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Abstract

The notion of a context in formal concept analysis and that of an approximation space
in rough set theory are unified in this study to define a Kripke context. For any context
(G,M,]), a relation on the set G of objects and a relation on the set M of properties are
included, giving a structure of the form ((G,R), (M,S), I). A Kripke context gives rise
to complex algebras based on the collections of protoconcepts and semiconcepts of the
underlying context. On abstraction, double Boolean algebras (dBas) with operators and
topological dBas are defined. Representation results for these algebras are established
in terms of the complex algebras of an appropriate Kripke context. As a natural next
step, logics corresponding to classes of these algebras are formulated. A sequent
calculus is proposed for contextual dBas, modal extensions of which give logics for
contextual dBas with operators and topological contextual dBas. The representation
theorems for the algebras result in a protoconcept-based semantics for these logics.

Keywords Formal concept analysis - Rough set theory - Boolean algebra with
operators - Double Boolean algebra - Modal logic

Mathematics Subject Classification 06E25 - 03Gxx - 03G05 - 03B60 - 03B45

1 Introduction

Formal concept analysis (FCA) (Wille, 1982) and rough set theory (Pawlak, 1982) are
both well-established areas of study with applications in several domains including
knowledge representation and data analysis. There has also been a lot of study con-
necting and comparing the two areas, e.g. in Yao (2004), Meschke (2010), Hu et al.
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(2001), Ganter and Meschke (2011), Yao and Chen (2006), Kent (1994), Howlader
and Banerjee (2018), Howlader and Banerjee (2020a), Saquer and Deogun (2001), and
the work presented here is motivated by such studies from the perspective of algebra
and logic.

The central objects of FCA are contexts and concepts of a context (Ganter &
Wille, 1999). A context is a triple K := (G, M, I), where G is the set of objects,
and M is the set of attributes and I € G x M. Forany A € G,B € M, the
following sets are defined: A’ := {m € M :forallg € G(g € A =—> gRm)}, and
B :={geG:forallme M(m e M —> gRm)}.Apair (A, B) iscalled a concept
of K, if A’ = B and B’ = A. For a concept (A, B), A is its extent and B its intent.
B(K) denotes the set of all concepts of K. An order relation < is obtained on B(K)
as follows: for (A, By), (A2, By) € B(K), (A1, B1) < (A3, By) ifand only if A} C
A3 (equivalent to By C By).

The notion of a concept was generalized to that of semiconcepts and protoconcepts
in Luksch and Wille (1991), Wille (2000). A pair (A, B) is called a semiconcept of K,
if A = Bor B = A. (A, B) is called a protoconcept of K, if A” = B’ (equivalently
A’ = B"). H(K) and P(K) denote the sets of all semiconcepts and protoconcepts of K
respectively. It is observed that B(K) € H(K) € P(K). The partial order < on B(K)
is extended to the set B(K) as: for any (A, B), (C, D) € ‘B(K), (A, B) C (C, D) if
andonlyif A C Cand D C B.

The following operations are defined on 3(K). For (A, By), (A2, B>) in P(K),

(A1, B1) M (A2, By) i= (A1 N Az, (A N A2)),
(A1, B) U (A2, Bo) := ((B1 N B2), By N Bo),
—(A, B) := (G\A, (G\A)),
J(A, B) == (M\B), M\B),
T:=(G,9),
1=, M).

With these operations, the protoconcepts of any context form an algebraic structure
called double Boolean algebra (dBa) (Wille, 2000). The structure of a dBa is such
that there are two negation operators in it, which result in two Boolean algebras
being derived from it—justifying the name. The set of semiconcepts, with the same
operations as above, forms a subalgebra of the algebra of protoconcepts. In this work,
our interest lies in contextual and pure dBas (Vormbrock & Wille, 2005; Wille, 2000),
the structures formed by protoconcepts and semiconcepts respectively.

There may be circumstances in which the objects and properties defining a context
are indistinguishable with respect to certain attributes. For example, two diseases may
be indistinguishable by the symptoms available. Indistinguishability of objects and
properties have motivated authors (Kent, 1994, 1996; Saquer & Deogun, 2001; Hu
et al., 2001) to study “indiscernibility” relations on the set of objects and the set of
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properties. Rough set-theoretic notions of approximation spaces and approximation
operators (Pawlak, 1982, 1991) are then introduced in FCA.

A Pawlakian approximation space is a pair (W, E), where W is a set and E is an
equivalence relation on W. This is generalised to a pair (W, E) with E any binary
relation on W, and called a generalised approximation space (Yao & Lin, 1996).
For x € W, E(x) :== {y € W : xRy}. The lower and upper approximations

of any A(C W) are defined respectively as Ap := {x € W : E(x) € A}, and

At = {x e W : E()NA # #}. Kent introduced the notion of approximation

space into FCA (Kent, 1994, 1996), and defined lower and upper approximations of
contexts and concepts. The work of Saquer and Deogun (2001) differs from that of
Kent in choosing the “indiscernibility” relations. Kent considers an indiscernibility
relation on the set G of objects which is externally given by some agent, whereas
Saquer and Deogun consider a relation that is determined by the given context. For a
given context K := (G, M, I), relations E, E; are defined on the set G of objects
and the set M of properties respectively, as follows.

(a) Forg1,g2 € G, g1E1gifand only if I(g1) = 1(g2).
(b) Formy,my € M, myExmy if and only if I~ (my) = I~'(m»).

Furthermore, for A € G, B C M, lower and upper approximations are defined in
terms of concepts of K, and using these, approximations of any pair (A, B) that is not
aconcept, are given. Apart from Hu etal. (2001) introduce approximation spaces on the
sets of objects and properties. In Hu et al. (2001), for a given context K := (G, M, I),
relations Ji, J» are defined on G and M respectively, as follows.

(a) For g1, g2 € G, g1J1g2 if and only if I(g1) C 1(g2).
(b) Formy, my € M, mJom; if and only if I_I(ml) C I~ Ymy).

The relations Ep, E, are equivalence relations (Saquer & Deogun, 2001), while the
relations Jp, Jo are partial order relations (Hu et al., 2001). These observations have
motivated us to define the Kripke context, which unifies within a single framework,
the notions of a context of FCA and approximation space of rough set theory.

Definition 1 A Kripke context based on a context K := (G, M, I) is a triple KC :=
(G, R), (M, S), I), where R, S are relations on G and M respectively.

So a Kripke context consists of a context of FCA and two Kripke frames, which in the
terminology of rough set theory, are generalised approximation spaces. Note that for
acontext K := (G, M, I), we get a Kripke context KCps := ((G, Ey), (M, Ez), I).
Moreover, KCpg is an example such that the relations £ and E; are reflexive, sym-
metric and transitive. This observation has led us to define reflexive, symmetric or
transitive Kripke contexts, where the relations R and S are reflexive, symmetric or
transitive.

It is shown that, using the lower and upper approximation operators induced by the
approximation space (G, R), (M, S) in a Kripke context KC := ((G, R), (M, S), I),
one can define unary operators fg and fs on the set 3(K) of protoconcepts of the
underlying context K := (G, M, I) such that fg is an interior-type operator, while
fs is a closure-type operator. The Kripke context thus leads to complex algebras.
The algebra of protoconcepts with the operators fr and fs, is called the full complex
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algebra of KC. Any subalgebra of the full complex algebra of KC is called a complex
algebra. For a Kripke context KC, the algebra of semiconcepts $(IK) with operators
frRIHK) and f5[H(K) is an instance of a complex algebra of KC. We show how, in
terms of approximation spaces and operators fg, and f,, the full complex algebra of
the Kripke context KCpg can be utilised to compute all the approximation operators
defined in the work of Saquer and Deogun (2001).

To understand the equational theory of the full complex algebra of protoconcepts
and the complex algebra of semiconcepts, abstractions of these structures are defined:
these are the double Boolean algebras with operators (dBao) and topological dBas
respectively. An immediate example of a dBao is a Boolean algebra with operators
(Blackburn et al., 2001); a topological Boolean algebra (Jonsson & Tarski, 1951) gives
an instance of a topological dBa. It is shown that the full complex algebra of KC forms
a contextual dBao, while the complex algebra of semiconcepts forms a pure dBao. For
areflexive and transitive Kripke context, the full complex algebra forms a topological
contextual dBa and the complex algebra of semiconcepts forms a topological pure
dBa. Representation theorems for these classes of algebras are then proved, in terms
of the complex algebras of protoconcepts and semiconcepts of an appropriate Kripke
context. The results are based on the representations obtained for dBas by Wille (2000)
and Balbiani (2012).

As a natural next step, logics corresponding to dBaos are formulated. A sequent
calculus, denoted CDBL, is proposed for contextual dBas. CDBL is extended to
MCDBL and MCDBLA4 for the contextual dBaos and topological contextual dBas
respectively. Due to the representation theorems for the algebras, one is able to get
another semantics for these logics, based on protoconcepts of contexts.

Section 2 gives the preliminaries required for this work. Kripke contexts, their
examples and the related complex algebras are studied in Sect. 3. In particular, we
indicate in Sect. 3.1 how the various approximations defined in Saquer and Deogun
(2001) can be expressed using terms of the full complex algebra of KCpg. The dBaos
and the topological dBa along with the representation results are presented in Sect. 4.
In Sect. 5, the logics corresponding to the algebras are studied. CDBL for the class of
contextual dBas is discussed in Sect. 5.1; in Sect. 5.2, CDBL is extended to MCDBL
and MCDBLA. In Sect. 5.3, the protoconcept-based semantics for the logics is given.
Section 6 concludes the article.

In our presentation, the symbols =, <, and, or and not will be used with the usual
meanings in the metalanguage. Throughout, for a map f on X, f | A denotes the
restriction of the map f on A € X, P(X) denotes the power set of any set X, and the
complement of A C X inaset X is denoted A€. For basic notions on universal algebra
and lattices, we refer to Burris and Sankappanavar (1981), Davey and Priestley (2002).

2 Preliminaries

In the following subsections, we present basic notions and results related to dBas,
Boolean algebras with operators and approximation operators. Our primary references
are Ganter and Wille (1999), Wille (2000), Balbiani (2012), Blackburn et al. (2001),
Jonsson and Tarski (1951), Saquer and Deogun (2001).
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2.1 Double Boolean Algebra

A double Boolean algebra is defined as follows.

Definition 2 (Wille, 2000) An algebra D := (D, 1, M, —, 1, T, L), satisfying the fol-
lowing properties is called a double Boolean algebra (dBa). For any x,y,z € D,

(la)y xnx)yNy=xnNy (1) xux)uy=xUy
QRa)xny=ynx 2b)yxuy=yux
Ba)yxn(ynz)=@nNy)nz BGhyxu(yuz)=(xUy Uz
(4a) ~(x M x) = —x 4b) J(x Ux) =1x
Ga)yxnxuy)=xnx Ghyxu@Exny)=xux
Ga)xn(yvz)=@xny)V(xnz) Gh)yxu(yAz)=@xUy)A(xUZ)
(Ta)yxN(xVvy)=xnx (Th)yxu(x Ay =xUx
Ba) ——(xny)=xny @b) su(xuy)=xUy

Qa) xn—x =_1L 9b) xuux =T

(10a) =L =TnT (10b) _T=1Lu L

(1la) =T =L (11p) oL =T

(1) xnNx)U(xnx)=(xuUx)n(xuUx),

where x V y := —(—x M —y),and x A y :=.(uxLl1y). A quasi-order relation T on D
is defined as follows: x C yifandonlyif x My =xMx and x Uy = y U y, for any
x,y €D.

A dBa D is called contextual if T is a partial order. A contextual dBa is also known as
aregular dBa (Breckner & Sicirea, 2019). D is pure if forall x € D, eitherx Mx = x
or x Ux = x. In the following, let D := (D, U, 1, —, 4, T, L) be a dBa. Let us give
some notations that shall be used:

Dn:={xeD :xnNx=x},Dy:={xeD : xux=x},Dp:=DrUDy.
Forx € D, xn:=xnMNxand x, :=x Ux.

Proposition 1 (Wille, 2000) D, := (Dp, U, 1, =, 1, T, L) is the largest pure subal-
gebra of D. Moreover, if D is pure, D), = D.

Proposition 2 (Balbiani, 2012) Every pure dBa D is contextual.

Proposition 3 (Vormbrock, 2007)

1. Dn := (D, M, Vv, —, L, —1) is a Boolean algebra whose order relation is the
restriction of C to Dy and is denoted by Tr.
2. D, = (Dy,U, A, 5, T, 4T) is a Boolean algebra whose order relation is the

restriction of C to D, and it is denoted by T .
3. x CyifandonlyifxnNx C yNyand x Ux C yuyforx,y € D, that is,
Xn En ynand xy E yu.

Proposition 4 (Kwuida, 2007) Let x, y, a € D. Then the following hold.

l.xnl=1landxu Ll =xUxthatis L C x.
2.xUT=TandxT=xNxthatisx T T.

3. x = yimplies that x T y and y C x.

4. xCyandy CxifandonlyifxMx =yMNyandxUx =yUy.
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5.xNyCx,yCxUy,xnNyCy,xCxuUy.
6. x C yimpliesxMaC yNaandx Ula C ylUa.

Proposition 5 (Howlader & Banerjee, 2020b) For any x, y € D, the following hold.

—x M—x = —x and JxUlax =.x, that is, 7x = (—x)n € Dn, 2x = (ux)y, € Dy.
x T yifand only if =y C —x and 1y C_x.

——=x =xMNxand Jiox = x UX.

xXVy€eDqxANyeD.

=l =1 and ,,T =T.

—(xnNy)=—-xV-oyand J(x Uy) =1xAJy.

A

Definition 3 A subset F of D is afilterin D if andonlyif x My € F forall x, y € F,
and forall z € D and x € F,x C z implies that z € F. An ideal in a dBa is defined
dually.

A filter F (ideal 1) is proper if and only if F % D (I # D). A proper filter F (ideal
I)is called primary ifandonlyifx € For—x € F (x € I or ux € I), forall x € D.
The set of primary filters is denoted by J,-(D); the set of all primary ideals is denoted
by Z,, (D).

A base Fy for afilter F is a subset of D suchthat F = {x € D : z C x for some z €
Fp}. A base for an ideal is defined similarly.

For a subset X of D, F(X) and I(X) denote the filter and ideal generated by X

respectively.

Lemma 1 (Kwuida, 2007) Let F be a filter and I an ideal of D. Then for any element
x €D,

1. F(FU{x}) ={ae D : xnlw C a for some w € F}.

2. I(IU{x})={ae D : aC xUwforsomew € I}.

The following are introduced in Wille (2000) to prove representation theorems for

dBas.
FpD) :={F C D : Fisafilter of D and F N D, is a prime filter in D}.
Z,(D):={I € D:Iisanideal of D and I N Dy, is a prime ideal in D }.

Proposition 6 (Howlader & Banerjee, 2020b) F,(D) = F,(D) and I,(D) =
Zpr(D).
Lemma 2 (Wille, 2000)

1. Forany filter F of D, F N D and F N Dy, are filters of the Boolean algebras Dr,
Dy, respectively.

2. Each filter Fy of the Boolean algebra Dp, is the base of some filter F of D such
that Fo = F N Dn. Moreover if Fy is prime, F € F,(D).

It is straightforward to show that similar results hold for ideals of dBas.

For a context K := (G, M, I) and sets A C G, B, C M, recall the sets A’, B’ and
the operations on protoconcepts of K defined in Sect. 1.

Lemma 3 (Davey & Priestley, 2002)
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1. AC A” and B C B’
2. A C X implies that X' € A’, B C Y implies that Y' C B’, forany X C G and
YCM.

Theorem 7 (Wille, 2000)

L. PEK) := (PEK), N, 4, =, 4, T, L) is a contextual dBa.
2. H(K) := (H(K),n, U, ~, 3, T, L) is a pure dBa. Moreover, H(K) = P(K).

Theorem 8 (Wille, 2000)

1. The power set Boolean algebra (P(G), N, U,¢ , G, ) is isomorphic to the Boolean
algebra %(K)n = (PEK)q, N, Vv, =, L, =1), where any A(C G) is mapped to
(A, A)) € BE)n.

2. The power set Boolean algebra (P(M), U, N, , M, @) is anti-isomorphic to the
Boolean algebra B(K), = (BEK)y, U, A, 5, T, JT), where any B(S M) is
mapped to (B', B) € BEK),.

Let us now move to representation theorems for dBas. The following notations and
results are needed. Let D be a dBa. For any x € D,
Fr:={FeF,D) : xeFland I, :={I €Z,(D) : x € 1}.

Lemma 4 (Wille, 2000; Howlader & Banerjee, 2020a) Let x € D. Then the following
hold.

1. (Fy)° = F_y and (I,)° = 1 .
2. Fxpy = Fx N Fyand Iy = I, N 1.

To prove the representation theorem, Wille uses the standard context corresponding
to the dBa D, defined as K(D) := (F, (D), Z,(D), A), where for all F € F,(D) and
I € 7,(D), FAI if and only if F NI = (. Then we have
Lemma5 (Wille, 2000) For all x € D, F; = Iy, and I; = F}

un*

Theorem 9 (Wille, 2000) The map h : D — ‘BK(D)) defined by h(x) := (Fx, Iy)
forall x € D is a quasi-embedding.

As a consequence of the above theorem, we have

Corollary 1 For a contextual dBa D, the map h : D — ‘B(K(D)) defined by h(x) :=
(Fy, Iy) for all x € D is an embedding.

Theorem 10 (Balbiani, 2012) Let D be a pure dBa. The map h : D — $H(K(D))
defined by h(x) := (Fy, Iy) for all x € D is an embedding.

2.2 Boolean Algebras with Operators

In the literature, there are several definitions of Boolean algebras with additional
operators. In this section, we mention the ones to be used in this work.
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Definition 4 (Blackburn et al., 2001) A Boolean algebra with operators (Bao) is an
algebra 2 := (B, Vv, A, —, 0, f) such that (B, Vv, A, —, 0) is a Boolean algebra and
f : B — B satisfies the following.

Normality : f(0) = 0, Additivity : f(x Vy) = f(x)V f(y).

Note that Blackburn et al. (2001) gives a general definition of Baos with more than
one operator. In Jonsson and Tarski (1951), a Boolean algebra (B, Vv, A, —, 0) with
only an additive operator f is taken as the definition of Bao.

Definition 5 (Jonsson & Tarski, 1951) An algebra 2 := (B, V, A, =, 0, f) is called a
closure algebra if (B, V, A, =, 0) is a Boolean algebra and forallx,y € B, f : B —
B satisfies the following conditions.

L. f(0) =0. 2.f(xvy)=f)V ().

3.ff(x) = f(x). 4. x < f(x).

Note that for a closure algebra 2l := (B, Vv, A, —, 0, f), one can define an operator g
on B as: g(x) := = f(—x), forall x € B. Then forall x, y € B,

I g()=1. 2. g(x Ay) =g(x) A g(y).

3. gg(x) = g(x). 4. g(x) < x.
An algebra 2 := (B, v, A, —, 0, g), where (B, Vv, A, —, 0) is a Boolean algebra and
g satisfies 1/, 2/, 3, 4" is called a fopological Boolean algebra in Rasiowa (1974).
Moreover, for a topological Boolean algebra 2 := (B, Vv, A, =, 0, g), one can define
an operator g‘s(x) := —g(—x), for all x € D such that 2 := (B, v, A, —, 0, g‘s) isa
closure algebra. In other words, a closure algebra and a topological Boolean algebra
of Rasiowa (1974) are dual to each other and one can be obtained from the other. In
this work, by a topological Boolean algebra, we shall mean a closure algebra.

2.3 Approximation Operators

Recall the definitions of lower and upper approximation operators in an approximation
space given in Sect. 1. If the relation is clear from the context, we shall omit the

subscript and denote Ay by A, A’ by A.

Proposition 11 (Yao & Lin, 1996)
L. For an approximation space (W, E), the following hold.

(i) A= ((A))°. A= ((A))".

) w=w. o
(i) ANB=ANB,AUB=AUB.
(iv) A C B impliesthat A C B, A C B.

IL. Moreover if E is a reflexive and transitive relation then the following hold.
(i) ACAand A C A.
(i) (4) = Aand (A) = A.
Let K := (G, M, I) be a context and recall the approximation spaces (G, E1) and

(M, E») mentioned in Sect. 1. In Saquer and Deogun (2001), A € G and B C M are

called feasible if A” = A and B” = B. Then the concept approximation(s) of A are
defined as follows.
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— If A is feasible, the concept approximation of A is (A, A”).
— If A is not feasible, A is considered as s rough set of the approximation space
(G, Ey), and its concept approximations are defined with the help of its lower

approximation A g, and upper approximation A" The lower concept approxima-
tion of A is the pair ((Ag,)", (Ag,)"), while its upper concept approximation is

(@A"Y, @&y,
For B C M:

— if B is feasible, the concept approximation of B is (B’, B);
— if B is non-feasible, the lower and upper concept approximations of B are defined

by (B, (B™)") and ((Bp,)', (Bj,)") respectively.

A pair (A, B) is called a non-definable concept, if it is not a concept of the context
K. A concept is said to approximate such a pair (A, B), if its extent approximates
A and intent approximates B. The four possible cases for A, B are considered: (i)
both A and B are feasible, (ii) A is feasible and B is not, (iii) B is feasible and A is
not, and (iv) both A and B are not feasible. In case both A and B are feasible and
A’ = B then the pair (A, B) itself constitutes a concept and no approximations are
needed. For the other cases, the lower approximation of (A, B) is obtained in terms of
the meet of the lower concept approximations of its individual components, while the
upper approximation of (A, B) is obtained in terms of the join of the upper concept
approximations of its individual components. For example, consider case (iv), when
both A and B are not feasible.

The lower approximation of (A, B) is defined by (A, B) = ((AEI)”, (AEI)’) m

(B™Y, (B™)") = (Ap,)" N (B™Y, (Ag,)" 0 (B™YY).
The upper approximation of (A, B) is defined by (A, B) := ((A"))", (A"")) L
(Bg,) (Bp)") = (A" N (Bg)"Y, (A" N (By,)").

Let us illustrate these notions by an example. The following context (G, M, I) is a
subcontext of a context given by Ganter and Wille (1999) with some modifications.
G := {Leech, Bream, Frog, Dog, Cat} and M := {a, b, c, g}, where a:= needs
water to live, b:= lives in water, c:= lives on land, g:=can move around. / is given
by Table 1, where * as an entry corresponding to object x and property y means x/y
holds.

Observe that the properties a and g are indiscernible by objects, while Leech and Bream
as well as Dog and Cat are indiscernible by properties. The induced approximation
spaces are (G, {{Leech, Bream}, {Frog}, {Dog, Cat}}) and (M, {{a, g}, {b}, {c}}).

Table 1 Context K

a|lb|lc|g
Leech ¥k *
Bream | * | * *
Frog E R T
Dog % E
Cat * * *
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Let A := {Leech, Bream, Dog} and B := {a, c}. A is not feasible, as A” # A. B
is also non-feasible. The upper and lower concept approximations of A are (G, {a, g})
and ({Leech, Bream, Frog}, {a, b, g}), respectively. The upper and lower concept
approximations of B are both given by ({Frog, Dog, Cat}, {a, g, c}). Moreover,
(A, B) is anon-definable concept. The lower approximation of (A, B) is ({Frog}, M)
and the upper approximation is (G, {a, g}).

3 Kripke Context

As given by Definition 1 in Sect. 1, a Kripke context based onacontextK := (G, M, I)
is a triple KC := ((G, R), (M, S), I), where R, S are binary relations on G and M
respectively. Let us give a couple of examples of Kripke contexts. The first example
is based on Pawlakian approximation spaces.

Example 1 KC := ((G, R), (M, S), I), where G := {Dy, D>, D3, D4} represents a
collection of diseases and M := {Sy, S, S3, S4, S5} a collection of symptoms. D; IS
holds if disease D; has symptom S}, and [ is given by Table 2. Equivalence relations
R on G and S on M are then induced as follows, relating respectively, the diseases
that have the same set of symptoms, and the symptoms that apply to the same set of
diseases:

D;RDj, if and only if 1(D;) = I(D;), i, j € {1,2,3,4} and S; RS}, if and only if
1798 = 171(S)), i, j € {1,2,3,4,5}.

One thus gets the approximation spaces (G, R) and (M, S).

Our next example is motivated by the notion of bisimulation between Kripke frames
(Blackburn et al., 2001). It gives a Kripke context KC := ((G, R), (M, S), I) such
that the relation 7 is in fact, a bisimulation between the Kripke frames (G, R) and
(M, S), that is, it satisfies the back and forth conditions: forall g € G and m € M,
forall g € G (gRgy and gIm — there exists m; € M(mSm and g1Imy));
forallm; € M (mSm and glm — there exists g1 € M(gRg) and g1Imy)).

Example2 KC := ((G, R), (M, S), 1), where G := {c,d,e}, M := {a,b}, R :=
{d,e), (c,d)}and S := {(a, D), (b,a)}. I is given by Table 3. Figure 1 depicts the
objects, properties and the three relations R, S, I. Each circular node represents an
object and each rectangular node a property. Two circular nodes are connected by an
arrow if they are related by R. Similarly for the rectangular nodes. The dotted arrow
represents the relation /. From the figure it is clear that / satisfies the back and forth
conditions.

Table2 Context K Sy | So | S3 | Sy | Ss
D1 * * *
Do *
D3 * *
D4 * * *

@ Springer



Kripke Contexts, Double Boolean Algebras with Operators... 127

Table3 Context K 2 |l b

*|

Fig. 1 Kripke Context KC @ ,,,,,,,,,,, [a]

In a Kripke context KC := ((G, R), (M, S), I), if (G, R) is a Pawlakian approx-
imation space, one gets an interior operator —g : P(G) — P(G) defined as
—r(A) = Ay for all A € P(G) (Proposition 11). Similarly, one has the interior
operator —g : P(M) — P(M) defined by —y(B) := By for all B € P(M), if
(M, S) is a Pawlakian approximation space. Now from Theorem 8, we get the iso-
morphism f : P(G) — P(K)n given by f(A) := (A, A") forall A € P(G) and the
anti-isomorphism g : P(M) — PB(K),, given by g(B) := (B’, B) forall B € P(M).
Taking a cue from the compositions of f, —g and g, —g, we can define two unary
operators fr and fs on P(K) as given below. It will be seen in Theorem 12 that f is
an interior-type operator on 3(K), while gg is a closure-type operator on ‘B3 (K). For
any (A, B) € P(K),

o JR((A.B)) := (Ag. (Ap)).
e fs((A, B)) := ((By)', Byg).
fr, fs are well-defined, as (Ag, (Ag)") and ((Bg)', Bg) are both semiconcepts and

hence protoconcepts of K. This implies that the set 3(K) of protoconcepts is closed
under the operators fr, fs. We have

Definition 6 Let KC := ((G, R), (M, S), I) be a Kripke context. The full complex
algebra of KC, ‘J3+(K(C) = BE),u,n,—, 1, T, L, fr, fs), is the expansion of
the algebra B (K) of protoconcepts with the operators fz and fs.

Any subalgebra of §+ (KC) is called a complex algebra of KC.

Let f ,‘3, fg denote the operators on (K) that are dual to fg, fs respectively. In
other words, for each x := (A, B) € P(K),

fp0) == =fr(=x) = =fr((A°, A7) = —(A%, (AQ)) = (AL, (AD) =
(A%, &™), by Proposition 11(i).

Similarly £2(x) :=_fs(ux) = (B"), B").

Again, note that fg x) = (ZR, (ZR)/) and fg x) = ((ES)’, ES) are semiconcepts of
K. Let us now list some properties of fr and fs.
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Theorem 12 For all x, y € P(K), the following hold.

L. frxny) = frO) N fr() and fs(xUy) = fsC)U fs(y).
2. frxx) = fr(x) and fs(x Ux) = fs(x).

3. frR(=~L)=—-Lland fs(uT)=1T.

4. fr(=x) = = fR(x) and fs(x) =1 f3(x).

Proof Letx := (A, B) and y := (C, D).

1. We use Proposition 11(iii) in the following equations. fr((A, B) 1 (C, D))
fRANC(ANCY) = (ANCp (ANCR)) = (Ag N Cr.(Ag N Cp)) =
(Ag, (AR)) 1 (Cg, (Cr)) = fR((A, B)) 1 fr((C, D)).

fs((A, B)u(C, D)) = fs((BND)', BND) = (BN Dg)', BN Dg) = fs((A, B))U
fs((C, D)).

2. fr((A, BYM (A, B)) = fr((A, A)) = (Ag. (Ag)) = fr((A, B)). Similarly, one
can show that fs((A, B) U (A, B)) = ((By)', By).

3. fr(=L) = fr((G, G")) = (Gg, (GR)) = (G, G') = =L, by Proposition 11(ii).
Similarly, one gets fs(uT) =JT.

4. fr(=(A, B)) = fr(A®, AY) = (A%, (A%)) = (A%, A"y by Proposition
11(). So fr(=(A, B)) = =(A", (A"Y) = —~f3((A, B)). Similarly, one can show
that fs(2(A, B)) =2 f3((A, B)). o

Using Theorem 12(1,3,4), one obtains

Corollary 2 Forall x, y € P(K),

L faxVvy) = fA)V fA(y) and fE(x A y) = fo(x) A FE().
2. fo(L)=Land f3(T)=T.

Consider the restriction maps fr [ B(K)q and fs | B(K)y. From Theorem 12(2),
it follows that B(K)n and PB(K), are closed under fr [ P(K)q and f5 [ P(K),
respectively. Using Theorem 12(1,3) and Corollary 2, we get

Corollary3 PKO) = (PE)n, M, V.~ L, f3 | PEK)n) and PEKO)S =
CBE)y, U, A, o, T, fs [ BIE)yL) are Baos.

We next consider a Kripke context KC := ((G, R), (M, S), I) where the relations
R, § satisfy certain properties that are of particular relevance here.

Definition 7

1. KC is reflexive from the left, if R is reflexive.
2. KC is reflexive from the right, if S is reflexive.
3. KC is reflexive, if it is reflexive from both left and right.

The cases for symmetry and transitivity of KC are similarly defined.
Observe that the Kripke context in Example 2 is symmetric from the right.

Theorem 13 Let KC := ((G, R), (M, S), I) be a reflexive and transitive Kripke con-
text. Then for all x € P(K), the following hold.
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1. frR(x) CTxandx C fs(x).

2. frIR(x) = fr(x) and fsfs(x) = fs(x).

Proof 1. Let (A, B) € B(K). By Proposition 11(v) A, € A and Bg € B, which
implies that A" € (Ag)" and B’ C (Bg)'. Now B” = A’ and A” = B’,as (A, B) €
P(K). By Lemma 3, A € A” and B € B”.So A C B’ and B C A’, which implies
that B C (Ag) and A C (By)'. Therefore fr((A, B)) = (Ag, (Ag)) E (A, B) and
(A, B) C fs((A, B)) = (By)', By).

2. frfR((A, B)) = fr((Ag,(AR))) = ((AR) > ((AR)R)/) = (Ag, (AR)) =
fr((A, B)), by Proposition 11(vi). Similarly, one can show that fsfs((A, B))
Sfs((A, B)). O

Theorems 13 and 12(4) give
Corollary 4 Forall x € P(K), x T f3(x) and ffp(x) = fp(x).

Further, using Theorems 12, 13 and Corollaries 2, 4, we get

Corollary 5 PKO)F = (BE)n, M, v, = L, fa | BE)n) and PEKC) =
CBE)y, U, A, o, T, fs [ BA)y) are topological Boolean algebras.

3.1 Complex Algebra to Concept Approximation

Recall the Kripke context KCps := ((G, E1), (M, E3), I) defined in Sect. 1, where
(G, E1), (M, E;) are Pawlakian approximation spaces. We observe that terms of the
full complex algebra P (KCps) are able to express the various notions of con-
cept approximations mentioned in Sect. 2.3. Indeed, for KCpg, we get the operators
JE JE;, + PE) — P(K) as above, that is, fg,((A, B)) = (Ag,, (Ag,)"), and
fE,((A, B)) := ((Bj,)'. B,) for any (A, B) € P(K). Moreover, f3 (A, B)) =

A", &™) and £}, ((A. B)) = (B"*).,B").Let AC G and B C M.

If A and B are feasible then the concept approximations of A and B are (A, A") and

(B’, B) respectively and these are elements of B (K).

Suppose A and B are both non-feasible sets. Let x, y € B(K) be such that the extent

of x is A and intent of y is B. Then we have the following.

The lower /concept approximation of A, ((Ag, ), (AEI)/) = (Ag,, (Ag, )y U

(Ag,, (Ag)) = fE,(x) U fE (x).

The upper concept approximation of A, ((ZE1 ), (ZEI

—E| ~E

(A7 (ATY) = fp 0 U fR, ().

The lower concept approximation of B, (B™2),(B™>)") = ((B™),B™) n
—E>., —E

(B, B™) = f,(n N[0

The upper concept approximation of B, ((Bg,), (Bg,)")

(Bg,) Br,) = e, () N fr,(»).

Now by definition, approximations of any pair (A, B) are obtained using the concept

approximations of A and B. As shown above, the latter are all expressible by the terms

of the full complex algebra, and hence we have the observation. For instance, suppose,

(A, B) is a non-definable concept of K with A and B non-feasible.

Yy = @A™ @&MY) U

((Bg,)'s Bg,) N
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The lower approximation of (A, B), ((Ag)" N (EEQ)’, (Ag)" N (EEz)/)/) =
(fE, (D) U f2, ) 12,00 N f2,(0) = (fE, () U fE,(0)) 1 £, ().
The upper approximation of (A, B), (A" n (Bg,)"), @A"Y n (Bp,)") =
(fp, U Fp ) U (fE, () N fE, () = (fE, () N fEm, (D) U £, ().

4 The Algebras

In this section, we study abstractions of the algebraic structure %Jr (KC) obtained in
Sect. 3. These are dBas with operators (Definition 8), and topological dBas (Defini-
tion 9).

4.1 Double Boolean Algebras with Operators

Definition 8 A structure O := (D,u,n,—, 1, T, L, I, C) is a dBa with operators
(dBao) provided
1.(D,u,m,—, 1, T, 1)isadBaand
2.1, C are monotonic operators on D satisfying the following for any x, y € D.
lalxny)=Ix)nI(y) 1bCxuy) =Cx)uC(y)
2a I(—1)=-1 2b C(UT) =1T
3a I(x nx) =1(x) 3b C(x ux) =C(x)
A contextual dBao is a dBao in which the underlying dBa is contextual. If the under-
lying dBa is pure, the dBao is called a pure dBao.
The duals of I and C with respect to —, _ are defined as I’(a) := —=I(—a) and C*(a) :=
2C(La) foralla € D.

Any Bao provides a trivial example of a contextual and pure dBao. Indeed, in a
Bao (B,m,uU,—, T, L, f), setting - = —, C := fand I := f‘s, one obtains the
dBao (B,m, U, —, 4, T, L, I, C). Due to the idempotence of the operators 1, Ll in the
Boolean algebra (B, 1,4, —, T, 1), the dBa (B, m, U, —, 4, T, L) is pure; as B =
B, = B, the dBa is contextual as well.

An immediate consequence is the following.

Theorem 14 Let © := (D,u,n,—, 4, T, L, I, C) be a dBao. Then

1. Dp = Dp,u,N, =, 0, T, LI| Dy, C | Dyp) is the largest pure subalgebra of
0.

2. If O is pure, it is contextual and moreover, O = O .

Proof 1. From Proposition 1 it follows that (D, U, M, =, 1, T, L) is the largest pure
subalgebra of D. To complete the proof it is sufficient to show that D, is closed under
I and C, which follows from Definition 8(1a, 3a, 1b, 3b).

2. Proposition 2 gives the first part. For any pure dBa, D = D). O

As intended, the sets of protoconcepts and semiconcepts of a context provide exam-
ples of dBaos:
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Theorem 15 Let KC := ((G, R), (M, S), I) be a Kripke context based on the context
K := (G, M, I). Then the following hold.

1. §+(K(C) = CBEK),u,n,—, 5, T, L, fr, fs) is a contextual dBao.
2. §+(KC) = HEK),u,n,—, 5, T, L fr [ HE), fs | H(K)) is a pure dBao. It
is the largest pure subalgebra of ?"r (KC), that is, §+ (KC), = HT(EKC).

Proof 1. From Theorem 7 it follows that (P(K), u, 1, =, 1, T, L) is a dBa. To show
monotonicity of fr, fs, let (A, B), (C, D) € ‘B(K) and (A, B) C (C, D). Then, by
definitionof C, A € C and D C B, and by using Proposition 11(iv), Ax € C, which
implies (C)" € (Ag)". Hence fr((A, B)) E fr((C, D)). Similar to the above, we
can show the monotonicity of fs. Rest of the proof follows from Theorem 12.

2. From Theorem 7, it follows that B(K) , = $H(K). By Theorem 14(2), PTEKC) p=

HT(KC) is the largest pure subalgebra of %Jr (KO). O

The following lists some basic properties of the operators I, C and their duals in a
dBao.

Lemma6 Let O := (D,u,n,—, 4, T, L, I,C) be a dBao. Then the following hold
foranya,x,y € D.

. = (=a) = Ia and C° (La) = C(a).

. I(=a) = =I°(a) and I’ (—a) = —I(a).

. C(ua) =.C%(a) and C* (La) =C(a).

I and C° both are monotonic.

Pana) =) and C’(aua) = C(a).

Pxvy =Fx)vE(y) and C(x A y) = C(x) AC*().
P(l)y=1andC(T)=T.

P NP(x) =) and C(x) U C®(x) = C*(x).

®° N LR W

Proof The proof is obtained in a straightforward manner. We use 1, 2, 3 and 5 of
Proposition 5, (8a), (8b) of Definition 2 and 3a, 3b of Definition 8. O

We noted earlier that a Bao provides an example of a dBao. The converse question
is addressed in Theorems 16 and 17 below.

Theorem 16 Let O := (D, u, M, —, 4, T, L, I, C) be a dBao such that for all a € D
—a =.a, 7—a = a. Then (D,U, 1, —, T, L,C)and (D,U, M, —, T, L, 15) are Baos.

Proof That (D, U, M, —, T, L) forms a Boolean algebra is not difficult to prove, and
the proof is given in the “Appendix”. In particular, one can show that yLiz = y Vv z and
yMz=yAzforanyy,z € D.Itis then easy to verify that C and I’ are additive and
normal. Indeed, Definition 8(1b) implies that C is additive. As J T = _L, by Definition
8(3b), it is normal. On the other hand, as y Lz = y Vv z for all y, z € D, from Lemma
6(6) it follows that P (x uy) = P(x vy) = Px) VI (y) = Px)ul(y). IP(L) = L
by Lemma 6(7). O

Theorem17 Let © := (D,u,m,—, 1, T,1,I,C) be a dBao. Then On :=
(Dn, 1, V, =, LI | D) and O, := (Dy, U, A, 1, T, C | D) are Baos.
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Proof By Proposition 3, D and Dy, are Boolean algebras. Let x € Dr. Then I’ |
Dr(x) NP | Dr(x) =P (x)nP(x) = (x) =1 | Dn(x), by Lemma 6(8). So Dn
is closed under I° [ Dp. Similarly, Dy, is closed under C [ D,,. That both I’ [ Dp and
C [ Dy, are additive and normal follows from Lemma 6(6,7) and Definition 8. O

The following result addresses the converse of Theorem 17.

The_orem 18 LetD := (D,u, M, —, 4, T, L,) beadBasuch that O := (D, 1, V, =,
1L, DandO := (D, U, A, 3, T, C) are Baos. TZzenD =(D,u,n,—, ., T,L,10)
is a dBao, where I(x) := —I(—x) and C(x) := C(x Ux) forall x € D.

Proof Let x, y € D. Using Proposition 5(6), I(x M y) = =I(=(x N y)) = =I(—x V
—y) = =(I(—=x) vV I(=y)), as —x, =y € Dp, by Proposition 5(1). As I(—x), I(—y) €
Dr, using definition of v we have I(x M y) = —I(—x) 1 —I(—y) = I(x) M I(y).
Using Proposition 5(5), I(—L) = —I(——1) = —I(L) = —_L. By Definition 2(4a),
I(x N x) = —I(—(x N x)) = =I(—x) = L(x).

CT) = CuTulT) = CUT) =2T,as T € D,. That C(x U x) = C(x) is
immediate from Definition 2. Finally, one shows that C(x LI y) = C(x) U C(y) for all
x,y € D.Letx,y € D. Using commutativity and associativity of LI and Definition
2(1b), additivity of C and the fact that x U x, y Uy € Dy, we have the following
equalities. C(xLy) = C((xuy)u(xuy)) = C((xUx)u(yLy)) = C(xx)uC(yuy) =
C(x) UC(y). So 9 is a dBao. O

We end this part by noting a close connection between the full complex alge-
bra of a Kripke frame and that of a corresponding Kripke context. Let (W, R) be
a Kripke frame and §+ := (P(W),N,U,°, W, @, mg) be the full complex alge-
bra (Blackburn et al., 2001), where for all A € P(W), mg(A) = {w € W :
Rw)N A # 0} = ZR. This is a Bao, and as observed earlier, yields the dBao
(P(W),N, U, W, @, m%, mg). For the Kripke frame (W, R), let us define the
Kripke context KCy := ((W, R), (W, R), #). By Definition 6, we have the full
complex algebra of KCy as ‘B*(K(Co) = (PEK),u,n,—, 1 T,L, f1, f2), where
[i((A, B)) = (Ag, (AR)), f2((A, B)) := ((Bg)', Bp) for all (A, B) € P(K).
Then we get

Theorem 19 For the full complex algebra ?* (KCy), the following hold.

1. =x =.x, =—x = x and fi1(x) = = fo(—x) for all x € P(K).
2. CBEK),u,n, =, T, L, f2) is a Bao, which is isomorphic to 3T

Proof 1.Let A € W and x € A€. Then for all a € A, x # a, which implies that
x € A/.Now let x € A’. Then x # a, for all a € A, which implies that x € A°.
So A" = A¢, and A” = AY = A°® = A. Therefore (A, B) € B(K) if and only if
A = B¢, which is equivalent to A = B.

Let (A, A°) € P(K). Then —(A, A°) = (A, A) =i(A, A°) and == (A, A°) =
(A, A%). f2((A, A%)) i= (A, (A%) ). giving

—f(=(A, A9) = —f((A% A4) = =((Ap) Ap) = (AR, (AR)) =
(Ag, (AR)").

So f1((A, A%)) = (Ag., (AR)) = = f2(=(A, A9)).
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2. By Theorem 16 it follows that (P(K), L, 11, —, T, L, f2) is a Bao.

Let us define a map f from P(W) to P(K) by f(A) := (A, A°) forall A C W.
It is clear that f is well-defined. To show f is a homomorphism, let A, B € W.
f(ANB) = (ANB, (ANB)°) = (A, A°)N(B, B°) = f(A)nf(B)and f(AUB) =
(AUB,(AUB)") = (A, A°) U (B, BY) = f(A) U f(B). f(A") = (A, A)
—'fR(A) I?Jf(A) and f(W) = (W.¥) =T fh) = @ W) =L fimr(Ad) =
(A", (A7) = (A, A) = f((A, A%) = f(F(A)).

Injectivity and surjectivity of f follow trivially. O

From Theorem 19, we may conclude that the dBao %* (KCy) is identifiable with the
Bao §.

4.1.1 Representation Theorems for dBaos

Forevery dBao O := (D, u, n, —, 1, T, L, I, C), we construct a Kripke context based
on the standard context K(D) := (F, (D), Z, (D), A) corresponding to the underlying
dBa D. For that, relations R and § are defined on F,(D) and Z, (D) respectively as
follows.

For all u, u; € F,(D), uRu; if and only ifI‘S(a) cuforalla € u;.

For all v, v; € Z,(D), vSv; if and only if C?(a) € v forall a € v.

The following results are required to get (Representation) Theorem 20.

Lemma?7 If F is a primary filter (ideal) of a dBa D, then for any x € D, exactly one
of the elements x and —x belongs to F.

Proof Proof follows from the definition of a primary filter (ideal).

Lemma8 Ler O := (D,U,n,—, 1, T, L, I,C) be a dBao. The following hold.

1. For all u,uy € Fp(D), uRuy if and only if for all a € D, Ia € u implies that
aecuy.

2. For all v,vy € I,(D), vSvy if and only if for all a € D, Ca € v implies that
a e .

Proof 1.Foralla € D, suppose la € u implies thata € u;. If possible, assume uRu,.
Then there exists a; € u; such that I (a1) ¢ u. So -1 (a1) € u, which implies that
I(—a;1) € uby Lemma6(2). Asaj € uy,—aj ¢ ui, which contradicts that I(—a) € u.
Hence uRu;.

Now, we assume that u Ru; and let a; € D such that Ia; € u. If possible, suppose
a; ¢ uy. Then —a; € uj.So 15(—|a1) € u as u Ru1. Therefore by Lemma 6, 15(—-a1) =
—I(a;) € u, which is a contradiction by Lemma 7. Hence a; € u.

Proof of 2 is similar to the above. O

Lemma9 LetD := (D,U,m,—, 1, T,1) be adBa. For all a, b € D, the following
hold.

1. Ifanb= 1 thenamnaC —b.
2. IfammaC —bthenamnbC L.
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3. faub =T then JbT ala.
4. If bCTalathen T Calb.

In particular, if D is a contextual dBa then a b = L ifand only ifama T —b, and
aub=Tifandonlyif sb T alUa.

Proof 1.Leta,b € D and a mb = L. Then by Definition 2(1a) and the associative
law, L = (@na)n(nb).So Lv—=(bnb)=((ana)n(bnb))v—-(bnb).By
Definition 2(6a), L v = (b b) = ((ama) v—=(bnrb)n((brib)Vv —(bnb)). Now
(a@ana)Vv—=(bnb) =—-(—(ana)n——(bnb)) = —(—an (b b)) by Definition
2(4a) and Proposition 5(3). So (a M a) vV —=(b M b) = —(—a 1 b) by Definition 2(1a).
Similarly, we can show that 1 v —=(bnb) = —(bn—L1). Therefore L v —=(bMb) =
—(bn-1l) = = n (T nT)) by Definition 2(10a). Using Definition 2(1a) and
Proposition 4(2), L v —=(bnb) = —~(b1T) = =(bNb) = —b, where the last equality
follows from Definition 2(4a). This implies that =b = —(—amb)N—L = —=(—amb),
as —(—anb),bnib,—~1l € Dn. m—a E —~(—amnb),as—-anNbC —a.SoalNaC
—(—a nb) = —b.

2.Letama & =b. Thena Manb E —b N b by Proposition 4(6) and by Definition
2(la),anb C L.

Now if D is a contextual dBa then T becomes a partial order. Therefore from the above
it follows thata mb = L if and only ifa ma C —b.

The other parts can be proved dually. O

Lemma 10 Let O be a dBao and KC(O) := ((F,(D), R), (Z,(D), S), A). Then for
all a € D the following hold.

—R
1. F, = @ andﬂR = Fl(a)-

—S
2.1, = IC‘S(a) andl_as = I¢()-

Proof 1.Let F € ER. Then there exists F| € F, such that F'R Fy, which implies that
P(a) e Foasa e Fi.SoFy € Fyg,.

LetF € Fp @ and we show that F' € ER. We must then find a primary filter F| € F,
such that FRF). Let Fy := {x € D : Ix € F}and Fy; := {xMa : x € Fp}.
Then Fo; is closed under M and Fy; € Dp. Next we show that L ¢ Fy. If possible,
suppose L € Fpi. Then there exists x| € Fp such that x; Ma = L, which implies
that @ Ma © —x; by Lemma 9(1). So I’ (a M a) C I(—x;), whence I’ (a) C I (—x;)
by Lemma 6(4,5). I’(—x;) € F, as I’(a) € F and F is a filter, which implies that
—I(x1) € F.SoI(x1) ¢ F which contradicts that x; € Fy. Therefore 1 ¢ Fp;. Since
DnisaBoolean algebraand Fy; € Dp, there exists a prime filter F> containing Fpp. So
F3:={x € D:yC xforsomey € F,}is aprimary filter containing > by Lemma 2
and Proposition 6. Forall x € Fy,xMa € Fy1 € FoandxMa & x, xMa C a, which
implies that Fp € F3 and a € F3. By Lemma 8(1) it follows that F R F3. Therefore

FeF"
Using Proposition 11(i), Lemmas 4 and 6(1), we get
—R_. R..
Fap=(F)") = (F-) ) = F§ _ = Fop(a) = Fiay-
2 can be proved dually. O
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The Kripke context KC() of Lemma 10 is used to obtain the representation
theorem.

Theorem 20 (Representation theorem) Ler O := (D,u,n,—, 1, T, L, I,C) be a
dBao. The following hold.

1. O is quasi-embeddable into the full complex algebra %4' (KC()) of the Kripke
context KC(O). h : D — P(K(D)) defined by h(x) := (Fx, L) forall x € D, is
the required quasi-embedding.

2. If O is a contextual dBao then the quasi-embedding h is an embedding.
3. O is embeddable into the largest pure subalgebra HTKC(D)) of %"' (KC(D)).

Proof 1.LetD := (D,uU,n,—, 5, T, 1) be the underlying dBa. By Theorem 9, we
know that the map 2 : D — P(K(D)) defined by h(x) := (Fy, L) forall x € D
is a quasi-embedding. To show /4 is a dBao homomorphism, we prove that for any
x € D,h(Ix) = fr(h(x))and h(Cx) = fs(h(x)), thatis, (Fix, Itx) = (Fx g, (Fx)")
and (Fcy, Icx) = ((I_xs)’, I_XS)' By Lemma 10(1), QR = F1,. By Lemma 5, FI/x =
Iy, = Ixnouaeny) = o = I, the last two equalities hold, as Ix M Ix =
I(x M x) = Ix and by Lemma 4(1). So (&R)/ = Iiy.

Similar to the above, using Lemma 10(2) and Lemma 5, we can show that (Fcy, Icx) =
((Lx S)’, I S). Hence & is the required quasi-embedding from the dBao O into
PHEKCO)) .

2. Since O is contextual, the quasi-order is a partial order. As a result, 4 becomes
injective.

3.Letx € Dy. Theneitherx Mx =xorxUx =x. IfxMNx =x, h(x) = (Fy, Iy) =
(Fx, F}), by Lemmas 4 and 5. Now if x Ux = x, h(x) = (Fy, Iy) = (I}, L),
by Lemmas 4 and 5. So & | D, is an injective dBao homomorphism from O, to
HT(EKC(D)), as O, is pure and by Proposition 2. O

Corollary 6 Let O be a pure dBao. Then 9 is embeddable into the complex algebra
HT(KC(D)) of the Kripke context KC(D).

Proof Proof follows from Theorems 14(2) and 20(3). |

4.2 Topological Double Boolean Algebras

Definition9 A dBao © := (D,n,u, -, 5, T, L, I, C) is called a topological dBa if
the following hold.

da I(x) C x 4b x C C(x)

Sa (x) =I(x) 5b CC(x) = C(x)
A topological contextual dBa is a topological dBa in which the underlying dBa is
contextual. If the underlying dBa is pure, the topological dBa is called a fopological
pure dBa.

Again, as intended, we obtain a class of examples of topological dBas from the sets
of protoconcepts and semiconcepts of contexts.

Theorem 21 Let KC := ((G, R), (M, S), I) be a reflexive and transitive Kripke con-
text. Then the following hold.
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1. §+ (KC) is a topological contextual dBa.
2. §+ (KO), = $HT(KC) is a topological pure dBa.

Proof 1. Proof follows from Theorems 15 and 13.
2. Proof is similar to the proof of Theorem 15(2). O

Now, we will show that for a topological dBa O, KC(9) is a reflexive and transitive
Kripke context. For that, we first prove the following lemma.

Lemma 11 Let © be a topological dBa. Then for all a € D, I’I’(a) = I°(a) and
C°C%(a) = C%(a).

Proof Leta € D.By Definition9(5a), II(—a) = I(—a), whichimplies that =II(—a) =
—I(—a). By Lemma 6(2), I’ (—=I—-a) = I’(a), whence I’T? (a) = I’ (a). Similarly, we
can show that C°C?(a) = C%(a). O

We now have

Theorem 22 KC(9O) = ((F,(D), R), (Z,(D), S), A) is a reflexive and transitive
Kripke context.

Proof To show R is reflexive, let F' € F,(D) and Ia € F for some a € D. By
Definition 9(4a), Ia C a, which implies that @ € F, as F is a filter. So FRF by
Lemma 8.

To show R is transitive, let F, F1, F, € F,(9) such that FRF; and F; R F,. We show
that FRF,. Leta € F>. ThenI’(a) € Fy, as F| RF,, which implies that I°I’(a) € F,
as FRF).SoP(a) =Pl(a) € F, using Lemma 11. Thus FRF>.

Similarly, one can show that § is reflexive and transitive. O

Combining Theorem 20, Corollary 6 and Theorem 22, we get the representation
results for topological dBas in terms of reflexive and transitive Kripke contexts.

Theorem 23 A topological dBa O is quasi-embeddable into the full complex algebra
%Jr (KC()) of the reflexive and transitive Kripke context KC (D).

O, is embeddable into the complex algebra HTKC(D)) of KC(D). Moreover,

1. If O is a topological contextual dBa then O is embeddable into %"' (KC(D)).
2. If O is a topological pure dBa then 9 is embeddable into the complex algebra
HTKC(D)) of KC(D).

5 Logics Corresponding to the Algebras

We next formulate the logic CDBL for contextual dBas. The logic MCDBL for the
class of contextual dBaos, and its extension MCDBLA4 for topological contextual dBas
are both defined with CDBL as their base. In Sect. 5.3, it is shown that, apart from
the algebraic semantics, the logics can be imparted a protoconcept-based semantics,
due to the representation theorems for the respective classes of algebras obtained in
Sects. 4.
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5.1 CDBL

The language £ of CDBL consists of a countably infinite set PV of propositional
variables, propositional constants L, T, and logical connectives U, M, —, 1. The set §
of formulae is given by the following scheme:

TlLlplaeuBlanp| o,

where p € PV. v and A are definable connectives: a V  := —(—a M —f) and
a AP :=1(uaap) foralla, B € §. A sequent in CDBL is a pair of formulae denoted
bya - gfore, B e§. Ifa fand B - o, we use the abbreviation o - .

The axioms of CDBL are given by the following schema.

labFa.

Axioms for 1 and L:
2aan B o 2batoaup
B3aanBEgB 3bBraUup

daanBrEF(@np)n@np)4b(cup)u(eup)Haup
Axioms for — and _:
S5a (¢ Ma) - —a 5b so (e U )
6aoan—akt L 6b T F ol
Ta —=—(anB) 4 (@ B) 7b Ja(e U B) A+ (¢ B)
Generalization of the law of absorption:
aanNakFan(eup) 8au(@np)Hala
QaoanNnakFanN(eaVvp)bal(xAB)Fala
Laws of distribution:
10aan(BVvy)d=(@np)veny)10bau (BAy) d-(@UpB)A(xly)
Axioms for 1, T:
lla L +Ha 1babT
12a =T HF L 12b T FuL
13a =L 4-TnTI13b T4~ Lu L
The compatibility axiom:
4(ua)N(eUa) 4 (¢ Na) U (aMNa)
Rules of inference of CDBL are as follows.
For M and L:

akp abp
any BNy (Rl)yl‘lal—yl‘lﬁ

abkp ak B ,
alykpuUy (Rz)yl_lal—yl_l,B (R2)

(R1)

For —, _:

abkp abk B
—F—a B g

(R3)
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Transitivity:

aFB By

aby (R4)

Order:

aNpraoana aNatFanp aUBFELUBL BUBFaUP

ak B (R5)

(RS) captures the order relation of the contextual dBas.

Derivability is defined in the standard manner: a sequent S is derivable (or provable)
in CDBL, if there exists a finite sequence of sequents Sy, .. ., S;, such that S, is the
sequent S and forall k € {1, ..., m} either S is an axiom or S is obtained by applying
rules of CDBL to elements from {S7, ..., Sx—1}. Letus give a few examples of derived
rules and sequents.

Proposition 24 The following rules are derivable in CDBL.

a8 atky BFa ylFa
afNatpgny (RO) BUylFaUa (R7)

Proof (R6)isderivedusing (R1), (R1)" and (R4), while for (R7) one uses (R2), (R2)’
and (R4). O

Theorem 25 Fora, B, y € §, the following are provable in CDBL.
la (@ B) 4= (Ba). baup - Buc.
2aann(Bry) - (@np)ny.2bau (BUy) A= (@up)Uy.
3a(xna)n B - (e n B). 3b(ela)Udp d-aup.

da —a - = (e Na). 4b J(o U ) Foa.
Saan(aUpB)F (xMna). ShaoUa b ol (xmp).
6aan(aVvpB)Fana. 6baUalal(xApB).
Ta L Foan—a. 7b ol = T.

8a L +—T. 8 L ET.

Proof The proofs are straightforward and one makes use of axioms 2a, 3a, 4a, Propo-
sition 24 and the rule (R4) in most cases. For instance, here is a proof for la:

B3aan BB anlflaa
da(@npP)F(@np)n@np) (enp)n@np) - pna (R6)
(@np) = (Bra) (R4)

Interchanging o and B in the above, we get (B M) F (o M B).

(4a) follows from axiom 2a and (R3). (7a), (8a) follow from axiom 1la. The
remaining proofs are given in the “Appendix”. Note that the proofs of (ib),i =
1,2,3,4,5,6,7, 8, are obtained using the axioms and rules dual to those used to
derive (ia). m]
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Definitions of valuations on the algebras and satisfaction of sequents are as follows.

Definition 10 Let D := (D, U, M, —, 1, T p, Lp) be a contextual dBa. A valuation
v :§ — D onD is amap such that for all o, 8 € § the following hold.

Lv(eupB) :=v(@)Uv(B). 4. v(@np) :=v(x) Nv(B).
2. v(ua) ==ov(a). 5. v(—a) ;= —v(w).
3.v(T) := Thp. 6.v(L) :=_Lp.

Definition 11 A sequent o = f is said to be satisfied by a valuation v on a contextual
dBaDif and only if v(«) T v(B). @ I B is true in D if and only if for all valuations v
on D, v satisfies o - B. « = B is valid in the class of all contextual dBas if and only
if it is true in every contextual dBa.

Theorem 26 (Soundness) If a sequent a = B is provable in CDBL then it is valid in
the class of all contextual dBas.

Proof The proof that all the axioms of CDBL are valid in the class of all contextual
dBas is straightforward and can be obtained using Proposition 4 and Definition 2. One
then needs to verify that the rules of inference preserve validity. Using Proposition 4,
one can show that (R1), (R2), (R1)’ and (R2)’ preserve validity. The cases for (R3)
and (R3)’ follow from Proposition 5.

To show (RS5) preserves validity, let the sequents «m8 - oMo, oMo = oM B, el -
BuUpB,and B U B F o B be valid in the class of all contextual dBas. Let D be a
contextual dBa and v a valuation in D. Then v satisfies each sequent, which implies that
v(anp) E v(ane), v(ena) E v(fna), v(eup) E v(Bnp)and v(Bup) E v(aUp).
Sov(emnB) = v(ieNa) and v(e U B) = v(B U B), as D is contextual. This gives
v(a) Mu(B) = v(a) Nv(a) and v(a) U v(B) = v(B) U v(B). Thus v(@) E v(B),
whence o I B is satisfied by v. O

Asusual, the completeness theorem is proved using the Lindenbaum-Tarski algebra
of CDBL, and the algebra is constructed in the standard way as follows. A relation
= is defined on § by: @« =~ B if and only if « 4 B, for o, 8 € §. = is a
congruence relation on § with respect to LI, M, —, 1. The quotient set §/ = with
operations induced by the logical connectives, give the Lindenbaum-Tarski algebra
L) =G/ =-,4,Mn,—, 5, [T], [L]). The axioms in CDBL and Theorem 25 ensure
that £(§) is a dBa. One then has

Proposition 27 For any formula o and B the following are equivalent.
1. o & B is provable in CDBL.
2. [a] E [B]in L(T) of CDBL.
Proof For 1| = 2, we make use of (R1)’, (R4), axiom 2a and Theorem 25(2a, 3a).
__erB
aNoakFanp
anphFa
afN(@np)Fana anfran(aenp)
aNprFana
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So o Ma 4 o N B, which implies that [a] M [¢] = [0 Na] = [N B] = [«] N [B].
Dually we can show that [«] U [8] = [B] U [B]. Therefore [«] T [B].
For2 — 1, suppose [«] T [B]. Then [«] N [B] = [a] M [e]. So [ 1 B] = [e M «].
Similarly we can show that [ U 8] = [B U B]. Therefore « M -+ o M« and
a U B -+ g uB. Now using (RS), o F B. O
It is worth noting that the axioms of CDBL are obtained by converting the dBa
axioms into sequents. Nonetheless, the system is complete with respect to the class of
contextual dBas, because the relation =, provides a partial order on the set §/ =,
which forces the Lindenbaum algebra £(§) to become a contextual dBa.

Theorem 28 L(F) is a contextual dBa.
Proof Follows directly by axiom 1, (R4) and Proposition 27. O

The canonical map vy : § — §/ = defined by vo(y) := [y] for all y € §, can be
shown to be a valuation on L(g§).

Theorem 29 (Completeness) If a sequent o = B is valid in the class of all contextual
dBas then it is provable in CDBL.

Proof If o = B be valid in the class of all contextual dBas, it is true in £(§). Consider
the canonical valuation vg. Then vo () E vo(8) and so [«] T [B]. By Proposition 27,
it follows that o - 8 is provable in CDBL. O

5.2 MCDBL and MCDBL4

The language £; of MCDBL adds two unary modal connectives [] and B to the
language £ of CDBL. The formulae are given by the following scheme.

T|Llplauglanf| -« || O« | Ba,

where p € PV. The set of formulae is denoted by . The axiom schema for MCDBL
consists of all the axioms of CDBL and the following.

15 OO 4+ O B) 150 Be L AS -+ B(a U B)

16a O(—1) 4 =L 160 B(LT) 44T

17a O(x M) 4+ O() 170 M(a U ) I+ B (@)
Rules of inference: All the rules of CDBL and the following.

abk B g a8 R9)

o =08 (R3) Ho - WS (

Definable modal operators are ¢, ¢, given by O« := —[J—¢ and ¢o :=_BH_o. It
is immediate that

Theorem 30 If a sequent a &= B is provable in CDBL then it is provable in MCDBL.

A valuation v on a contextual dBao O := (D, u,n, =, 1, Tp, Lp, I, C),is amap
from § to D that satisfies the conditions in Definition 10 and the following for the
modal operators:

Definition 12 v({a) := I(v(«)) and v(Ma) := C(v(x)).

Definitions of satisfaction, truth and validity of sequents are given in a similar
manner as before.
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5.2.1 MCDBL2

MCDBLA4 is obtained as a special case of the logic MCDBLZX that is defined as
follows.

Definition 13 Let X be any set of sequents in MCDBL. MCDBLX is the logic
obtained from MCDBL by adding all the sequents in ¥ as axioms.

Note that if ¥ = ¢} then MCDBLZX is the same as MCDBL. The set ¥ required
to define MCDBL4 will be given at the end of this section. Let us briefly discuss
some features of MCDBL X for any ¥—these would then apply to both MCDBL and
MCDBLA4.

Let Vx denote the class of those contextual dBaos in which the sequents of X are
valid. As a consequence of axioms 15a, 16a, 17a, 15a, 16b, 17b and rules (R8), (R9),
one can conclude that if a sequent « B is provable in MCDBL X then it is valid in
the class Vyx.

As before, one has the Lindenbaum-Tarski algebra Ly (F1) for MCDBLX; it has
additional unary operators induced by the modal operators in £;. More precisely,
Ly &) = @E1/=,u,m,—-, 5, [T [L], fo, fm), where f, fm are defined as:
fa(laD = [Ueal, fm(le]) = [Ma].

Proposition 27 extends to this case. Using this proposition and rules (R8), (R9),
one shows that the operators f7, fm are monotonic:

Lemma12 Fora, B € §1, [a] C [B] in Lx(F1) implies that fo([«]) T fo((B)) and
fa(@]) E fa(BD.

&1/=, 4,1, =, 3, [T], [L]) is a contextual dBa; Lemma 12 along with axioms 16a,
16b, 17a, 17b and the result corresponding to Proposition 27 give

Theorem31 Lx (1) € Vs.
One then gets in the standard manner,

Theorem 32 (Completeness) If a sequent o & B is valid in the class Vs, then it is
provable in MCDBLX.

MCDBLA is defined as the logic MCDBLX where ¥ contains the following:

18a Ua -« 180 o + Mo
19¢ 0o =+ Oa 195 Bl —+— B

We have thus obtained

Theorem 33 (Soundness and completeness)

1. « = B is provable in MCDBL if and only if « = B is valid in the class of all
contextual dBaos.

2. o + B is provable in MCDBLA4 if and only if o &= B is valid in the class of all
topological contextual dBas.
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5.3 Protoconcept-Based Semantics for the Logics

As a consequence of the representation result for contextual dBas (Corollary 1), we
get another semantics for CDBL based on the sets of protoconcepts of contexts. The
required basic definitions are derivable from those given in Sect. 5. However, for the
sake of completeness, these are mentioned here. We first define valuations, models
and satisfaction for a context K := (G, M, I).
Valuations associate formulae with protoconcepts of K:
A valuation is amap v : § — P(K) such that

v U B) :=v(x)Uv(B). vien B) :=v(x) Nv(p).

v(—a) = (). v(ua) :=av(a).

v(T) := (G, D). v(l) := @, M).
A model for CDBL based on the context K is a pair M := (B(K), v), where v is a
valuation.
Let KC denote the collection of all contexts.

Definition 14 A sequent o S is said to be satisfied in a model M based on K if
v(a) C v(B). a - Bis true in K if it is satisfied in every model based on K. o - S is
valid in the class C if it is true in every context K € /C.

As for any context K the set 3(K) of protoconcepts of K forms a contextual dBa
(Theorem 7(1)), and for any model M := (P(K), v), v is a valuation according to
Definition 10, Theorem 26 gives us the soundness of CDBL with respect to the above
semantics. In other words, if a sequent is provable in CDBL then it is valid in the class
K.

For the completeness result, we make use of the (Representation) Corollary 1 for
contextual dBas and the fact that the Lindenbaum-Tarski algebra £(§) is a contextual
dBa (Theorem 28). From these it follows that 2 : §/ =-— PB(K(L(F))) defined as
h([a]) := (Fla, Ija)) forall [¢] € §/ =+, is an embedding. Recall the canonical map
vo : § = §/ = defined in Sect. 5. The composition v; := & o v is then a valuation,
which implies that MI(L(F)) := (CBK(L(F))), v1) is a model for CDBL.

Theorem 34 (Completeness) If a sequent « = B is valid in IC then o = B is provable
in CDBL.

Proof If possible, suppose « = B is not provable in CDBL. By Proposition 27, [«] Z
[B]. By Proposition 3(3), either [«] M [«] Zn [B] T [B] or [e] U [@] Zy [B] U [B].
Then there exists a prime filter Fj in £(§) (a Boolean algebra by Proposition 3) such
that [¢] M [a] € Fy and [B] M [B] ¢ Fp. By Lemma 2, there exists a filter F in L(F)
such that F N L(F)n = Fo and as Fp is prime, F € F,(L(F)). As [a] N [a] € Fo,
[a] M [e] € F and [BIN[B] ¢ F, because [B1 M [B] ¢ Fo and [B]1 M [B] € L(E)n.
So [a] € F,as [e] M [a] T [a], and [B] ¢ F, otherwise [B] M [B] € F. This gives
F € Flgyand F' ¢ Fig), whence F[O,]gF[ﬁ].

In case [a] U [] Zn [B]U[B], we can dually show that there exists 1 € Z,(L(3))
such that [«] ¢ I and [B] € I giving [;5Z1}q).

So v (o) = (F[a], I[a])Z(F[ﬁ]v I[/g]) = Ul(ﬂ), which implies that o + ﬂ is not
true in the model MI(L(F))—a contradiction. ]

@ Springer



Kripke Contexts, Double Boolean Algebras with Operators... 143

In case of MCDBL and MCDBL4, instead of a context K := (G, M, I), we
consider a Kripke context KC := ((G, R), (M, S), I) based on K := (G, M, I). A
valuation v : §1 — B (K) extends the one for CDBL with the following definitions for
the modal operators: v(Ua) := fr(v(e)) and v(Ba) := fs(v(a)). Let us denote the
class of all Kripke contexts by KCC and that of all reflexive and transitive Kripke contexts
by KCrr. Models, satisfaction of sequents is as for CDBL. Then it is straightforward
to show that MCDBL and MCDBL4 are sound with respect to the classes XC and
KC gt respectively.

Note that by Theorem 31, for MCDBL the Lindenbaum-Tarski algebra Ly (1)
is a contextual dBao, while for MCDBLA, it is a topological contextual dBa. The
completeness of MCDBL with respect to the class [CC is then proved in a similar
manner as Theorem 34, the representation result given by Theorem 20(2) being used.
In case of MCDBLA4, as a consequence of Theorem 22, KC(Lx(F1)) is a reflexive
and transitive Kripke context. Using the (Representation) Theorem 23(1), one gets
completeness of MCDBL4 with respect to the class KCgr.

6 Conclusions

In a pioneering work unifying FCA and rough set theory, Diintsch and Gediga (2002),
Yao (2004) proposed object oriented and property oriented concepts of a context. For
a context K := (G, M, I), its complement is the context K° := (G, M, —R), where
—R := G x M\R. It has been shown that the lattice of concepts of K is dually
isomorphic (isomorphic) to that of object oriented (property oriented) concepts of K¢.
In the line of Wille’s work, negation was introduced into the study and object oriented
semiconcepts and protoconcepts of a context were proposed in Howlader and Banerjee
(2018), Howlader and Banerjee (2020a). It was observed that (A, B) is a protoconcept
of K, if and only if (A, B) is an object oriented protoconcept of K¢. The same holds
for semiconcepts of a context. For a context KK, object oriented protoconcepts form a
dBa, while object oriented semiconcepts form a pure dBa. The entire study presented
here may also be done in terms of object oriented semiconcepts and protoconcepts. In
particular, one may derive representation results for the algebras introduced here, with
the help of corresponding algebras of object oriented semiconcepts and protoconcepts.

A complete Vormbrock and Wille (2005) dBa D is one for which the Boolean
algebras D and D, are complete. Vormbrock and Wille (2005) have shown that any
complete fully contextual (pure) dBa D for which D and D, are atomic, is isomorphic
to the algebra of protoconcepts (semiconcepts) of some context. This result gives rise
to the question of such a characterisation in case of a complete fully contextual dBao D
for which D and D, are atomic. It appears that, using Vormbrock and Wille’s results
and the representation results obtained here for dBaos in terms of the full complex
algebra of protoconcepts, one should be able to obtain the desired characterisation.

Another direction of investigation one may pursue, is the duality between the class
of all Kripke contexts and that of all dBaos. We have shown in this work that a dBao O
induces a Kripke context KC(£), and on the other hand, a Kripke context KC induces
a dBao P (KC). A natural question then would be: is KC(P™* (KC)) isomorphic to
KC?
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Topological representation results for algebras are well-studied in literature. This
would serve as yet another immediate point of investigation for the algebras discussed
in this work.

Logics corresponding to dBas, pure dBas and their extensions with operators as
defined here, remain an open question. The logic MCDBL4 for topological contex-
tual dBas is obtained as a special case of MCDBLX, where ¥ is any set of sequents
in MCDBL. This gives a scheme of obtaining several other logics that may express
properties of dBaos and corresponding classes of Kripke contexts besides the ones
considered here. For topological contextual dBas and correspondingly, reflexive and
transitive Kripke contexts, MCDBL4 with X containing the modal axioms for reflex-
ivity and transitivity, serves the purpose. One may well include other axioms (such as
symmetry) in X, and investigate the resulting modal systems.
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Appendix A: Proofs

Proof in Theorem 16, that (D, N, U, =, T, L) is a Boolean algebra: Let © be a dBao
such that for all@ € D, —a =.a and =—a = a. Let x, y € D such that x C y and
y £ x. By Proposition 4(4), x mx = ymyand x Ux = y U y. Using Proposition
5(3), =—x = ——y and so x = y. Therefore (D, C) is a partially ordered set. From
Definition 2(2a and 2b) it follows that M, U is commutative, while Definition 2(3a
and 3b) gives that 11, Ul is associative. Using Definition 2(5a) and Proposition 5(3),
xNxUy) =xnx = —-—x.SoxMN(xUy) = x. Again using Definition 2(5b)
and Proposition 5(3), x U (x M y) = x. Therefore (D, N, u, —, T, L) is a bounded
complemented lattice. To show it is a distributive lattice, we show that for all x, y, € D
xMy=xAyandx Vy=xUy.Restof the proof follows from Definition 2(6a and
6b).

Let x,y € D. Then x, y © x U y. Proposition 5(2) gives =(x U y) & —x, —y.
Therefore by Proposition 4(6), =(x Uy)M—y E —xM—yand ~(x Uy)M—(x LU y) &
—(xUy)m—y.So—~(xUy)n—(xUy) C —xm—y. By Proposition 5(1), ~(x Ly) C
—xM—y, and by Proposition 5(2), =(—xm—y) E —=—=(xUy) = (xUy)N(xUy) C xUy.
Hence x vy C xUy. Using Proposition 4(5) and Proposition 5(2), —xM—y E —x, —y.
So =—x € —=(—x M —y) and =—y T —(—x M —y). Therefore x & —(—x M —y) =
xVyand y E —(—x M —y) = x V y. Proposition 4(6) gives x LIy & x V y, as
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xVvyyuxvy =suxvVvy)=——-(xVy)=xVy.SoxuUy=xVy. Dually we
canshow thatx My = x A y.

Proof of Theorem 25 2a. 2 @np)nyF(@np) anfrpB3a
(R4) (@np)yny kB (@np)nytvy3a
da@np)ny - (@npny)n@np)ny) (@np)ny)n(@np)ny) - pny (R6)
(@np)yny k- pny (R4 -@
Now,
2a (@np)nytanp anptaa
(anp)nyt o (R4) (e pB)ny t Bny (from (I) above)

da@np)yny = ((@np)ny)n((@np)ny) (@np)ny)n@np)ny)-an(Bny) (R6)

(@np)ynytan(Bny) (R4)
Similarly we can show thata M (B y) F (@ g) M y.

3a. 2a (@nNa)NBranae anNataa
(RY) (@na)nBlra (ana)ynpt p3a
da(@na)NBrE((@nae)np)n((ena)np) (ena)ynp)n((@na)np)anp (R6)

(@na)npranp (R4)
2a (@npP)Fa (@np)ba22a

daanpt(@np)n@np) (@np)n(@np)ana (R6)
(RY)anprana anptp3a
daan B (@np)n(enp) (@np)n(@np) - (@na)n B (R6)
anpt(@na)np (R4)

5a. 2aan(@up)Fa an(eup)a2a
4aan(@up)F(@n(@up)n@n(eup)) (en(eup))n(en(eup))-ana (R6)

af(eUp)Fana (R4)
6a. Proof is identical to that of 5a. O
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