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Abstract
In the first half of this paper, we present a fragment of relational syllogisms named
RELSYLL consisting of quantified statements with a special set of numerical quanti-
fiers, and introduce a number of concepts that are useful for the later sections, including
indirect reduction, quantifier transformations and equivalence of syllogisms. After
determining the valid and invalid syllogisms in RELSYLL, we then introduce two
Derivation Methods which can be used to derive valid relational syllogisms based
on known valid simple syllogisms. We also show that the two Methods are sound
and complete for RELSYLL. In the second half of this paper, we discuss ways to
extend the Derivation Methods, including the use of more valid syllogisms and the
use of existential assumptions. In this way, we are able to derive more relational syl-
logisms that contain other types of non-classical quantifiers, including “only” and
proportional quantifiers. Finally, we state and prove a proposition concerning the rela-
tionship between the two Methods.

Keywords Relational syllogisms · Simple syllogisms · Numerical quantifiers ·
Proportional quantifiers · Existential assumptions

1 Introduction

Syllogisms constitute an important topic in classical logic and in some modern dis-
ciplines such as natural language reasoning and cognitive psychology. Among the
various types of syllogisms that have been studied, relational syllogisms are a chal-
lenging topic because they contain n-ary predicates (where n > 1) in the premises
and/or conclusion which make the sentence structure more complicated (e.g. with
object, oblique argument and relative clause), as opposed to simple syllogisms, whose
premises and conclusion contain only unary predicates. Given the difficulty, it is not
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surprising that the studies on relational syllogisms have been focused on those with
the classical quantifiers, and there are few studies of relational syllogisms with other
quantifiers, such as numerical and proportional quantifiers.

This paper introduces two new Derivation Methods for deriving relational syllo-
gisms. Under the new Methods, we do not derive relational syllogisms directly from
axioms and/or inference rules as was done in Ivanov and Vakarelov (2012), Keene
(1969),Moss (2010, 2011), Pratt-Hartmann (2013), Pratt-Hartmann andMoss (2009),
to name just a few. Instead, we use known valid simple syllogisms as a starting point
and derive valid relational syllogisms by applying certain validity-preserving oper-
ations on these simple syllogisms. In this way, we can guarantee that the Methods
are sound, i.e. the relational syllogisms derived by applying the Methods are valid
provided that the simple syllogisms we start with are valid.

Given the great variety of relational syllogisms in terms of the format as well as
the types of quantifiers and predicates that they may contain, it is hard to determine
the completeness of the Methods, i.e. whether all valid relational syllogisms can be
derived by the Methods. For this reason, we will only prove the completeness of the
Methods for a fragment of relational syllogisms consisting of quantified statements
with the numerical quantifiers studied by Murphree (1991, 1993, 1997, 1998), which
is named RELSYLL. This fragment is restrictive in terms of the format of the premises
and conclusion in each syllogism, just like the classical syllogisms. However, we will
discuss how the Methods can be used to derive a much larger set of valid relational
syllogisms, while leaving the discussion of the completeness of the Methods for this
larger set, or a subset of it, to future studies.

The paper is organized as follows. In the first half of the paper, we will first intro-
duce some basic notions and notation for predicates, quantifiers, individual terms,
syllogisms and the fragment RELSYLL, as well as a number of concepts that are
useful for the later sections, including indirect reduction, quantifier transformations
and equivalence of syllogisms. After determining the valid and invalid relational syl-
logisms in RELSYLL, we will then describe the DerivationMethods in detail. We will
also prove that the Methods are sound and complete for RELSYLL. In the second half
of the paper, wewill discuss howwe can extend theMethods, including the use ofmore
valid syllogisms and the use of existential assumptions, so as to derive more relational
syllogisms that contain other types of non-classical quantifiers. Finally, we will state
and prove a proposition concerning the relationship between the two Methods before
concluding the paper.

2 Basic Notions and Notation

2.1 Predicates and Quantifiers

In this paper, we will adopt a notation for quantified statements that is based on the
Generalized Quantifier Theory (GQT) as presented in, say Keenan and Westerståhl
(2011) and Peters and Westerståhl (2006), among many others. Under GQT, a quan-
tifier is seen as a second-order predicate with ordinary (first-order) predicate(s) as
its argument(s), and a quantified statement is made up of a quantifier plus its argu-
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Relational Syllogisms with Numerical Quantifiers and Beyond 3

ment(s). Quantifiers can be classified according to the number and type of argument(s)
required. A type 〈1〉 quantifier, represented generically as Q in this paper, requires one
unary predicate, while a type 〈1, 1〉 quantifier, commonly called “determiner” in the
GQT literature and so represented generically as D in this paper, requires two unary
predicates as its argument(s).

In this paper, we will use small-case letters in the beginning of the alphabet list, i.e.
a, b, c,…to represent unary predicates, and A, E , I andO to represent the four classical
quantifiers “every”, “no”, “some” and “not every”, respectively. These are type 〈1, 1〉
quantifiers as they require two unary predicates as arguments, which will be called
the first and the second arguments. Moreover, a type 〈1, 1〉 quantifier plus a unary
predicate in its first argument position can also be seen as a type 〈1〉 quantifier because
this structure requires only one unary predicate to make up a quantified statement.
Hence, the quantified statement Aab, meaning “Every a is a b”, can be seen as made
up of a type 〈1, 1〉 quantifier A plus two unary predicates a and b. It can also be seen
as made up of a type 〈1〉 quantifier Aa plus one unary predicate b.

When a quantified statement contains a binary predicate, which will be represented
by the small-case letter r in this paper, the situation is a bit more complicated. In
the GQT literature, type 〈1〉 quantifiers can be seen as “arity reducers” which, when
combinedwith an n-ary predicate, will reduce that predicate to an n−1-ary predicate1.
In this paper, we stipulate that when a binary predicate r combines with a type 〈1〉
quantifier Q, r always appear on the right of Q, i.e. we always have Qr and never r Q.
Hence, when the type 〈1〉 quantifier I a combines with the binary predicate r , we have
I ar , which is a unary predicate, and the quantified statement Ab(I ar) can be seen as
made up of a type 〈1, 1〉 quantifier A plus two unary predicates b and I ar .

We also stipulate that Qr should be interpreted in a way such that Q acts as the
“subject” of r semantically. Formally, we have Qr = {y : Q({x : (x,y) ∈ r}) = 1}2.
Hence, Aar means “that which every a r it”. A statement with an “object” (as well
as a “subject”) of r like “Some b is such that every a r it” will be represented under
this notation by I b(Aar), while a statement with a headless relative clause like “All
that every a r is a b” is represented by A(Aar)b. Moreover, a statement with both a
headless relative clause and an object of a binary predicate like “All that every a r1 is
such that some b r2 it” can be represented by A(Aar1)(I br2).

In case we wish to express a unary predicate in which Q acts as the “object” of r
semantically, we may use the converse3 of r , represented by r−1. Formally, we have
Qr−1 = {y : Q({x : (x,y) ∈ r−1}) = 1} = {x : Q({y : (x,y) ∈ r}) = 1}. If
r is interpreted as a transitive verb, then r−1 can be interpreted as the passive form
meaning “be r -ed by”. Hence, Aar−1 means “that which every a is r -ed by it”, or
equivalently, “that which r every a”, where “every a” acts as the “object” of r , and
I b(Aar−1) means “Some b (is such that it) r every a”. Of course, since r−1 is an
arbitrary variable for binary predicates, we may as well write it as r , provided that

1 A quantified statement can be seen as a 0-ary predicate.
2 In this paper, we use the courier font to represent the denotation of a term as well as objects in
a model. Hence, r represents the denotation of r , i.e. a set of ordered pairs, and Q represents the logical
relation denoted by the quantifier Q.
3 For any binary predicate r , the converse of r is defined as the binary predicate denoted r−1 such that
(x,y) ∈ r−1 iff (y,x) ∈ r. Note that in this paper, we use “iff” to represent “if and only if”.
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we interpret it properly. Hence, the sentence “Some boy loves every girl”, which is
equivalent to “Some boy is such that every girl is loved by him”, can be represented
by I b(Aar), provided that we interpret b, a and r as “boy”, “girl” and “be loved by”,
respectively.

Apart from transitive verbs, binary predicates can also be used to represent other
parts of speech that require two arguments, including some relational nouns such as
“parent of”, comparative adjectives such as “taller than” and prepositions such as “in
front of”, etc. The concept of converse is also applicable to these parts of speech.
Hence, if r is interpreted as the aforesaid relational noun, comparative adjective and
preposition, then r−1 can be interpreted as “child of”, “shorter than” and “behind”,
respectively, and so a quantified statement with a binary predicate can be used to rep-
resent a great variety of natural language sentences instead of just those with transitive
verbs.

We next introduce the notation for the numerical quantifiers discussed in this paper.
These are the type 〈1, 1〉 quantifiers studied by Murphree (1991, 1993, 1997, 1998).
Under Murphree’s system, there are four types of numerical quantifiers, meaning
“at least all but n”, “at most n”, “at least n” and “at most all but n”4, where n is
an appropriate non-negative integer5. The interpretation of these quantifiers is given
below:

“At least all but n a are b” is true iff |a − b| ≤ n. (1)

“At most n a are b” is true iff |a ∩ b| ≤ n. (2)

“At least n a are b” is true iff |a ∩ b| ≥ n. (3)

“At most all but n a are b” is true iff |a − b| ≥ n. (4)

From the above interpretation, one can easily see that these four types of numerical
quantifiers are in fact extensions of the four classical quantifiers in that “every” = “at
least all but 0”, “no” = “at most 0”, “some” = “at least 1” and “not every” = “at most all
but 1”. Following Murphree’s practice, we will represent the four types of numerical
quantifiers as nA, nE , nI and nO . As for the four classical quantifiers, of course they
can be represented as 0A, 0E , 1I and 1O . But for flexibility, in this paper they will
usually be represented simply as A, E , I and O , as no confusion will arise if they are
represented in this simpler way. Hence, a statement like “Every d is such that at least
all but n a r it” is represented in this paper by Ad(nAar).

2.2 Individual Terms

In this paper, we will use letters at the end of the alphabet list, i.e. u, v, w, x , …to
represent individual terms. Under GQT, individual terms can be lifted to type 〈1〉
quantifiers (they are sometimes called “Montagovian individuals” in the GQT litera-

4 “At least all but n” is usually (and more naturally) expressed as “all but at most n”, whereas “at most all
but n” is usually (and more naturally) expressed as "at least n …not".
5 Note that the non-negative integers n and 0 in “At least all but n a are b”, “At most n a are b”, “At least
0 a are b” and “At most all but 0 a are b”, where n = the cardinality of a, are considered inappropriate,
because these integers make the statements vacuously true.
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Relational Syllogisms with Numerical Quantifiers and Beyond 5

Table 1 The four figures of
classical syllogisms Figure 1 D1cb, D2ac � D3ab

Figure 2 D1bc, D2ac � D3ab

Figure 3 D1cb, D2ca � D3ab

Figure 4 D1bc, D2ca � D3ab

ture). To highlight this point, we will use capital letters U , V , W , X , …to represent
type-lifted individual terms6. As type 〈1〉 quantifiers, individual terms can appear in
any position of a quantified statement where a general type 〈1〉 quantifier can appear.
Hence, Xa, meaning “x is an a”, can be seen as made up of a type 〈1〉 quantifier X
plus a unary predicate a, while X(I ar), meaning “x is such that some a r it”, is just
a slightly more complicated quantified statement made up of a type 〈1〉 quantifier X
plus a unary predicate I ar .

According to Zimmermann (1993), an individual term is scopeless. This special
property enables it to interchange with another type 〈1〉 quantifier in a quantified
statement with a binary predicate, provided that the binary predicate is changed to its
converse. For example, the statement Aa(Xr−1), which means “Every a r x”, can be
rewritten as X(Aar), which means “x is such that every a r it”.

Moreover, an individual term can also interchange with the negation operator ¬.
Hence, ¬Xa, which means “It is not the case that x is an a”, can be rewritten as
X¬a, which means “x is not an a”. However, an individual term cannot interchange
with a type 〈1, 1〉 quantifier. For example, in E(Xr−1)b and A(Xr−1)b, X cannot
interchange with E or A7.

Note that interchange of type 〈1〉 quantifiers is not generally allowed if the quanti-
fiers involved do not include individual terms. For example, the statement Aa(I br−1),
whichmeans “Every a r some b” cannot be rewritten as I b(Aar), whichmeans “Some
b is such that every a r it”, because the two statements have different meanings. More-
over, interchange of a type 〈1〉 quantifier with ¬ is also not generally allowed if the
quantifier that ¬ operates on is not an individual term. For example, ¬Aab, which
means “It is not the case that every a is a b”, cannot be rewritten as Aa¬b, which
means “Every a is not a b”, because the two statements have different meanings.

2.3 Syllogisms

Classical syllogisms do not include all possible inferences that involve the classical
quantifiers, but only a fragment of these inferences. This fragment is restrictive in
terms of the format of the premises and conclusion in each syllogism, and can be char-
acterized by the so-called “Figures” and “Moods” in classical logic. Table 1 provides
the format of the four Figures.

6 Formally, Xa is true iff x ∈ a.

7 In this case, we can in fact make use of the symmetry of E and the contrapositivity of A (see Zuber 2007
for the definitions of these two properties) to rewrite the statements first as Eb(Xr−1) and A¬b(X¬r−1),
respectively, and then interchange X with the type 〈1〉 quantifiers Eb and A¬b, respectively. However, we
will not discuss the symmetry / contrapositivity of quantifiers in this paper.
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The above table shows that each syllogism must consist of exactly three quantified
statements: two premises (those on the left of �)8 and one conclusion (that one on the
right of�). In the above table, D1, D2 and D3 represent type 〈1, 1〉 quantifiers (some or
all of which can be identical), while a, b and c represent three unary predicates which
are called “minor term”, “major term” and “middle term”, respectively, in classical
logic. The above table shows that in each syllogism, each of a, b and c must appear
exactly twice, with c appearing only in the premises.

By instantiating D1, D2 and D3 in Table 1 with the classical quantifiers, we then
obtain a particular Mood. For example, by letting D1 = A, D2 = A and D3 = A
in Figure 1, we obtain the following syllogism, which is one of the 256 Moods in
classical syllogisms and is named AAA-1:

Acb, Aac � Aab (5)

The remaining Moods are named in an analogous way.
Murphree’s system inherits the basic features of classical syllogisms, including

the traditional concepts of Figures and Moods. But since Murphree’s system uses
numerical quantifiers, the names ofMood under this system also contain numbers. For
example, the following is a Figure-1 Mood under Murphree’s system (where n and m
represent appropriate non-negative integers), which can be named nAmA(n+m)A-1:

nAcb, mAac � (n + m)Aab (6)

2.4 The Fragment RELSYLL

In this subsection, we present a fragment of relational syllogisms called RELSYLL
that satisfy the following format: two of the quantified statements in the syllogism have
the forms D4d(D1ar) and D5d(D2cr) while the remaining quantified statement has
the form D3ac or D3ca, where D1, D2, D3 are the numerical quantifiers introduced
above, D4, D5 ∈ {A, I }9, a, c, d are unary predicates, and r is a binary predicate. An
example of relational syllogisms in RELSYLL is given below:

Ad(nAcr), mAac � Ad((n + m)Aar) (7)

In the above, if we ignore the part Ad, hereinafter called the “front part”, in the first
premise and the conclusion, then the remaining parts have the form nAcr , mAac �
(n+m)Aar , which is identical to the simple syllogismgiven in (6) after renamingof the
predicates. Thus, we can say that (7) is based on the simple syllogism nAmA(n+m)A-
1. The relational syllogism (7) differs from the simple syllogism given in (6) in that
we have a binary predicate r instead of the unary predicate b, as well as the front
part Ad in the first premise and the conclusion. The syllogism in (7) will be named
nAmA(n+m)A-1 AX A in this paper10,with AX A representing the front part structure

8 Note that the order in which the premises appear on the left of � is immaterial.
9 The reason for the restriction on D4 and D5 will be discussed in the next subsection.
10 The idea of this nomenclature is borrowed from Thom (1977), with substantial modifications.
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Relational Syllogisms with Numerical Quantifiers and Beyond 7

of the syllogism, where the A in the first and third positions represent the front part Ad
in the first premise and the conclusion of (7), and the X in the second position means
that the second premise of (7) has no front part. In a similar fashion, the following
relational syllogism will be named nEmA(n + m)E-2 AI X :

Ad(nEbr), I d(mAar) � (n + m)Eab (8)

Since we have stipulated that the binary predicate r , if it exists in a quantified state-
ment of a syllogism, must appear in the final position of the quantified statement, this
has greatly restricted the possible types of relational syllogisms in RELSYLL. For
example, if the binary predicate r appears in the first and second premises, then the
relational syllogism must be one based on a Figure-2 simple syllogism (like the one
given in (8) above), because it is only in Figure 2 that the predicates appearing in the
final position of the first and second premises are identical. Moreover, if the binary
predicate r appears in the conclusion and one of the premises, then the relational
syllogism must be one based on a Figure-1 or Figure-3 simple syllogism and r must
appear in the first premise, because in both Figures 1 and 3, it is the first premise that
shares the same predicate as the conclusion. Therefore, RELSYLL does not include
relational syllogisms of the forms D1D2D3-1 XD4D5 and D1D2D3-3 XD4D5. Fur-
thermore, RELSYLL does not include relational syllogisms that are based on Figure-4
simple syllogisms, because in Figure 4, unlike the other three Figures, the predicates
appearing in the final positions of the three quantified statements are all different. For
this reason, in what follows we will only consider relational syllogisms that are based
on Figure-1, 2 or 3 simple syllogisms.

In summary, RELSYLL includes only relational syllogisms of the following forms:
D1D2D3-1 D4XD5, D1D2D3-2 D4D5X , D1D2D3-3 D4XD5, where D1, D2, D3 are
the numerical quantifiers studied in this paper and D4, D5 ∈ {A, I }.

2.5 Equivalence of Syllogisms

In this subsection, we introduce the notion of “equivalence of syllogisms”, which is
borrowed from Richman (2004). The definition of this notion is based on two types of
transformations of syllogisms. Thefirst type is called “indirect reduction”, underwhich
the conclusion and one of the premises of a syllogism are negated and interchanged.
Thus, if we represent a syllogism schematically as p1, p2 � p3, then it can be
transformed under indirect reduction to either p1, ¬p3 � ¬p2 or ¬p3, p2 � ¬p1.

Indirect reduction will result in syllogisms consisting of quantifiers with the nega-
tion symbol ¬. To get rid of this symbol and to obtain syllogisms that conform to the
prescribed format, we need a second type of transformations that rewrite the quanti-
fiers in the syllogisms, and are thus called “quantifier transformations” in this paper.
These transformations are based on the notions of “outer negation” and “inner nega-
tion” of quantifiers in GQT. According to Keenan and Westerståhl (2011) and Peters
and Westerståhl (2006), a type 〈1, 1〉 quantifier D has two types of negation: an outer
negation, denoted ¬D, such that ¬Dab is true iff Dab is false; and an inner negation,
denoted D∗, such that D∗ab is true iff Da¬b is true. By definitions (1)–(4), we can
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easily find that

¬nA = (n + 1)O; ¬(n + 1)O = nA; ¬nE = (n + 1)I ; ¬(n + 1)I = nE (9)

and

nA∗ = nE; nE∗ = nA; nI ∗ = nO; nO∗ = nI (10)

Note that the above facts are also applicable to classical quantifiers if we view them
as special cases of numerical quantifiers, e.g. A can be seen as equivalent to 0A, etc.

For illustration, consider the relational syllogism nAmA(n + m)A-1 AX A given
in (7) above. Applying indirect reduction to (7), we may obtain

Ad(nAcr), ¬Ad((n + m)Aar) � ¬mAac (11)

To get rid of the ¬ symbol, we use (9) to rewrite ¬A and ¬mA above and obtain

Ad(nAcr), Od((n + m)Aar) � (m + 1)Oac (12)

The second premise above does not conform to the format of RELSYLL. But using
(10), we have Od((n + m)Aar) = I d(¬(n + m)Aar), and using (9) again, we have
I d(¬(n + m)Aar) = I d((n + m + 1)Oar), and so (12) can be transformed to

Ad(nAcr), I d((n + m + 1)Oar) � (m + 1)Oac (13)

The above conforms to the prescribed format of RELSYLL and can easily be
recognized as of theMood nA(n+m+1)O(m+1)O-2 AI X , by renaming predicates
if necessary.

The above example also shows that by using (9) and (10), one can always transform
a quantified statement with E or O as the front part quantifier to one with A or I
as the front part quantifier. For example, Od((n + m)Aar) can be transformed to
I d((n + m + 1)Oar), as shown above. That is why we can impose the restriction
D4, D5 ∈ {A, I } at the beginning of the previous subsection.

We say that a syllogism α is equivalent to another syllogism β if α can be trans-
formed to β by n applications of indirect reduction plus quantifier transformations,
where n is any non-negative integer and one application of indirect reduction plus
quantifier transformations means doing an indirect reduction and then some quantifier
transformation(s).

We now show that the relation defined above is indeed an equivalence relation. It
is reflexive because any syllogism α can be transformed to itself by 0 application of
indirect reduction plus quantifier transformations. It is symmetric because if α can be
transformed by n applications of indirect reduction plus quantifier transformations via
β1, . . . βn−1 to βn , then βn can be transformed by applying n indirect reduction plus
quantifier transformations via βn−1, . . . β1 back to α. For example, if we transform
α : Acb, Aac � Aab first to β1 : Acb, Oab � Oac, and then to β2 : Aac, Oab �
Ocb by two applications of indirect reduction plus quantifier transformations, then
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Relational Syllogisms with Numerical Quantifiers and Beyond 9

it can easily be seen that β2 can be transformed first to β1 and then back to α, by
applying two indirect reduction plus quantifier transformations. It is also transitive
because if α can be transformed to β by n applications of indirect reduction plus
quantifier transformations and β can be transformed to γ bym applications of indirect
reduction plus quantifier transformations, then α can be transformed to γ by n + m
applications of indirect reduction plus quantifier transformations.

This equivalence relation partitions the set of a specific type of syllogisms into
equivalence classes. For example, {AAA-1, AOO-2, OAO-3} is an equivalence class
in classical logic under this equivalence relation. Note that each Figure-1 classical syl-
logism is equivalent to one Figure-2 and one Figure-3 syllogisms, while each Figure-4
classical syllogism is either equivalent to two other Figure-4 syllogisms or just to
itself. The first fact can be proved by applying indirect reduction to the Figure-1
syllogism α : D1cb, D2ac � D3ab and obtain β1 : D1cb, ¬D3ab � ¬D2ac or
β2 : ¬D3ab, D2ac � ¬D1cb. By renaming variables, one can then recognize that β1
and β2 are Figure-2 and Figure-3 syllogisms, respectively. To prove the second fact, if
we apply indirect reduction to the Figure-4 syllogism γ : D1bc, D2ca � D3ab, we
obtain δ1 : D1bc, ¬D3ab � ¬D2ca or δ2 : ¬D3ab, D2ca � ¬D1bc. By renaming
variables, one can then recognize that δ1 and δ2 are both Figure-4 syllogisms. For some
Figure-4 syllogism such as AAO-4, indirect reduction (plus renaming of variables)
will yield the same syllogism. Thus, {AAO-4} is a single-member equivalence class.

To facilitate discussion of relational syllogisms below, we will next state and prove
two propositions concerning equivalence between relational syllogisms in RELSYLL.
Here is the first proposition (in what follows, we will represent the outer negation of
a generic type 〈1, 1〉 quantifier D by ¬D. It is to be understood that when D is
instantiated as a specific quantifier, such as A, then ¬D is instantiated as one to which
quantifier transformation is applied, such as O).

Proposition 1 Let D1, D2, D3 be the numerical quantifiers studied in this paper. Then
the following are equivalence classes:

{D1D2D3-1 AX A, D1¬D3¬D2-2 AI X , ¬D3D2¬D1-3 I X I }
{D1D2D3-1 I X I , D1¬D3¬D2-2 I AX , ¬D3D2¬D1-3 AX A}
{D1D2D3-1 AX I , D1¬D3¬D2-2 AAX , ¬D3D2¬D1-3 AX I }
{D1D2D3-1 I X A, D1¬D3¬D2-2 I I X , ¬D3D2¬D1-3 I X A}

Proof Here we only prove the first equivalence class. The proofs for the remaining
ones are similar. Consider the syllogism D1D2D3-1 AX A, which can be written out
in full as

Ad(D1cr), D2ac � Ad(D3ar) (14)

Applying indirect reduction to the above and then using (9), we obtain either one
of the following:

Ad(D1cr), Od(D3ar) � ¬D2ac (15)

Od(D3ar), D2ac � Od(D1cr) (16)
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10 K. Chow

By (10), the above two can be rewritten as

Ad(D1cr), I d(¬D3ar) � ¬D2ac (17)

I d(¬D3ar), D2ac � I d(¬D1cr) (18)

The above two are D1¬D3¬D2-2 AI X and ¬D3D2¬D1-3 I X I , respectively. If
we apply indirect reduction plus quantifier transformations to (17) above, we will then
obtain either (14) or (18). Doing the same to (18) above will obtain either (14) or (17).
Thus, one can see that by applying indirect reduction plus quantifier transformations
to any member of the set {(14), (17), (18)}, one will always obtain another member
of this set and so this set constitutes an equivalence class. 
�

Syllogisms belonging to the same equivalence class are not only related to each
other in terms of their transformability under indirect reduction plus quantifier trans-
formations, but are also related in terms of their validity. This is the content of the
second proposition.

Proposition 2 A syllogism is valid iff any one of its equivalent forms is also valid.

Proof (a) Let α : p1, p2 � p3 be a syllogism. Its equivalent forms include β :
p1, ¬p3 � ¬p2 and γ : ¬p3, p2 � ¬p1. Suppose first that α is valid. This
means that in any model M under which p1 and p2 are both true, p3 must also be
true. We now show that β is also valid. Consider any model M under which p1
and ¬p3 are both true. To show that ¬p2 must also be true under M , we assume
by way of contradiction that ¬p2 is false, i.e. p2 is true. Then, we would have p1,
p2 and ¬p3 all true. But by the preceding fact, since p1 and p2 are both true, then
p3 must also be true under M . Then we have p3 and ¬p3 both true under M , a
contradiction. We have thus shown that β is valid. In a similar fashion, one can
also show that γ is valid.

(b) Next suppose that α is invalid. Then there must exist a counterexample for α, i.e.
a model M under which p1 and p2 are both true and p3 is false, or in other words,
p1, p2 and ¬p3 are all true. But then M is also a counterexample for β and γ , and
so β and γ are also invalid. 
�
The above proposition shows that two equivalent syllogisms are both valid or both

invalid. This fact will be made use of below to simplify some proofs. Moreover, the
above proposition is applicable to all types of syllogisms, be they simple or relational.

3 Determination of Valid and Invalid Syllogisms

3.1 Classical Syllogisms andMurphree’s Numerical Syllogisms

In this section, we will determine the valid and invalid syllogisms in RELSYLL. This
is based on the corresponding results of simple numerical syllogisms, which is in turn
based on the corresponding results of classical syllogisms.

According to Peterson (2000), for each of the 256 classical syllogisms, one can
decide whether it is valid by consulting the Laws of Distribution developed by ancient
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Relational Syllogisms with Numerical Quantifiers and Beyond 11

and medieval logicians, or by using a validity checking method based on Venn dia-
grams. As a result, we can list out all the 15 valid classical syllogisms as follows:
AAA-1, AI I -1, E AE-1, E I O-1, AEE-2, AOO-2, E AE-2, E I O-2, AI I -3, E I O-3,
I AI -3, OAO-3, AEE-4, E I O-4, I AI -4. According to Pagnan (2012), among the
remaining 241 classical syllogisms, some are valid under “existential import”, i.e.
under suitable assumptions of the existence of some of the predicates. For example,
AAI -1 is valid under the assumption that a �= ∅. For simplicity, we will not con-
sider existential import in this section and will thus consider the above 15 classical
syllogisms as valid and the remaining ones as invalid.

Murphree (1991, 1993, 1997, 1998) extended the above results to simple syllo-
gisms with the numerical quantifiers introduced above. According to him, a valid
classical syllogism α remains valid if the classical quantifiers in α are replaced by
the corresponding numerical quantifiers, i.e. A replaced by nA, etc., provided that the
numeral associated with the quantifier in the conclusion satisfies the following “Rules
of Deviation”: (1) if the quantifier in the conclusion is a global quantifier (i.e. quantifier
in the form nA or nE), then the numeral associated with that quantifier must be no less
than the sum of the numerals associated with the quantifiers in the premises; (2) if the
quantifier in the conclusion is a local quantifier (i.e. quantifier in the form nI or nO),
then the numeral associated with that quantifier must be no greater than the numeral
associated with the local quantifier in one premise minus the numeral associated with
the global quantifier in another premise. Murphree’s conclusion can be proved by a
special schematic method developed by him.

For example, since AAA-1 and E I O-1 are valid classical syllogisms whose
conclusions contain a global quantifier (i.e. A) and a local quantifier (i.e. O), respec-
tively, according to Murphree (1991, 1993, 1997, 1998), nAmA(n + m)A-1 and
nE(n + m + 1)I (m + 1)O-1 are also valid.

In the above examples, we have provided the strongest conclusion for a valid
numerical syllogism. But weaker conclusions are also admissible. For example,
nAmA(n+m+k)A-1, where k ≥ 0, is also a valid syllogism.Note that the adoption of
n+m+k does not violate Rule (1) above and the conclusion of nAmA(n+m+k)A-1
is entailed by that of nAmA(n + m)A-1 (because if |a − b| ≤ n + m, then it must
be the case that |a − b| ≤ n + m + k). Similarly, nE(n + m + 1)I (m + 1 − l)O-1,
where 0 ≤ l ≤ m, is also a valid syllogism. Note that the adoption of m + 1 − l does
not violate Rule (2) above and the conclusion of nE(n + m + 1)I (m + 1 − l)O-1 is
entailed by that of nE(n + m + 1)I (m + 1)O-1 (because if |a − b| ≥ m + 1, then it
must be the case that |a − b| ≥ m + 1 − l).

All other numerical syllogisms under Murphree’s system are invalid. They are
invalid either because they are basedon invalid classical syllogisms, such asnAmA(n+
m)E-1, or because they are associated with the wrong numerals and so violating
Rule 1 or 2 above even though they are based on valid classical syllogisms, such as
nAmA(n + m − 1)A-1. The invalidity of any such syllogism can be proved by a
counterexample, i.e. a model under which the premises are true but the conclusion is
false. The “Appendix” to this paper provides counterexamples for some of the invalid
numerical syllogisms.
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12 K. Chow

3.2 RELSYLL

In this subsection, we will prove a number of propositions that will characterize the
valid and invalid relational syllogisms in RELSYLL. The first proposition establishes
the validity of a subset of RELSYLL.

Proposition 3 Let D1D2D3-i be a valid simple syllogism where D1, D2, D3 are the
numerical quantifiers studied in this paper and i ∈ {1, 2, 3}. If i = 1 or 3, then
D1D2D3-i AX A and D1D2D3-i I X I are both valid. If i = 2, then D1D2D3-i AI X
and D1D2D3-i I AX are both valid.

Proof (a) First let D1D2D3-1 be a valid Figure-1 simple syllogism. Then in anymodel
such that D1cb and D2ac are both true, D3ab must also be true. This fact can be
represented by

D1cb, D2ac |� D3ab (19)

Since b is an arbitrary unary predicate, the above relation must still hold if b is
replaced by another unary predicate Xr−1, where X is an arbitrary individual variable
and r is any binary predicate. Thus, we must have the following:

D1c(Xr
−1), D2ac |� D3a(Xr−1) (20)

Since X is an individual term, it can interchange with a type 〈1〉 quantifier in the
quantified statement and so the following must also hold:

X(D1cr), D2ac |� X(D3ar) (21)

Since X is an arbitrary variable, the above means that for any individual x in a
model, if x is a member of D1cr and the statement D2ac is true in that model, then x
is also a member of D3ar in that model.
We next prove that D1D2D3-1 AX A and D1D2D3-1 I X I are valid by showing the
validity of the following:

Ad(D1cr), D2ac |� Ad(D3ar) (22)

I d(D1cr), D2ac |� I d(D3ar) (23)

First suppose M is a model in which Ad(D1cr) and D2ac are both true. Now
Ad(D1cr) means that for every individual x in M , if x is a member of d, then x is
also a member of D1cr. But then by the discussion after (21), x is also a member of
D3ar in M . This shows that for every individual x in M , if x is a member of d, then
x is also a member of D3ar, which is what the statement Ad(D3ar) means. We have
thus proved that (22) is valid. Next suppose M is a model in which I d(D1cr) and
D2ac are both true. Now I d(D1cr) means that there is an individual x in M such that
x is both a member of d and a member of D1cr. Again, by the discussion after (21),
x is also a member of D3ar in M . This shows that there exists an individual x in M
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Table 2 Valid syllogisms in RELSYLL

nAmA(n+m)A-1AXA nAmA(n+m)A-1 IXI
nA(n+m+ 1)O(m+ 1)O-2AIX nA(n+m+ 1)O(m+ 1)O-2 IAX
(n+m+ 1)OmA(n+ 1)O-3 IXI (n+m+ 1)OmA(n+ 1)O-3AXA
nA(n+m+ 1)I(m+ 1)I-1AXA nA(n+m+ 1)I(m+ 1)I-1 IXI
nAmE(n+m)E-2AIX nAmE(n+m)E-2 IAX
mE(n+m+ 1)I(n+ 1)O-3 IXI mE(n+m+ 1)I(n+ 1)O-3AXA
nEmA(n+m)E-1AXA nEmA(n+m)E-1 IXI
nE(n+m+ 1)I(m+ 1)O-2AIX nE(n+m+ 1)I(m+ 1)O-2 IAX
(n+m+ 1)ImA(n+ 1)I-3 IXI (n+m+ 1)ImA(n+ 1)I-3AXA
nE(n+m+ 1)I(m+ 1)O-1AXA nE(n+m+ 1)I(m+ 1)O-1 IXI
nEmA(n+m)E-2AIX nEmA(n+m)E-2 IAX
mA(n+m+ 1)I(n+ 1)I-3 IXI mA(n+m+ 1)I(n+ 1)I-3AXA

such that x is both a member of d and a member of D3ar, which is what the statement
I d(D3ar) means. We have thus proved that (23) is valid.

(b) Next let D1D2D3-2 be a valid Figure-2 simple syllogism. Now since D1D2D3-2
is equivalent to D1¬D3¬D2-1, by Proposition 2, D1¬D3¬D2-1 must be a valid
Figure-1 simple syllogism, and so by (a) above, D1¬D3¬D2-1 AX A must be
valid. By Proposition 1, D1¬D3¬D2-1 AX A is equivalent to D1D2D3-2 AI X ,
and so by Proposition 2 again, D1D2D3-2 AI X must be valid. In a similar fashion,
we can also prove that D1D2D3-2 I AX is valid. Finally, let D1D2D3-3 be a valid
Figure-3 simple syllogism. Using an argument similar to the above, one can prove
that D1D2D3-3 AX A and D1D2D3-3 I X I are both valid. 
�
Based on the above proposition, we can now list a set of representative valid syllo-

gisms in RELSYLL in Table 2. These valid relational syllogisms are closely related to
the valid classical syllogisms listed in the previous subsection. Discarding the Figure-
4 syllogisms in that list (because RELSYLL does not include relational syllogisms
based on Figure-4 simple syllogisms), there are 12 classical syllogisms left in that list.
Each of these corresponds to a valid numerical syllogism studied by Murphree, which
in turn corresponds to two valid syllogisms in RELSYLL according to Proposition 3.
This accounts for the 24 syllogisms listed in Table 2.

For convenience, the syllogisms listed in Table 2 are grouped into eight cells, each
constituting an equivalence class. Note that each cell represents an infinite number of
valid syllogisms, not only because n and m can be substituted by an infinite number
of appropriate non-negative integers, but also because from each cell one can deduce
an infinite number of valid syllogisms with weaker conclusions. For example, from
nAmA(n + m)A-1 AX A one can deduce that nAmA(n + m + k)A-1 AX A, where
k > 0, is also a valid relational syllogism.

Here is an exemplification of 1A3I2I -1 AX A, with a, c, d, r interpreted as “foreign
employee in this school”, “teacher in this school”, “student”, “be liked by”, respec-
tively:
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14 K. Chow

Every student likes all but at most one teacher in this school11. At least three
foreign employees in this school are teachers. Therefore, every student likes at
least two foreign employees in this school.

As pointed out above, apart from being interpreted as transitive verbs, binary pred-
icates can also be interpreted as other parts of speech, such as relational nouns. For
illustration, here is another exemplification of 1A3I2I -1 AX A, with a, c, d, r inter-
preted as “singer”, “movie star”, “youngster”, “idol of” (whose converse is assumed
to be “fan of” here), respectively:

Every youngster is a fan of all but at most one movie star. At least three singers
are movie stars. Therefore, every youngster is a fan of at least two singers.

We next show that all other relational syllogisms in RELSYLL are invalid syllogisms,
which can be classified into two types. The first type consists of those that are based
on invalid simple syllogisms. The invalidity of these syllogisms is summarized in the
following proposition.

Proposition 4 Let D1D2D3-i be an invalid simple syllogism where D1, D2, D3 are
the numerical quantifiers studied in this paper and i ∈ {1, 2, 3}. If i = 1 or 3, then
D1D2D3-i AX A, D1D2D3-i I X I , D1D2D3-i AX I , D1D2D3-i I X A are all invalid.
If i = 2, then D1D2D3-i AAX,D1D2D3-i I I X, D1D2D3-i AI X, D1D2D3-i I AX
are all invalid.

Proof We will only prove the invalidity of D1D2D3-1 AX A and D1D2D3-2 AI X .
The proofs of the other cases are similar.

(a) Let D1D2D3-1 be an invalid Figure-1 simple syllogism with the form D1cb,
D2ac � D3ab. Since it is invalid, it must have a counterexample, i.e. there must
be a, b and c such that D1cb and D2ac are true while D3ab is false. Let u be
an individual in the domain and r = b × {u}. This implies that Ur−1 = b12,
and so D1c(Ur−1) is true and D3a(Ur−1) is false. SinceU is an individual term,
it follows that we have U (D1cr) true and U (D3ar) false. Now let d = {u}. It
then follows that Ad(D1cr) is true and Ad(D3ar) is false. This means that if we
set a, c, d and r as mentioned above, then Ad(D1cr) and D2ac are true while
Ad(D3ar) is false. We have thus found a counterexample for the invalid syllogism
D1D2D3-1 AX A.

(b) Let D1D2D3-2 be an invalid Figure-2 simple syllogism with the form D1bc,
D2ac � D3ab. Since it is invalid, it must have a counterexample, i.e. there must
be a, b and c such that D1bc and D2ac are true while D3ab is false. Let u be
an individual in the domain and r = c × {u}. This implies that Ur−1 = c, and
so D1b(Ur−1) and D2a(Ur−1) are both true. Since U is an individual term, it
follows that we have U (D1br) and U (D2ar) both true. Now let d = {u}. It then
follows that Ad(D1br) and I d(D2ar) are both true. This means that if we set
a, b, d and r as mentioned above, then Ad(D1br) and I d(D2ar) are true while

11 Remember that the numerical quantifier nA can be rendered as “all but at most n” as well as “at least
all but n”.
12 Recall that Ur−1 is a predicate which means “that which r u”.
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D3ab is false. We have thus found a counterexample for the invalid syllogism
D1D2D3-2 AI X . 
�
For illustration, suppose we want to construct a counterexample for the invalid

syllogism 2A1A2A-1 AX A. By consulting “Appendix 1”, we can find the following
counterexample for the invalid simple syllogism2A1A2A-1:a = {u1,u2,v1},b = ∅,
c = {u1,u2}. Following the above proof, we can set a = {u1,u2,v1}, c = {u1,u2},
d = {u} and r = ∅. Then under this model, Ur−1 = ∅, and we have Ad(2Acr)
true (becauseU (2Acr) is true), 1Aac true, and Ad(2Aar) false (becauseU (2Aar) is
false).

The second type of invalid relational syllogisms consists of those that are based on
valid simple syllogismsbutwith incorrect front parts. The invalidity of these syllogisms
is summarized in the following proposition.

Proposition 5 Let D1D2D3-i be a valid simple syllogism where D1, D2, D3 are the
numerical quantifiers studied in this paper and i ∈ {1, 2, 3}. If i = 1 or 3, then
D1D2D3-i AX I and D1D2D3-i I X A are invalid. If i = 2, then D1D2D3-i AAX
and D1D2D3-i I I X are invalid.

Proof (a) First let D1D2D3-1 be a valid Figure-1 simple syllogism. Since there are
only four such syllogisms, namely nAmA(n + m)A-1, nA(n + m + 1)I (m +
1)I -1, nEmA(n + m)E-1 and nE(n + m + 1)I (m + 1)O-1, we can prove that
D1D2D3-1 AX I and D1D2D3-1 I X A are invalid just by considering these four
syllogisms. For D1D2D3-1 AX I , since among the above four syllogisms, D2 is
either mA or (n + m + 1)I , we can set d = r = ∅ and a = c = {u1, . . .uk},
where k = m or n +m + 1 as the case may be. Then it is clear that Ad(D1cr) and
D2ac are both true and I d(D3ar) is false. The above is thus a counterexample for
the invalid syllogism D1D2D3-1 AX I . For D1D2D3-1 I X A, we have to divide
the above four syllogisms into two groups and consider them separately.

(i) First consider nAmA(n + m)A-1 and nEmA(n + m)E-1. Set a = {u1, . . .
un+m+1}, c = {u1, . . .un+1}, d = {u,v}, r = {(u1,u), . . . (un+m+1,u)}.
Then under this model, Ur−1 = {u1, . . .un+m+1}, Vr−1 = ∅, and we have
I d(nAcr) true (because U (nAcr) is true), mAac true, and Ad((n + m)Aar)
false (because V ((n+m)Aar ) is false), showing that nAmA(n+m)A-1 I X A
is invalid. Moreover, under this model, we also have I d(nEcr) true (because
V (nEcr) is true), mAac true, and Ad((n + m)Ear) false (because U ((n +
m)Ear) is false), showing that nEmA(n + m)E-1 I X A is invalid.

(ii) Next consider nA(n +m + 1)I (m + 1)I -1 and nE(n +m + 1)I (m + 1)O-1.
Set a = c = {u1, . . .un+m+1}, d = {u,v}, r = {(u1,u), . . . (un+m+1,u)}.
Then under this model, Ur−1 = {u1, . . .un+m+1}, Vr−1 = ∅, and we have
I d(nAcr) true (becauseU (nAcr) is true), (n+m+1)I ac true, and Ad((m+
1)I ar) false (because V ((m + 1)I ar) is false), showing that nA(n + m +
1)I (m + 1)I -1 I X A is invalid. Moreover, under this model, we also have
I d(nEcr) true (because V (nEcr) is true), (n+m+1)I ac true, and Ad((m+
1)Oar) false (because U ((m + 1)Oar) is false), showing that nE(n + m +
1)I (m + 1)O-1 I X A is invalid.
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(b) Next let D1D2D3-2 be a valid Figure-2 simple syllogism. Now since
D1D2D3-2 is equivalent to D1¬D3¬D2-1, by Proposition 2, D1¬D3¬D2-1
must be a valid Figure-1 simple syllogism, and so by (a) above, D1¬D3¬D2-1
AX I must be invalid. By Proposition 1, D1¬D3¬D2-1 AX I is equivalent to
D1D2D3-2 AAX , and so by Proposition 2 again, D1D2D3-2 AAX must be
invalid. In a similar fashion, we can also prove that D1D2D3-2 I I X is invalid.
Finally, let D1D2D3-3 be a valid Figure-3 simple syllogism.Using an argument
similar to the above, one can prove that D1D2D3-3 AX I and D1D2D3-3 I X A
are both invalid. 
�

4 DerivationMethods

4.1 Description of theMethods

In this section, we introduce two Derivation Methods (called Methods 1 and 2) that
can be used to derive the valid relational syllogisms in RELSYLL. We first provide
a description of the Methods. Both Methods consist of the following steps: (i) sub-
stitution into a valid simple numerical syllogism; (ii) interchange of an individual
variable with a type 〈1〉 quantifier; (iii) derivation of an immediate inference (i.e. an
inference with only one premise); (iv) substitution into a valid classical syllogism; and
(v) premise replacement.

The general idea of the DerivationMethods is as follows: we first make substitution
into a valid simple syllogism α so that it contains a binary predicate and derive from
it an immediate inference β. We then choose another valid simple syllogism γ such
that one of its premises / conclusion contains the same quantifier in the conclusion /
premise of β, and make substitution into γ so that one premise / conclusion of γ is
identical to the conclusion / premise of β. The end result is a relational syllogism that
“combines” the two simple syllogisms α and γ .

Here are the specific steps underMethod 1. Step (i): choose a valid simple numerical
syllogism D1D2D3-1 or D1D2D3-3 (where there are two identical predicates b in the
second argument position of one premise and the conclusion) with the form:

D1cb, D2ac (or D2ca) � D3ab (24)

and substitute b = Xr−1, where X is an arbitrary individual variable, into the above
to obtain

D1c(Xr
−1), D2ac (or D2ca) � D3a(Xr−1) (25)

Step (ii), interchange X with the type 〈1〉 quantifiers in the first premise and con-
clusion:

X(D1cr), D2ac (or D2ca) � X(D3ar) (26)
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Step (iii): from (26), derive the following immediate inference:

D2ac (or D2ca) � A(D1cr)(D3ar) (27)

Step (iv): choose the classical syllogism AAA-1 or AI I -1 (where the first premise
contains the same quantifier as that in the conclusion of (27), namely A) with the
form:

Aef , D4de � D5d f (28)

and substitute e = D1cr and f = D3ar into the above (this substitution is to make
the first premise below identical to the conclusion of (27)) to obtain

A(D1cr)(D3ar), D4d(D1cr) � D5d(D3ar) (29)

Step (v): replace the first premise of (29) by the premise of (27)) (which derives
the former) to obtain13

D4d(D1cr), D2ac (or D2ca) � D5d(D3ar) (30)

Note that the above relational syllogism has the form D1D2D3-1 D4XD5 or
D1D2D3-3 D4XD5. Since D4 and D5 are either both A or both I , D4XD5 is either
equal to AX A or I X I . Moreover, since D1D2D3-1 and D1D2D3-3 are valid sim-
ple numerical syllogisms, according to Proposition 3, the above is a valid relational
syllogism in RELSYLL.

Here are the specific steps under Method 2. Step (i): choose a valid simple numer-
ical syllogism D1D2D3-2 (where there are two identical predicates c in the second
argument position of the two premises) with the form:

D1bc, D2ac � D3ab (31)

and substitute c = Xr−1, where X is an individual variable not used in the previous
derivation, into the above to obtain

D1b(Xr
−1), D2a(Xr−1) � D3ab (32)

Step (ii), interchange X with the type 〈1〉 quantifiers in the two premises:

X(D1br), X(D2ar) � D3ab (33)

Step (iii): from (33), derive the following immediate inference:

I (D1br)(D2ar) � D3ab (34)

13 In what follows, we have reordered the premises to make it easier to recognize the form of the final
syllogism obtained. This reordering is not an essential step of the Derivation Methods.
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Step (iv): choose the classical syllogism I AI -3 or AI I -3 (where the conclusion
contains the same quantifier as that in the premise of (34), namely I ) with the form:

D4de, D5d f � I f e (35)

and substitute e = D2ar and f = D1br into the above (this substitution is to make
the conclusion below identical to the premise of (34)) to obtain

D4d(D2ar), D5d(D1br) � I (D1br)(D2ar) (36)

Step (v): replace the premise of (34) by the premises of (36) (which derives the
former) to obtain

D5d(D1br), D4d(D2ar) � D3ab (37)

Note that the above relational syllogism has the form D1D2D3-2 D5D4X . Since
among D5 and D4, one is A and the other is I , D5D4X is either equal to AI X or
I AX . Moreover, since D1D2D3-2 is a valid simple numerical syllogism, according
to Proposition 3, the above is a valid relational syllogism in RELSYLL.

4.2 Soundness and Completeness of theMethods

In this subsection, we will show that Methods 1 and 2 introduced above are sound and
complete for RELSYLL. In the previous subsection, we have already shown that the
final outputs of the two Methods are always valid relational syllogisms in RELSYLL.
What we have to ensure is that each step in the two Methods are legitimate moves.

Steps (i) and (iv) of the two Methods involve substitutions into valid simple syllo-
gisms. These are obviously legitimate as substitution into a valid syllogismwill always
yield a valid syllogism. Step (ii) involves interchange of X with a type 〈1〉 quantifier.
As we have pointed out in Sect. 2.2, this is a legitimate move since X is scopeless.
Step (v) involves premise replacement which transforms the inference Σ, p2 � p3
to the inference Σ, p1 � p3, given that p1 � p2, where Σ represents a (possibly
empty) set of statements and p1 can be a conjunction of more than one statement. This
transformation is legitimate because by replacing a premise p2 in a valid inference
with another premise that derives p2, the inference remains valid.

We next consider Step (iii), which involves the derivation of immediate inferences.
Under Method 1, this Step derives (27) from (26). The legitimacy of this Step can be
proved by applying the semantic version of the Deduction Theorem in Propositional
Logic, which states that

p1, Σ |� p2 iff Σ |� p1 → p2 (38)

and the close relation between implications and universal statements, which can be
summarized as follows:

∀x[Xa → Xb] is true iff Aab is true (39)
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The above is in fact the truth condition for the universal quantifier A. Intuitively,
the above states that if the implication “If x is a, then x is b” is true for all x , then the
universal statement “Every a is b” is also true, and vice versa.

Based on the above, we can formulate the following lemma.

Lemma 1 Let a, b be unary predicates, X be an arbitrary individual variable and Σ

be a set of statements. If Xa, Σ |� Xb, then we have Σ |� Aab.

Proof Suppose Xa, Σ |� Xb. Then by (38), we have Σ |� Xa → Xb. Since X is
an arbitrary variable, the implication Xa → Xb means that for any individual x in
a model, if x belongs to a, then x also belongs to b, which is what ∀x[Xa → Xb]
means. Thus, by (39), we have in every model such that Σ is true, Aab is also true.
This means that Σ |� Aab. 
�

We now show that if the inference in (26) is valid, then the immediate inference
in (27) is also valid. So suppose (26) is valid, which means that in every model, if
X(D1cr) and D2ac (or D2ca) are both true, then X(D3ar) is also true. But then the
assumptions of Lemma 1 are satisfied (note that X is arbitrary in (26)), and so we can
invoke that lemma to conclude that in every model such that D2ac (or D2ca) is true,
A(D1cr)(D3ar) is also true, i.e. (27) is valid.

Under Method 2, Step (iii) derives (34) from (33). The legitimacy of this Step can
be proved by applying the “Exposition” rule in Medieval Logic (as studied in Parsons
(2014)). In what follows, we will make use of the semantic version of this rule, which
can be stated as follows: let a, b be unary predicates, X be an individual variable not
used in the previous derivation and Σ be a set of statements. Then

Σ, I ab |� Σ ∧ Xa ∧ Xb (40)

The above rule is in fact a statement of the meaning of the existential quantifier I ,
because if in a model all members of Σ and I ab, meaning “Some a is b”, are true,
then there exists an X , which may be different from any individual variable used in
the previous derivation, such that all members of Σ as well as Xa and Xb are true.

Based on the above rule, we can formulate the following lemma.

Lemma 2 Let a, b be unary predicates, X be an individual variable not used in the
previous derivation, p be a statement and Σ be a set of statements. If Σ, Xa, Xb |�
p, then we have Σ, I ab |� p.

Proof By (40), we have Σ, I ab |� Σ ∧ Xa ∧ Xb for an X not used in the previous
derivation, whichmeans that in every model where all members ofΣ and I ab are true,
all members of Σ as well as Xa and Xb are true. Now suppose Σ, Xa, Xb |� p,
which means that in every model such that all members of Σ as well as Xa and Xb
are true, p is also true. Combining the above, we then have in every model where all
members of Σ and I ab are true, p is also true. This means Σ, I ab |� p. 
�

We now show that if the inference in (33) is valid, then the immediate inference
in (34) is also valid. So suppose (33) is valid, which means that in every model, if
X(D1br) and X(D2ar) are both true, then D3ab is also true. But then the assumptions
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of Lemma 2 are satisfied (note that X is not used in the previous derivation in (33)), and
sowe can invoke that lemma to conclude that in everymodel such that I (D1br)(D2ar)
is true, D3ab is also true, i.e. (34) is valid. Summarizing the above, we have proved
that Methods 1 and 2 are sound.

To prove that Methods 1 and 2 are complete for RELSYLL, we have to show
that every valid relational syllogism in RELSYLL is derivable by using one of these
Methods. But it is clear that every valid relational syllogism in RELSYLL listed in
Table 2 takes the form of either (30) (if it is based on a Figure-1 or Figure-3 simple
syllogism) or (37) (if it is based on a Figure-2 simple syllogism), and so is derivable
by using these Methods.

Specifically, valid relational syllogisms based on D1D2D3-1 or D1D2D3-3 simple
syllogisms can be derived by using Method 1 and choosing D1D2D3-1 or D1D2D3-3
in Step (i). To derive relational syllogismswith the desired front part AX A or I X I , one
chooses AAA-1 or AI I -1, respectively in Step (iv). On the other hand, valid relational
syllogisms based on D1D2D3-2 simple syllogisms can be derived by using Method 2
and choosing D1D2D3-2 in Step (i). To derive relational syllogisms with the desired
front part AI X or I AX , one chooses I AI -3 or AI I -3, respectively in Step (iv).

5 Extensions of the DerivationMethods

5.1 Use of More Valid Syllogisms

In the previous section, we have introduced two Derivation Methods which are sound
and complete for the fragment RELSYLL. While the relational syllogisms in REL-
SYLLare restrictive in termsof their format, the general idea of theDerivationMethods
is applicable to a much larger set of relational syllogisms than RELSYLL. In this sec-
tion, we discuss some possible ways to extend the Derivation Methods.

One way is to extend the choice of syllogisms in Steps (i) and (iv) of the Methods
to valid syllogisms other than those prescribed in Sect. 4.1. In this way, we can then
derive more relational syllogisms, although these syllogisms may no longer conform
to the format of RELSYLL prescribed in Sect. 2. Of course, the chosen syllogisms
must tie in with the remaining Steps of the twoMethods. To be more specific, the valid
syllogisms chosen for Step (i) of Methods 1 and 2 must be such that there are two
identical predicates in the second argument position of one premise and the conclusion
and such that there are two identical predicates in the second argument position of
the two premises, respectively; whereas the valid syllogisms chosen for Step (iv) of
Methods 1 and 2 must be such that at least one premise contains the same quantifier
as that in the conclusion of the immediate inference derived in Step (iii) and such that
the conclusion contains the same quantifier as that in the premise of the immediate
inference derived in Step (iii), respectively.

We also allow use of indirect reduction and/or quantifier transformations to trans-
form the valid syllogisms chosen in Steps (i) and (iv) and the immediate inference
obtained in Step (iii) so that these conform to the stipulations given above. Apart from
these, the targets of substitutions in Steps (i) and (iv) as well as the target of premise
replacement in Step (v) may also have to be adjusted to ensure that these Steps will
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yield the desired effects. Obviously, the aforesaid extensions and adjustments will
not affect the soundness of the Methods, and we are able to derive valid relational
syllogisms by using the Methods provided that the simple syllogisms that we choose
in Steps (i) and (iv) are valid.

We now illustrate the use of the modified Methods by two examples. In the first
example, we choose the ÄOO-1 syllogism proposed by Dekker (2015)14 in Step
(i) and the classical E AE-2 syllogism in Step (iv) of Method 1. ÄOO-1 is a valid
syllogism containing the non-classical quantifier Ä, meaning “only”, with the truth
condition: Äab is true iff Aba is true for all a, b. This syllogism has the following
form:

Äcb, Oac � Oab (41)

In Step (i), we substitute b = Xr−1 into the above to obtain

Äc(Xr−1), Oac � Oa(Xr−1) (42)

In Step (ii), we interchange X with the type 〈1〉 quantifiers in the first premise and
conclusion above:

X( Äcr), Oac � X(Oar) (43)

In Step (iii), we derive the following immediate inference from (43):

Oac � A( Äcr)(Oar) (44)

In Step (iv), we choose E AE-2 whose second premise contains the quantifier A:

Ede, A f e � E f d (45)

Tomake the second premise below identical to the conclusion of (44), we substitute
e = Oar and f = Äcr into the above to obtain

Ed(Oar), A( Äcr)(Oar) � E( Äcr)d (46)

Finally, in Step (v), we replace the second premise of (46) by the premise of (44)
to obtain

Ed(Oar), Oac � E( Äcr)d (47)

The above is a valid relational syllogism containing the non-classical quantifier
Ä. Here is an exemplification of the above syllogism, with a, c, d, r interpreted as
“smoker”, “boy”, “girl”, “be hated by”, respectively:

14 Dekker (2015) used small-case letters to represent quantifiers and represent the syllogism by äoo-1.
For consistency with the notation adopted in this paper, we use capital letters and represent this syllogism
by ÄOO-1.
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No girl does not hate all the smokers. Not every smoker is a boy. Therefore, no
one that only hates boys is a girl.

In the second example, we choose the classical AEE-2 syllogism in Step (i) of
Method 2 and the numerical syllogism 2E3I1O-4 in Step (iv). The classical AEE-2
syllogism has the following form:

Abc, Eac � Eab (48)

In Step (i), we substitute c = Xr−1 into the above to obtain

Ab(Xr−1), Ea(Xr−1) � Eab (49)

In Step (ii), we interchange X with the type 〈1〉 quantifiers in the two premises
above:

X(Abr), X(Ear) � Eab (50)

In Step (iii), we derive the following immediate inference from (50):

I (Abr)(Ear) � Eab (51)

In Step (iv), we choose the numerical syllogism 2E3I1O-4 with the form

2Eed, 3I d f � 1O f e (52)

While this schema does not have the desired form for Step (iv) of Method 2, i.e. the
conclusion of this schema does not contain the same quantifier as that in the premise of
(51), we can either rewrite the quantifier in the premise of (51) or rewrite the quantifier
in the conclusion of (52). Here we opt to rewrite (52) and obtain

2Eed, 3I d f � 1I f ¬e (53)

To make the conclusion below identical to the premise of (51) (recall that 1I = I ),
we substitute f = Abr and e = ¬Ear into the above to obtain

2E(¬Ear)d, 3I d(Abr) � 1I (Abr)(Ear) (54)

Finally, in Step (v), we replace the premise of (51) by the premises of (54) to obtain

2E(¬Ear)d, 3I d(Abr) � Eab (55)

The above is a valid relational syllogism that contains numerical quantifiers but
does not belong to RELSYLL. Here is an exemplification of the above syllogism,
with a, b, d, r interpreted as “boy”, “smoker”, “girl”, “be hated by”, respectively15:

15 In what follows, we make use of the outer negation relation between E and I to interpret ¬E as “at least
one”.
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At most two who hate at least one boy is a girl. At least three girls hate all
smokers. Therefore, no boy is a smoker.

5.2 Use of Existential Assumptions

In classical logic, there are some syllogisms whose validity depends on certain exis-
tential assumptions. For example, AAI -1 is valid under the assumption that a �= ∅.
Existential assumptions also enable us to extend the choice of valid syllogisms in
Step (iv) of the two Methods. Under Method 1 (Method 2), the immediate inference
derived in Step (iii) of the two Methods is such that its conclusion (premise) must
contain a classical quantifier. This has restricted the subsequent choice of syllogism in
Step (iv). By introducing existential assumptions, we can relax this restriction. In this
paper, existential assumptions will be treated as special additional premises in syllo-
gisms and placed on the far left of �. But they do not have the same status as normal
premises. When transforming a syllogism to its equivalent form, we do not consider
negating the existential assumption (if any) of the given syllogism and interchanging
it with the negated conclusion.

There are two types of existential assumptions that we can use. The first type
consists of those asserting the existence of members of a unary predicate, like “There
is at least one a”, which will be represented by I aa. Such an assumption allows us to
make the following inference (in what follows, ≥p and <p where p is a fraction such
that 0 < p < 1 are proportional quantifiers)16:

I aa, Aab �≥pab (56)

or

I aa, <pab � Oab (57)

Note that the above two are equivalent inferences in the sense that if one is valid the
other is also valid and vice versa. Thus, by introducing an existential assumption of
the first type, we can derive an inference involving a proportional quantifier by using
(56) under Method 1 or (57) under Method 2, and the valid syllogism chosen for Step
(iv) can then be one involving a proportional quantifier.

For illustration, suppose we choose E AE-2 in Step (i) of Method 2. Following the
initial steps of Method 2, we can derive the following immediate inference:

I (Ebr)(Aar) � Eab (58)

which can be rewritten as

O(Ebr)(Oar) � Eab (59)

16 Here we assume the interpretation of the proportional quantifiers to be: ≥pab is true iff |a∩b|/|a| ≥ p
and <pab is true iff |a∩b|/|a| < p. If a = ∅, the quantified statements ≥pab and <pab are meaningless.
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But by (57), we have

I (Ebr)(Ebr), < 1
2
(Ebr)(Oar) � O(Ebr)(Oar) (60)

Given (60), we can derive the following by applying premise replacement to (59):

I (Ebr)(Ebr), < 1
2
(Ebr)(Oar) � Eab (61)

The above is our new output of Step (iii) (instead of (59)).
Then in Step (iv), we can choose a valid syllogism whose conclusion contains the

quantifier < 1
2
. Suppose we choose the following syllogism containing proportional

quantifiers (the following is one of the “rules of inference” proposed by Johnson
(1994):

I ee, > 1
2
ed, Ed f �< 1

2
e f (62)

Then by followingSteps (iv) and (v) ofMethod 2,we canfinally derive the following
valid relational syllogism:

I (Ebr)(Ebr), > 1
2
(Ebr)d, Ed(Oar) � Eab (63)

Here is an exemplification of the above syllogism, with a, b, d, r interpreted as
“boy”, “smoker”, “girl”, “be liked by”, respectively:

There exists someone who likes no smokers. More than half of those who like no
smokers are girls. No girl does not like every boy. Therefore, no boy is a smoker.

The second type of existential assumptions consists of those asserting the minimum
number of members of a unary predicate, like “There are at least n + 1 a”, which will
be represented by (n + 1)I aa. Such an assumption allows us to make the following
inference:

(n + 1)I aa, Aab � (n + 1)I ab (64)

or

(n + 1)I aa, nEab � Oab (65)

Again the above two are equivalent inferences. Thus, by introducing an existential
assumption of the second type, we can derive an inference involving a numerical
quantifier byusing (64) underMethod1or (65) underMethod2, and the valid syllogism
chosen for Step (iv) can then be one involving a numerical quantifier.

For illustration, suppose we choose AAA-1 in Step (i) of Method 1. Following the
initial steps of Method 1, we can derive the immediate inference

Aac � A(Acr)(Aar) (66)
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But by (64), we have

3I (Acr)(Acr), A(Acr)(Aar) � 3I (Acr)(Aar) (67)

Given (66) we can derive the following by applying premise replacement to (67):

3I (Acr)(Acr), Aac � 3I (Acr)(Aar) (68)

The above is our new output of Step (iii) (instead of (66)).
Then in Step (iv), we can choose a valid syllogism such that one of the premises con-

tains the quantifier 3I . Suppose we now choose the numerical syllogism 2E3I1O-4
given in (52) above. Then by following Steps (iv) and (v) of Method 1, we can finally
derive the following valid relational syllogism:

3I (Acr)(Acr), 2Ee(Acr), Aac � 1O(Aar)e (69)

Here is an exemplification of the above syllogism, with a, c, e, r interpreted as
“boy”, “smoker”, “girl”, “be hated by”, respectively:

There are at least three who hate all smokers. At most two girls hate all smokers.
All boys are smokers. Therefore, at least one who hates all boys is not a girl17.

The use of existential assumptions as described above will not affect the soundness
of the Methods. What it adds to the Methods is only that it enables us to derive a
new inference in Step (iii) by applying (56) or (64) under Method 1, and (57) or (65)
under Method 2. But (56) and (64) (as well as their equivalent forms (57) and (65))
are obviously valid inferences.

5.3 Relationship Between the TwoMethods

In the previous two subsections, we have discussedmodifications to the twoDerivation
Methods.Whilewe have concluded that themodificationswill not affect the soundness
of the Methods, we have not discussed the completeness of the modified Methods for
the larger set of valid relational syllogisms. In view of the great variety of possible
relational syllogisms that may contain various types of quantifiers and predicates, it is
not a trivial task to determine a suitable fragment of syllogisms for which the modified
Methods are complete, and this task will be left for future studies.

However, the Methods possess a nice property which is summarized and proved in
the following proposition.

Proposition 6 Let α be a relational syllogism that can be transformed to an equivalent
relational syllogism β by one application of indirect reduction plus quantifier trans-
formations. If α can be derived by Method 1, then β can be derived by either Method
2 or Method 1. If α can be derived by Method 2, then β can be derived by Method 1.

17 Remember that the numerical quantifier nO can be rendered as “at least n . . . not” as well as “at most
all but n”.
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Proof (a) Suppose α can be derived by Method 1. Then it is derived by the following
steps. First we choose a valid simple syllogism where there are two identical
predicates in the second argument position of one premise and the conclusion
with the form

D1ab, D2cd � D3eb (70)

from which we derive an immediate inference

D2cd � A(D1ar)(D3er) (71)

If we now introduce an existential assumption, then by (56) or (64) above, we have

Σ, A(D1ar)(D3er) � D6(D1ar)(D3er) (72)

where Σ represents the set of existential assumptions and D6 is a proportional /
numerical quantifier. By applying premise replacement to (72), we can then derive a
new inference

Σ, D2cd � D6(D1ar)(D3er) (73)

Whether we introduce an existential assumption or not, the output of Step (iii) can
be represented uniformly by (73), where Σ = ∅ and D6 = A if there is no existential
assumption. We next choose another valid simple syllogism one of whose premises
contains the quantifier D6 with the form

D6 f g, D4hi � D5 jk (74)

from which we derive

α : Σ, D2cd, D4h
′i ′ � D5 j

′k′ (75)

by substituting

f = D1ar , g = D3er (76)

into (74) and then applying premise replacement, where h′, i ′, j ′, k′ are the effects of
the substitution (76) on the predicates h, i , j , k.

Now there are two possible βs that can be transformed from α by one application
of indirect reduction plus quantifier transformations:

β1 : Σ, ¬D5 j
′k′, D4h

′i ′ � ¬D2cd (77)

β2 : Σ, D2cd, ¬D5 j
′k′ � ¬D4h

′i ′ (78)
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We now show that β1 can be derived by Method 2 whereas β2 can be derived by
Method 1. Consider β1 first. By one application of indirect reduction plus quantifier
transformations to (70), we obtain

D1ab, ¬D3eb � ¬D2cd (79)

which is a valid syllogism and has the desired form for Step (i) of Method 2 (there
are two identical predicates, namely b, in the second argument position of the two
premises). By following the initial Steps of Method 2, from the above we can derive
the following immediate inference:

I (D1ar)(¬D3er) � ¬D2cd (80)

which can be rewritten as the following:

O(D1ar)(D3er) � ¬D2cd (81)

If we now introduce the existential assumption in Σ above, then we will obtain the
following which is equivalent to (72) above:

Σ, ¬D6(D1ar)(D3er) � O(D1ar)(D3er) (82)

By applying premise replacement to (81), we can then derive a new inference

Σ, ¬D6(D1ar)(D3er) � ¬D2cd (83)

Again, the output of Step (iii) can be represented uniformly by (83), where Σ = ∅
and ¬D6 = O if there is no existential assumption. Then in Step (iv), we choose

¬D5 jk, D4hi � ¬D6 f g (84)

which is a valid syllogism equivalent to (74) and has the desired form for Step (iv)
of Method 2 (the conclusion contains the quantifier ¬D6). Next, by using the same
substitution given in (76) above, we can derive

¬D5 j
′k′, D4h

′i ′ � ¬D6(D1ar)(D3er) (85)

Finally, by applying premise replacement to (83), we obtain β1 given in (77).
To derive β2, we just follow the same steps as deriving α above until we obtain (73)

at the end of Step (iii). Then in Step (iv), we choose

D6 f g, ¬D5 jk � ¬D4hi (86)

which is also a valid syllogism equivalent to (74). It can be easily seen that by using
the same substitution given in (76) above and then completing Step (v), we can finally
derive β2 given in (78). Thus, we have shown that if α can be derived by Method 1,
then β can be derived by either Method 2 or Method 1.
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(b) Suppose α can be derived by Method 2. Then it is derived by the following steps.
First we choose a valid simple syllogism where there are two identical predicates
in the second argument position of the two premises with the form

D1ab, D2cb � D3ed (87)

from which we derive an immediate inference

I (D1ar)(D2cr) � D3ed (88)

which can be rewritten as

O(D1ar)(¬D2cr) � D3ed (89)

If we now introduce an existential assumption, then by (57) or (65) above, we have

Σ, D6(D1ar)(¬D2cr) � O(D1ar)(¬D2cr) (90)

whereΣ represents the set of existential assumption and D6 is a proportional / numer-
ical quantifier. By applying premise replacement to (89), we can then derive a new
inference

Σ, D6(D1ar)(¬D2cr) � D3ed (91)

Whether we introduce an existential assumption or not, the output of Step (iii) can
be represented uniformly by (91), where Σ = ∅ and D6 = O if there is no existential
assumption.Wenext choose another valid simple syllogismwhose conclusion contains
the quantifier D6 with the form

D4 f g, D5hi � D6 jk (92)

from which we derive

α : Σ, D4 f
′g′, D5h

′i ′ � D3ed (93)

by substituting

j = D1ar , k = ¬D2cr (94)

into (92) and then applying premise replacement, where f ′, g′, h′, i ′ are the effects of
the substitution (94) on the predicates f , g, h, i .

Now there are two possible βs that can be transformed from α by one application
of indirect reduction plus quantifier transformations:

β1 : Σ, ¬D3ed, D5h
′i ′ � ¬D4 f

′g′ (95)

β2 : Σ, D4 f
′g′, ¬D3ed � ¬D5h

′i ′ (96)
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We now show that both β1 and β2 can be derived by Method 1. Consider β1 first.
By one application of indirect reduction plus quantifier transformations to (87), we
obtain

D1ab, ¬D3ed � ¬D2cb (97)

which is a valid syllogism and has the desired form for Step (i) of Method 1 (there are
two identical predicates, namely b, in the second argument position of one premise
and the conclusion). By following the initial Steps of Method 1, from the above we
can derive the following immediate inference:

¬D3ed � A(D1ar)(¬D2cr) (98)

If we now introduce the existential assumption in Σ above, then we will obtain the
following which is equivalent to (90) above:

Σ, A(D1ar)(¬D2cr) � ¬D6(D1ar)(¬D2cr) (99)

By applying premise replacement to (99), we can then derive a new inference

Σ, ¬D3ed � ¬D6(D1ar)(¬D2cr) (100)

Again, the output of Step (iii) can be represented uniformly by (100), whereΣ = ∅
and ¬D6 = A if there is no existential assumption. Then in Step (iv), we choose

¬D6 jk, D5hi � ¬D4 f g (101)

which is a valid syllogism equivalent to (92) and has the desired form for Step (iv) of
Method 1 (at least one premise contains the quantifier ¬D6). Next, by using the same
substitution given in (94) above, we can derive

¬D6(D1ar)(¬D2cr), D5h
′i ′ � ¬D4 f

′g′ (102)

Finally, by applying premise replacement to (102), we obtain β1 given in (95).
To derive β2, we just follow the same steps as deriving β1 above until we obtain

(100) at the end of Step (iii). Then in Step (iv), we choose

D4 f g, ¬D6 jk � ¬D5hi (103)

which is also a valid syllogism equivalent to (92). It can be easily seen that by using
the same substitution given in (94) above and then completing Step (v), we can finally
derive β2 given in (96). Thus, we have shown that if α can be derived by applying
Method 2, then β can be derived by applying Method 1. 
�

From the above proposition, we know that if a relational syllogism is (un)provable
by the two Derivation Methods, then all relational syllogisms that are equivalent to it
are also (un)provable by theMethods. This can thus save us some efforts in determining
the provability of relational syllogisms by the Methods.
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6 Conclusion

In this paper, we have presented a fragment of relational syllogisms called RELSYLL
consisting of quantified statements with the numerical quantifiers studied byMurphree
(1991, 1993, 1997, 1998). Instead of deriving relational syllogisms directly from
axioms and/or inference rules, we have introduced two Derivation Methods to derive
the valid syllogisms.We have also shown that the twoMethods are sound and complete
for RELSYLL.

While RELSYLL and the Derivation Methods are quite restrictive in terms of the
format of the derivable relational syllogisms and the types of valid simple syllogisms
that can be used in the Methods, we have discussed some possible ways to extend
the Derivation Methods, including the use of more valid syllogisms and existential
assumptions. We have also shown how to use the extended Methods to derive valid
relational syllogisms containing “only” and proportional quantifiers.

In fact, the extendedMethods can be applied to derive an even larger set of relational
syllogisms containing other non-classical quantifiers.One such type of quantifiers con-
sists of the vague quantifiers studied by, say Khayata et al. (2002) and Peterson (2000),
among many others. By using valid simple syllogisms with vague quantifiers identi-
fied by these scholars, we can then derive valid relational syllogisms containing these
quantifiers. For example, the following is the APT -1 syllogism proposed by Peter-
son (2000), where P and T are vague quantifiers meaning “almost all” and “most”,
respectively (note that the validity of the following syllogism relies on existential
import):

I dd, A f e, Pd f � Tde (104)

One can check that by using the classical syllogism AAA-1 in Step (i) of Method 1
and the above syllogism in Step (iv), one can derive the following relational syllogism
with vague quantifiers:

I dd, Aac, Pd(Acr) � Td(Aar) (105)

Thus, the extended Methods have a wide scope of applications.
While we have shown that the extended Methods remain sound, we have not dis-

cussed the completeness of the extended Methods for a larger set of valid relational
syllogisms. But we have proved a special property of the two Methods which may
save the efforts in determining the provability of relational syllogisms by the Meth-
ods. Therefore, the extended Methods enable us to discover an extended set of valid
relational syllogisms, whereas the determination of the completeness of the extended
Methods for this extended set, or a subset of it, will have to be left for future studies.
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Before closing this paper, we would like to point to a possible direction for future
studieswhich concern the predicates in the relational syllogisms. The binary predicates
discussed in this paper are general binary predicates without additional properties.
However, in natural language, some binary predicates have some special properties.
For example, many comparative adjectives as well as some locative prepositions (such
as “in front of”) and relational nouns (such as “ancestor of”) are transitive in the sense
that if (x,y) ∈ r and (y,z) ∈ r, then (x,z) ∈ r. Owing to these properties, quan-
tified statements with these parts of speech satisfy certain syllogisms that quantified
statements with ordinary binary predicates do not satisfy. The following is an example
of a valid syllogism with comparative adjectives:

Every basketball player is taller than most jockeys. A swimmer is taller than
some basketball player. Therefore, a swimmer is taller than most jockeys.

Note that the above syllogism remains valid if “is taller than” is replaced by “is in
front of”, but becomes invalid if “is taller than” is replaced by a general binary pred-
icate such as “likes”, and the difference is mainly due to the fact that both “is taller
than” and “is in front of” are transitive while “likes” is not. Thus, a study on these
special properties will enable us to identify more valid relational syllogisms. In fact,
there are already some studies on relational syllogisms involving comparative adjec-
tives, such as Keene (1969) and Moss (2011). But the syllogisms covered in these
studies are mainly restricted to those containing classical quantifiers. Thus, a study
on how to extend the Derivation Methods introduced in this paper to relational syl-
logisms containing binary predicates with special properties will surely yield fruitful
results.

Appendix: Counterexamples for Invalid Numerical Syllogisms

This Appendix provides a list of counterexamples for invalid simple syllogisms with
numerical quantifiers which may be used for constructing counterexamples for a cer-
tain type of invalid relational syllogisms in RELSYLL as described in the proof for
Proposition 4. Since RELSYLL only includes relational syllogisms that are based on
simple syllogisms of Figures 1 to 3, the following list only includes invalid Figure-
1 syllogisms for conciseness. Based on the counterexample for an invalid Figure-1
syllogism α listed below, one can obtain a counterexample for the invalid Figure-2
syllogism that is equivalent to α by interchanging b and c, and a counterexample for
the invalid Figure-3 syllogism that is equivalent to α by interchanging a and c. Also
for conciseness, syllogisms that can be invalidated by the same counterexample are
placed in the same cell below.

123



32 K. Chow

Note that each counterexample listed below is in fact a counterexample for an
infinite number of invalid numerical syllogisms, not only because the figures n,m, k
below can be substituted by an infinite number of appropriate non-negative integers,
but also because from each invalid numerical syllogism one can deduce more invalid
syllogisms with stronger conclusions. For example, the first counterexample listed
below is not only a counterexample for nAmA(n + m − 1)A-1, but also one for
nAmA(n + m − 2)A-1, because if (n + m − 1)Aab is a false conclusion, then (n +
m − 2)Aab must also be a false conclusion.

Type 1: Numerical syllogisms based on valid classical syllogisms but associated
with the wrong numerals

Syllogism Counterexample
nAmA(n+m − 1)A-1 a = {u1, . . .un,v1, . . .vm},b = ∅,c = {u1, . . .un}
nA(n+m)I(m+ 1)I-1 a = c = {u1, . . .un,v1, . . .vm},b = {v1, . . .vm}
mE(m+ n)I(n+ 1)O-1
nEmA(n+m − 1)E-1 a = b = {u1, . . .un,v1, . . .vm},c = {u1, . . .un}

Type 2: Numerical syllogisms based on invalid classical syllogisms

Syllogism Counterexample
nAmAkE-1 a = b = c = {u1, . . .uk+1}
nA(k + 1)I(m+ 1)O-1
nAmA(k + 1)I-1 a = b = c = ∅
nAmA(k + 1)O-1
nAmE(k + 1)I-1
nAmE(k + 1)O-1
nEmA(k + 1)I-1
nEmA(k + 1)O-1
nEmE(k + 1)I-1
nEmE(k + 1)O-1
nAmEkA-1 a = {u1, . . .uk+1},b = c = ∅
nEmEkA-1
nA(k + 1)O(m+ 1)I-1
nE(k + 1)O(m+ 1)I-1

123



Relational Syllogisms with Numerical Quantifiers and Beyond 33

nAmEkE-1 a = b = {u1, . . .uk+1},c = ∅
nEmEkE-1
nA(k + 1)O(m+ 1)O-1
nE(k + 1)O(m+ 1)O-1
nA(m+ 1)IkA-1 a = {u1, . . .uk+1,v1, . . .vm+1},b = c = {v1, . . .vm+1}
nA(m+ 1)IkE-1 a = b = {u1, . . .uk+1,v1, . . .vm+1},c = {v1, . . .vm+1}
(m+ 1)I(k + 1)O(n+ 1)O-1
nA(m+ 1)OkA-1 a = {u1, . . .uk+1,v1, . . .vm+1},b = c = ∅
nE(m+ 1)OkA-1
nA(m+ 1)OkE-1 a = b = {u1, . . .uk+1,v1, . . .vm+1},c = ∅
nE(m+ 1)OkE-1
nEmAkA-1 a = c = {u1, . . .uk+1},b = ∅
nE(k + 1)I(m+ 1)I-1
nE(m+ 1)IkA-1 a = c = {u1, . . .uk+1,v1, . . .vm+1},b = ∅
(m+ 1)OnAkA-1
nE(m+ 1)IkE-1 a = {u1, . . .uk+1,v1, . . .vm+1},b = {u1, . . .uk+1},

c = {v1, . . .vm+1}
(n+ 1)ImAkA-1 a = c = {u1, . . .uk+1,v1, . . .vn+1},b = {v1, . . .vn+1}
(n+ 1)ImAkE-1 a = {u1, . . .uk+1},b = c = {u1, . . .uk+1,v1, . . .vn+1}
(n+ 1)I(k + 1)I(m+ 1)O-1
(n+ 1)ImA(k + 1)I-1 a = ∅,b = c = {u1, . . .un+1}
(n+ 1)ImA(k + 1)O-1
(n+ 1)ImE(k + 1)I-1
(n+ 1)ImE(k + 1)O-1
(n+ 1)ImEkA-1 a = {u1, . . .uk+1},b = c = {v1, . . .vn+1}
(n+ 1)I(k + 1)O(m+ 1)I-1
(n+ 1)ImEkE-1 a = {u1, . . .uk+1},b = {u1, . . .uk+1,v1, . . .vn+1},

c = {v1, . . .vn+1}
(n+ 1)I(m+ 1)IkA-1 a = {u1, . . .uk+1,v1, . . .vm+1},b = {w1, . . .wn+1},

c = {v1, . . .vm+1,w1, . . .wn+1}
(n+ 1)I(m+ 1)IkE-1 a = b = c = {u1, . . .uk+1,v1, . . .vn+1,w1, . . .wm+1}
(n+ 1)I(m+ 1)I(k + 1)I-1 a = {u1, . . .um+1},b = {v1, . . .vn+1},

c = {u1, . . .um+1,v1, . . .vn+1}
(n+ 1)I(m+ 1)OkA-1 a = {u1, . . .uk+1,v1, . . .vm+1},b = c = {w1, . . .wn+1}
(n+ 1)I(m+ 1)OkE-1 a = {u1, . . .uk+1,v1, . . .vm+1},

b = {u1, . . .uk+1,w1, . . .wn+1},c = {w1, . . .wn+1}
(n+ 1)OmAkE-1 a = b = {u1, . . .uk+1},c = {u1, . . .uk+1,v1, . . .vn+1}
(n+ 1)O(k + 1)I(m+ 1)O-1
(n+ 1)OmA(k + 1)I-1 a = b = ∅,c = {u1, . . .un+1}
(n+ 1)OmA(k + 1)O-1
(n+ 1)OmE(k + 1)I-1
(n+ 1)OmE(k + 1)O-1
(n+ 1)OmEkA-1 a = {u1, . . .uk+1},b = ∅,c = {v1, . . .vn+1}
(n+ 1)O(k + 1)O(m+ 1)I-1
(n+ 1)OmEkE-1 a = b = {u1, . . .uk+1},c = {v1, . . .vn+1}
(n+ 1)O(k + 1)O(m+ 1)O-1
(n+ 1)O(m+ 1)IkA-1 a = {u1, . . .uk+1,v1, . . .vm+1},b = ∅,

c = {v1, . . .vm+1,w1, . . .wn+1}
(n+ 1)O(m+ 1)IkE-1 a = {u1, . . .uk+1,v1, . . .vm+1},b = {u1, . . .uk+1},

c = {v1, . . .vm+1,w1, . . .wn+1}
(n+ 1)O(m+ 1)I(k + 1)I-1 a = c = {u1, . . .un+1,v1, . . .vm+1},b = ∅
(n+ 1)O(m+ 1)OkA-1 a = {u1, . . .uk+1,v1, . . .vm+1},b = ∅,

c = {w1, . . .wn+1}
(n+ 1)O(m+ 1)OkE-1 a = {u1, . . .uk+1,v1, . . .vm+1},b = {u1, . . .uk+1},

c = {w1, . . .wn+1}
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