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Abstract
Traditional explanations for the presence of ambiguous words in natural language
have focused on the cost of added complexity that would accompany unambiguous
languages. In these theories, ambiguity arises because it represents the optimal trade-
off between the informational benefits from precision and the costs for rich languages.
In this paper, we suggest that ambiguity remains an inevitable feature of learning
languages even without complexity costs. We show that ambiguous words occur more
frequently and will therefore be learned more readily, thus triggering more semantic
activations between senses of the ambiguous word. We illustrate this through a game-
theoretical example.

Keywords Ambiguity advantage · Meaning activation · Signaling game ·
Reinforcement learning · Communication context

1 Introduction

Languages regularly feature words that have more than one interpretation, that is,
lexical ambiguity. One type of lexical ambiguity called homonymy features words
with radically distinctive meanings. For example, the word “mole” in English can be
used to refer to “a dark spot on the skin,” to “a burrowing mammal,” or to “a spy.” The
meanings are sufficiently distinct that there are rarely ambiguities in usage. Another
type of ambiguity, polysemy, involves lexical senses that are more or less related to
each other. For example, the word “mouth” can mean “the organ of the body” or “the
entrance of a cave”, where these meanings are not contradictory in nature.1

Polysemy can be further divided into two types: metaphor and metonymy (see
Apresjan 1974). In metaphorical polysemy, a relation of analogy is assumed to hold
between senses, with the basic sense being literal and the secondary sense figurative.

1 See Weinreich (1964), Cruse (1986) for a discussion of the different types of ambiguity.
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In the “mouth” example, the basic sense is “the organ of the body” and the figurative
sense is “the entrance of a cave”. In metonymic polysemy, both the basic and the
secondary senses are literal. For example, the ambiguous word “rabbit” has the literal
basic sense referring to “the animal”, and the literal secondary sense of “themeat of that
animal” (see Apresjan 1974). Therefore, according toApresjan (1974), Klepousniotou
and Baum (2007), Grindrod et al. (2014), there is no clearcut distinction between
homonymy and polysemy, rather it seems amatter of continuum from pure homonymy
to pure polysemy (metonymic polysemy). In contrast,metaphorical polysemy seems to
lie somewhere in the middle of the two. In this paper, we use the concept of ambiguity
in a broad way that covers both homonymous and polysemous ambiguity.

While not catastrophic, the presence of polysemy (and perhaps even homonymy)
seems, at first glance, suboptimal.2 Ambiguity of this form runs the risk of miscom-
munication: one might assume a speaker intends one meaning when they really intend
another. We have not run out of possible words, so why not invent a new word for one
of the many meanings of “mouth,” “rabbit,” or even “mole”? New words are invented
regularly and meanings change, but why does ambiguity persist?

There are essentially two explanations. One suggests that when we expand our
focus to include plausible constraints on language, ambiguity is an optimal solution
to a difficult problem. The most common explanation is that the size of the lexicon is
costly in some way (Jäger 2007; O’Connor 2014a, b; Santana 2014). Languages with
morewords entail some cost for the speaker or listener. Language, therefore, optimizes
the balance of the benefits of precision with the costs of lexicon size. This argument
suggests that, at a very general level, language will have ambiguity.

The second explanatory strategy suggests that ambiguity is not an optimal feature
of language but is rather a result of constraints imposed by human psychology. In
the domains of psycholinguistics and neurolinguistics, substantial research has been
devoted to understanding the cognitive basis for using ambiguouswords. The so-called
“ambiguity advantage” appears to be a consistent effect, with ambiguous words rec-
ognized faster than unambiguous ones in a lexical decision task (see in Rubenstein et
al. 1970; Kawamoto et al. 1994; Hino and Lupker 1996; Haro et al. 2017; Klepous-
niotou and Baum 2007). More specifically, empirical studies show that ambiguous
words with more closely-related senses present more advantages because these words
create greater semantic-to-orthography feedback (see Balota et al. 1991; McClelland
and Rumelhart 1981; Klepousniotou and Baum 2007).

While these two levels of explanation are not directly contradictory, they seem to
push in different directions. The general evolutionary explanation points to the impor-
tance of lexicon size constraints as making ambiguity optimal, while the more specific
psychological explanation tends to point to structural features of human psychology
that yield ambiguity even if not optimal. Of course, both may be correct in that the
ambiguity in language is over-determined.

In this paper, we offer a constraint-based explanation (akin to the psychological
literature) that is nonetheless general (akin to the evolutionary explanations). Our
argument stems from a very general fact about learning in communicative contexts. As

2 Wasow, Perfors, and Beaver provide a number of arguments for why this presents a critical problem for
the understanding of language (Wasow et al. 2005).
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Ambiguity Advantage Under Meaning Activation 101

in the psychological literature, we argue that ambiguous terms havewider applicability
and are therefore used more frequently, triggering more semantic activation between
multiple senses of ambiguous words. We show, however, that this feature is very
general and does not depend on any particular features of human psychology. More
importantly, our results show that even in the presence of the precise words, the more
ambiguous ones are more likely to be chosen.

We illustrate the problem of ambiguity through a technical example based on a
modified form of David Lewis’ signaling game. The signaling game has been used to
study language communication and features Skyrms (2010), Jäger (2014), Zollman
(2005). We include discussion of communication context and learning for ambiguity.
Through this model, we demonstrate that the senses-related nature of ambiguity leads
ambiguous words to have advantages even in the presence of more precise words.

The rest of the paper is organized in the following way. Section 2 reviews the
basic notions of Lewis’s signaling game, including an introduction to reinforcement
learning in signaling games. In Section 3, wemodify the signaling game for discussion
of communication context and meaning activation learning. Section 4 presents the
simulation results. The paper ends with comparisons with other studies on this topic.

2 Lewis’s Signaling and Learning

2.1 Lewis’s Signaling Game

The traditional Lewis ’s signaling game provides a baseline model to capture a rather
simple communication scenario (Lewis 1969). In this model, there is a finite set of
states. For each state, there is an action that matches with the state. There is a sender
who observes the state information and sends a signal to the receiver. Because the
receiver does not know the state information directly, they can only get information
from the sender’s signal. After receiving the signal, the receiver will take action. The
payoff of the game is decided by the matching of the state and the action. Formally,
the signaling game is defined as follows.

Definition 1 (Lewis’s signaling game)
A Lewis’s signaling game G consists of the following:

• two players: a sender S and a receiver R;
• a finite set of states indicated as T = {1, 2, . . . , n}; Nature picks a state by a prior
uniform distribution σ on T , σ is common knowledge;

• a set of signals Sig = {s1, s2, . . . , sm};
• a set of acts A = {a1, a2, . . . , an};
• the sender’s action is si ∈ Sig; the receiver’s action is ai ∈ A;
• the payoff isUS(i, a j ) = UR(i, a j ) =

∑

i∈T
σR(i | su)u(i, a j ), i ∈ T , a j ∈ A, su ∈

Sig, in which
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u(i, a j ) =
{
1, if i = j;
0, otherwise.

We use σR(i | su) to represent the receiver’s conditional belief about the state after
receiving the signal. Players share the same payoff. Thus, throughout the paper, we
omit the subscript for utility.

In Game Theory (Osborne and Rubinstein 1994), Nash equilibrium is a profile of
players’ strategies such that no player can gain more benefits by only changing their
own strategy. There are three types of equilibria in the signaling game: separating equi-
librium, pooling equilibrium and partial pooling equilibrium. The following examples
illustrate these concepts.

Example 1 The simplest Lewis’s signaling game consists of two states: {1, 2}, two
signals {s1, s2} and two acts {a1, a2}.
An instance of “separating equilibrium” in this game has the following pattern

1 s1 a1

2 s2 a2

When state 1 occurs, the sender sends s1. By receiving s1, the receiver takes a1.
Similarly, when state 2 occurs, the sender sends s2. Under this equilibrium, all the
information about the states is communicated successfully between sender and receiver
and the players receive the highest payoff.

The signaling system here allows the sender to partition the state space into one of
two singleton partition sets {1‖2}. Elements in this partition can be read as the possible
meanings of signals. In this example, the descriptive meaning of s1 is state 1 and the
meaning of s2 is state 2.

Meanwhile, the game has a “pooling equilibrium”. The following is the pooling
equilibrium of this example.

1 s1 a1

2 s2 a2

In this equilibrium, the sender always sends the same signal and the receiver takes
the same action by ignoring the signal. As a result, the information is not fully com-
municated. Pooling equilibria of this kind feature ambiguity because s1 means both
state 1 and state 2. Furthermore, these equilibria are Nash equilibria and are therefore
stable in a certain sense. Neither the sender nor the receiver can unilaterally improve
their situation by switching their strategies. Some variations on pooling equilibria are
also the result of individual learning or cultural evolution (Huttegger and Zollman
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Ambiguity Advantage Under Meaning Activation 103

2011; Huttegger et al. 2010). Seen as a partition on the state space, this equilibrium
only allows the sender to say that one of the states is obtained and the state is in the
set: {1, 2}.

Example 2 shows an instance of partial pooling equilibrium when there are more
than two states and two acts.

Example 2 Consider a signaling game with three states: {1, 2, 3}, three signals
{s1, s2, s3} and three acts {a1, a2, a3}.

The following partial pooling equilibrium is possible for this example.

1 s1 a1

2 s2 a2

3 s3 a3

In this equilibrium, signal s1 is ambiguous between states 1 and 2. s2 and s3 are
synonymous for state 3. The partition for this signaling pattern is {1, 2‖3} representing
that s1 means either state 1 or state 2 while s2 or s3 carries the meaning of state 3.

Finally, when there are fewer signals than states, ambiguity is unavoidable. For
example, if there are three states but only two signals {s1, s2} in Example 2, then one
possible equilibrium could be the following.

1 s1 a1

2 a2

3 s2 a2

In this equilibrium the states are partitioned in the same way as in the previous
example: {1, 2‖3}. However, the cause of this outcome differs. In this case it is because
the structure of the game prevents any further precision.

2.2 Learning in Signaling Game

Reinforcement learning in the signaling game has been used to study linguistic features
including ambiguity (Skyrms 2010; Franke 2015; Santana 2014). The basic idea is the
following: if the language feature in question gains more fitness (formally represented
by payoff in the game) than the average of all the alternative features through the
learning process, then this feature has the evolutionary advantage over the others.
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Reinforcement learning can be described by a simple urn model with two colored
balls. In each round, a ball is drawn from the urn randomly. Then, that ball and another
same-colored ball are returned to the urn.As a result, the probability of the ballwith that
same color being drawn on the next occasion increases. When reinforcement learning
is applied in the signaling game, players’ strategies can be imagined as drawing colored
balls from urns of signals and acts.

Reinforcement learning is a repeated play of the signaling game. The learning
process can be defined by an updating rule and a response rule. For each signal si ,
we assign a number wi to represent its fitness and this number updates recursively
depending on how si worked in the previous round of play. Given any signaling game
defined as in Definition 1, the updating rule for the fitness of a particular signal si is
defined as follows.

Definition 2 Given a Lewis’s signaling game G, and any signal s j , the fitness w j of
s j in the reinforcement learning follows this updating rule.

w j (0) = 1;
w j (t + 1) =

{
w j (t) +U if U = ∑

i∈T σR(i | s j )u(i, a j ) > 0
w j (t), otherwise.

The response rule q j (t) for any signal s j is defined as:

q j (t) = w j (t)∑
sv∈Sig wv(t)

The reinforcement learning rules for the receiver’s actions can be defined in a similar
way as in Definition 2.

The intuition behind these rules is that the signal that has more successful commu-
nication obtains more fitness. Then this signal is more likely to be used in the next
round of the game.

For the purpose of this paper, we focus on the feature of ambiguity under meaning
activation with communication context. Therefore, we need to modify both the basic
signaling game model and the learning rules.

3 Signaling Gamewith Context andMeaning Activation

3.1 Signaling Gamewith Context

Communication context plays a critical role in language communication. At the same
time, communication context shapes the features of language. Therefore, a signaling
game with context is an important application of Lewis’s signaling game. Signaling
games with context have been well described in the literature (Santana 2014; Brochha-
gen 2020; Tang 2020).

To simplify the discussion, we fix the meaning of the signals in the form of a
partition on the set of the states. Then we compare the partitions with respect to their
ambiguity.

Considering these two factors, we redefine Lewis’s signaling game as follows.
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Ambiguity Advantage Under Meaning Activation 105

Definition 3 A Lewis’s signaling game with context GC consists of the following:

• two players: a sender S and a receiver R;
• a finite set of states indicated as T = {1, 2, . . . , n}; Nature picks a state by a prior
uniform distribution σ on T , σ is common knowledge;

• C is a partition on T representing the communication context. It is commonly
known;

• a given set of partitionsP = {P1, P2, . . . , Pv} on the state T representingmeaning
partitions. For each Pi ∈ P and any element of the partition, there is a correspond-
ing signal sij carrying themeaning of the states within that element.We use sij ∈ Pi
to indicate the signals defined for this partition;

• a set of acts A = {a1, a2, . . . , an};
• the sender’s action is sv

u ∈ Pv, Pv ∈ P; the receiver’s action is ai ∈ A;

• the payoff is US(i, a j ) = UR(i, a j ) =
∑

i∈T
σR(i | sv

u ,C)u(i, a j ), i ∈ T , a j ∈
A, sv

u ∈ Pv and Pv ∈ P , in which

u(i, a j ) =
{
1, if i = j;
0, otherwise.

σR(i | sv
u ,C) represents the receiver’s conditional belief of the state based on both

the signal and the context C . The game is played in the following way. The sender
observes the state and sends a message to the receiver. After receiving the message,
the receiver combines the information from both the signal and the context, then takes
an action. We use the following example to illustrate this.

Example 3 Consider a signaling game with the set of states {1, 2, 3, 4}, and the set of
the signals {s1, s2}with themeaning given by P : {1‖234}. The context isC : {12‖34}.
The action set is {a1, a2, a3, a4}.

Supposing state 2 is the true state, and the sender sends the signal s2. After receiving
s2 with the meaning {2, 3, 4} and the contextual information {1, 2}, the receiver knows
that state 2 is the true state and a2 is the right action.

We use multiple meaning partitions Pi with different degrees of ambiguity to study
the ambiguity advantage. For example, given the set of states {1, 2, 3, 4}, the meaning
partition P1 : {1‖2‖3‖4} is the least ambiguous and P2 : {1234} is themost ambiguous.
The ambiguity of P3 : {1‖234} lies midway between the other two. The learning
process we consider is to select the meaning partitions instead of single signals.

3.2 Learning with Meaning Activation

Following discussions in psycholinguistics and linguistics (Cruse 1986; Klepous-
niotou et al. 2012; Apresjan 1974), lexical ambiguity can be divided into homonymy
and polysemy. Polysemy can be further categorized into metaphor and metonymy.
Homonymy means that the ambiguous word has radically distinctive meanings, as for
the word “bank”. In contrast, polysemy involves lexical senses that are more or less
related to each other.

123



106 L. Tang

Moreover, in metaphorical polysemy, a relation of analogy is assumed to hold
between senses, of which the basic sense is literal “mouth” and the figurative sense
“the entrance of a cave”. In metonymic polysemy, both the basic and the secondary
senses are literal. For example, “rabbit” has the literal basic sense referring to “the
animal”, and the literal secondary sense of “the meat of that animal”( see in Apresjan
1974).

Hence, by considering the relations between different senses of the ambiguous
words, the types of ambiguity can be defined. Psycholinguistic literature (Klepous-
niotou et al. 2012; Haro et al. 2017; Klepousniotou and Baum 2007; Klepousniotou
2002), suggests that an ambiguity advantage is observed in lexical decision tasks.
The sense-relatedness and meaning activation trigger the ambiguity advantage, which
results in shorter processing time in lexical decision experiments. Thus, the more
the senses are related, the greater the ambiguity advantage is observed. Therefore,
polysemy is shown to have a greater ambiguity advantage than homonymy, and
metonymically polysemouswords show a greater ambiguity advantage thanmetaphor-
ically polysemous words.

Following the sense-relatedness and meaning activation in ambiguous words, we
modify the current learning rule in the signaling game to the one accommodating the
sense-relatedness and meaning activation for ambiguous words.

First, for an ambiguous signal su , we specify the senses of the signal and the relat-
edness between them. For instance, suppose su represents the state meaning {1, 2, 3}.
Hence su has three senses indicated as su1, su2, su3 for state 1,2 and 3 respectively. At
the same time, the relatedness between su1, su2, su3 depends on the distance between
the senses. It is natural to define the distance for the senses from the distance of the
state space and the similarity between the states.3

Definition 4 (Distance) Given a set of states T = {1, 2, . . . , n}, the distance of states
i and j indicated as Di j is defined as Di j =| i − j |. For any ambiguous signal su
with the senses su1, . . . , suv carries the state meaning ‖su j‖ ∈ T ,4 the distance Dsu

i j

between any two senses sui and su j is defined as Dsu
i j =| ‖sui‖ − ‖su j‖ |.

In Example 3, the ambigious signal s2 has three meanings {2, 3, 4} indicated as
s21, s22, s23. Namely, ‖s21‖ = 2,‖s22‖ = 3 and ‖s23‖ = 4. Thus Ds2

12 = 1. Ds2
13 = 2.

Following the assumption in O’Connor (2014b), we assume that the meaning acti-
vation decreases as the distance between the senses increases. Applying the distance
between senses, we can define the new reinforcement learning rules.

Definition 5 (Reinforcement learning under meaning activation) Given a Lewis’s
signaling game with context GC , any meaning partition Pi ∈ P , any signal s j ∈ Pi
with senses {s j1, . . . , s ji , . . . , s jv}, the fitnessw j i of s ji in the reinforcement learning
under meaning activation follows the following updating rule.

• w j i (0) = 1;

3 A similar idea appeared in Jäger (2007).
4 We use ‖si j‖ to indicate the corresponding state in T represented by one sense of ambiguous signal si .
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•

w j i (t + 1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w j i (t) +U if U = ∑
‖s ji ‖∈T σR(‖s ji‖ | s j )u(‖s ji‖, a j ) > 0;

w j i (t) +U ∗ γ ∗ 1

D
s j
ik

if U = ∑
‖s jk‖∈T σR(‖s jk‖ | s j )u(‖s jk‖, a j ) > 0,

in which D
sj
ik ≤ d.

w j i (t), otherwise.

• w j (t + 1) = ∑
w j i (t + 1), w j is the fitness of s j ;

• wPi (t + 1) = ∑
s j∈Pi w j (t + 1).

The response rule p(t) for any meaning partition Pi is defined as:

pPi (t) = wPi (t)∑
Pi∈P wPj (t)

According to the updating rule, the fitness of a sense s ji of an ambiguous signal s j
comes from two sources. One is from when the actual state is the meaning state of s ji ,
namely, ‖s ji‖ and the communication is successful. The other is from the successful
communication of its neighboring sense s jk within a certain distance given by d. γ

indicates the weight ratio between the neighboring sense and the actual sense. If the
actual sense gets the weight U , then the neighboring sense gets the weight U ∗ γ .
We assume γ ∈ [0, 1] in this paper. When γ = 1, then the neighboring sense gets
the same weight as the actual state. Moreover, we assume that the further the distance
between the senses, the less meaning activation is triggered. Therefore, the fitness for
neighboring sense is multiplied by 1

Dik
.

The response rule is defined on partitions instead of signals. As previously dis-
cussed, we compare partitions with different ambiguities rather than between signals.
The signal containing more senses is considered more ambiguous. Among the parti-
tions defined on the same set of states, the one that includes fewer signals is considered
more ambiguous. For example, the meaning partition P1 : {1‖2‖3‖4} is the least
ambiguous one and P2 : {1234} is themost ambiguous. The ambiguity of P3 : {12‖34}
lies somewhere in the middle.

4 Simulation Results

In this section, we show the simulation results for ambiguity advantages using the
following example with various parameter values.

Example 4 Given a signaling gamewith four states {1, 2, 3, 4} occurringwith the same
probability, we considered three meaning partitions P1, P2, P3 with different degrees
of ambiguous signals as follows.

P1 : 1‖2‖3‖4 P2 : 12‖34 P3 : 1234
s11‖s12‖s13‖s14 s211s

2
12‖s221s222 s311s

3
12s

3
13s

3
14

Thus, P1 is most precise, P3 is most ambiguous and P2 sits in the middle.
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(a)One trial (b) 100 trials

Fig. 1 (γ = 0)

4.1 Reinforcement LearningWithout Meaning Activation

First, for comparison, we considered the situation when the meaning activation is not
included in the reinforcement learning, namely, γ = 0.

A simulation was conducted for 100 trials and in each trial the learning repeated
for 100 iterations. The result is shown in Fig 1.

The left graph in Fig 1 shows the typical trajectory of evolution in one trial, where
P1 quickly dominates P2 and P3. In the right graph in Fig 1, we list the number of
trials from 100 trials when each Pi is optimal at the end of 100 iterations. It shows
that P1(100) is almost 100% optimal.

When the meaning activation between the senses of an ambiguous signal was not
considered, ambiguous signals were inferior to the precise signals. Therefore, ambigu-
ous advantage was not observed.

4.2 Reinforcement Learning with Meaning Activation

We considered three situations of reinforcement learning with meaning activation in
Example 4:

(1) : γ = 0.5 and d = 1; (2) : γ = 1 and d = 1;(3) : γ = 1 and d = 2.
The same simulation (100 iterations in each trial with 100 trials) was performed

under the learning rules with meaning activation. The result is the following.
As in Fig. 2, with meaning activation, the more ambiguous partitions (P2 and P3)

started to dominate P1 compared with the learning without meaning activation. The
higher the activation ratio between the senses, the more ambiguous advantages were
observed. For instance, when γ = 0.5, P3 (most ambiguous) hardly dominated. When
γ increased to 1, P3 happened to dominate and P2 hasmore chances to dominatewithin
the 100 trials.

We also tested the effects of distance range d on the simulation results. When d
increases, there was a wider meaning activation between the senses of ambiguous
signals. Comparing (f) and (h) in Fig. 2, it shows that ambiguous advantage becomes
more obvious when the range under consideration is increased.
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(γ = 0.5, d = 1) (γ = 0.5, d = 1) (γ = 0.5, d = 1)

(γ = 1, d = 1) (γ = 1, d = 1) (γ = 1, d = 1)

(γ = 1, d = 2)

(a) One trial (b) One trial (c) 100 trials

(d) One trial (e) One trial (f) 100 trials

(g) One trial (h) 100 trials
(γ = 1, d = 2)

Fig. 2 Learning with meaning activation

4.3 Reinforcement Learning with Meaning Activation in Context

The last simulation considered the effect of communication context. As in the litera-
ture (Santana 2014; Brochhagen 2020; Tang 2020), context was expected to enhance
the ambiguity advantage. Intuitively, the receiver in our signaling game combined
the information from both the signals and the communication context (as defined in
Definition 3). As a result, the ambiguous signals can express the same information as
the precise signals under some communication contexts. Meanwhile, the ambiguity
advantage is enhanced under learning with meaning activation. We show this result
through the following simulation.

Consider a signaling game in Example 4 with the context C as follows:

C : 1‖234
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(γ = 0.5, d = 1) (γ = 1, d = 1)
(a)100 trials (b)100 trials (c)100 trials

(γ = 1, d = 2)

Fig. 3 Example 4 with Context

Applying the signaling game with context under learning with meaning activation,
we undertook similar simulation for 100 trials, each trial with 100 iterations. We
observed that the most ambiguous partition P3 dominated the others more frequently
as γ increased (as in Fig. 3), which means that in the communication context, the
ambiguity advantage is enhanced because the imprecise signal can express precise
information with the help of the context. At the same time, the meaning activation
between senses of an ambiguous signal and the wider distance under consideration
boost this advantage.

5 Comparison and Conclusion

Many studies have discussed ambiguity advantages using the signaling game. Here,
we emphasize the similarity and differences between the current study and existing
work.

Santana (2014) considers that communication is often ambiguous because signals
take advantage of context sensitivity. Incorporating context and a signal cost into
the Lewis-style signaling game leads to the predicted outcome of evolution favoring
ambiguous signaling. In our model we accept the assumption of context but not the
signal cost. Instead, we use the meaning activation for the ambiguous signals in the
learning mechanism. Compared with precise signals, the disadvantage of ambiguity
being imprecise can be compensated for by the context. Meanwhile, the meaning
activation leads the ambiguous signals to gain more advantage.

Brochhagen (2020) and Tang (2020) focus on changes in communication con-
text and ambiguity under context. The interlocutors are assumed to have different
contextual beliefs at the beginning of communication and to update their beliefs
through the process of communication. At the same time, the advantage of ambi-
guity is explored through consideration of context. Within Lewis’s signaling game
with context, the highest payoff the ambiguous signal can achieve is the same as the
precise signals. Hence, ambiguity is favored only when complexity costs of precise
signals are assumed. Themain difference between the work described in this paper and
previous models is that without assuming signal costs, we argue that the ambiguous
advantage comes from the very nature of ambiguity. Ambiguous signals have multiple
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senses and there are meaning activations between senses during learning and when
using ambiguous signals. As a result, evolution favors ambiguity.

We applied modified reinforcement learning in our model. We assumed that when
one sense of the ambiguous signal gets reinforced, its neighboring senses within the
same ambiguous signal can also be reinforced to some extent. A similar idea appears in
O’Connor’s discussion on vagueness O’Connor (2014b). However, O’Connor’s work
focuses on the boundary uncertainty between different signals rather than ambiguity,
and there is no discussion about context in that work.

In conclusion, we offer a constraint-based explanation (akin to the psychological
literature) that is nonetheless general (akin to the evolutionary explanations).We argue
that ambiguity is not an optimal feature of language but is rather a result of constraints
imposed by human psychology. Through a signaling game with context and modified
reinforcement learning, we showed that the ambiguous signals gain more advantage
even in the presence of precise signals.
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