
Journal of Logic, Language and Information (2019) 28:287–307
https://doi.org/10.1007/s10849-019-09290-7

Natural Language Semantics and Computability

Richard Moot1 · Christian Retoré1

Published online: 19 April 2019
© Springer Nature B.V. 2019

Abstract
This paper is a reflexion on the computability of natural language semantics. It does
not contain a new model or new results in the formal semantics of natural language:
it is rather a computational analysis, in the context for type-logical grammars, of the
logical models and algorithms currently used in natural language semantics, defined
as a function from a grammatical sentence to a (non-empty) set of logical formulas—
because a statement can be ambiguous, it can correspond to multiple formulas, one for
each reading. We argue that as long as we do not explicitly compute the interpretation
in terms of possible world models, one can compute the semantic representation(s)
of a given statement, including aspects of lexical meaning. This is a very generic
process, so the results are, at least in principle, widely applicable. We also discuss the
algorithmic complexity of this process.

Keywords Categorial grammar · Complexity · Proof theory

1 Introduction

In the well-known Turing test for artificial intelligence, a human interrogator needs to
decide, via a question answering session with two terminals, which of his two inter-
locutors is a man and which is a machine (Turing 1950). Although early systems like
Eliza based on matching word patterns may seem clever at first sight, they clearly do
not pass the test. One often forgets that, in addition to reasoning and access to knowl-
edge representation, passing the Turing test presupposes automated natural language
analysis and generation which, despite significant progress in the field, have not yet
been fully achieved. These natural language processing components of the Turing test
are of independent interest and used in computer programs for question answering
and translation—however, since both of these tasks are generally assumed to be AI-

B Richard Moot
Richard.Moot@lirmm.fr

1 LIRMM, Montpellier University, CNRS, 161 Rue Ada, 34095 Montpellier Cedex 5, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10849-019-09290-7&domain=pdf
http://orcid.org/0000-0002-6450-1600


288 R. Moot, C. Retoré

complete it is unlikely that a full solution for these problems would be simpler than a
solution for the Turing test itself.

If we define the interpretation function of a (sequence of) sentence(s) σ as the
mapping to a representation φ(σ) (it semantics) that can be used by a machine for
natural language processing tasks, two very different ideas of semantics come tomind.

1. One notion of semantics describes what the sentence(s) speaks about. Approaches
using word embedding or distributional semantics fall in this group. The domi-
nant model for this type of semantics represents meaning using word vectors (only
involving referential/full words nouns, adjectives, verbs, adverbs,…and not gram-
matical words) which represent what σ speaks about. This is clearly computable.
One standard way of achieving this is to fix a thesaurus of n words that acts as a
vector basis. Usually words not in the thesaurus or basis are expanded into their
definition with words in the thesaurus. By counting occurrences of words from the
thesaurus in the text (substituting words not in the thesaurus with their definition)
and turning this into a n-dimensional vector reduced to be of Euclidian norm 1,
we obtain word meanings in the form of n-dimensional vectors. This notion of
semantics provides a useful measure of semantic similarity between words and
texts, using measures such as the cosine between different vectors; typical appli-
cations include exploring Big Data and finding relevant pages on the internet. This
kind of semantics models what a word (or a text) speaks about.

2. The other notion of semantics, the one this paper is about, is of a logical nature. It
models what is asserted by the sentences. According to this view, computational
semantics is the mapping of sentence(s) to logical formula(s). This is usually
done compositionally, according to Frege’s principle “the meaning of a compound
expression is a function of the meaning of its components” to which Montague
added “and of its syntactic structure”. This paper focuses on this logical and
compositional notion of semantics and its extension (by us and others) to lexical
semantics; these extensions allow us to conclude from a sentence like “I started
a book” that the speaker started reading (or, depending on the context, writing) a
book.

We should comment that, in our view, the semantic interpretation is a (computable)
function from sentence(s) to logical formulas representing their different meanings,
since this viewpoint is not so common in linguistics.

– Cognitive sciences also consider the language faculty as a computational device
and insist on the computations involved in language analysis and production. Actu-
ally there are two different views of this cognitive and computational view: one
view, promoted by authors such as Pinker (1994), claims that there is a specific
cognitive function for language, a “language module” in the mind, while others,
like Langacker (2008), think that our language faculty is just our general cognitive
abilities applied to language.

– In linguistics and above all in philosophy of language many people think that
sentences cannot have any meaning without a context, such a context involving
both linguistic and extra-linguistic information. Thus, according to this view, the
input of our algorithm should include context. Our answer is firstly that linguistic
context is partly taken into account since we are able to produce, in addition to

123



Natural Language Semantics and Computability 289

formulas, discourse structures. Regarding the part of context that we cannot take
into account, be it linguistic or not, our answer is that it is not part of semantics,
but rather an aspect of pragmatics. And, as argued by Corblin (2013), if someone
is given a few sentences on a sheet of paper without any further information, he
starts imagining situations, may infer other statements from what he reads, and
such thoughts can be called the semantics of the sentence.

– The linguistic tradition initiated byMontague (1974) lacks some coherence regard-
ing computability. On the one hand, Montague gives an algorithm for parsing
sentences and for computing their meaning as a logical formula (Montague 1974);
Partee (2001) calls this the indirect interpretation. On the other hand, he asserts that
the meaning of a sentence is the interpretation of the formula in possible worlds,
the corresponding direct interpretation (Montague 1970; Partee 2001). According
to the direct interpretation perspective, each intermediate step, including the inten-
sional/modal formulas should be forgotten, and the semantics is defined as the set
of possible worlds in which the semantic formula is true: but this cannot even be
finitely described,1 except by these intermediate formulas; a fortiori it cannot be
computed. We place ourselves in the tradition of indirect interpretation, for at least
three reasons, from the weakest to the strongest:

– Models for higher order logic, as inMontague, are not as simple as is sometimes
assumed, and they do not quite match the formulas: completeness fails.2 This
means that a model and even all models at once contains less information than
the formula itself.

– We do not want to be committed to any particular interpretation. Indeed,
there are alternative relevant interpretations of formulas, as the following non
exhaustive list shows: dialogical interpretations (that are the sets of proofs
and/or refutations), game theoretic semantics and ludics (related to the former
style of interpretation), set of consequences of the formula, structures inhabited
by their normal proofs as in intuitionistic logic,…

– Interpreting the formula(s) is no longer related to linguistics, although some
interpretations might be useful for some applications. Indeed, once you have
a formula, interpreting it in your favourite way is a purely logical question.
Deciding whether it is true or not in a model, computing all its proofs or all
its refutations, defining game strategies, computing its consequences or the
corresponding structure has nothing to do with the particular natural language
statement you started with.

1 The models produced by Montague are uncountably infinite, since they start from countably infinite sets,
then use the powerset operation (Montague 1970; Thomason 1974, p. 194).
2 This is true already for second-order logic and its standard, set-theoretic models (van Dalen 2013; Shapiro
1991). As Shapiro (1991, p. vii) puts it succinctly: “there can be no complete effective deductive system
for second-order logic”.

123



290 R. Moot, C. Retoré

Fig. 1 Natural deduction proof
rules for the Lambek calculus

2 Computational Semantics à la Montague

We shall first present the general algorithm that maps sentences to logical formulas,
returning to lexical semantics in Sect. 3. The first step is to compute a syntactic analysis
that is rich and detailed enough to enable the computation of the semantics (in the form
of logical formulas). The second step is to incorporate the lexical lambda terms and
to reduce the obtained lambda term—this step possibly includes the choice of some
lambda terms from the lexicon that fix the type mismatches.

2.1 Categorial Syntax

In order to express the process that maps a sentence to its semantic interpretation(s)
in the form of logical formulas, we shall start with a categorial grammar. This is not
strictly necessary: Montague (1974) used a context free grammar (augmented with a
mechanism for quantifier scope), but if one reads between the lines, at some points
he converts the phrase structure into a categorial derivation, so we shall, following
our earlier work (Moot and Retoré 2012), directly use a categorial analysis. Although
richer variants of categorial grammars are possible, and used in practice, we give here
an example with Lambek grammars, and briefly comment on variants later.

Categories are freely generated from a set of base categories, for example np (noun
phrase), n (common noun), S (sentence), by two binary operators: \ and /. A \ B and
B / A are categories whenever A and B are categories. A category A \ B intuitively
looks for a category A to its left in order to form a B. Similarly, a category B / A
combines with an A to its right to form a B. The full natural deduction rules are shown
in Fig. 1.

A lexicon provides, for each word w of the language, a finite set of categories
lex(w). We say a sequence of words w1, . . . , wn is of type C whenever for each i
there exists ci ∈ lex(wi ) c1, . . . , cn � C . Figure 2 shows an example lexicon (top)
and a derivation of a sentence (bottom).

2.2 From Syntactic Derivation to Typed Linear Lambda Terms

Categorial derivations, being a proper subset of derivations in multiplicative intu-
itionistic linear logic, correspond to (simply typed) linear lambda terms. This makes

123



Natural Language Semantics and Computability 291

Fig. 2 Lexicon and example derivation

the connection to Montague grammar particularly transparent (van Benthem 1986;
Moortgat 1997).

Denoting by e the set of entities (or individuals) and by t the type for propositions
(these can be either true or false, hence the name t) one has the following mapping
from syntactic categories to semantic/logical types.

(Syntactic type)∗ = Semantic type
S∗ = t a sentence is a proposition

np∗ = e a noun phrase is an entity
n∗ = e → t a noun is a subset of the set of entities

(maps entities to propositions)
(A\B)∗ = (B / A)∗ = A∗ → B∗ extends easily to all syntactic categories

Using this translation of categories into types which forgets the non-commutativity,
the Lambek calculus proof of Fig. 2 is translated to the linear intuitionistic proof shown
in Fig. 3; we have kept the order of the premisses unchanged to highlight the similarity
with the previous proof. Such a proof can be viewed as a simply typed lambda term
with the two base types e and t .

(a(e→t)→((e→t)→t) cartoone→t )(λye(every(e→t)→((e→t)→t) kide→t )

(watchede→e→t y))

As observed by Church (1940), the simply typed lambda calculus with two types e
and t is enough to express the formulas of higher order logic, provided one introduces
constants for the logical connectives and quantifiers, that is, constants “∃” and “∀” of
type (e → t) → t , and constants “∧”, “∨” and “⇒” of type t → (t → t).

In addition to the syntactic lexicon, there is a semantic lexicon thatmaps anyword to
a simply typed lambda termwith atomic types e and t and whose type is the translation

123



292 R. Moot, C. Retoré

Fig. 3 The multiplicative linear logic proof corresponding to Fig. 2

Fig. 4 Semantic lexicon for our example grammar

of its syntactic formula. Figure 4 presents such a lexicon for our current example. For
example, the word “every” is assigned formula (S /(np \ S)) / n. According to the
translation function above, we know the corresponding semantic term must be of type
(e → t) → ((e → t) → t), as it is in Fig. 3. The term we assign in in the semantic
lexicon is the following (both the type and the term are standard in a Montagovian
setting).

λPe→t λQe→t (∀(e→t)→t (λxe(⇒t→(t→t) (P x)(Q x))))

Unlike the lambda terms computed for proof, the lexical entries in the semantic lexicon
need not be linear: the lexical lambda term assigned to “every” shown above is not a
linear lambda term since the single abstraction binds two occurrences of x .

Similarly, the syntactic type of “a”, the formula ((S / np) \ S) / n has corresponding
semantic type (e → t) → ((e → t) → t) (though syntactically different, a subject
and an object generalized quantifier have the same semantic type), and the following
lexical meaning recipe.

123



Natural Language Semantics and Computability 293

Fig. 5 The standard categorial grammar method for computing meaning

λPe→t λQe→t (∃(e→t)→t (λxe(∧t→(t→t)(P x)(Q x))))

Finally, “kid”, “cartoon” and “watched” are assigned the constants kide→t ,
cartoone→t and watchede→(e→t) respectively.

Because the types of these lambda terms are the same as those of the words in the
initial lambda term, we can take the linear lambda term associated with the sentence
and substitute the corresponding lexical meaning for each word, transforming the
derivational semantics, in our case the following3

(a(e→t)→((e→t)→t) cartoone→t )(λye(every(e→t)→((e→t)→t) kide→t )

(watchede→e→t y))

into an (unreduced) representation of the meaning of the sentence.

((λPe→t λQe→t (∃(e→t)→t (λxe(∧t→(t→t)(P x)(Q x)))))cartoone→t )

((λye(((λPe→t λQe→t (∀(e→t)→t (λxe(⇒t→(t→t) (P x)(Q x)))))kide→t x)))

(watchede→e→t y))

The above term reduces to

(∃(e→t)→t λxe(∧t→(t→t)(cartoon x)(∀(e→t)→t (λze(⇒t→(t→t) (kid z)

((watched x) z))))))

that is:4 ∃x .cartoon(x) ∧ ∀z.kid(z) ⇒ watched(z, x)

The full algorithm to compute the semantics of a sentence as a logical formula is
shown in Fig. 5.

3 There are exactly two (non-equivalent) proofs of this sentence. The second proof using the same
premisses corresponds to the second, more prominent reading of the sentence whose lambda term is:
(every kid)(λxe.(a cartoon)(λye((watched y) x)).
4 We use the standard convention to translate a term ((p y) x) into a predicate p(x, y).

123



294 R. Moot, C. Retoré

Fig. 6 Computing meaning in a framework with coercion

3 Adding Sorts, Coercions, and UniformOperations

Montague (as Frege) only used a single type for entities: e. But it is much better to
have many sorts in order to block the interpretation of some sentences:

(1) # The table barked.
(2) The dog barked.
(3) ?The sergeant barked.

As dictionaries say “barked” can be said of animals, usually dogs. The first one is
correctly rejected: one gets barkdog→t (the table)artifact and dog �= artifact.

However we need to enable the last example barkdog→t (the sergeant)human

and in this case we use coercions (Bassac et al. 2010; Retoré 2014): the lexical entry
for the verb “barked” which only applies to the sort of “dogs” provides a coercion
c : human → dog from “human” to “dog”. The revised lexicon provides each word
with the lambda term that we saw earlier (typed using some of the several sorts/base
types) and some optional lambda terms that can be used if needed to solve type
mismatches.

Such coercions are needed to understand sentences like:

(4) This book is heavy.
(5) This book is interesting.
(6) This book is heavy and interesting.
(7) Washington borders the Potomac.
(8) Washington attacked Iraq.
(9) # Washington borders the Potomac and attacked Iraq.

The first two sentences will respectively use a coercion from book to physical
object and a coercion from book to information. Any time an object has several related
meanings, one can consider the conjunction of properties referring to those particular
aspects. For these operations (and others acting uniformly on types) we exploit poly-
morphically typed lambda terms (system F). When the related meanings of a word
are incompatible (this is usually the case) the corresponding coercions are declared
to be incompatible in the lexicon (one is declared as rigid). This extended process is
described in Fig. 6. Some remarks on our use of system F:

123



Natural Language Semantics and Computability 295

– We use it for the syntax of semantics (a.k.a. metalogic, glue logic)
– The formulas of semantics are the usual ones (many sorted as in T yn)
– We use polymorphic constants to model operations that act uniformly on types.
Examples of this are quantifiers and the conjunction of predicates that apply to
different facets of a given word.

Many other approaches to lexical semantics and coercions exist (Asher 2011; Luo
2012), but little is currently known about their formal complexity.

4 Complexity of the Syntax

As we remarked before, when computing the formal semantics of a sentence in the
Montague tradition, we (at least implicitly) construct a categorial grammar proof (a
syntactic analysis). Therefore, we need to study the complexity of parsing/theorem
proving in categorial grammar first. The complexity generally studied in this context
is the complexity of deciding about the existence of a proof (a parse) for a logical
statement (a natural language sentence) as a function of the number of words in this
sentence.5

The difference between theorem proving and parsing consists only in the inclu-
sion of the lexicon, which may offer a choice of many different formulas for each
word. Although lexical ambiguity is an important problem in practical applications,
from the perspective of complexity analysis we can simply select formulas non-
deterministically. This means that for logics in NP or PSPACE, the complexity of
parsing and the complexity of theorem proving are the same.

Perhaps surprisingly, the simple product-free version of the Lambek calculus we
have used for our examples is alreadyNP-complete (Savateev 2009). However, there is
a notion of order, which measures the level of “nesting” of the implications as defined
below.

order(p) = 0

order(A/B) = order(B\A) = max(order(A), (order(B) + 1))

As an example, the order of formula (np\S)/np is 1, whereas the order of formula
S/(np\S) is 2. For the Lambek calculus, the maximum order of the formulas in a
grammar is a good indication of its complexity. Grammars used for linguistic purposes
generally have formulas of order 3 or, at most, 4. We know that once we bound the
order of formulas in the lexicon of our grammars to be less than a fixed n, parsing
becomes polynomial for any choice of n, as shown by Pentus (2010).6

5 For many algorithms, the complexity is a function of the number of atomic subformulas of the formulas
in the sentence. Empirical estimation shows the number of atomic formulas is a bit over twice the number
of words in a sentence (Moot 2015b).
6 For the algorithm of Pentus (2010), the order appears as an exponent in the worst-case complexity: for a
grammar of order n there is a multiplicative factor of 25(n+1). So though polynomial, this algorithm is not
necessarily efficient.

123



296 R. Moot, C. Retoré

The NP-completeness proof of Savateev (2009) uses a reduction from SAT, where
a SAT problem with c clauses and v variables produces a Lambek grammar of order
3 + 4c, with (2c + 1)(3v + 1) atomic formulas.

The notion of order therefore provides a neat indicator of the complexity: the NP-
completeness proof requires formulas of order 7 and greater (that is, the term (3+4c)
from the construction of Savateev (2009) with a minimum of one clause), whereas the
formulas used for linguistic modelling are of order 4 or less.

Note that there is no contradition between theNP-completeness proof and the fixed-
order polynomial parsing proof of Pentus (2010), since the latter result fixes the lexicon
(that is, it is a fixed recognition result) whereas the former doesn’t (it is a universal
recognition result). In other words, there is no fixed Lambek calculus lexicon which
generates all instances of SAT (unless P = NP).

Even though the Lambek calculus is a nice and simple system, we know that the
Lambek calculus generates only context-free languages (Pentus 1995), and there is
good evidence that at least some constructions in natural language require a slightly
larger class of languages (Shieber 1985). One influential proposal for such a larger
family of language classes are the mildly context-sensitive languages (Joshi 1985),
which can be characterised in various ways. One typical way to do so is as follows.

– Contains the context-free languages,
– Limited cross-serial dependencies (i.e includesanbncn butmaybenotanbncndnen),
– Semilinearity (a language is semilinear iff there exists a regular language to which
it is equivalent up to permutation),

– polynomial fixed recognition.7

There are various extensions of the Lambek calculuswhich generatemildly context-
sensitive languages while keeping the syntax-semantics interface essentially the same
as for the Lambek calculus. Currently, little is known about upper bounds of the classes
of formal languages generated by these extensions of the Lambek calculus. Though
Moot (2002) shows that multimodal categorial grammars generate exactly the context-
sensitive languages, Buszkowski (1997) underlines the difficulty of adapting the result
of Pentus (1995) to extensions of the Lambek calculus.8

Besides problems from the point of view of formal language theory, it should
be noted that the goal we set out at the start of this paper was not just to generate
the right string language but rather to generate the right string-meaning pairs. This
poses additional problems. Extensions of the Lambek calculus have been used to give
accounts of many phenomena on the syntax-semantics interface. Examples include
sentences such as the following.

(10) John left before Mary did.
(11) John studies logic and Charles, phonetics.

7 The last two items are sometimes stated as theweaker condition “constant growth” instead of semilinearity
and the stronger condition of polynomial parsing instead of polynomial fixed recognition. Since all other
properties are properties of formal languages, we prefer the formal language theoretic notion of polynomial
fixed recognition.
8 We can side-step the need for a Pentus-like proof by looking only at fragments of order 1 and some order
1 fragments are known to generate mildly context-sensitive languages (de Groote and Pogodalla 2004;
Wijnholds 2011).

123



Natural Language Semantics and Computability 297

(12) John ate more donuts than Mary bought bagels.

Where sentence 10 has a reading equivalent to ‘John left before Mary left’ and
sentence 11 is equivalent to ‘John studies logic and Charles studies phonetics’. Phe-
nomena like these and many others have been given an analysis in the literature on
type-logical grammars (Morrill et al. 2011; Kubota and Levine 2012).

However, one of the oldest and most widely studied phenomena on the syntax-
semantics interface is the scope of quantifiers. In the context of complexity, this
problem is particularly interesting because the combinatorics of the complexity of
quantifiers scope can be assigned a precise number for its worst-case complexity. For
example, a sentence with n quantified noun phrases can have n! readings (Hobbs and
Shieber 1987; Barker 2015): one for each of the permutations of the quantifiers (some
additional readings may be available whenwe include cumulative readings). Although
the standard notion of complexity for categorial grammars is the complexity of decid-
ing whether or not a proof exists, formal semanticists, at least since Montague (1974),
want their formalisms to generate all and only the correct readings for a sentence:
we are not only interested in whether or not a proof exists but, since different natural
deduction proofs correspond to different readings, also in what the different proofs of
a sentence are.9

When we look at the examples below

(13) Every representative of a company saw most samples.
(14) Some student will investigate two dialects of every language.

they have five possible readings (instead of 3! = 6) (Hobbs and Shieber 1987; Park
1996; Blackburn and Bos 2005; Koller and Thater 2010). For example 13, a naive
implementation of Cooper storage would produce (schematically) the following six
readings (the unavailable reading is marked with ∗).
1. ∀ < ∃ < most
2. ∗ ∀ < most < ∃
3. ∃ < ∀ < most
4. ∃ < most < ∀
5. most < ∀ < ∃
6. most < ∃ < ∀
However, reading 2, when fully spelled out, would look as follows.

∀x .representative_of(x, y) ⇒ most(z,sample(z)) ⇒ ∃y.company(y)

∧see(x, z)

Since this expression has an unbound occurrence of y (the leftmost occurrence), it
is does not correspond to a valid quantifier scope, and several authors have proposed

9 Of course, when our goal is to generate (subsets of) n! different proofs rather than a single proof (if one
exists), then we are no longer in NP, though it is unknown whether an algorithm exists which produces a
sort of shared representation for all such subsets such that (1) the algorithm outputs “no” when the sentence
is ungrammatical (2) the algorithm has a fairly trivial algorithm (say of a low-degree polynomial at worst)
for recovering all readings from the shared representation (3) the shared structure is polynomial in the size
of the input.

123



298 R. Moot, C. Retoré

more sophisticated algorithms generating exactly the five readings required (Hobbs
and Shieber 1987; Koller and Thater 2010). The Lambek calculus analysis has trouble
generating reading 4, where medial quantifier “a company” outscopes first “most
samples” then “every company”. We can, of course, remedy this by adding new, more
complex types to the quantifier “a”, but this would increase the order of the formulas
and there is, in principle, no bound on the number of constructions where a medial
quantifier has wide scope over a sentence. We can also save the Lambek calculus by
claiming, as one of the anonymous referees of this paper does, that reading 4 does
not exists (although this would not help for other cases where a medial quantifier has
wide scope). The important point is the following: if we want to generate exactly five
readings, a simple type-logical grammar can do so without any further stipulations.

The problems with quantifier scope are more serious than is generally assumed in
the literature, where it is generally shown that certain readings can only be obtained
by adding further lexical entries. We can show, by a simple counting argument that,
no matter how many lexical entries we add, Lambek grammars cannot generate the
n! readings required for quantifier scope of an n-quantifier sentence: the number of
readings for a Lambek calculus proof is proportional to the Catalan numbers (the
enumeration of planar proof nets, where the number of planar axiom links is in 1–1
correspondence with a binary bracketing of the atomic formulas (Moot 2007; Stanley
2015), multiplied by a number of grammar-dependent constants) and this number is in
o(n!);10 in other words, given a Lambek calculus grammar, the number of readings of
a sentence with n quantifiers grows much faster than the number of Lambek calculus
proofs for this sentence, hence the grammar fails to generate many of the required
readings.

Since the eighties, many variants and extensions of the Lambek calculus have been
proposed, each with the goal of overcoming the limitations of the Lambek calculus.
Extensions/variations of the Lambek calculus—which include multimodal catego-
rial grammars (Moortgat 1997), the Displacement calculus (Morrill et al. 2011) and
first-order linear logic (Moot and Piazza 2001)—solve both the problems of formal
language theory and the problems of the syntax-semantics interface. For example,
there are several ways of implementing quantifiers yielding exactly the five desired
readings for sentences 13 and 14without appealing to extra-grammatical mechanisms.
Carpenter (1994) gives many examples of the advantages of this logical approach to
scope, notably its interaction with other semantic phenomena like negation and coor-
dination.

Though these modern calculi solve the problems with the Lambek calculus, they
do so without excessively increasing the computational complexity of the formalism:
multimodal categorial grammars are PSPACE-complete (Moot 2002), whereas most
other extensions are NP-complete, like the Lambek calculus.

10 We need to be careful here: the number of readings for a sentence with n quantifiers is Θ(n!), whereas
the maximum number of Lambek calculus proofs is O(c

c2n
0 Cc1c2n), for constants c0, c1, c2 which depend

on the grammar (c0 is the maximum number of formulas for a single word, c1 is the maximum number
of (negative) atomic subformulas for a single formula and c2 represents the minimum number of words
needed to add a generalized quantifier to a sentence, i.e. c2n is the number of words required to produce an
n-quantifier sentence) and O(c

c2n
0 Cc1c2n) is in o(n!).

123



Natural Language Semantics and Computability 299

Even themost basic categorial grammar account of quantifier scope requires formu-
las of order 2, while, in contrast to the Lambek calculus, the only known polynomial
fragments of these logics are of order 1. Hence the known polynomial fragments have
very limited appeal for semantics.11

Is the NP-completeness of our logics in conflict with the condition of polynomial
fixed recognition required of mildly context-sensitive formalisms? Not necessarily,
since our goals are different: we are not only interested in the string language gener-
ated by our formalism but also in the string-meaning mappings. Though authors have
worked on usingmildly context-sensitive formalisms for semantics, they generally use
one of the two following strategies for quantifier scope: (1) an external mechanism for
computing quantifier scope (e.g. Cooper storage or one of its variants (Cooper 1975;
Hobbs and Shieber 1987)), or (2) an underspecification mechanism for representing
quantifier scope (Fox and Lappin 2010). From the perspective of type-logical gram-
mars, both strategies shift complexity away from the syntax to the syntax-semantics
interface.

For case 1 (Cooper 1975), a single syntactic structure is converted into up to n!
semantic readings, whereas for case 2, though we represent all possible readings in
a single structure, even deciding whether the given sentence has a semantic read-
ing at all becomes NP-complete (Fox and Lappin 2010), hence we simply shift the
NP-completeness from the syntax to the syntax-semantics interface.12 Our current
understanding therefore indicates that NP-complete is the best we can do when we
want to generate the semantics for a sentence. We do not believe this to be a bad thing,
since pragmatic and processing constraints rule out many of the complex readings and
enumerating all readings of sentences like sentence 13 above (and more complicated
examples) is a difficult task. There is a trade-off between the work done in the syntax
and in the syntax-semantics interface, where the categorial grammar account incor-
porates more than the traditional mildly context-sensitive formalisms. It is rather easy
to set up a categorial grammar parser in such a way that it produces underspecified
representations in time proportional to n2 (Moot 2007). However, given that such an
underspecified representation need not have any associated semantics, such a sys-
tem would not actually qualify as a parser. We believe, following Carpenter (1994)
and Jacobson (2002), that giving an integrated account of the various aspects of the
syntax-semantics interface, as we are doing here, is the most promising path.

Our grammatical formalisms are notmerely theoretical tools, but also form the basis
of several implementations (Morrill and Valentín 2015; Moot 2015a; Morrill 2019),
with a rather extensive coverage of various semantic phenomena and their interactions,
including quantification, gapping, ellipsis, coordination, comparative subdeletion, etc.

11 The known polynomial fragments of order 1 are in LOGCFL (de Groote and Pogodalla 2004;Wijnholds
2011). A counting argument similar to the one we use for the Lambek calculus can be used to show there are
not enough distinct LOGCFL trees to enumerate the different quantifier scope readings required (essentially
because we only have a finite number of pointers to handle n quantifiers).
12 In addition, Ebert (2005) argues that underspecification languages are not expressive enough to capture all
possible readings of a sentence in a single structure. So underspecification does not solve the combinatorial
problem but, at best, reduces it.

123



300 R. Moot, C. Retoré

Fig. 7 The exponential rules for intuitionistic linear logic

Fig. 8 The exponential rules for soft linear logic

5 Complexity of Semantics

The complexity of the syntax discussed in the previous section only considered the
complexity of computing unreduced lambda terms as the meaning of a sentence. Even
in the standard, simply typed Montagovian framework, normalizing lambda terms is
known to be of non-elementary complexity (Schwichtenberg 1982), essentially due to
the possibility of recursive copying. In spite of this forbidding worst-time complexity,
normalization does not seem to be a bottleneck in the computation of meaning for
practical applications (Bos et al. 2004; Moot 2010).

Is there a deeper reason for this? We believe that natural language semantics uses
a restricted fragment of the lambda calculus, soft lambda calculus, which we will
introduce below.

5.1 Soft Linear Logic

Soft linear logic is a logic which restricts recursive copying. Cut elimination/
normalization for soft linear logic has been shown to characterize the complexity
class P exactly (Lafont 2004). The soft lambda calculus (Baillot and Mogbil 2004)
are the lambda terms assigned to soft linear logic proofs. Therefore, soft linear logic
proofs (and soft lambda terms) normalize in polynomial time.

We claim that soft linear logic is expressive enough for all of natural language
semantics; that is, all lambda term meanings used in formal semantics are expressible
in the soft lambda calculus. To make this claim more precise, we first introduce soft
linear logic and the corresponding lambda term assignments.

Figures 7 and 8 contrast the standard exponential rules of intuitionistic linear logic
with those of soft linear logic. In linear logic, a formula !A is essentially a formula
which can be copied any number of times. Intuitively, !A indicates an unlimited amount
of A formulas. The contraction rule [C] in Fig. 7, read from conclusion to premiss,
makes a copy of a !A formula, whereas the weakening rule [W ] erases a !A formula.
As a consequence, the structural rules of contraction and weakening, which apply
globally in intuitionistic logic, apply only to formulas of the form !A in linear logic.
The promotion and dereliction rule in linear logic are simply the sequent rules for �
in the modal logic S4. Using the dereliction rule [D] allows us to use a !A formula
like a ‘normal’ A formula. Finally, the promotion rule [P] states that we can derive

123



Natural Language Semantics and Computability 301

Fig. 9 Term-labeled rules for soft linear logic

a formula to be a !C when all context formulas can also be copied as many times as
necessary (the notation !Γ means all formulas in the antecedent Γ have ! as their main
connective, that is, Γ is of the form !A1, . . . , !An).

In soft linear logic, the promotion rule [P] has been replaced by the soft pro-
motion rule [S P]. The soft promotion rule simultaneously adds a ‘!’ connective to
all antecedent formulas and to the succedent formula. As a consequence, we can no
longer derive !A �!!A.

The weakening [W ], contraction [C], and dereliction [D] rules have been replaced
by the multiplexing rule [M]. The notation An in the premiss of the rule indicates a
sequence of n occurrences of the A formula. It allows us to replace a formula !A by
any number of A formulas. The special case n = 0 corresponds to weakening and
the special case n = 1 corresponds to dereliction. Unlike the contraction rule, the
multiplexing rule doesn’t allow us to make a copy of !A itself. Therefore, in soft linear
logic, the principle !A �!A⊗!A is no longer derivable, although !A � A ⊗ A is.

Figure 9 gives a version of soft linear logic labeled with lambda terms, a slightly
simplified version of the calculus used in Baillot and Mogbil (2004) (we have simply
replaced the let statements by explicit substitutions). In the term-labeled system xi : An

is shorthand for x1 : A, . . . xn : A, that is, n occurrences of A each with a distinct
variable xi .

5.2 Formal Semantics and Soft Linear Logic

If the lambda terms used in formal semantics are in the soft lambda calculus, this would
explain why even naive implementations of normalization perform well in practice.

The question of whether soft linear logic suffices for our semantic parser may
appear hard to answer, however, it is an obvious (although tedious) result for any
explicit grammar. To show that all the semantic lambda terms can be typed in soft
linear logic, we only need to verify that every lambda term in the lexicon is soft. There
is a finite number of words, with only a finite number of lambda terms per word.
Furthermore, words from open classes (nouns, verbs, adjectifs, manner adverbs,…in
which speakers may introduce new words…about 200,000 inflected word forms) are
the most numerous and all have soft and often even linear lambda terms. Thus only
closed class words (grammatical words such as pronouns, conjunctions, auxiliary
verbs,…and some complex adverbs, such as “too”) may potentially need a non-soft
semantic lambda term: there are less than 500 such words, so it is just a matter of

123



302 R. Moot, C. Retoré

Fig. 10 Soft linear logic proof of the lambda term for “a” from Fig. 4

patience to prove they all have soft lambda terms. Of course, finding deep reasons
(cognitive, linguistic) for semantic lambda terms to be soft in any language would be
much more difficult (and much more interesting!).

As a concrete example, we can return to the semantics of a quantifier like “a”. In
Fig. 4, we assigned it type (e → t) → ((e → t) → t). We now show that for such
quantifiers, we can instead use the soft linear logic formula !(e � t) � (!(e �
t) � t) and use t � t � t for the constant ∧ and (!e � t) � t for the constant ∃.
Figure 10 then shows how the lambda term assigned to “a” is a soft lambda term.

Given that we only need a single copy of the P and Q variable (the two topmost
multiplexing rules replace P and Q by a single variable of type e � t), we could have
chosen to assign the simpler formula (e � t) � ((e � t) � t) to this entry and this
would produce a proof requiring the multiplexing rule only once for the x formula.
However, the current formula easily extends to more complex quantifiers such as
“exactly two/three/…”, “at least two/three/…”with each successive numeral requiring
more copies of P , Q and x , as well as a constants = and �= of type e → (e → t)
(technically, we want to allow multiple occurrences of the logical constants in a term
and therefore should assign = and �= the type !(e → (e → t)), and similarly for the
other logical constants).

The reader may wonder how to decide whether a simply typed lambda term can
be assigned a formula in soft linear logic. A simple solution would be to use the
standard translation of intuitionistic logic into linear logic and translate intuitionistic
implication as follows.

(A → B)∗ = !A∗ � B∗ (1)

We can also distinguish between positive and negative occurrences and add the “!”
connective only to negative occurrences as follows, then translating constants using
the negative translation and translating the lexical lambda terms using the positive
translation.

(A → B)+ = !A− � B+ (2)

(A → B)− = A+ � B− (3)

123



Natural Language Semantics and Computability 303

This translation would produce the given types for “∃”, “∧” (although we would
need to add “!” as the outer connective for any connective occurring multiple times)
and the type assigned to the entry for “a” itself in Fig. 10. We can then use the given
lambda term to remove all non-determinism from proof search, for example by using
the following algorithm for finding a soft linear logic proof ofΓ � M : C .We assume,
without loss of generality, that M is a lambda term in long normal form. Γ initially
contains the constants occurring in M and, when α is the type of M ,C = α+, obtained
using Eqs. (2) and (3) above, transforming the simple type α to the soft linear logic
formula C .

1. If M is an atomic term t (a variable or a constant) then we must be in the case
t : A � t : A, and we obtain a proof using the axiom rule, or t :!A � t : A, and
we obtain a proof using first the multiplexor to create a single copy of A then use
the axiom rule; if the current sequent has any other form, we fail.

2. If M is of the form λx .N then we are looking for a proof of Γ � λx .N : A � B,
we apply the� R rule and continue proof search for a proof of Γ , x : A � N : B.

3. Otherwise, M must be of the form ((t N1) . . . Nn) with t the head term (a variable
or a constant), now for t and for each free variable and constant in N1 which is also
free in N2, . . . , Nn , we count the number of occurrences of these variables and
constants in M and make that many copies for each (e.g. if x occurs three times
in the full term, then we replace x :!B in the antecedent by x1 : B, x2 : B, x3 : B
and the three occurrence of x in M by x1, x2 and x3 respectively; this will fail if x
occurs multiple times in M but is not assigned a formula !B). We then apply the
multiplexor once for each constant and free variable followed by the � E rule,
using the formula of the head term as the main formula and obtaining Γ from
the free variables/constants of N1 and � from the free variables of N2 . . . Nn ,
schematically as follows.

Γ � N1 : A �, z : B � ((z N2) . . . Nn) : C

Γ ,�, t : A � B � ((t N1) . . . Nn) : C
� L

Given that multiple occurrences of the same free variable have been replaced by
distinct occurrences using the multiplexor rule, this separation into Γ and � is
unique. The term assigned to both subproofs is strictly smaller than the initial term.
We then recursively continue the translation for the two subproofs.

Figure 10 gives an example of a proof obtained using this algorithm. We comment
briefly on the non-trivial applications of step 3: for the rules with conclusion (P y)

and (Q z), the head terms P and Q are assigned a formula !(e � t), so we must make
a single copy before applying the � L rule, whereas for the rule with conclusion
(∧ (P x)) (Q x) : t , x occurs once inside of N1 = (P x) and once outside, therefor
we need to replace it with two distinct copies before applying the � L rule.

As a rough estimate, even a naive implementation of this proof search algorithm
will have an O(n3) worst case complexity: a naive implementation of case 3 uses
traverses the term M (of size n) once for each free variable (at most n), giving an
O(n2) bound for each step, with an upper limit of n for the number of steps for a total
of O(n3).

123



304 R. Moot, C. Retoré

Of course, it is possible that the simple typed lambda term has a proof in soft linear
logic while being outside of the fragment produced by the translation of Eqs. (2)
and (3), for example because it requires a subterm of the form !!A. Other terms cannot
be assigned a proof in soft linear logic at all, for example terms requiring an exponential
number of reductions since this contradicts the polynomiality of soft linear logic.When
the algorithm above fails to find a proof, careful analysis is needed to find out in which
of these cases we are. A more sophisticated algorithm can be found, for example one
exploiting the soft promotion rule [S P]. We leave these questions to future research.
However, we conjecture that the algorithm given above to be powerful enough for the
lambda terms found in formal semantics.

When adding coercions, as in Sect. 3, the process becomes a bit more complicated.
However, the system of Lafont (2004) includes the logical rules for second-order
quantifiers, hence reduction stays polynomial once coercions have been chosen. Their
choice (as the choice of the syntactic category) increases complexity: when there is
a type mismatch g A→X u B one needs to chose one of the coercions of type B → A
provided by the entries of the words in the analysed phrase, with the requirement
that when a rigid coercion is used, all other coercions provided by the same word are
blocked (hence rigid coercions, as opposed to flexible coercions decrease the number
of choices for other type mismatches).

Finally, having computed a set of formulas in higher-order logic corresponding to
the meaning of a sentence, though of independent interest for formal semanticists, is
only a step towards using thesemeaning representations for concrete applications. Typ-
ical applications such as question answering, automatic summarization, etc. require
world knowledge and common sense reasoning but also a method for deciding about
entailment: that is, given a set of sentences, can we conclude that another sentence is
true. This question is of course undecidable, already in the first-order case. However,
some recent research shows that even higher-order logic formulas of the type produced
by our analysis can form the basis of effective reasoningmechanisms (Chatzikyriakidis
and Luo 2014; Mineshima et al. 2015) and we leave it as an interesting open question
to what extent such reasoning can be applied to natural language processing tasks.

Summarizing, the complexity of computing a semantic formula for a grammatical
string is dominated by the complexity of finding a proof in the type-logical grammar
framework used, provided the lexical lambda terms in our lexicon can be typed using
soft linear logic. This means the total complexity of this task is, depending on the logic
used, either NP-complete (in the case of the Lambek calculus and of the Displacement
calculus) or PSPACE-complete (in the case of multimodal categorial grammar).

6 Conclusion

It is somewhat surprising that, in contrast to the well-developed theory of the algo-
rithmic complexity of parsing, little is known about semantic analysis, even though
computational semantics is an active field, as the recurring conferences with the same
title as well as the number of natural language processing applications show. In this
paper we simply presented remarks on the computability and on the complexity of this
process. The good news is that semantics (at least defined as a set of logical formulas)

123



Natural Language Semantics and Computability 305

is computable. This was known, but only implicitly: Montague gave a set of instruc-
tions to compute the formula (and to interpret it in a model), but he never showed that,
when computing such logical formula(s):

– The process he defined stops with a normal lambda terms of type proposition (t),
– Eta-long normal lambda terms with constants being either logical connectives or
constants of a first (or higher order) logical language are in bijective correspon-
dence with formulas of this logical language (this is more or less clear in the work
of Church (1940) on simple type theory).

– The complexity of the whole process has a known complexity class, in partic-
ular the beta-reduction steps which was only discovered years after his death
(Schwichtenberg 1982).

A point that we did not discuss is that we considered the worst case complexity
of producing a logical formula, viewed as a function from the number of words in a
sentence. Both aspects of our point of viewcanbe challenged: in practice, grammar size
is at least as importance as sentence length and average case complexity, empirically
determined over a large corpus of sentences, may be a more appropriate measure
of real-world performance than worst case complexity. Though the high worst case
complexity shows that computing the semantics of a sentence is not always efficient,we
nevertheless believe, confirmed by actual practice, that statistical models of a syntactic
or semantic domain improve efficiency considerably, by providing extra information
(as a useful though fallible “oracle”) for many of the difficult choices. Indeed, human
communication and understanding are very effective in general, but, from time to
time, we misunderstand each other or need to ask for clarifications. For computers,
the situation is almost identical: most sentences are analysed quickly, while some
require more time or even defeat the software. Even though it is quite difficult to obtain
the actual probability distribution on sentence-meaning pairs, we can simply estimate
such statistics empirically by randomly selecting manually annotated examples from
a corpus.

The other aspect, the sentence length, is, as opposed to what is commonly assumed
in complexity theory, not a very satisfactory empiricalmeasure of performance: indeed
the average number of words per sentence is around 10 in spoken language and around
25 in written language. Sentences with more than 100 words are very rare.13 Further-
more, lengthy sentences tend to have a simple structure, because otherwise they would
quickly become incomprehensible (and hard to produce aswell). Experiencewith pars-
ing shows that in many cases, the grammar size is at least as important as sentence
length for the empirical complexity of parsing algorithms (Joshi 1997; Sarkar 2000;
Gómez-Rodríguez et al. 2006). Grammar size, though only a constant factor in the
complexity, tends to be a big constant for realistic grammars: grammars with between
10,000 and 20,000 rules are common.

We believe that the complexity of computing the semantics and of reasoning with
the semantic representations are some of the most important reasons that the Turing
test is presently out of reach. However we have also shown that, for many interesting

13 To give an indication, the TLGbank (Moot 2015b) contains more than 14,000 French sentences and has
a median of 26 words per sentence, 99% of sentences having less than 80 words, with outliers at 190 and
at 266 (the maximum sentence length in the corpus).

123



306 R. Moot, C. Retoré

type-logical grammars, computing a logical formula representing the meaning of a
sentence is a problem which is NP-complete.

References

Asher, N. (2011). Lexical meaning in context: A web of words. Cambridge: Cambridge University Press.
Baillot, P., & Mogbil, V. (2004). Soft lambda-calculus: A language for polynomial time computation. In

Foundations of software science and computation structures (pp. 27–41). Springer.
Barker, C. (2015). Scope. In S. Lapping & C. Fox (Eds.), Handbook of contemporary semantic theory (2nd

ed., pp. 40–76). Hoboken: Wiley Blackwell.
Bassac, C., Mery, B., & Retoré, C. (2010). Towards a type-theoretical account of lexical semantics. Journal

of Logic, Language and Information, 19(2), 229–245. https://doi.org/10.1007/s10849-009-9113-x.
Blackburn, P., & Bos, J. (2005). Representation and inference for natural language: A first course in

computational semantics. Stanford: CSLI.
Bos, J., Clark, S., Steedman, M., Curran, J. R., & Hockenmaier, J. (2004). Wide-coverage semantic repre-

sentation from a CCG parser. In Proceedings of COLING-2004 (pp. 1240–1246).
Buszkowski, W. (1997). Mathematical linguistics and proof theory. In J. van Benthem & A. ter Meulen

(Eds.), Handbook of logic and language, chap. 12 (pp. 683–736). Amsterdam: Elsevier.
Carpenter, B. (1994). Quantification and scoping: A deductive account. In The proceedings of the 13th west

coast conference on formal linguistics.
Chatzikyriakidis, S., & Luo, Z. (2014). Natural language inference in Coq. Journal of Logic, Language and

Information, 23(4), 441–480.
Church, A. (1940). A formulation of the simple theory of types. Journal of Symbolic Logic, 5(2), 56–68.
Cooper, R. (1975). Montague’s semantic theory and transformational grammar. Ph.D. thesis, University of

Massachusetts.
Corblin, F. (2013). Cours de sémantique: Introduction. Paris: Armand Colin.
de Groote, P. D., & Pogodalla, S. (2004). On the expressive power of abstract categorial grammars: Repre-

senting context-free formalisms. Journal of Logic, Language, and Information, 13(4), 421–438.
Ebert, C. (2005). Formal investigations of underspecified representations. Ph.D. thesis, King’s College,

University of London.
Fox, C., & Lappin, S. (2010). Expressiveness and complexity in underspecified semantics. Linguistic Anal-

ysis, 36(1–4), 385–417.
Gómez-Rodríguez, C., Alonso, M. A., & Vilares, M. (2006). On the theoretical and practical complexity

of TAG parsers. In Proceedings of formal grammar (FG 2006) (pp. 87–101).
Hobbs, J. R., & Shieber, S. M. (1987). An algorithm for generating quantifier scopings. Computational

Linguistics, 13(1–2), 47–63.
Jacobson, P. (2002). The (dis)organization of the grammar: 25 years. Linguistics and Philosophy, 25(5–6),

601–626.
Joshi, A. (1985). Tree adjoining grammars: Howmuch context-sensitivity is required to provide reasonable

structural descriptions? In D. R. Dowty, L. Karttunen & A. Zwicky (Eds.), Natural language parsing
(pp. 206–250). Cambridge: Cambridge University Press.

Joshi, A. (1997). Parsing techniques. In R. A. Cole, J. Mariani, H. Uszkoreit, A. Zaenen, & V. Zue (Eds.),
Survey of the state of the art in human language technology, chap. 11.4 (pp. 351–356). Cambridge
University Press and Giardini.

Koller, A., & Thater, S. (2010). Computing weakest readings. In Proceedings of the 48th annual meeting
of the association for computational linguistics (pp. 30–39).

Kubota, Y., & Levine, R. (2012). Gapping as like-category coordination. In D. Béchet & A. Dikovsky
(Eds.), Logical aspects of computational linguistics. Lecture notes in computer science (Vol. 7351,
pp. 135–150). Nantes: Springer.

Lafont, Y. (2004). Soft linear logic and polynomial time. Theoretical Computer Science, 318(1), 163–180.
Langacker, R. (2008). Cognitive grammar: A basic introduction. Oxford: Oxford University Press.
Luo, Z. (2012). Formal semantics in modern type theories with coercive subtyping. Linguistics and Philos-

ophy, 35(6), 491–513.
Mineshima, K., Martınez-Gómez, P., Miyao, Y., & Bekki, D. (2015). Higher-order logical inference with

compositional semantics. In Proceedings of EMNLP (pp. 2055–2061).

123

https://doi.org/10.1007/s10849-009-9113-x


Natural Language Semantics and Computability 307

Montague, R. (1970). English as a formal language. In B. Visentini (Ed.), Linguaggi nella societa e nella
tecnica (pp. 188–221). Edizioni di Communita.

Montague, R. (1974). The proper treatment of quantification in ordinary English. In R. Thomason (Ed.),
Formal philosophy: Selected papers of Richard Montague. New Haven: Yale University Press.

Moortgat, M. (1997). Categorial type logics. In J. van Benthem & A. ter Meulen (Eds.), Handbook of logic
and language, chap. 2 (pp. 93–177). Amsterdam: Elsevier.

Moot, R. (2002). Proof nets for linguistic analysis. Ph.D. thesis, Utrecht Institute of LinguisticsOTS,Utrecht
University.

Moot, R. (2007). Filtering axiom links for proof nets. In L. Kallmeyer, P. Monachesi, G. Penn, & G. Satta
(Eds.), Proccedings of formal grammar 2007.

Moot, R. (2010). Wide-coverage French syntax and semantics using Grail. In Proceedings of traitement
automatique des langues naturelles (TALN), Montreal. System Demo

Moot,R. (2015a). Linear one:A theoremprover for first-order linear logic. https://github.com/RichardMoot/
LinearOne. Accessed 16 Apr 2019.

Moot, R. (2015b). A type-logical treebank for french. Journal of Language Modelling, 3(1), 229–264.
Moot, R., & Piazza, M. (2001). Linguistic applications of first order multiplicative linear logic. Journal of

Logic, Language and Information, 10(2), 211–232.
Moot, R., & Retoré, C. (2012). The logic of categorial grammars: A deductive account of natural language

syntax and semantics. Berlin: Springer.
Morrill, G. (2019). Parsing/theorem-proving for logical grammar CatLog3. Journal of Logic, Language and

Information. https://doi.org/10.1007/s10849-018-09277-w.
Morrill, G., & Valentín, O. (2015). Computational coverage of TLG: The Montague test. In Proceedings

CSSP 2015 Le onzième Colloque de Syntaxe et Sémantique à Paris (pp. 63–68).
Morrill, G., Valentín, O., & Fadda, M. (2011). The displacement calculus. Journal of Logic, Language and

Information, 20(1), 1–48.
Park, J. C. (1996). Quantifier scope, lexical semantics, and surface structure constituency. Technical report,

University of Pennsylvania.
Partee, B. (2001). Montague grammar. In N. J. Smelser & P. B. Baltes (Eds.), International encyclopedia

of the social and behavioral sciences. Oxford: Pergamon.
Pentus, M. (1995). Lambek grammars are context free. In Proceedings of logic in computer science (pp.

429–433).
Pentus, M. (2010). A polynomial-time algorithm for Lambek grammars of bounded order. Linguistic Anal-

ysis, 36(1–4), 441–471.
Pinker, S. (1994). The language instinct. Penguin Science.
Retoré, C. (2014). The Montagovian generative lexicon 	T yn : A type theoretical framework for natural

language semantics. In Proceedings of TYPES (pp. 202–229). 10.4230/LIPIcs.TYPES.2013.202.
Sarkar, A. (2000). Practical experiments in parsing using tree adjoining grammars. InProceeding of TAG+5.
Savateev, Y. (2009). Product-free Lambek calculus is NP-complete. In Symposium on logical foundations

of computer science (LFCS) (pp. 380–394).
Schwichtenberg, H. (1982). Complexity of normalization in the pure typed lambda-calculus. In The L. E.

J. Brouwer centenary symposium (pp. 453–457). North-Holland.
Shapiro, S. (1991).Foundations without foundationalism: A case for second-order logic. Oxford: Clarendon

Press.
Shieber, S. (1985). Evidence against the context-freeness of natural language. Linguistics & Philosophy, 8,

333–343.
Stanley, R. P. (2015). Catalan numbers. Cambridge: Cambridge University Press.
Thomason, R. (Ed.). (1974). Formal philosophy: Selected papers of Richard Montague. New Haven: Yale

University Press.
Turing, A. (1950). Computing machinery and intelligence. Mind, 49, 433–460.
van Benthem, J. (1986). Categorial grammar. In Essays in logical semantics, chap. 7 (pp. 123–150). Dor-

drecht: Reidel.
van Dalen, D. (2013). Logic and structure (5th ed.). Berlin: Springer.
Wijnholds, G. (2011). Investigations into categorial grammar: Symmetric pregroup grammar and displace-

ment calculus. Master’s thesis, Utrecht University.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://github.com/RichardMoot/LinearOne
https://github.com/RichardMoot/LinearOne
https://doi.org/10.1007/s10849-018-09277-w

	Natural Language Semantics and Computability
	Abstract
	1 Introduction
	2 Computational Semantics à la Montague
	2.1 Categorial Syntax
	2.2 From Syntactic Derivation to Typed Linear Lambda Terms

	3 Adding Sorts, Coercions, and Uniform Operations
	4 Complexity of the Syntax
	5 Complexity of Semantics
	5.1 Soft Linear Logic
	5.2 Formal Semantics and Soft Linear Logic

	6 Conclusion
	References




