(b 	 b) = ((a 	 a) 	 (b 	 b)) ∨ ¬(b 	 b). By
Definition 2(6a), ⊥ ∨ ¬(b 	 b) = ((a 	 a) ∨ ¬(b 	 b)) 	 ((b 	 b) ∨ ¬(b 	 b)). Now
(a 	 a) ∨ ¬(b 	 b) = ¬(¬(a 	 a) 	 ¬¬(b 	 b)) = ¬(¬a 	 (b 	 b)) by Definition
2(4a) and Proposition 5(3). So (a 	 a) ∨ ¬(b 	 b) = ¬(¬a 	 b) by Definition 2(1a).
Similarly, we can show that ⊥ ∨ ¬(b 	 b) = ¬(b 	 ¬⊥). Therefore ⊥ ∨ ¬(b 	 b) =
¬(b 	 ¬⊥) = ¬(b 	 (� 	 �)) by Definition 2(10a). Using Definition 2(1a) and
Proposition 4(2), ⊥∨¬(b	b) = ¬(b	�) = ¬(b	b) = ¬b, where the last equality
follows from Definition 2(4a). This implies that ¬b = ¬(¬a	b)	¬⊥ = ¬(¬a	b),
as ¬(¬a 	 b), b 	 b,¬⊥ ∈ D	. ¬¬a � ¬(¬a 	 b), as ¬a 	 b � ¬a. So a 	 a �
¬(¬a 	 b) = ¬b.
2. Let a 	 a � ¬b. Then a 	 a 	 b � ¬b 	 b by Proposition 4(6) and by Definition
2(1a), a 	 b � ⊥.
Now ifD is a contextual dBa then� becomes a partial order. Therefore from the above
it follows that a 	 b = ⊥ if and only if a 	 a � ¬b.
The other parts can be proved dually. 	�
Lemma 10 Let O be a dBao and KC(O) := ((Fp(D), R), (Ip(D), S),�). Then for
all a ∈ D the following hold.

1. Fa
R = FIδ(a) and Fa R = FI(a).

2. Ia
S = ICδ(a) and Ia S = IC(a).

Proof 1. Let F ∈ Fa
R
. Then there exists F1 ∈ Fa such that FRF1, which implies that

Iδ(a) ∈ F , as a ∈ F1. So Fa
R ⊆ FIδ(a).

Let F ∈ FIδ(a) and we show that F ∈ Fa
R
. We must then find a primary filter F1 ∈ Fa

such that FRF1. Let F0 := {x ∈ D : Ix ∈ F} and F01 := {x 	 a : x ∈ F0}.
Then F01 is closed under 	 and F01 ⊆ D	. Next we show that ⊥ /∈ F01. If possible,
suppose ⊥ ∈ F01. Then there exists x1 ∈ F0 such that x1 	 a = ⊥, which implies
that a 	 a � ¬x1 by Lemma 9(1). So Iδ(a 	 a) � Iδ(¬x1), whence Iδ(a) � Iδ(¬x1)
by Lemma 6(4,5). Iδ(¬x1) ∈ F , as Iδ(a) ∈ F and F is a filter, which implies that
¬I(x1) ∈ F . So I(x1) /∈ F which contradicts that x1 ∈ F0. Therefore ⊥ /∈ F01. Since
D	 is a Boolean algebra and F01 ⊆ D	, there exists a prime filter F2 containing F01. So
F3 := {x ∈ D : y � x for some y ∈ F2} is a primary filter containing F2 by Lemma 2
and Proposition 6. For all x ∈ F0, x 	 a ∈ F01 ⊆ F2 and x 	 a � x, x 	 a � a, which
implies that F0 ⊆ F3 and a ∈ F3. By Lemma 8(1) it follows that FRF3. Therefore

F ∈ Fa
R
.

Using Proposition 11(i), Lemmas 4 and 6(1), we get

Fa R = ((Fc
a )

R
)c = ((F¬a)

R
)c = Fc

Iδ(¬a)
= F¬Iδ(¬a) = FI(a).

2 can be proved dually. 	�
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The Kripke context KC(O) of Lemma 10 is used to obtain the representation
theorem.

Theorem 20 (Representation theorem) Let O := (D,�,	,¬, �,�,⊥, I,C) be a
dBao. The following hold.

1. O is quasi-embeddable into the full complex algebra P+(KC(O)) of the Kripke
context KC(O). h : D → P(K(D)) defined by h(x) := (Fx , Ix ) for all x ∈ D, is
the required quasi-embedding.

2. If O is a contextual dBao then the quasi-embedding h is an embedding.
3. Op is embeddable into the largest pure subalgebra H+(KC(O)) ofP+(KC(O)).

Proof 1. Let D := (D,�,	,¬, �,�,⊥) be the underlying dBa. By Theorem 9, we
know that the map h : D → P(K(D)) defined by h(x) := (Fx , Ix ) for all x ∈ D
is a quasi-embedding. To show h is a dBao homomorphism, we prove that for any
x ∈ D, h(Ix) = fR(h(x)) and h(Cx) = fS(h(x)), that is, (FIx , IIx ) = (Fx R, (Fx R)′)
and (FCx , ICx ) = ((Ix S)

′, Ix S). By Lemma 10(1), Fx R = FIx . By Lemma 5, F ′
Ix =

IIx	� = I(Ix	Ix)�(Ix	Ix) = IIx�Ix = IIx , the last two equalities hold, as Ix 	 Ix =
I(x 	 x) = Ix and by Lemma 4(1). So (Fx R)′ = IIx .
Similar to the above, usingLemma10(2) andLemma5,we can show that (FCx , ICx ) =
((Ix S)

′, Ix S). Hence h is the required quasi-embedding from the dBao O into
P+(KC(O)) .
2. Since O is contextual, the quasi-order is a partial order. As a result, h becomes
injective.
3. Let x ∈ Dp. Then either x 	 x = x or x � x = x . If x 	 x = x , h(x) = (Fx , Ix ) =
(Fx , F ′

x ), by Lemmas 4 and 5. Now if x � x = x , h(x) = (Fx , Ix ) = (I ′
x , Ix ),

by Lemmas 4 and 5. So h � Dp is an injective dBao homomorphism from Op to
H+(KC(O)), as Op is pure and by Proposition 2. 	�
Corollary 6 Let O be a pure dBao. Then O is embeddable into the complex algebra
H+(KC(O)) of the Kripke context KC(O).

Proof Proof follows from Theorems 14(2) and 20(3). 	�

4.2 Topological Double Boolean Algebras

Definition 9 A dBao O := (D,	,�,¬, �,�,⊥, I,C) is called a topological dBa if
the following hold.

4a I(x) � x 4b x � C(x)
5a II(x) = I(x) 5b CC(x) = C(x)

A topological contextual dBa is a topological dBa in which the underlying dBa is
contextual. If the underlying dBa is pure, the topological dBa is called a topological
pure dBa.

Again, as intended, we obtain a class of examples of topological dBas from the sets
of protoconcepts and semiconcepts of contexts.

Theorem 21 LetKC := ((G, R), (M, S), I ) be a reflexive and transitive Kripke con-
text. Then the following hold.
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1. P+(KC) is a topological contextual dBa.
2. P+(KC)p = H+(KC) is a topological pure dBa.

Proof 1. Proof follows from Theorems 15 and 13.
2. Proof is similar to the proof of Theorem 15(2). 	�

Now, wewill show that for a topological dBaO,KC(O) is a reflexive and transitive
Kripke context. For that, we first prove the following lemma.

Lemma 11 Let D be a topological dBa. Then for all a ∈ D, IδIδ(a) = Iδ(a) and
CδCδ(a) = Cδ(a).

Proof Leta ∈ D. ByDefinition9(5a), II(¬a) = I(¬a),which implies that¬II(¬a) =
¬I(¬a). By Lemma 6(2), Iδ(¬I¬a) = Iδ(a), whence IδIδ(a) = Iδ(a). Similarly, we
can show that CδCδ(a) = Cδ(a). 	�

We now have

Theorem 22 KC(O) := ((Fp(D), R), (Ip(D), S),�) is a reflexive and transitive
Kripke context.

Proof To show R is reflexive, let F ∈ Fp(D) and Ia ∈ F for some a ∈ D. By
Definition 9(4a), Ia � a, which implies that a ∈ F , as F is a filter. So FRF by
Lemma 8.
To show R is transitive, let F, F1, F2 ∈ Fp(O) such that FRF1 and F1RF2. We show
that FRF2. Let a ∈ F2. Then Iδ(a) ∈ F1, as F1RF2, which implies that IδIδ(a) ∈ F ,
as FRF1. So Iδ(a) = IδIδ(a) ∈ F , using Lemma 11. Thus FRF2.
Similarly, one can show that S is reflexive and transitive. 	�

Combining Theorem 20, Corollary 6 and Theorem 22, we get the representation
results for topological dBas in terms of reflexive and transitive Kripke contexts.

Theorem 23 A topological dBaO is quasi-embeddable into the full complex algebra
P+(KC(O)) of the reflexive and transitive Kripke context KC(O).
Op is embeddable into the complex algebra H+(KC(O)) of KC(O). Moreover,

1. If O is a topological contextual dBa then O is embeddable into P+(KC(O)).
2. If O is a topological pure dBa then O is embeddable into the complex algebra

H+(KC(O)) of KC(O).

5 Logics Corresponding to the Algebras

We next formulate the logic CDBL for contextual dBas. The logic MCDBL for the
class of contextual dBaos, and its extensionMCDBL4 for topological contextual dBas
are both defined with CDBL as their base. In Sect. 5.3, it is shown that, apart from
the algebraic semantics, the logics can be imparted a protoconcept-based semantics,
due to the representation theorems for the respective classes of algebras obtained in
Sects. 4.
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5.1 CDBL

The language L of CDBL consists of a countably infinite set PV of propositional
variables, propositional constants ⊥,�, and logical connectives �,	,¬, �. The set F
of formulae is given by the following scheme:

� | ⊥ | p | α � β | α 	 β | ¬α |�α,

where p ∈ PV. ∨ and ∧ are definable connectives: α ∨ β := ¬(¬α 	 ¬β) and
α ∧β :=�(�α��β) for all α, β ∈ F. A sequent in CDBL is a pair of formulae denoted
by α � β for α, β ∈ F. If α � β and β � α, we use the abbreviation α �� β.
The axioms of CDBL are given by the following schema.

1 α � α.
Axioms for 	 and �:

2a α 	 β � α 2b α � α � β

3a α 	 β � β 3b β � α � β

4a α 	 β � (α 	 β) 	 (α 	 β) 4b (α � β) � (α � β) � α � β

Axioms for ¬ and �:
5a ¬(α 	 α) � ¬α 5b �α ��(α � α)

6a α 	 ¬α � ⊥ 6b � � α��α

7a ¬¬(α 	 β) �� (α 	 β) 7b ��(α � β) �� (α � β)

Generalization of the law of absorption:
8a α 	 α � α 	 (α � β) 8b α � (α 	 β) � α � α

9a α 	 α � α 	 (α ∨ β) 9b α � (α ∧ β) � α � α

Laws of distribution:
10a α 	 (β ∨ γ ) �� (α 	 β) ∨ (α 	 γ ) 10b α � (β ∧ γ ) �� (α � β) ∧ (α � γ )

Axioms for ⊥,�:
11a ⊥ � α 11b α � �
12a ¬� � ⊥ 12b � ��⊥
13a ¬⊥ �� � 	 � 13b �� �� ⊥ � ⊥

The compatibility axiom:
14 (α � α) 	 (α � α) �� (α 	 α) � (α 	 α)

Rules of inference of CDBL are as follows.
For 	 and �:

α � β

α 	 γ � β 	 γ
(R1)

α � β

γ 	 α � γ 	 β
(R1)′

α � β

α � γ � β � γ
(R2)

α � β

γ � α � γ � β
(R2)′

For ¬, �:

α � β

¬β � ¬α
(R3)

α � β

�β ��α
(R3)′
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Transitivity:

α � β β � γ

α � γ
(R4)

Order:

α 	 β � α 	 α α 	 α � α 	 β α � β � β � β β � β � α � β

α � β
(R5)

(R5) captures the order relation of the contextual dBas.
Derivability is defined in the standardmanner: a sequent S is derivable (or provable)

in CDBL, if there exists a finite sequence of sequents S1, . . . , Sm such that Sm is the
sequent S and for all k ∈ {1, . . . ,m} either Sk is an axiom or Sk is obtained by applying
rules of CDBL to elements from {S1, . . . , Sk−1}. Let us give a few examples of derived
rules and sequents.

Proposition 24 The following rules are derivable in CDBL.

α � β α � γ

α 	 α � β 	 γ
(R6)

β � α γ � α

β � γ � α � α
(R7)

Proof (R6) is derived using (R1), (R1)′ and (R4), while for (R7)one uses (R2), (R2)′
and (R4). 	�
Theorem 25 For α, β, γ ∈ F, the following are provable in CDBL.

1a (α 	 β) �� (β 	 α). 1b α � β �� β � α.

2a α 	 (β 	 γ ) �� (α 	 β) 	 γ. 2b α � (β � γ ) �� (α � β) � γ.

3a (α 	 α) 	 β �� (α 	 β). 3b (α � α) � β �� α � β.

4a ¬α � ¬(α 	 α). 4b �(α � α) ��α.

5a α 	 (α � β) � (α 	 α). 5b α � α � α � (α 	 β).

6a α 	 (α ∨ β) � α 	 α. 6b α � α � α � (α ∧ β).

7a ⊥ � α 	 ¬α. 7b α��α � �.

8a ⊥ � ¬�. 8b �⊥ � �.

Proof The proofs are straightforward and one makes use of axioms 2a, 3a, 4a, Propo-
sition 24 and the rule (R4) in most cases. For instance, here is a proof for 1a:

4a (α 	 β) � (α 	 β) 	 (α 	 β)

3a α 	 β � β α 	 β � α 2a
(α 	 β) 	 (α 	 β) � β 	 α (R6)

(α 	 β) � (β 	 α) (R4)

Interchanging α and β in the above, we get (β 	 α) � (α 	 β).
(4a) follows from axiom 2a and (R3). (7a), (8a) follow from axiom 11a. The
remaining proofs are given in the “Appendix”. Note that the proofs of (ib), i =
1, 2, 3, 4, 5, 6, 7, 8, are obtained using the axioms and rules dual to those used to
derive (ia). 	�
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Definitions of valuations on the algebras and satisfaction of sequents are as follows.

Definition 10 Let D := (D,�,	,¬, �,�D,⊥D) be a contextual dBa. A valuation
v : F → D on D is a map such that for all α, β ∈ F the following hold.

1. v(α � β) := v(α) � v(β). 4. v(α 	 β) := v(α) 	 v(β).

2. v(�α) :=�v(α). 5. v(¬α) := ¬v(α).

3. v(�) := �D. 6. v(⊥) := ⊥D.

Definition 11 A sequent α � β is said to be satisfied by a valuation v on a contextual
dBa D if and only if v(α) � v(β). α � β is true in D if and only if for all valuations v

on D, v satisfies α � β. α � β is valid in the class of all contextual dBas if and only
if it is true in every contextual dBa.

Theorem 26 (Soundness) If a sequent α � β is provable in CDBL then it is valid in
the class of all contextual dBas.

Proof The proof that all the axioms of CDBL are valid in the class of all contextual
dBas is straightforward and can be obtained using Proposition 4 and Definition 2. One
then needs to verify that the rules of inference preserve validity. Using Proposition 4,
one can show that (R1), (R2), (R1)′ and (R2)′ preserve validity. The cases for (R3)
and (R3)′ follow from Proposition 5.

To show (R5) preserves validity, let the sequentsα	β � α	α, α	α � α	β, α�β �
β � β, and β � β � α � β be valid in the class of all contextual dBas. Let D be a
contextual dBa and v a valuation inD. Then v satisfies each sequent, which implies that
v(α	β) � v(α	α), v(α	α) � v(β	α), v(α�β) � v(β	β) and v(β�β) � v(α�β).
So v(α 	 β) = v(α 	 α) and v(α � β) = v(β � β), as D is contextual. This gives
v(α) 	 v(β) = v(α) 	 v(α) and v(α) � v(β) = v(β) � v(β). Thus v(α) � v(β),
whence α � β is satisfied by v. 	�

As usual, the completeness theorem is proved using the Lindenbaum-Tarski algebra
of CDBL, and the algebra is constructed in the standard way as follows. A relation
≡� is defined on F by: α ≡� β if and only if α �� β, for α, β ∈ F. ≡� is a
congruence relation on F with respect to �, 	, ¬, �. The quotient set F/ ≡� with
operations induced by the logical connectives, give the Lindenbaum-Tarski algebra
L(F) := (F/ ≡�,�,	,¬, �, [�], [⊥]). The axioms inCDBL and Theorem 25 ensure
that L(F) is a dBa. One then has

Proposition 27 For any formula α and β the following are equivalent.

1. α � β is provable in CDBL.
2. [α] � [β] in L(F) of CDBL.

Proof For 1 �⇒ 2, we make use of (R1)′, (R4), axiom 2a and Theorem 25(2a, 3a).

α � β

α 	 α � α 	 β

α 	 β � α

α 	 (α 	 β) � α 	 α α 	 β � α 	 (α 	 β)

α 	 β � α 	 α
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So α 	 α �� α 	 β, which implies that [α] 	 [α] = [α 	 α] = [α 	 β] = [α] 	 [β].
Dually we can show that [α] � [β] = [β] � [β]. Therefore [α] � [β].
For 2 �⇒ 1, suppose [α] � [β]. Then [α] 	 [β] = [α] 	 [α]. So [α 	 β] = [α 	 α].
Similarly we can show that [α � β] = [β � β]. Therefore α 	 β �� α 	 α and
α � β �� β � β. Now using (R5), α � β. 	�

It is worth noting that the axioms of CDBL are obtained by converting the dBa
axioms into sequents. Nonetheless, the system is complete with respect to the class of
contextual dBas, because the relation ≡� provides a partial order on the set F/ ≡�,
which forces the Lindenbaum algebra L(F) to become a contextual dBa.

Theorem 28 L(F) is a contextual dBa.

Proof Follows directly by axiom 1, (R4) and Proposition 27. 	�
The canonical map v0 : F → F/ ≡� defined by v0(γ ) := [γ ] for all γ ∈ F, can be
shown to be a valuation on L(F).

Theorem 29 (Completeness) If a sequent α � β is valid in the class of all contextual
dBas then it is provable in CDBL.

Proof If α � β be valid in the class of all contextual dBas, it is true in L(F). Consider
the canonical valuation v0. Then v0(α) � v0(β) and so [α] � [β]. By Proposition 27,
it follows that α � β is provable in CDBL. 	�

5.2 MCDBL andMCDBL4

The language L1 of MCDBL adds two unary modal connectives � and � to the
language L of CDBL. The formulae are given by the following scheme.

� | ⊥ | p | α � β | α 	 β | ¬α |�α | �α | �α,

where p ∈ PV. The set of formulae is denoted by F1. The axiom schema forMCDBL
consists of all the axioms of CDBL and the following.

15a �α 	 �β �� �(α 	 β) 15b �α � �β �� �(α � β)

16a �(¬⊥) �� ¬⊥ 16b �(��) ����
17a �(α 	 α) �� �(α) 17b �(α � α) �� �(α)

Rules of inference: All the rules of CDBL and the following.
α � β

�α � �β
(R8)

α � β

�α � �β
(R9)

Definable modal operators are ♦,�, given by ♦α := ¬�¬α and �α :=���α. It
is immediate that

Theorem 30 If a sequent α � β is provable in CDBL then it is provable inMCDBL.

A valuation v on a contextual dBao O := (D,�,	,¬, �,�D,⊥D, I,C), is a map
from F1 to D that satisfies the conditions in Definition 10 and the following for the
modal operators:

Definition 12 v(�α) := I(v(α)) and v(�α) := C(v(α)).

Definitions of satisfaction, truth and validity of sequents are given in a similar
manner as before.
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5.2.1 MCDBL6

MCDBL4 is obtained as a special case of the logic MCDBL� that is defined as
follows.

Definition 13 Let � be any set of sequents in MCDBL. MCDBL� is the logic
obtained from MCDBL by adding all the sequents in � as axioms.

Note that if � = ∅ then MCDBL� is the same as MCDBL. The set � required
to define MCDBL4 will be given at the end of this section. Let us briefly discuss
some features ofMCDBL� for any�—these would then apply to bothMCDBL and
MCDBL4.

Let V� denote the class of those contextual dBaos in which the sequents of � are
valid. As a consequence of axioms 15a, 16a, 17a, 15a, 16b, 17b and rules (R8), (R9),
one can conclude that if a sequent α � β is provable in MCDBL� then it is valid in
the class V� .

As before, one has the Lindenbaum-Tarski algebra L�(F1) for MCDBL�; it has
additional unary operators induced by the modal operators in L1. More precisely,
L�(F1) := (F1/≡�,�,	,¬, �, [�], [⊥], f�, f�), where f�, f� are defined as:
f�([α]) := [�α], f�([α]) := [�α].
Proposition 27 extends to this case. Using this proposition and rules (R8), (R9),

one shows that the operators f�, f� are monotonic:

Lemma 12 For α, β ∈ F1, [α] � [β] in L�(F1) implies that f�([α]) � f�([β]) and
f�([α]) � f�([β]).
(F1/≡�,�,	,¬, �, [�], [⊥]) is a contextual dBa; Lemma 12 along with axioms 16a,
16b, 17a, 17b and the result corresponding to Proposition 27 give

Theorem 31 L�(F1) ∈ V� .

One then gets in the standard manner,

Theorem 32 (Completeness) If a sequent α � β is valid in the class V� then it is
provable inMCDBL�.

MCDBL4 is defined as the logicMCDBL� where � contains the following:

18a �α � α 18b α � �α

19a ��α �� �α 19b ��α �� �α

We have thus obtained

Theorem 33 (Soundness and completeness)

1. α � β is provable in MCDBL if and only if α � β is valid in the class of all
contextual dBaos.

2. α � β is provable in MCDBL4 if and only if α � β is valid in the class of all
topological contextual dBas.
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5.3 Protoconcept-Based Semantics for the Logics

As a consequence of the representation result for contextual dBas (Corollary 1), we
get another semantics for CDBL based on the sets of protoconcepts of contexts. The
required basic definitions are derivable from those given in Sect. 5. However, for the
sake of completeness, these are mentioned here. We first define valuations, models
and satisfaction for a context K := (G, M, I ).
Valuations associate formulae with protoconcepts of K:
A valuation is a map v : F → P(K) such that

v(α � β) := v(α) � v(β). v(α 	 β) := v(α) 	 v(β).

v(¬α) := ¬v(α). v(�α) :=�v(α).

v(�) := (G,∅). v(⊥) := (∅, M).

A model for CDBL based on the context K is a pair M := (P(K), v), where v is a
valuation.
Let K denote the collection of all contexts.

Definition 14 A sequent α � β is said to be satisfied in a model M based on K if
v(α) � v(β). α � β is true in K if it is satisfied in every model based on K. α � β is
valid in the class K if it is true in every context K ∈ K.

As for any context K the set P(K) of protoconcepts of K forms a contextual dBa
(Theorem 7(1)), and for any model M := (P(K), v), v is a valuation according to
Definition 10, Theorem 26 gives us the soundness of CDBLwith respect to the above
semantics. In other words, if a sequent is provable inCDBL then it is valid in the class
K.

For the completeness result, we make use of the (Representation) Corollary 1 for
contextual dBas and the fact that the Lindenbaum-Tarski algebra L(F) is a contextual
dBa (Theorem 28). From these it follows that h : F/ ≡�→ P(K(L(F))) defined as
h([α]) := (F[α], I[α]) for all [α] ∈ F/ ≡�, is an embedding. Recall the canonical map
v0 : F → F/ ≡� defined in Sect. 5. The composition v1 := h ◦ v0 is then a valuation,
which implies that M(L(F)) := (P(K(L(F))), v1) is a model for CDBL.

Theorem 34 (Completeness) If a sequent α � β is valid in K then α � β is provable
in CDBL.

Proof If possible, suppose α � β is not provable in CDBL. By Proposition 27, [α] ��
[β]. By Proposition 3(3), either [α] 	 [α] ��	 [β] 	 [β] or [α] � [α] ��� [β] � [β].
Then there exists a prime filter F0 in L(F)	 (a Boolean algebra by Proposition 3) such
that [α] 	 [α] ∈ F0 and [β] 	 [β] /∈ F0. By Lemma 2, there exists a filter F in L(F)

such that F ∩ L(F)	 = F0 and as F0 is prime, F ∈ Fp(L(F)). As [α] 	 [α] ∈ F0,
[α] 	 [α] ∈ F and [β] 	 [β] /∈ F , because [β] 	 [β] /∈ F0 and [β] 	 [β] ∈ L(F)	.
So [α] ∈ F , as [α] 	 [α] � [α], and [β] /∈ F , otherwise [β] 	 [β] ∈ F . This gives
F ∈ F[α] and F /∈ F[β], whence F[α]�⊆F[β].

In case [α] � [α] ��	 [β] � [β], we can dually show that there exists I ∈ Ip(L(F))

such that [α] /∈ I and [β] ∈ I giving I[β]�⊆I[α].
So v1(α) = (F[α], I[α]) �� (F[β], I[β]) = v1(β), which implies that α � β is not

true in the model M(L(F))—a contradiction. 	�
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In case of MCDBL and MCDBL4, instead of a context K := (G, M, I ), we
consider a Kripke context KC := ((G, R), (M, S), I ) based on K := (G, M, I ). A
valuation v : F1 → P(K) extends the one forCDBLwith the following definitions for
the modal operators: v(�α) := fR(v(α)) and v(�α) := fS(v(α)). Let us denote the
class of allKripke contexts byKC and that of all reflexive and transitiveKripke contexts
byKCRT . Models, satisfaction of sequents is as for CDBL. Then it is straightforward
to show that MCDBL and MCDBL4 are sound with respect to the classes KC and
KCRT respectively.

Note that by Theorem 31, for MCDBL the Lindenbaum-Tarski algebra L�(F1)

is a contextual dBao, while for MCDBL4, it is a topological contextual dBa. The
completeness of MCDBL with respect to the class KC is then proved in a similar
manner as Theorem 34, the representation result given by Theorem 20(2) being used.
In case of MCDBL4, as a consequence of Theorem 22, KC(L�(F1)) is a reflexive
and transitive Kripke context. Using the (Representation) Theorem 23(1), one gets
completeness of MCDBL4 with respect to the class KCRT .

6 Conclusions

In a pioneering work unifying FCA and rough set theory, Düntsch and Gediga (2002),
Yao (2004) proposed object oriented and property oriented concepts of a context. For
a context K := (G, M, I ), its complement is the context Kc := (G, M,−R), where
−R := G × M\R. It has been shown that the lattice of concepts of K is dually
isomorphic (isomorphic) to that of object oriented (property oriented) concepts ofKc.
In the line of Wille’s work, negation was introduced into the study and object oriented
semiconcepts and protoconcepts of a context were proposed inHowlader and Banerjee
(2018), Howlader and Banerjee (2020a). It was observed that (A, B) is a protoconcept
of K, if and only if (Ac, B) is an object oriented protoconcept of Kc. The same holds
for semiconcepts of a context. For a context K, object oriented protoconcepts form a
dBa, while object oriented semiconcepts form a pure dBa. The entire study presented
here may also be done in terms of object oriented semiconcepts and protoconcepts. In
particular, one may derive representation results for the algebras introduced here, with
the help of corresponding algebras of object oriented semiconcepts and protoconcepts.

A complete Vormbrock and Wille (2005) dBa D is one for which the Boolean
algebras D	 and D� are complete. Vormbrock and Wille (2005) have shown that any
complete fully contextual (pure) dBaD for whichD	 andD� are atomic, is isomorphic
to the algebra of protoconcepts (semiconcepts) of some context. This result gives rise
to the question of such a characterisation in case of a complete fully contextual dBaoD
for which D	 and D� are atomic. It appears that, using Vormbrock and Wille’s results
and the representation results obtained here for dBaos in terms of the full complex
algebra of protoconcepts, one should be able to obtain the desired characterisation.

Another direction of investigation one may pursue, is the duality between the class
of all Kripke contexts and that of all dBaos. We have shown in this work that a dBaoO
induces a Kripke contextKC(O), and on the other hand, a Kripke contextKC induces
a dBao P+(KC). A natural question then would be: is KC(P+(KC)) isomorphic to
KC?
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Topological representation results for algebras are well-studied in literature. This
would serve as yet another immediate point of investigation for the algebras discussed
in this work.

Logics corresponding to dBas, pure dBas and their extensions with operators as
defined here, remain an open question. The logic MCDBL4 for topological contex-
tual dBas is obtained as a special case of MCDBL�, where � is any set of sequents
in MCDBL. This gives a scheme of obtaining several other logics that may express
properties of dBaos and corresponding classes of Kripke contexts besides the ones
considered here. For topological contextual dBas and correspondingly, reflexive and
transitive Kripke contexts,MCDBL4 with � containing the modal axioms for reflex-
ivity and transitivity, serves the purpose. One may well include other axioms (such as
symmetry) in �, and investigate the resulting modal systems.
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Appendix A: Proofs

Proof in Theorem 16, that (D,	,�,¬,�,⊥) is a Boolean algebra: LetO be a dBao
such that for all a ∈ D, ¬a =�a and ¬¬a = a. Let x, y ∈ D such that x � y and
y � x . By Proposition 4(4), x 	 x = y 	 y and x � x = y � y. Using Proposition
5(3), ¬¬x = ¬¬y and so x = y. Therefore (D,�) is a partially ordered set. From
Definition 2(2a and 2b) it follows that 	,� is commutative, while Definition 2(3a
and 3b) gives that 	,� is associative. Using Definition 2(5a) and Proposition 5(3),
x 	 (x � y) = x 	 x = ¬¬x . So x 	 (x � y) = x . Again using Definition 2(5b)
and Proposition 5(3), x � (x 	 y) = x . Therefore (D,	,�,¬,�,⊥) is a bounded
complemented lattice. To show it is a distributive lattice, we show that for all x, y,∈ D
x 	 y = x ∧ y and x ∨ y = x � y. Rest of the proof follows from Definition 2(6a and
6b).

Let x, y ∈ D. Then x, y � x � y. Proposition 5(2) gives ¬(x � y) � ¬x,¬y.
Therefore by Proposition 4(6), ¬(x � y)	¬y � ¬x 	¬y and ¬(x � y)	¬(x � y) �
¬(x � y) 	 ¬y. So ¬(x � y) 	 ¬(x � y) � ¬x 	 ¬y. By Proposition 5(1), ¬(x � y) �
¬x	¬y, and byProposition 5(2),¬(¬x	¬y) � ¬¬(x�y) = (x�y)	(x�y) � x�y.
Hence x∨y � x�y. Using Proposition 4(5) and Proposition 5(2),¬x	¬y � ¬x,¬y.
So ¬¬x � ¬(¬x 	 ¬y) and ¬¬y � ¬(¬x 	 ¬y). Therefore x � ¬(¬x 	 ¬y) =
x ∨ y and y � ¬(¬x 	 ¬y) = x ∨ y. Proposition 4(6) gives x � y � x ∨ y, as
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(x ∨ y) � (x ∨ y) =��(x ∨ y) = ¬¬(x ∨ y) = x ∨ y. So x � y = x ∨ y. Dually we
can show that x 	 y = x ∧ y.

Proof of Theorem 25 2a.

4a (α 	 β) 	 γ � ((α 	 β) 	 γ ) 	 ((α 	 β) 	 γ )

2a (α 	 β) 	 γ � (α 	 β) α 	 β � β 3a

(R4) (α 	 β) 	 γ � β (α 	 β) 	 γ � γ 3a

((α 	 β) 	 γ ) 	 ((α 	 β) 	 γ ) � β 	 γ (R6)

(α 	 β) 	 γ � β 	 γ (R4) – (I)
Now,

4a (α 	 β) 	 γ � ((α 	 β) 	 γ ) 	 ((α 	 β) 	 γ )

2a (α 	 β) 	 γ � α 	 β α 	 β � α 2a

(α 	 β) 	 γ � α (R4) (α 	 β) 	 γ � β 	 γ (from (I) above)

((α 	 β) 	 γ ) 	 ((α 	 β) 	 γ ) � α 	 (β 	 γ ) (R6)

(α 	 β) 	 γ � α 	 (β 	 γ ) (R4)
Similarly we can show that α 	 (β 	 γ ) � (α 	 β) 	 γ .

3a.

4a (α 	 α) 	 β � ((α 	 α) 	 β) 	 ((α 	 α) 	 β)

2a (α 	 α) 	 β � α 	 α α 	 α � α 2a

(R4) (α 	 α) 	 β � α (α 	 α) 	 β � β 3a

((α 	 α) 	 β) 	 ((α 	 α) 	 β) � α 	 β (R6)

(α 	 α) 	 β � α 	 β (R4)

4a α 	 β � (α 	 β) 	 (α 	 β)

4a α 	 β � (α 	 β) 	 (α 	 β)

2a (α 	 β) � α (α 	 β) � α 2a

(α 	 β) 	 (α 	 β) � α 	 α (R6)

(R4) α 	 β � α 	 α α 	 β � β 3a

(α 	 β) 	 (α 	 β) � (α 	 α) 	 β (R6)

α 	 β � (α 	 α) 	 β (R4)

5a.

4a α 	 (α � β) � (α 	 (α � β)) 	 (α 	 (α � β))

2a α 	 (α � β) � α α 	 (α � β) � α 2a

(α 	 (α � β)) 	 (α 	 (α � β)) � α 	 α (R6)

α 	 (α � β) � α 	 α (R4)

6a. Proof is identical to that of 5a. 	�
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