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Abstract
A new construction of a certain conceptual space is presented. Elements of this con-
ceptual space correspond to (and serve as code for) concept elements of reality, which
potentially comprise an infinite number of qualities. This construction of a conceptual
space solves a problem stated by Dietz and his co-authors in 2013 in the context of
Voronoi diagrams. The fractal construction of the conceptual space is that this prob-
lem simply does not pose itself. The concept of convexity is discussed in this new
conceptual space. Moreover, the meaning of convexity is discussed in full general-
ity, for example when space is deprived of it, its substitutes for concept domains are
considered.

Keywords Conceptual space · Concepts · Qulities · p-adic integers · p-ary tree ·
Gromov boundary · Cantor-type set

1 Introduction

Ferdinard de Sauserre (1916) introduced the paradigm of structuralism into linguistics.
Almost immediately structuralism was not only restricted to linguistics but swiftly
became the research methodology of choice for many other fields of science (such as
literary science, philosophy, anthropology, sociology).

With its help many important, long-standing results were achieved.
However, around 1950 structuralist methods began to wear out, and a shift took

place, paradigm change towards a new methodology emerged: the cognitivistic
paradigm was born.
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The underlying idea of the paradigm of cognitivism is quite simple. It is stipulated,
assumed that by observation of (outward) human behavior patterns (such as commu-
nication and speech acts, psychological reactions to chosen stimuli, etc.) an analogy
can be deuced as to how the (inward) human brain works.

Indeed, this newviewpointmarked amilestone and began a newera inmanyfields of
science. Hence, now we began to speak of cognitive psychology, cognitive sociology,
cognitive biology and many more.

This paper may be situated between cognitive and mathematical linguistics. The
problems tackled in the paper stem from cognitive linguistics, but the methods
employed are from mathematical linguistics.

The groundwork of cognitive linguistics was subsequently laid down around 1980
by Langacker (1986, 2008), Mark Johnson (1987), George Lakoff (1987) and others.

The basic assumption is that the brain encodes reality constructing geometric pic-
tures. (Consequently different people encode differently. The prior knowledge of the
world directly influences the choice of geometric picture used in building a given
context.)

These already imprinted pictures (concepts) in turn influence the building of the
next layer of concepts.

Of course the used code must be sufficiently simple to be efficient.
In cognitive linguistics, when we investigate language as such, we replace natural

(spoken) language by the imprinted pictures (symbols) in the brain which constitute
the vocabulary of a metalanguage.1

One of the central notions in cognitive linguistics is that of conceptual space.
Methodologically abstract conceptual spaces correspond to the imprinted concrete

pictures in the brain.
The notion of conceptual space was first introduced and investigated by Gärdenfors

(2000, 2017).
Conceptual space is defined as a metric space2 (X , d), that is a set X of abstract

objects on which a so called distance function d(x, y), x, y ∈ X , is given.
Usually X is of higher dimension, e.g. R

D, D ∈ N, in which each dimension
corresponds to quality of a concept.

Moreover, the space X is endowed with a (dis) similarity measure s = s(x, y),
x, y ∈ X which is obtained as a function of the metric d.

As a simple example let, for x �= y,

s(x, y) = 1

d(x, y)
.

Then, a small value of s(x, y) indicates a small degree of similarity between x and y,
whereas conversely a large value of s(x, y) signifies strong similarity between objects
(concepts) x and y.

In writing this paper we have two main hypotheses in mind.

1 For a different than ours application of metalanguage in linguistic semantics see Wierzbicka (1972).
2 All mathematical terminology will be defined and illustrated by elementary examples in the respective
paragraphs (in which they appear).
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Aim (1) We give a new construction of a certain conceptual space whose elements
correspond to (and serve as code for) concept elements of reality, which potentially
comprise an infinite number of qualities.

Very interestingly this newly defined conceptual space which is a subset of one-
dimensional real line R (such that has a fractional Hausdorff dimension less than 1),
proves adequately describe a multi-dimensional space of an infinite amount of quali-
ties. One point in the conceptual space corresponds to an infinite vector of qualities.

The starting point of our construction are integer p-adic numbers.
It is known that one can identify p-adic integer numbers with p-ary weighted trees,

where the set of weights is {0, 1, . . . , p − 1}.
In consequence the conceptual space associated with this coding turns out to be

a Gromov boundary (1987, 1993) of an appropriate p-ary tree where p is a prime
number.

This special form of conceptual space (the Gromov space) allows for the general-
ization of our coding methods from trees to hyperbolic groups.

As the most elementary example let p = 2, i.e., we are coding using a binary tree.
Here we identify a single real object (concept) with a specified branch (not a single

vertex) of a binary tree.
Each edge starting at the �th level of the tree may carry a weight w of either 1 or 0

(the concept has or does not have quality �).
It is quiet natural to stipulate that qualities on a deeper (further down the branch)

level (larger �) be less determinant for the description of a given concept.
In a p-ary trees with p > 2 a weight w ∈ {0, . . . , p − 1} stands for the intensity

with which a given quality is represented in a given concept.
Aim (2) Our construction of a conceptual space solves a problem stated by Dietz

(2013) and his co-authors: Douven et al. (2013).
Namely, Dietz and his co-authors used Voronoi diagrams (Okabe and Boots 2000)

as a conceptual space. For the reader’s convenience we recall the construction of a
conceptual space by means of Voronoi diagrams.

This is a quasi partition of the Euclidean space X = R
D into polytopes accord-

ing to the following rules. First k prototypes p1, . . . , pk of k concept domains
v(p1), . . . , v(pk) are defined by:

v(pi ) = {x ∈ X : d(x, pi ) < d(x, p j ) for all j �= i},

where d(x, y) = ‖x − y‖�2(RD) is a standard metric in R
D .

The concept domains are open sets in X . Then the problem is that the boundary
points of the domains are not themselves contained in any concept domain. Equiva-
lently

k⋃

i=1

v(pi ) �= X .

This problem was partially solved using different methods in the original framework
of Dietz (2013).
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One advantage of our new, fractal construction is that this problem simply does not
pose itself. There exist partitions for which each element of the conceptual space is
contained in exactly one concept domain.

The idea to consider p-ary trees and p-adic numbers originally comes fromPhysics.
Khrennikov (2016) and Anashin and Khrennikov (2009) suggest that the real numbers
are not adequate for description of the physical world and that the p-adic numbers are
more suitable; see Schwabl (2007).

The reason being that real numbers have continuous structure, whereas theUniverse
is built of from a finite number of particles between which there are a lot of “holes”.
This property is well reflected by the nature of the Gromov boundary due to its fractal
structure.

Moreover, according to the Quantum Mechanics physical action cannot have an
arbitrary value but must be an integer multiply of the Planck constant �; see Schwabl
(2007).

Many important physical theories have been formulated in p-adic language. See
e.g. a review of the development of p-adic physical theories for the last 30 yearswritten
by Dragovich et al. (2017). This new p-adic trend in the approach to the problems of
the material world that we are confronted with has shed a new light on many physical
problems and not only physical. For example, Khrennikov and Iurato are supporter
of applying methods of p-adic analysis in cognitivism; see the papers by Khrennikov
(2014), Iurato and Khrennikov (2015), and the review article by Iurato et al. (2016).

Structure of the paper

The work structure is as follows.
In Sect. 2, starting with the definition of abstract metric space, we recall the defi-

nition of conceptual space introduced into cognitive science by Gärdenfors and give
some examples illustrating this notion.

In Sect. 3, we remind the reader of the necessary concepts from graph theory and,
in particular, trees, which will play an important role in our deliberations.

In Sect. 4 we we introduce a field of p-adic numbers Qp and its subring of p-adic
integer numbers to show in Sect. 5 how to identify p-adic integersZp with p-ary trees.

The most technical is Sect. 6, in which we define the Gromov boundary, we intro-
duce topology and a metric on it, which is compatible with the topology introduced
earlier. In this way, theGromov boundary is ametric space. The presentation contained
in Sect. 6 is mainly based on the second section of Kapovich’s and Benkali’s work
(2002).

In Sect. 7 we construct our (fractal, see Falconer (2003)) conceptual space and
prove its properties. In particular, we show that it is possible to partition our space
into a sum of concept domains. Concept domains can be made as small as we want.
(What can often be a useful property.) Furthermore, every point of our conceptual
space belongs to exactly one concept domain.

Section 7.4 is devoted to the problem of convexity, which according to Gärdenfors
is one of the most important postulates which should be fulfilled by the conceptual
domain. There are different points of view on this assumption; see e.g. Jaġer (2006),

123



A Class of Conceptual Spaces Consisting of Boundaries of... 77

Zhu et al. (2006) and Mendel (2007). It seems that the concept of convexity must be
adapted to the space we are studying and replaced by an appropriate other notion,
which in some way is analogous to convexity. An example of the work of Urban
and Grzelińska (2017) shows that in the context they are working with, Euclidean
convexity is not adequate and is replaced with geodesic convexity.

Finally, in Sect. 8 we will include some remarks and plans for our further research
on conceptual spaces.

2 Conceptual Spaces

Let’s start with the definition of terms that are important for further discussion.
We would like to point out that the terms we use are slightly different from the

terminology used by other authors. This is because our formal geometric constructions
are better suited to the terminology we use to describe human knowledge, concepts
and notions. All terms used by us are defined in detail at the moment they appear in
the text.

Moreover, since Gärdenfors introduced conceptual space to the cognitive sciences,
the generalisation of conceptual space as well as the reformulating of the original
structure has appeared in literature; see e.g. Rickard (2006) and Rickard et al. (2007).

It is therefore difficult to say that there is some canonical terminology about con-
ceptual space.

Let’s start with the concept domain. As an example consider a concept domain,
which is associated with the means of transport. It may contain such objects as {crops,
horse, bike, scooter, rollers, train, plane, car}. Not all of the above mentioned means
of transport are currently used equally by language users. By taking a test and asking
randomly selected people for one mode of transport, it is expected that the majority
will give the answer {car}. This object, which appears most often by the users of the
language is called a prototype. Thus, in the case described above, {car} is a prototype
of the concept domain (semantic field) of the means of transport.

The conceptual space consists of conceptual domains.
Let us now consider an example in which objects can be described by means of

D = 3 real parameters. Each real parameter (that is, each dimension) corresponds to
a single quality of the object.

The simplest example, quoted in almost every work on conceptual spaces, of such
concepts are colors, which can be defined by three parameters - namely, through the
wavelength, saturation and hue.

It is clear that, for example, the concept of ’red’ is not only its prototype (one
single point x in 3-dimensional space) but also colours in the close vicinity of the
prototype (i.e. set in 3-dimensional space called a concept domain, which contains a
point-prototype x).

In this example, conceptual space will be a union of all concept domains corre-
sponding to different colours.

Conceptual space objects can be, for example, events or physical items.
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From a linguistic point of view, concepts usually correspond to the grammatical
category of a noun or verb if time is one of the dimensions of conceptual space. The
qualities correspond to the adjective descriptions.

Now we are ready to formalise the necessary terms.
We start with a definition of a metric space (X , d).

Definition 2.1 A metric space is an abstract set X with a function d : X × X → R
+

with the following properties:

(i) d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x) (symmetry),
(iii) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Example 2.2 The simplest example of a metric space is the set of real numbers R

endowed with the metric d(x, y) = |x − y|, where | · | stands for the absolute value.
One can easily generalize this example into

R
D = {x = (x1, . . . , xD) : xi ∈ R for i = 1, . . . , D}

with

d(s)(x, y) =
(

D∑

i=1

|xi − x j |s
)1/s

,

where s ≥ 1 is a real number. For s = 2 we get the classic Euclidean distance.

One can easily check that the axioms (i)-(iii) of Definition 2.1 are satisfied.
For more details on analysis on metric spaces see Heinonen (2001).
After the notion of metric space has been introduced, we are prepared to define our

main object, which is conceptual space C.

Definition 2.3 By (D-dimensional) conceptual space C we mean the product of the
metric spaces (Xi , di ), i = 1, . . . , D, equipped with an appropriate metric d. An
element x ∈ C is written as a vector (x1, . . . , xD), where xi ∈ Xi . Each dimension
i = 1, . . . , D describes the i th quality of an object x assigning the value xi .

Example 2.4 As in Example 2.2, it is easy to check that the functions defined below
are metrics in conceptual space C as defined in Definition 2.3,

d(s)(x, y) =
(

D∑

i=1

di (xi , x j )
s

)1/s

.

With conceptual space and prototypes, we need an appropriate algorithm to classify
the conceptual space element into one of the concept domains determined by these
prototypes.

The algorithm that produces theVoronoi diagram is quite often used for this purpose.
We described this algorithm in the introduction to this work.

Gärdenforse presents the justification for using Voronoi diagrams as follows:
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AVoronoi tessellation based on a set of prototypes is a simple way of classifying
a continuous space of stimuli. The partitioning results in a discretization3 of the
space. The prime cognitive effect is that the discretization speeds up learning.
The reason for this is that remembering the finite prototypes, which is sufficient
to compute the tessellation once the metric is given, puts considerably less bur-
den on memory than remembering the categorization of each single point in the
space. In other words, a Voronoi tessellation is a cognitively economical way
of representing information about concepts. Furthermore, having a space parti-
tioned into a finite number of classes means that it is possible to give names to
the classes. Gärdenfors (2000, p. 89).

It seems that the statement that the division of space in the human mind is based on
knowledge of prototypes is quite likely. However, we cannot agreewith the second part
of Gärdenford’s statement that the brain uses Voronoi diagrams for economic reasons.
We do not think that the human brain is limited to merely operating the concept of
linearity.

Therefore, in the paper by Urban and Grzelińska (2017) we proposed a different,
non-linear partitioning algorithm.

In short, in our opinion the brain is equally easy to operate on non-linear images
that are imprinted in it.

Here we will present another construction, which is also far from linear.
We believe that it can be useful for classifying objects. Moreover, it does not seem

to be so complex that the human brain cannot effectively cope with it. Especially in
this case when he is able to cope with Voronoi diagrams.

3 Graphs and Trees

Here we present only the necessary definitions for the graphs that will be used in our
work. More information about graphs and trees can be found in the following: Diestel
(2010) and Harris et al. (2008) handbooks.

Definition 3.1 An undirected graph, or simply graph, is a pair (V, E) of points v ∈ V,

called vertices and a set E whose elements, called edges, are two element subsets of
V. If {x, y} ∈ E then we say that vertices x and y are adjacent.

Definition 3.2 A path in a graph (V, E) is a (finite or infinite) sequence of vertices
xn ∈ V such that {xi , xi+1} ∈ E .

Definition 3.3 A graph (V, E) is called connected if for all x, y ∈ V there exists a
finite path x0, x1, . . . , xn such that x0 = x and xn = y. In other words, a graph (V, E)

is connected if every two points x and y can be joint by a finite path.

Definition 3.4 A tree is a graph T = (V, E) in which any two vertices x, y ∈ V are
connected by exactly one path.

3 The emphasis in the text in italic font was made by the author of the statement.

123



80 R. Urban, S. Mróz

Fig. 1 The first 2 levels (root is
sometimes said to be on level 0)
of the 2-ary quasi-homogeneous
weighted tree T2,3

root

a2

b4b3

0 1
a1

b2b1

0 1

0 1

Definition 3.5 A tree T = (V, E) is a weighted tree if there is a function w : E →
[0,+∞). The function w is called the weight function. The value of w on a given
edge e ∈ E, i.e., v(e) is called the weight of the edge e.

In this paper we are interested in locally finite trees.

Definition 3.6 A locally finite tree T = (V, E) is a tree such that every vertex v ∈ V
belongs to finite number of edges e ∈ E . This number deg(v) is called the degree of
v.

Definition 3.7 If a given tree T = (V, E) has the function deg(v) which does not
depend on the vertex v and is equal to q then we say we say that T is homogeneous
of degree q and we write T = Tq .

All trees in this paper are rooted tree. This means that there is one vertex vo of a
tree which is distinguished and called the root of the tree.

Definition 3.8 A tree T is called quasi-homogeneous if the degree of its root vertex is
deg(vo) = q and all other vertices v �= vo have degree deg(v) = q + 1. In this case
we write T = Tq,q+1 (see Fig. 1.)

It is important that an arbitrary graph G = (V, E) is a metric space.

Theorem 3.9 Let G = (V, E) be an arbitrary graph. If, for every v1, v2 ∈ V we define

d(v1, v2) = {the length of the shortest path joining v1 and v2},

where the length of a given path is defined as the number of its edges.

The proof of Theorem 3.9 is easy and is left for the reader.
In the rest of the paper we consider quasi-homogeneous weighted trees Tp,p+1 with

the set of weights {0, . . . , p − 1}, where p is a prime integer.

4 p-Adic Fields

Now we are in position to define the field of p-adic numbers. Mostly we follow the
presentation included in Sally (1998). The reader may also consult Robert (2000).
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Let p be a prime number in Z, and let x = a
b ∈ Q be a rational number. We write

x = ps kl . Define the p-adic absolute value on Q by

|x |p =
{
p−k if x �= 0,

0 if x = 0.

The p-adic absolute value gives a metric on Q by

dp(x, y) = |x − y|p, for x, y ∈ Q.

The completion4 of Q with respect to the metric dp is denoted by Qp and called a
p-adic field. An element x ∈ Qp is called the p-adic number. It turns out that the
metric space (Qp, dp) is an ultrametric space (or a non-Archimedean space), that is
the triangle inequality for Qp reads:

dp(x, z) ≤ max (d(x, y), d(y, z)) .

This is a stronger inequality than (iii) in Definition 2.1.

Definition 4.1 The set of element Zp = {x ∈ Qp : |x |p ≤ 1} is called the ring of
integers in Qp. An element x ∈ Zp is called the p-adic integer.

Definition 4.2 Let x ∈ Qp. Define a map ν : Qp → Z ∪ {+∞} by equation

p−ν(x) = |x |p for x �= 0

and for x = 0 put
ν(0) = +∞.

The function ν is called the valuation and ν(x) is the valuation of x ∈ Qp

Theorem 4.3 Any nonzero p-adic number x ∈ Qp can be expressed as

x =
∞∑

k=ν(x)

ak p
k, (4.1)

where, for every k, ak ∈ {0, . . . , p − 1} and aν(x) �= 0.

Definition 4.4 Let 0 �= x ∈ Qp be written as the series (4.1). Then the fractional part
of x ∈ Qp, denoted by {x}, is defined as follows:

{x} =
{∑−1

k=ν(x) ak p
k, for ν(x) < 0,

0 for ν(x) ≥ 0.

Remark 4.5 Thus, x ∈ Zp (i.e., x is an integer p-adic number) if and only if {x} = 0.

4 The procedure for completing metric space is described in the Rudin textbook (1976).
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5 Trees and p-Adic Integers

It follows from Theorem 4.1 and Remark 4.5 that every x ∈ Zp can be written as a
convergent (in p-adic metric dp) sequence of the form

x =
∞∑

k=0

ak p
k, (5.1)

where each ak is from the set {0, . . . , p− 1}. (We do not assume that a0 �= 0.) Hence,
one can identify every p-adic integer x with a sequence of coefficients ak, i.e.,

x = (a0, a1, . . .) with ak ∈ {0, . . . , p − 1}.

Example 5.1 If p = 2, then ak ∈ {0, 1} and every sequence x can be identified with
an infinite path starting from the root of the 2-ary weighted tree. In the notation of
Sect. 3, T2,3 (i.e. root has degree 2 and other vertices 3).

6 Gromov Boundary

The Gromov boundary of a hyperbolic group or a tree my be thought of as a set of
points at infinity. Gromov’s theory of boundaries which originates from Geometric
Group Theory has found many application (Thurston’s geometrization program for
three dimensional manifolds, automatic groups, lattices in Lie group etc.).

In different branches ofmathematics there aremany concepts of boundaries depend-
ing on the studied space and the type of problemunder consideration. Thus,mentioning
just a few examples, we have the Poisson boundary, the Martin boundary, the Fursten-
berg boundary, the Satake boundary, and many more; see Borel and Ji (2006).

The usefulness of the boundary results from the fact that their structure is usually
simpler and that very often the analysed space acts on the boundary with the help of
morphisms, thus giving in a way a representation of the studied space on its boundary.

From a philosophical point of view, the boundary defined for such mathematical
structures as topological spaces or spaces with (probability) measure (Riemannian
manifolds, Lie groups, symmetric spaces etc.) are undoubtedly interesting objects.
They allow to penetrate through the boundary of the examined structure (topological
or measurable) as with the use of magnifying glass.

When studying analytical objects defined in different spaces, it turns out that their
behaviour is not arbitrary but strictly determined by what happens on the boundary of
a given space.

For example; seeAxler et al. (2001); a harmonic functionwhich belongs to the space
Hb(�) of bounded harmonic functions defined in the domain� of the Euclidean space
R

D is uniquely determined by their boundary values on the topological boundary ∂�

of �. This gives a 1 to 1 correspondence between elements of the space L∞(∂�) of
bounded measurable functions on the topological boundary ∂� and the spaceHb(�).
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Our presentation of the Gromov boundary is closely based on Sect. 2 of the paper
by Kapovich and Benkali (2002), an excellent survey of the known results about the
Gromov boundaries of hyperbolic groups (and trees).

We start with definition of geodesic metric spaces, next we introduce the notion
of δ-hyperbolic space. It turns out that trees belong to this class. Hence, the Gromov
boundary can be defined for trees.What is very important is that the Gromov boundary
is a metric space.

We want to emphasise that in case of tree the notion of the Gromov boundary
simplifies essentially.

However, we chose to present more general theory, not necessarily limited to trees,
since we are working on a sequel to this paper - where more general conceptual spaces
will be constructed.

6.1 Boundaries

Definition 6.1 We say that a metric space (X , d) is geodesic if for every two points
x, y ∈ X , there exist a geodesic segment [x, y] that is a naturally parameterized path
from x to y whose length is equal to d(x, y).

Let A be a subset of ametric space and δ ≥ 0 be a real parameter.A δ-neighbourhood
of A, Nδ(A) is defined as the set

Nδ(A) = {x ∈ X : d(x, A) := inf
y∈A

d(x, y) ≤ δ}.

A δ-neighbourhood of A is a set of all points in X which are within distance less than
or equal δ from A.

Definition 6.2 Let (X , d) be a geodesic metric space and R 
 δ ≥ 0. We say that
(X , d) is δ-hyperbolic space if for any triangle with geodesic sides in X each side
s1, s2, s3 of the triangle is contained in the δ-neighborhood of the union of two other
sides, for example s1 ⊂ Nδ(s2 ∪ s3). A geodesic metric space is said to be hyperbolic
if it is δ-hyperbolic for some δ ≥ 0.

Definition 6.3 For three points x, y, z belonging a metric space (X , d) the Gromov
product of y and z with respect to x is defined as follows:

(y, z)x = (d(x, y) + d(x, z) − d(y, z)) /2.

The Gromov product can be used to give an equivalent definition of δ-hyperbolic
metric space (X , d).

Definition 6.4 A metric spece (X , d) is δ-hyperbolic if and only if, for every
x, y, z, v ∈ X , we have

(x, z)v ≥ min {(x, y)v, (y, z)v} − δ.
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It is not difficult to check that Definitions 6.2 and 6.4 are equivalent.
Directly from the Definition 6.3 of the Gromov product it follows that the product

has the following properties.

Lemma 6.5 For every x, y, z ∈ X ,

(i) (y, z)x = (z, y)x ,
(ii) d(x, y) = (x, z)y + (y, z)x ,
(iii) 0 ≤ (y, z)x ≤ min {d(y, x), d(z, x)} ,

Definition 6.6 Let (X , d) be a hyperbolic metric space. Fix a point o - the origin of
X . A geodesic ray is a path γ : [0,+∞) → X such that, for every t ≥ 0, the image
by γ of [0, t], γ ([0, t]) is a segment of shortest length from o to γ (t).

Remark 6.7 The Gromov product in the δ-hyperbolic space X measures how long
geodesics remain close together. Namely, if x, y, z ∈ X then the initial segments of
length (y, z)x of two geodesics from x to y and x to z are less than or equal to 2δ-close
to each other (in the Hausdorff metric).

Now we define an equivalent relation on geodesic rays.

Definition 6.8 Two geodesic rays γ1 : [0,+∞) → X and γ2 : [0,+∞) → X are are
said to be equivalent, γ1 ∼ γ2, if there is a constant C > 0 such that, for every t ≥ 0,
d(γ1(t), γ2(t)) ≤ C .

After this long chain of definitions we are finally able to define the main object of
this section.

The relation ∼ introduced above is an equivalence relation.5 A class of abstraction
of a ray γ is denoted by [γ ] = {α : α ∼ γ }.

First we define the geodesic boundary.

Definition 6.9 Consider a δ-hyperbolic metric space (X , d) with a base point o ∈ X .

The relative geodesic boundary of X with respect to the base-point o ∈ X is the set

∂
g
o X = {[γ ] : γ : [0,+∞) → X is a geodesic ray such that γ (0) = o}.

The geodesic boundary of X is defined as the following set

∂g X = {[γ ] : γ : [0,∞) → X is a geodesic ray in X}.

Definition 6.10 Consider a hyperbolic metric space (X , d) with a base point o ∈ X .

Let xn be a sequence in X . The sequence xn converges to infinity if

lim inf
i, j→+∞(xi , x j )o = +∞.

5 A relation ρ on a set S is an equivalence relation if

(i) for every a ∈ S, aρ a (reflexivity),
(ii) for every a, b ∈ S if a ρ b then b ρ a (symmetry),
(iii) for eery a, b, c ∈ S if a ρ b and b ρ c then a ρ c (transitivity).
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Clearly, the above definition does not depend on a base-point o.

Definition 6.11 We say that two sequences xn and yn which converge to infinity are
equivalent, xn ∼ yn, if

lim inf
i, j→+∞(xi , x j )o = +∞. (6.1)

It is easy to see that the above definition does not depend on a base-point. The
relation ∼ defined by (6.1) is an equivalence relation.

Definition 6.12 For a δ-hyperbolic space the (sequential) boundary of X is defined as
the following set

∂X = {[xn] : xn converges to infinity}.
For x ∈ X and a geodesic ray starting from x ∈ X , define the following map:

ix : ∂
g
x X → ∂g X ,

[γ ] → [γ ].

Next, for a geodesic ray6 γ define the following map For x ∈ X and a geodesic ray
starting from x, define the following map:

i : ∂g X → ∂X ,

[γ ] → [γ (n)].

Theorem 6.13 [Proposition 2.10 in Kapovich and Benkali (2002)] Let (X , d) be a
proper7 δ-hyperbolic metric space. Then

(1) for every x ∈ X the map ix is a bijection,
(2) the map i is a bijection,
(3) for every two non-equivalent rays γ1, γ2 : [0,+∞) → X there is a bi-infinite

geodesic γ : R → X such that γ |[0,+∞) ∼ γ1 and, after re-parametrization γ (0),
γ |(−∞,0] ∼ γ2.

Definition 6.14 Wewill say that a geodesic ray γ in a δ-hyperbolicmetric space (X , d)

connects the point γ (0) ∈ X to a point p ∈ ∂X if p = [γ (n)].
Abi-infinite geodesic γ connects a point p ∈ ∂X to a point q ∈ ∂X if p = [γ (−n)]

and q = [γ (n)].
It follows from Theorem 6.13 that we have the following.

Corollary 6.15 Let (X , d) be a proper hyperbolic metric space. For every point x ∈ X
and every point in p ∈ ∂X there is a geodesic ray which joins x and p. Further, for
every p, q ∈ ∂X such that p �= q there is a bi-infinite geodesic in X joining p and q.

6 Clearly, if γ is a geodesic ray in X then γ (n) converges to infinity.
7 A metric space is said to be proper if all closed balls with a centre x and radius r B(x, r) = {y ∈ X :
d(x, y) ≤ r} are compact.
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6.2 Topologies on Boundaries

It turns out that on the Gromov boundary can be introduced in a natural way topology.
In addition, the topological space obtained is metrizable, using a so-called visual
metrics.

Recall, that the topological space is a pair (X ,O) of two elements. X is any col-
lection of elements (any set) and O is a family of the subsets of X , such that X and
the empty set ∅ belong to O and the family O is closed with respect to the finite
intersection and any (infinite) union of elements from O. The elements of the family
O are called open sets.

Very often, rather than the topologyO, a smaller collection B of open sets is given
which generates the topology O.

Specifically, a basis B for a topological space X with topologyO is a collection of
open sets such that every element ofO can be obtained by union of some elements of
B. We say that B generates O; see Kelley (2017).

So we are now introducing topology in the hyperbolic space.
We continue the presentation given in the work by Kapovich and Benkali (2002).
We begin with the topology on the geodesic relative boundary ∂

g
o X; see Defini-

tion 6.9.
Let (X , d) be a δ-hyperbolic metric space and let o ∈ X be a base-point. For every

p ∈ ∂
g
x X and every r ≥ 0 we define the set V (p, r) ⊂ ∂

g
o X by the following formula

V (p, r) = {q ∈ ∂
g
o X : ∃ γ1, γ2 with γ1(0) = γ2(0) = o,

[γ1] = p, [γ2] = q and lim inf
t→+∞ (γ1(t), γ2(t))o ≥ r}.

Family of sets {V (p, r) : p ∈ ∂
g
o X , r ≥ 0} is taken as a topology basis on ∂

g
x X .

In the same way we introduce topology on the sequential boundary ∂X of δ-
hyperbolic space with a base-point o.

For every p ∈ ∂X and every r ≥ 0we define the setU (p, r) ⊂ ∂X by the following
formula

U (p, r) = {q ∈ ∂X : ∃ xn, yn with

[xn] = p, [yn] = q and lim inf
i, j→+∞(xi , y j )o ≥ r}.

Family of sets {U (p, r) : p ∈ ∂
g
o X , r ≥ 0} constitutes a basis of a topology on ∂X .

This topology does not depend on o.
One can introduce natural topology on X∪∂X; for details seeKapovich andBenkali

(2002, p. 6). In this topology X and X = X ∪ ∂X are compact and X is dense in X .

If X is (not necessary proper) δ-hyperbolic space then the geodesic boundary and
the sequential topology coincide. Moreover they have the same topology.
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6.3 The Gromov Boundary@X as a Metric Space

As we mentioned in the previous section, the Gromov boundary is a metric space. In
this section we will define the appropriate metric (visual metric) in accordance with
the previously introduced topology. This metric greatly simplifies itself in the case of
a tree boundary, which is particularly important in the context we are study.

Definition 6.16 Let (X , d) be a δ-hyperbolic proper metric space with a base-point
o ∈ X . Let R 
 a > 1. A metric da on the sequential boundary ∂X is called a visual
metric with respect to the base-point o and the visual parameter a if there exists a
constant C > 0 such that:

(i) the metric da induces the topology (defined above) on ∂X ,

(ii) for every p �= q ∈ ∂X , for any bi-infinite geodesic γ joining element p with q,

and for every y ∈ γ such that d(o, y) = d(o, γ ),

C−1a−d(o,y) ≤ da(p, q) ≤ Ca−d(o,y).

The following important theorem gives the existence of a visual metric on the
sequential boundary ∂X and also shows relationship between metrics for various
visual parameters and different base-points of X .

Theorem 6.17 Let (X , d) be a proper (i.e., every ball is compact) δ-hyperbolic metric
space. Then we have that

(i) There exists a0 > 1 such that for every base-point o ∈ X and for every a ∈ (1, a0)
there is a visual metric da with respect to o ∈ X on the sequential boundary ∂X .

(ii) Suppose that d1, d2 are visual metrics on ∂X with respect to the same visual
parameter a and the base-points o and o′, respectively. Then d1, d2 are Lipschitz
equivalent, i.e., there is a real constant L > 0 such that, for all p, q ∈ ∂X ,

L−1d1(p, q) ≤ d2(p, q) ≤ Ld1(p, q).

(iii) Suppose d1, d2 are visual metrics on ∂X with respect to the visual parameters
a1, a2 and the base-points o1, o2, respectively. Let α = ln a2/ ln a1. Then d1, d2
are Hölder-equivalent. That is, there exists a real constant H > 0 such that, for
all p, q ∈ ∂X

H−1d1(p, q)α ≤ d2(p, q) ≤ Hd1(p, q)α.

For the proof see e.g. Ghys and de la Harpe (1990), Coornaert et al. (1990) or
Bridson and Haefliger (1999).

7 Fractional Conceptual Space

In this section we show how to obtain the conceptual space associated with the ring
of p-adic integers using the Gromov theory.
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We also identify the abstract Gromov boundarywith a specificmathematical object.
Namely, starting from the space containing objects that can be described (potentially)
with infinite number of qualities with the intensity from the set of weights {0, . . . , p−
1}, we show that conceptual space is (homeomorphic with) the (p + 1)-ary Cantor
set.8

The transition from the collection of abstract objects of reality to the conceptual
space, which is a (fractal) Cantor set, see Falconer (2003), is accomplished by using
the p-ary tree.

On the other hand, we also show how the construction of the (p + 1)-ary Cantor
tree generates a the p-ary tree.

7.1 Construction by the Gromov Theory

To construct our fractional concept space we start with the field of p-adic integers Zp.

A given concept x is encoded by a p-adic integer x ∈ Zp, x = ∑∞
k=0 ak p

k . Conse-
quently, the concept x is described by an infinite dimensional vector x = (a0, a1, . . .).
Each dimension of this vector gives one quality of the concept x . Thus, a quality can
be encoded by p integer numbers {0, 1, . . . , p−1} that give the intensity gradation of
it. As it was explain in Sect. 5 each sequence x = (a0, a1, . . .) corresponds to exactly
one branch of a rooted p-ary tree Tp,p+1 (in other words, to exactly one path γo which
starts from the root of the tree and goes to infinity, i.e. the sequence of vertices γ (n)

converges to infinity; see Definition 6.10.)
If we now consider a set of all paths γ that are equivalent to pathway γo, by means

of relation ∼ defined in Definition 6.11, we get equivalence class [γo]. This class of
equivalence is an element of the Gromov boundary of the quasi-homogeneous tree
Tp,p+1, out of which we started our construction.

The visual metric da defined in Definition 6.16 on the boundary ∂X is very simple
when a hyperbolic space (X , d) is a tree with a metric d defined in Theorem 3.9.
Clearly, (T , d) is a proper metric space.

As can be seen from Definition 6.4 and Lemma 6.5, a tree is an example of 0-
hyperbolic space. In this case ∂X is called the space of ends of X and Theorem 6.17
gives the existence of the visual metric da on ∂X .

The parameter a0 from Theorem 6.17 is equal to +∞. Thus, on a tree T for any
base-point o (o does not have to be the root of T ) and every visual parameter a > 1
the visual metric da is given, for every p, q ∈ ∂T , by the following formula

da(p, q) = a−d(o,y),

where [o, y] = [o, p) ∩ [o, q).

If in the tree T its base-point o is at the same time its root then the metric da can
be interpreted as follows.

8 It seems that the construction of the p + 1-ary Cantor set, which is a generalization of the standard
construction of the 3-ary Cantor set does not appear in literature, or at least the author did not encounter
such generalization.
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Let us consider two branches b and b′ of a rooted tree T = (V, E) (with a root r )
We can identify these branches with two infinite sequences of their vertices:

b = (v0, v1, . . .) and b′ = (v′
0, v

′
1, . . .), where v0 = v′

0 = r and vi , v
′
i ∈ V.

Then
da([b], [b′]) = a−min{i≥0: vi �=v′

i }, (7.1)

where [b] and [b′]belong to ∂T .Thus, the longer the twobranchesb, b′ follow the same
vertices of the tree T , the smaller the distance between the tree ends [b], [b′] ∈ ∂T
determined by these branches becomes.

7.2 Fractal Conceptual Spaces of Cantor-Type Set

Here we will identify the abstract Gromov boundary of a tree with the corresponding
Cantor’s set.

We will start with binary trees and then generalise the construction into any p-ary
tree (with prime integer p). We believe that this division into p = 2 and p > 2 cases
will be clearer for the reader.

7.2.1 The Case of the Binary Tree (p = 2)

Let p = 2. We will start by defining the classical 3-ary ((p+1)-ary) Cantor set.
We start the construction from the interval [0, 1]. The first approximation of the

Cantor set is obtained by dividing the interval [0, 1] into three equal parts and removing
the interior of the central part. The remaining set

C (1)
3 = [0, 1/3] ∪ [2/3, 1]

is the sum of two intervals of length 1/3 each.
Next from each of these two intervals we do the same, i.e. we divide each of them

into 3 equal parts and remove the interiors of the middle parts. We get a union of 4
intervals of lengths 1/9:

C (2)
3 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1].

Then we repeat the procedure in a recursive way and on the n-th step we get a set C (n)
3

of 2n intervals of lengths 1/3n .
As a result we get a descending sequence of closed sets

C (1)
3 ⊃ C (2)

3 ⊃ . . .C (n)
3 ⊃ C (n+1)

3 . . . .

Definition 7.1 We define the 3-ary Cantor set as an intersection of all its approxima-
tions

C3 :=
∞⋂

i=1

C (i)
3 .
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It is known that the 3-ary Cantor set C3 is nonempty, compact and nowhere dense9

in [0, 1].
The construction of the Cantor set C3 proves the following lemma.

Lemma 7.2 The real number x ∈ [0, 1] belongs to C3 if and only if

x =
∞∑

i=1

xi
3i

, where xi ∈ {0, 2}.

Thus, every element x ∈ C3 can be identify with a sequence of x = (x1, x2, . . .),
where xi ∈ {0, 2} but this sequence can be identify with a sequence x ′ = (x ′

1, x
′
2, . . .),

where

x ′
i =

{
0 if xi = 0,

1 if x1 = 2.

Then we can identify the sequence x ′ with a branch of binary tree T2,3. As we have
already shown equivalence class [x ′] is an element of the boundary of the tree T2,3.

Now, in turn, wewill geometrically show how the construction of the ternary Cantor
sets generates a binary tree, thus avoiding an intermediate arithmetic step (Lemma 7.2
and an argument following it).

On the other hand, this geometric approach transfers automatically for p > 2.
The construction of the binary tree starts with the root r , which we put on level 0.

Next, the vertices at level 1 are elements of the first approximation C (1)
3 of the ternary

Cantor set. Then we connect the root to the vertices of level 1 with the edges, giving
them a weight of 0 and 1 from the left.

In the second step, as tree vertices at level 2 we take the elements of the second
approximation C (2). This approximation contains 4 elements. Each level 1 vertex is
connected by two edges with two level 2 vertices and given a weight of 0 and 1 as
before.

The procedure is repeated inductively receiving an infinite binary tree.
Summing up what we have done so far, we have shown the following identification

of sets:
{concepts} ↔ Z2 ↔ ∂T2,3 ↔ C3.

7.2.2 Generalization to Prime Number p > 2

We can generalize the above procedure. Take a prime number p ≥ 2 and divide the
interval [0, 1] into 2p − 1 subintervals of equal length. Then remove the interiors of
every second subinterval starting from the second subinterval on the left-hand side.
Thus we remove p − 1 subintervals.

In this way, we get the first approximation C (1)
p+1 of the p+ 1-ary Cantor set Cp+1.

The set C (1)
p+1 consists of p subintervals of length 1/(2p − 1) each.

9 A set in a topological space (X ,O) is nowhere dense if its closure has empty interior. Equivalently, a
nowhere dense set in X is a set that is not dense in any nonempty open set from O.
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Then we repeat the procedure in a recursive way and on the n-th step we get a set
C (n)

p+1 of p
n intervals of lengths 1/(2p − 1)n .

As before we get a descending sequence of closed sets

C (1)
p+1 ⊃ C (2)

p+1 ⊃ . . .C (n)
p+1 ⊃ C (n+1)

p+1 . . . .

Finally, we define the (p + 1)-ary Cantor set.

Definition 7.3 The (p + 1)-ary Cantor set is the intersection of all its approximation:

Cp+1 =
∞⋂

i=1

C (i)
p+1.

Geometric identification of the p + 1-ary Cantor set and p-ary tree obviously
transfers to the case of p > 2 from the construction for p = 2. The modifications are
cosmetic only.

Thus we get the following general identification:

{concepts} ↔ Zp ↔ Tp,p+1 ↔ Cp+1. (7.2)

For every prime p, the p+ 1-ary Cantor set Cp+1 is nonempty, compact and nowhere
dense.

7.3 Partitioning of Fractal Conceptual Space

In this section we will show how to construct a partition of the fractal conceptual space
Cp+1 in practice.

For this purpose we will use the identity (7.2). In particular, the equivalence of a
p-ary tree Tp,p+1 and fractal space Cp+1.

Suppose thatwe are given a prototype P.Eachprototype is described by an infinitely
dimensional vector of qualities. Hence

P = (p1, p2, p3, . . .), p j ∈ {0, 1, . . . , p − 1}, j = 0, 1, . . . .

Of course, in reality we will operate only on the finite number of qualities, which boils
down to the fact that almost all elements of vectors P are equal to 0.

As we have previously noted, P can be treated as an element of the ring of p-adic
integers Zp. Moreover, by (7.2),

P is an infinite branch of the p-ary tree Tp,p+1.

We select the positive integer �. It will be the number of qualities we take into
account. Thus, the equivalence class [P] of element P shall consist of all branches
R = (r1, r2, r3, . . .) of the p-ary tree Tp,p+1 which have the same weight as P on the
first � edges, i.e.

[P] = {R : p j = r j for j = 1, . . . , �}.
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With the selected � let us consider the tree Tp,p+1 cut to level � (level � belongs to

the truncated tree). Denote this truncated tree by T (�)
p,p+1. It has p

� different branches.

(Since there are p� different strings with elements from the set {0, 1, . . . , p − 1},
which are of length of �.) These p� different branches of the finite tree T (�)

p,p+1 can

be extended in an arbitrary way up to infinity, so we get p� different branches of the
infinite tree Tp,p+1. Let’s mark them by P(i), i = 1, . . . , p�.

Therefore we have p� prototypes P(i). For i = 1, . . . p�, the equivalence class

[P(i)] = {R(i) : p(i)
j = r (i)

j for j = 1, . . . �}.

The ends of branches R(i) belonging to the equivalence class [P(i)] shall form a subset
C(i) of the p + 1-ary Cantor set Cp+1.

If we equip the Cantor set Cp+1 with the visual metric da, defined in (7.1) (here
the most convenient choice of a > 1 is p) the elements of the set C(i) are distant from
each other for a distance not exceeding p−�, that is10 diam C(i) = p−�.

It is clear that the family of sets C(1), . . . , C(p�) is a partition of the Cantor setCp+1,

i.e. the sets C(i), i = 1, . . . , p� are mutually disjoint (C(i) ∩ C( j) = ∅, for i �= j) and

Cp+1 =
p�⋃

i=1

C(i).

Thus, the problem of the inability to classify certain points into concept domains,
as was the case with the use of Vronoi diagrams by Dietz (2013) and Douven et al.
(2013), does not exist in the case of a fractal conceptual space Cp+1.

7.4 Convexity

Gärdenfors (2000) insists that the partitioning of conceptual space should be composed
of convex sets. The reason for this is that convexity is probably the simplest example
of a more general concept, which is called betweennes and which reflects the intuition
that if two elements belong to a given concept domain, then all the elements between
them also belong to this concept domain.

In Urban and Grzelińska (2017) we postulated geodesic convexity as more appro-
priate for our partitioning of conceptual space. In that work, the concept domains were
determined by prototypes, which were masses distributed in the Euclidean space. The
concept domain was naturally a differential manifold. Hence the concept of geodesics
and geodesic convexity has obviously emerged.

A controversy about convexity of concepts is also expresses in Hernandez-Conde
(2017). As the example of the Gromov boundary (which is not convex) seems to show,

10 Let us remind that for a subset A of a metric space (X , d) the diameter of A is defined as diam A =
supx,y∈A d(x, y).
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in the case of spaces that are not connected11 (as the Gromov boundary), the role of
convexity will be played by ordering the set, which creates a conceptual space.

Let us recall that the partial order in the set S is a relation ≤ on a set S that meets
the following conditions:

(i) ∀ a ∈ S, a ≤ a (reflexivity),
(ii) ∀ a, b ∈ S, if a ≤ b and b ≤ a ⇒ a = b (antisymmetry),
(iii) ∀ a, b,∈ S, if a ≤ b and b ≤ c ⇒ a ≤ c.

If the partial order additionally satisfies condition

(iv) ∀ a, b ∈ S, a ≤ b or b ≤ a (totality),

then we say that ≤ is a linear order (or total order) and S is called linearly ordered set
(or totaly ordered set).

Because, as we will show in a moment, the boundary of the tree can be identified
with a fractal subset of the interval [0, 1].Thus, our conceptual space inherits the linear
order from the real line. If we are dealing with a p-ary tree Tp,p+1, then the boundary
is the p + 1-ary Cantor set Cp+1.

We believe that in our conceptual space, which is the boundary of a tree Tp,p+1, it
is the linear order inherited from the real line that seems to be the ideal equivalent of
the term betweennes.

Wewill now show that the boundary of the tree ∂T can be identified with the Cantor
set. As a result we show that we can talk about beetwennes on the metric space ∂T .

We will start with the construction of the classic Cantor set corresponding to the
boundary of ∂T2,3.

To sum up, in our opinion for conceptual spaces other than the Euclidean ones, the
notion of convexity of concept domains must be replaced by another notion reflecting
the essence of being a given element of a concept domain between two other ele-
ments of this domain. This undoubtedly depends very much on the problem under
consideration, for which we are constructing a conceptual space.

8 Conclusion

In this work we defined the conceptual space as the boundary (set of ends) of a p-ary
tree Tp,p+1, where p is a prime number. In fact, the whole construction can be carried
out without any limitation that p is the prime number. However, consistently, we
have kept to this assumption for philosophical and physical rather than mathematical
reasons.

The p-ary trees are connected with p-adic numbers which occupy a special place
in the description of the surrounding reality, in the description of the universe, as we
mentioned in the introduction to this article.

The next step we are planning is to use more general proper hyperbolic spaces to
construct conceptual spaces. We hope that these more general conceptual spaces will
prove to be a more precise tool for distinguishing and classifying concepts on the basis
of their qualities.

11 The topological space is called connected if it cannot be represented as a sum of two disjoint closed.
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To sum up, starting from the given set of concepts, our construction was three-
stage. This is illustrated in the diagram below, where the arrows indicate one to one
correspondence between the given structures.

(set of concepts) ↔ Zp ↔ Tp,p+1 ↔ Cp+1.

Acknowledgements The authors wishes to thank an anonymous referees for remarks that improved the
overall presentation of the results.
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