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Abstract Cooper storage is a widespread technique for associating sentences with
their meanings, used (sometimes implicitly) in diverse linguistic and computational
linguistic traditions. This paper encodes the data structures and operations of cooper
storage in the simply typed linear λ-calculus, revealing the rich categorical structure
of a graded applicative functor. In the case of finite cooper storage, which corresponds
to ideas in current transformational approaches to syntax, the semantic interpretation
function can be given as a linear homomorphism acting on a regular set of trees, and
thus generation can be done in polynomial time.

Keywords Cooper storage · Applicative functor · Compositionality · Lambda
calculus

1 Introduction

Since Montague (1973), a guiding principle in the semantics of natural language
has been to map sentences to meanings homomorphically based on their syntactic
structure. The proper treatment of quantification has been challenging from the outset,
as quantifier denoting expressions seem in general to be structurally embedded inside
of the expressionswhosemeanings they should take as their arguments. The strategy of
Montague (1973), adopted bymuch of the subsequent linguistic literature, is to change
the structures of syntax so as to have the quantificational elements in as transparent a
position as possible for semantic interpretation.
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96 G. M. Kobele

Cooper storage (Cooper 1983) is a technique for interpreting sentences with quan-
tificational elements based on structures where these elements are not in the positions
which straightforwardly correspond to their semantic scopes. It involves assigning to
each node of a syntax tree, in a non-deterministic recursive bottom-up manner, a pair
consisting of an expression in some logical language with variables which will here
be called the main expression, and a data structure, called the store, containing pairs
of a free variable and a logical expression. The main expression associated with a
node indicates the intended meaning of the syntax tree rooted at that node, whereas
the store contains expressions representing the meanings of parts of the syntax tree
rooted at that node whose relative scope with respect to the entire syntax tree have yet
to be determined.

Themain formal problem surrounding cooper storage is that it requires somemech-
anism for avoiding accidental variable capture (Sect. 1.2), and thus, among other
things, this means that the map from parse tree to meaning cannot be represented
as a λ-homomorphism (de Groote 2001a). This makes difficult an understanding of
the complexity of the form-meaning relation expressed by grammars making use of
cooper storage.

This paper

– provides a general characterization of cooper storage in terms of graded applicative
functors. This characterization has as special cases the variations on the cooper
storage theme present in the literature.

– provides a sequent notation for cooper storage. As this notation is very close to that
of Cooper (1983), it can be viewed as putting this latter on solid logical ground.

– interprets cooper storage in the linear lambda calculus. Thismakes available access
to general complexity theoretic results in particular on parsing and generation
(Kanazawa 2017).

From a type-logical perspective, cooper storage seems like the mirror image of
hypothetical reasoning; instead of using hypotheses to saturate predicates, and only
introducing quantified expressions in their scope positions, predicates are directly
saturated with quantified expressions. This situation, while logically somewhat back-
wards, allows the otherwise higher order proof structures to be simulated with simpler
second order terms (i.e. trees).

From a transformational, LF-interpretation based, perspective, it is intuitive to think
of themain expression as themeaning of the LF-tree rooted in that node, with variables
for traces, and of the store as containing the meanings of the quantifiers which have
not yet reached their final landing site (Larson 1985). Indeed, recent proposals about
compositional semantics in minimalist grammars (Kobele 2006, 2012; Hunter 2010)
implement quantifier-raising using cooper storage. These approaches exploit the ‘log-
ical backwardness’ (as described above) of cooper storage to account for empirical
constraints on scope possibilities in natural language.

1.1 Examples

Two case studies in cooper storage are developed here which will be returned to
throughout this paper. The first (in Sect. 1.1.1) is an instance of a traditional perspective
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The Cooper Storage Idiom 97

on cooper storage; cooper storage is used to interpret a context-free grammar for a
naıve fragment of English. It is included here to fix notation, as well as to provide
intuitions for the rationale of cooper storage. The second (in Sect. 1.1.2) uses cooper
storage to interpret movement (and reconstruction), as in the literature on minimalist
syntax and semantics (Kobele 2006). It is included so as to provide a nonstandard use
of cooper storage, which the resulting formalism should be able to account for.

The case studies make use of grammar formalisms of different formal power
[context-free grammars, and multiple context-free grammars (Seki et al. 1991)]. In
order to minimize the notational distance between the examples, I will make use of
the formalism of (second order) abstract categorial grammars (ACGs) (de Groote
2001a), in particular the bottom-up Horn clause notation of Kanazawa (2009). A sec-
ond order ACG consists of a context-free grammar specifying well-formed derivation
trees, along with a means of homomorphically interpreting these structures.

A context-free production of the form X → Y1 . . . Yn is written instead as
X (y�

1 . . .� yn) :- Y1(y1), . . . ,Yn(yn). The left hand side of such a clause is called
the head of the clause,1 and the right hand side of a clause is called its body. In general,
a clause is of the form X (M) :- Y1(y1), . . . ,Yn(yn), where y1, . . . , yn are variables,
and M is a term whose free variables are among y1, . . . , yn . Clauses are naturally
read in a bottom-up manner, with the interpretation that expressions y1, . . . , yn , of
categories Y1, . . . ,Yn respectively, can be used to construct an expression of category
X by combining them in the way specified. This can be presented succinctly in terms
of an inference system, deriving judgments of the form � X (M), asserting that M is
an object of type X . The rules of such an inference system are given by the clauses,
with the atoms in the body as antecedents, and the head as conclusion:

� Y1(N1) · · · � Yn(Nn)

� X (M[y1 := N1, . . . , yn := Nn])
where M[y1 := N1, . . . , yn := Nn] represents the simultaneous substitution of each
variable yi in M with the term Ni , for 1 ≤ i ≤ n.

Clauses can be multiply annotated, so that atoms are of the form X(x)(x ′). In this
case, the grammar can be thought of as constructing multiple objects in parallel, e.g. a
pronounced form in tandem with a semantic form.

1.1.1 Traditional Cooper Storage

Consider a linguist analysing a language (English),who for various reasons has decided
to analyze the syntactic structure of a sentence like 1 as in Fig. 1.

1. The reporter will praise the senator from the city.

The linguist has come upwith a compositional semantic interpretation for this analysis,
and the clauses are annotatedwith both a pronounced and a semantic component. As an
example, consider the clause for IP in the figure; IP(s�t)(fa i d) :- DP(s)(d) I’(t)(i).
This clause can be read as saying that an I’ pronounced t with meaning i and a DP

1 This has nothing to do with endocentricity, or the headedness of syntactic phrases.

123



98 G. M. Kobele

IP
DP
D’

D
the

NP
N’
N

reporter

I’
I

will
VP
V’

V
praise

DP
D’

D
the

NP
N’
N

senator

PP
P’

P
from

DP
D’

D
the

NP
N’
N
city

XP(s)(x) :- X’(s)(x)
X’(s)(x) :- X(s)(x)
X(w)(w) :-

IP(s�t)(fa i d) :- DP(s)(d), I’(t)(i)
I’(s�t)(fa i v) :- I(s)(i), VP(t)(v)

V’(s�t)(fa v d) :- V(s)(v), DP(t)(d)
D’(s�t)(fa d n) :- D(s)(d), NP(t)(n) fa f x = f x, pm f g = f ∧ g

NP(s�t)(pm n p) :- N’(s)(n), PP(t)(p)
P’(s�t)(fa p d) :- P(s)(p), DP(t)(d) N : et D : (et)e P,V : eet I : (et)et

Fig. 1 A grammar and syntactic analysis of sentence 1

pronounced s with meaning d can be combined to make an IP pronounced s�t with
meaning fa i d (i.e. the result of applying i to d). There is a general X-bar theoretic
clause schema, allowing for unary branching (an XP can be constructed from an X’,
and an X’ from an X), which is intended to stand for a larger (but finite) set of clauses,
one for each category used in the grammar. The clause schema X(w)(w):- is intended
to be read as saying that a word w has its lexically specified meaning w (and is of a
lexically specified category X); a clause without any right hand side functions as a
lexical item; it allows for the construction of an expression without any inputs.

In Fig. 1, the expressions of category DP have been analysed as being of type e,
that is, as denoting individuals.2 While this is not an unreasonable analytical decision
in this case (where the can be taken as denoting a choice function), it is untenable
in the general case. Consider the linguist’s reaction upon discovering sentence 2, and
concluding that determiners are in fact of type (et)(et)t (i.e. that they denote relations
between sets).

2. No reporter will praise a senator from every city.

The immediate problem is that the clauses constructing expressions out of DPs (those
with heads P’(s�t)(fa p d), V’(s�t)(fa v d), and IP(s�t)(fa i d)) are no longer
well-typed; the variable d now has type (et)t and not e. While in the clause with head
IP(s�t)(fa i d) this could be remedied simply by switching the order of arguments
to fa, there is no such simple solution for the others, where the coargument is of type
eet .3

2 Our linguist is using the atomic types e and t [which correspond to the ι and o of Church (1940)]. The
complex type αβ is elsewhere written as α → β, and juxtaposition is right associative; αβγ is α(βγ ).
3 The obviousminimal solution, namely, allowing a operation which combines a term of type (et)t with one
of type eet (for example λm, f, k.m(λx . f xk)), will not extend to an account of the ambiguity of sentences
with quantifiers.
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XP(s)(x,X) :- X’(s)(x,X)
X’(s)(x,X) :- X(s)(x,X)
X(w)(w, ∅) :-

XP(s)(q(λy.x), X) :- XP(s)(x, {〈y, q〉} ∪ X) (retrieval)
XP(s)(y, X ∪ {〈y, x〉}) :- X’(s)(x,X) (storage)

IP(s�t)(fa i d, I ∪ D) :- DP(s)(d,D), I’(t)(i, I)
I’(s�t)(fa i v, I ∪ V ) :- I(s)(i, I), VP(t)(v, V )

V’(s�t)(fa v d, V ∪ D) :- V(s)(v, V ), DP(t)(d,D)
D’(s�t)(fa d n,D ∪ N) :- D(s)(d,D), NP(t)(n, N) fa f x = f x, pm f g = f ∧ g

NP(s�t)(pm n p, N ∪ P ) :- N’(s)(n, N), PP(t)(p, P )
P’(s�t)(fa p d, P ∪ D) :- P(s)(p, P ), DP(t)(d,D) N : et D : (et)(et)t P,V : eet I : (et)et

Fig. 2 Preserving syntactic structure via cooper storage

The linguist might first investigate solutions to this problem that preserve the syn-
tactic analysis. One diagnosis of the problem is that whereas the syntax was set up
to deal with DPs of type e, they are now of type (et)t . A solution is to allow them
to behave locally as though they were of type e by adding an operation (storage)
which allows an expression of type (et)t to be converted into one which behaves like
something of type e. This is shown in Fig. 2. This notion of ‘behaving like something’
of another type is central to this paper, and will be developed formally in Sect. 3. For
now, note that the linguist’s strategy was to globally enrich meanings to include a set
(a quantifier store) containing some number of variables paired with quantificational
expressions. An expression now denotes a pair of the form 〈x, X〉, where the first
component, x , is of the same type as the denotation of that same expression in the
grammar of Fig. 1. Inspecting the clauses in Fig. 2, one sees that all but the two labeled
storage or retrieval correspond to the clauses in the previous figure. Indeed,
restricting attention to just the first component of the meanings in these clauses, they
are identical to those in the previous figure. The second component of an expression’s
denotation is called a store, as it stores higher typed meanings until they can be appro-
priately integrated with a first component. An expression with meaning 〈x, X〉 can,
via the storage rule, become something with the meaning 〈y, {〈y, x〉} ∪ X〉; here
its original meaning, x : (et)t , has been replaced with a variable y : e, and has been
pushed into the second components of the expression’s meaning. The retrieval
rule allows for a pair 〈y, x〉 in the secondmeaning component to be taken out, resulting
in the generalized quantifier representation x to take as argument a function created by
abstracting over the variable y.4 Note that, while the syntactic structure is now differ-
ent, as there are multiple unary branches at the root (one for each quantifier retrieved

4 What exactly this means is discussed in Sect. 1.2.
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100 G. M. Kobele

from storage), this difference is not of the kind that syntactic argumentation is usually
sensitive to. Thus, this plausibly preserves the syntactic insights of our linguist.

This example will be revisited in Figs. 13 and 14.
It is worth noting some formal aspects of this grammar which are easily overlooked.

First, the syntactic grammar itself generates infinitely many structures (the rule involv-
ing retrieve is a context-free production of the form IP → IP). Most of these will
not have a semantic interpretation, as retrieve is partial: one cannot retrieve from an
empty store. Thus, in the general case, using cooper storage in this way to interpret
even a context free grammar will result in a properly non-regular set of parse trees
being semantically well-formed: if all retrieval steps are deferred to the end of the
derivation (as they are in this example), then the semantically interpretable parse trees
will be those which begin with a prefix of unary branches of length no more than
k, where k is the number of elements which have been stored in the tree. Second,
we are primarily interested in those expressions with empty stores. As expressions
of indefinitely many types may be used in a given grammar, this cannot be given a
finite state characterization. Finally, the retrieve operation as given is inherently non-
deterministic. This non-determinism could be pushed instead into the syntax, given a
more refined set of semantic operations, as will be done in the next example.

1.1.2 Movement via Cooper Storage

The previous section presented cooper storage in its traditional guise; quantificational
expressions can be interpreted higher, but not lower, than the position they are pro-
nounced in. More importantly, in the traditional presentation of cooper storage, the
quantifiers in the store are completely dissociated from the syntax. Much work in lin-
guistic semantics (particularly in the tradition of transformational generative grammar)
attempts to identify constraints on the scope-taking possibilities of quantificational
expressions in terms of their syntactic properties [see, e.g. Johnson (2000)]. In this
tradition, nominal phrases (among others) are typically syntactically dependent on
multiple positions (their deep, surface, and logical positions).

A linguist might, in order to have a simple syntactic characterization of selectional
restrictions across sentences like 3 and 4, analyze there as being a single structural
configuration in which the selectional restrictions between subject and verb obtain,
which is present in both sentences.

3. A dog must bark.
4. A dog must seem to bark.

Figure 3 again uses a Horn-clause like notation, and a production has the form
X (x) :- Y1(y1), . . . ,Yn(yn). The yi on the right hand side of such a rule are finite
sequences of pairwise distinct variables, and the x on the left is a finite sequence con-
sisting of exactly the variables used on the right. Instead of deriving a set of strings, a
non-terminal derives a set of finite sequences of strings. Categories will in this example
consist of either pairs or singletons of what are called in the transformational syntax
literature feature bundles, and heavy use of polymorphism will be made (the polymor-
phic category [ f α, β] is unifiable with any instantiated category of the form [ f g, h],
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The Cooper Storage Idiom 101

Fig. 3 A transformational
grammar and analysis of
sentences 3 and 4

[α;β] (x�y, z) :- [=x.α] (x), [x;β] (y, z).
[α;β] (x, y) :- [=x.α] (x), [x.β] (y).
[α] (y�x) :- [+x.α; -x] (x, y)

[=n.d.-k](a) :- . [=v.i](to) :- .
[n](dog) :- . [=v.+k.s](must) :- .

[=d.v](bark) :- . [=i.v](seem) :- .

[s] (a dog must bark)

[+k.s; -k] (must bark, a dog)

[=v.+k.s] (must) [v; -k] (bark, a dog)

[=d.v] (bark) [d.-k] (a dog)

[=n.d.-k] (a) [n] (dog)

Fig. 4 Interpreting deep
structures

[α;β] (x�y, z)(fa x′ y′) :- [=x.α] (x)(x′), [x;β] (y, z)(y′).
[α;β] (x, y)(fa y′ x′) :- [=x.α] (x)(x′), [x.β] (y)(y′).

[α] (y�x)(x′) :- [+x.α; -x] (x, y)(x′)

[=n.d.-k](a)(∃) :- . [=v.i](to)(id) :- .
[n](dog)(dog) :- . [=v.+k.s](must)(�) :- .

[=d.v](bark)(bark) :- . [=i.v](seem)(seem) :- .

for any g and h).5 The basic intuition behind the analysis in Fig. 3 is that a noun phrase
(a dog) is first combined syntactically with its predicate (bark), and is then put into
its pronounced position when this becomes available.

A straightforward semantic interpretation scheme simply maps the derivation tree
homomorphically to a meaning representation, with binary branching rules corre-
sponding to (either forward or backward) function application, and unary branching
rules to the identity function, as shown in Fig. 4. Here the literals are of the form
X (x)(x ′), where X and x are as before, and x ′ is a meaning representation (on the left
x ′ is a term, and on the right a variable). This allows the linguist to assign the meaning
in 5 to sentence 3.

5. It must be the case that a dog barks. �(∃(dog)(bark))

However, sentence 3 is ambiguous; another reading of this sentence is as in 6.

6. There is a dog which must bark. ∃(dog)(λx .�(bark(x)))

The linguist might be tantalized by the fact that the currently underivable reading 6
fits naturally with the surface word order, and indeed, in the derivation of sentence 3

5 The present syntax is a variant of the notation used in Stabler andKeenan (2003) forminimalist grammars.
Michaelis (2001) shows that this polymorphism is finitely boundable: there are a finite number of useful
feature bundles in any minimalist grammar.
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102 G. M. Kobele

[α;β] (x�y, z)(fa x′ y′, z′) :- [=x.α] (x)(x′), [x;β] (y, z)(y′, z′).
[α;β] (x, y)(fa x′ v, 〈v, y′〉) :- [=x.α] (x)(x′), [x.β] (y)(y′).

[α] (y�x)(y′(λv.x′)) :- [+x.α; -x] (x, y)(x′, 〈v, y′〉).

[α;β] (x�y, z)(fa x′ y′) :- [=x.α] (x)(x′), [x;β] (y, z)(y′).
[α;β] (x, y)(fa y′ x′) :- [=x.α] (x)(x′), [x.β] (y)(y′).

[α] (y�x)(x′) :- [+x.α; -x] (x, y)(x′).

[=n.d.-k](a)(∃) :- . [=v.i](to)(id) :- .
[n](dog)(dog) :- . [=v.+k.s](must)(�) :- .

[=d.v](bark)(bark) :- . [=i.v](seem)(seem) :- .

Fig. 5 Additional rules for surface scope interpretation

[s] (�(∃(dog)(bark)))

[+k.s; -k] (�(∃(dog)(bark)))

[=v.+k.s] (�) [v; -k] (∃(dog)(bark))

[=d.v] (bark) [d.-k] (∃(dog))

[=n.d.-k] (∃) [n] (dog)

[s] (∃(dog)(λx.�(bark(x))))

[+k.s; -k] (�(bark(x)), 〈x, ∃(dog)〉)

[=v.+k.s] (�) [v; -k] (bark(x), 〈x,∃(dog)〉)

[=d.v] (bark) [d.-k] (∃(dog))

[=n.d.-k] (∃) [n] (dog)

Fig. 6 Two readings of 3

in Fig. 3, the string a dog, although introduced before must, is prepended to it in the
last step. To allow the quantificational aspect of a dog to remain active as long as its
phonetic aspect is, the linguist extends meanings with a finite store, whose elements
are in correspondence with the derived string parts of the expression, as shown in
Fig. 5. Here the literals are of the form X (x)(x′), where the meaning component x′ is
a sequence of meaning representations. The two readings (5 and 6) of sentence 3 are
shown in Fig. 6. (Just the meaning components are shown, as the strings are identical.)

This example will be revisited in Figs. 15 and 16.
In contrast to the previous example, here the size of the cooper store is finitely

bounded (at 1). This means that the set of syntactically and semantically well-formed
derivations is regular; only finitely many semantic types are used in this grammar, and
these can be (and have been) encoded into the syntactic category information of the
grammar.

1.2 Making it Compositional

As presented above, the data structures involved in cooper storage are not semantic; the
objects of the theory are syntactic representations of semantic objects: free variables
(or indices of variables) are used to maintain a link between the objects in the store and
the semantic arguments they should bind in themain expression. It is of course possible
to ‘semanticize’ variables by reifying assignment functions [as is done explicitly in the
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The Cooper Storage Idiom 103

textbook of Kreisel and Krivine (1967)], and to reconceptualize variables as functions
from assignment functions to individuals. Indeed, both Cooper (1983) and (much
later) Kobele (2006) assign the same denotation to objects in the store. Letting g
be the type of assignment functions, the representation 〈xi , [[N P]]〉 is viewed as a
model-theoretic object of type (gt)gt mapping over sentence denotations dependent
on a variable assignments in the following way:6

〈xi , [[N P]]〉(φ)(h) := [[N P]] ({a : φ(h[i := a])})
The deeper problem is that there is nomechanism to ensure freshness of variables; each
time the storage rule is used a globally unique variable name should be produced.
Kobele (2006), exploiting the fact that variable names can be uniquely associated
with nodes in the derivation tree (the point at which the storage rule is used), uses
combinators to encode pairs of assignment functions as single assignment functions
in a way that allows stored elements to correctly identify the variable they should
‘bind’. This convoluted move requires variable binding operators to be simulated via
model theoretic objects (of type e.g. (gt)egt). When it seems one is reinventing well-
understood machinery, it is reasonable to try to recast the problem being addressed so
as to take advantage of what already exists.

The problem is that free variables are being used (either syntactically or semanti-
cally), and these necessitate a complicated sort of bookkeeping. In particular, 1. free
variables appear in the main expression, and 2. stored items are paired with free vari-
ables. Given the intended use of these free variables, which is that the variable paired
with a stored item be abstracted over in the main expression when this stored item is
retrieved, the resolution to both of these problems is simple and in retrospect obvious:
this lambda abstraction takes place immediately, and is not deferred to some later point
in time. Eliminating free variables then obviates the need for fresh variables. The basic
idea of this paper is:

An expression of the form M, {〈x1, N1〉, . . . , 〈xk, Nk〉} should instead be
replaced by one of the form 〈λx1, . . . , xk .M, N1, . . . , Nk〉.

Crucially, theM and Ni s in the first expression are syntactic objects (formulae in some
logical language), while in the second expression they are semantic objects (whatever
those may be). The intent of Cooper’s store is to have all and only those variables free
in M which are paired with some expression in the store; pairing a variable with an
expression in the store is simply a means to keep track of which argument position this
latter expression should be binding. Thus there is a systematic relation between the
type of the expressions in the original cooper store and the type of their reformulation
here; roughly, if M, 〈x1, N1〉, . . . , 〈xk, Nk〉 is such that M : α, and for all 1 ≤ i ≤ k
xi : βi and Ni : γi , thenλx1, . . . , xk .M has typeβ1 → · · · → βk → α, and the objects
N ′
i in the store have type γi . Generally, there will be some systematic relation between

βi and γi ; typically γi is the type of a function taking a continuation of something of
type βi ; γi = (βi → η) → η. I will call β the trace type of γ , and write tγ := β.
The intent behind the introduction of the terminology of trace types is to abstract away

6 The retrieval operation is redefined so: XP(fa q x, X) :- X′(x, {q} ∪ X).
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104 G. M. Kobele

from the precise relation between the type of a stored expression and the type of the
variable associated with it.

All relevant information about the type of an expression cum store is therefore given
by the list of types p := γ1, . . . , γk of expressions in the store, together with the result
type α of the main expression. The type ♦pα := tγ1 → · · · → tγn → α is the type
of the main expression, and �pα is the type associated with expressions cum stores
with list of stored expression types p and main expression type α (this will be revised
in a later section).7

©pα := �p(♦pα) = (tγ1 → · · · → tγk → α) × γ1 × · · · × γn

While I will show that the cooper store data structure can be encoded in the lambda
calculus in the above way, the crucial contribution of this paper is to observe that this
type theoretic encoding reveals a non-trivial structure, that of a graded applicative
functor. Thus all of the operations usually performed on cooper storage expressions
are also definable in the simply typed lambda calculus, and moreover the fact that
expressions with attached stores behave for most intents and purposes as though they
had the type α (as opposed to ©pα), is a consequence of this structure.

1.3 Related Work

De Groote (2001b) presents linguistic applications of the λμ-calculus of Parigot
(1992).8 In particular, the λμ-term λP.μα.every(P)(λx .αx), proposed as themean-
ing representation of the word every, has type (et)e. He notes that cooper storage can
be thought of in these terms; here storage is built in to lexical meaning representa-
tions using μ-abstraction, and the reductions for μ behave like retrieval. In order
to account for scope ambiguities, de Groote proposes to use a non-confluent reduction
strategy. Crucially, μ-reduction is completely divorced from syntactic structure [just
as is retrieval in Cooper (1983)]. This means that alternative versions of cooper storage
which enforce a tighter connection between syntactic operations and stored elements,
as Sect. 1.1.2, are not straightforwardly implementable using the λμ-calculus.

A recent type-logical presentation of cooper storage is given in Pollard (2011).
There a sequent is of the form Γ � M : α � Δ, where Γ is a variable context, Δ is a
set of pairs of the form 〈x, N 〉, where x is a variable, andM and N arewhat Pollard calls
rc-terms with free variables among those in Γ andΔ (rc-terms are not quite λ-terms,
but are straightforwardly interpretable as such). Here, Δ is simply a quantifier store,
exactly as in Cooper (1983); indeed Pollard (2011) is explicitly trying to give a direct
type-logical implementation of cooper storage. There are two substantive differences
between Pollard’s proposal and the one in this paper. First, in Pollard (2011), stored

7 These types can be viewed as right folds over the list p. In particular, ♦p = foldr (→ ◦t) p, and
�p ∼= foldr (⊗) p, where (→ ◦t) x y = tx → y.
8 De Groote (1994) presents a translation of the λμ-calculus into the λ-calculus, using a continuation
passing style transform. From this perspective, continuation-based proposals (developed extensively in
Barker and Shan (2014), although there the focus is on delimited continuations) can be viewed as related
to the λμ-calculus, and thus to cooper-storage.
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elements may contain free variables. From a more categorical perspective, an RC-
sequent of the form Γ � M : α � Δ can be thought of (being somewhat loose with
notation) as a term of type Γ → tΔ → (α × Δ), where tΔ are the types of the
free variables in M from Δ. Thus a rule of hypothetical reasoning would be invalid
(as variables in either of Γ or tΔ may occur in Δ). Indeed, no rule for implication
elimination from Γ is proposed in Pollard (2011), and the corresponding rule for Δ is
restricted so as to be applicable only in case the variable does not occur in any terms
in Δ. The lack of such a rule is noted in de Groote et al. (2011). The presentation
here simply rebrackets so as to obtain Γ → ((tΔ → α) × Δ). Second, Pollard
uses variables to coordinate the stored expressions with the positions they should
ultimately bind into. The proposal here takes advantage of the additional structure in
this problem made explicit in the above categorical presentation of types to eschew
variables. Namely, the expressions in the store are in a bijective correspondance with
the positions they are intended to bind into, which allows this coordination to be
achieved by introducing and enforcing an order invariant between the abstractions tΔ

and the store Δ.
These differences notwithstanding, the present paper (especially given the sequent

presentation of cooper storage in Sect. 4.3) can be thought of as a continuation of the
logical approach to cooper storage initiated in Pollard (2011), offering in particular
an embedding of the cooper-storage proof system into the linear lambda calculus, as
well as a formal specification of the underlying algebraic structures involved.

1.4 Structure of the Paper

The remainder of the paper is structured as follows. In the next section are formal
preliminaries. The following section introduces the relevant category theoretic notion
of applicative functors (but without category theory), defines their graded variants,
and proves that they enjoy familiar formal properties. Then it is shown that the data
structure underlying cooper storage is in fact a graded applicative functor, which sup-
ports the operations particular to the use of cooper storage in semantics (in particular,
retrieval and storage). Various instantiations of the general cooper-storage scheme are
presented, which allow for the recasting of the examples in Sects. 1.1.1 and 1.1.2 in
these terms.

2 Formal Preliminaries

2.1 Partial Functions and Algebras

Given a set A, let⊥ be a symbol not in A and define A⊥ = A∪{⊥}. A partial function
with domain A and codomain B is here identified with a total function f : A → B⊥
where f is said to be undefined on a ∈ A if f (a) = ⊥. I write def( f ) = f −1(B)

for the subset of elements in its domain on which f is defined, and [A ↪→ B] for the
set of all partial functions from A to B. Given A ⊆ B, a partial function f : A ↪→ C
can be coerced to one with domain B by setting f (b) = ⊥ for all b ∈ B − A.
Note that this preserves def( f ). The empty function is undefined on all objects in
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its domain. (Equivalently, it is (a coercion of) the unique map with domain ∅.) Two
partial functions f, g : A ↪→ B are compatible iff def( f ) ∩ def(g) = ∅. Given
compatible f and g, their superposition is defined to be f ⊕ g : A ↪→ B where
( f ⊕ g)(a) = if a ∈ def( f ) then f (a) else g(a). Note that f ⊕ g is just the set
theoretic union of f and g viewed as sets of pairs.

I assume familiarity with basic notions of algebra. A monoid M = 〈M,+,0〉
consists of a set M together with a designated element 0 and an associative operation
+ for which0 is an identity. Amonoid homomorphism betweenM andM ′ is a function
h : M → M ′ such that h(0) = 0′ and h(a + b) = h(a) +′ h(b). A partial monoid is a
monoid which contains an absorbing element⊥ such that a + ⊥ = ⊥ = ⊥ + a. Often
the absorbing element will be left implicit (i.e. the carrier set of the partial monoid
will be given as M instead of as M⊥). Homomorphisms between partial monoids are
required to in addition map absorbing elements to absorbing elements. A monoid is
abelian iff + is commutative.

Note that for any sets A, B, the set [A ↪→ B] togetherwith⊕ and the empty function
forms a partial abelian monoid.

2.2 λ-Calculus and Types

Here I briefly recall the simply typed λ-calculus (Barendregt et al. 2013). I will write
typed terms in the Curry style, but will, if convenient, indicate the type of a variable
in a binding construct with a superscript (e.g. λxα.M).

Given a finite set A of atomic types, the set TA of (simple) types over A is the
smallest superset of A such that α, β ∈ TA implies that (α → β) ∈ TA.

TA := A | TA → TA

As is common, parentheses are omitted whenever possible, writing α → β for (α →
β). Implication (i.e. the operator →) associates to the right; thus α → β → γ stands
for α → (β → γ ).

Given a countably infinite set X of variables, the set Λ of λ-terms is the smallest
set containing X which is closed under application and abstraction

Λ := X | (λX.Λ) | (ΛΛ)

Parentheses are omitted under the convention that application associates to the left,
i.e. MNO is ((MN )O), and multiple abstractions are written as one, i.e. λx, y.M
is λx .(λy.M). The simultaneous capture avoiding substitution of N1, . . . , Nk for
x1, . . . , xk in M is written M[x1 := N1, . . . , xk := Nk]. Terms are identified up
to renaming of bound variables. The standard notions of β reduction and η expan-
sion are as follows: (λx .M)N ⇒β M[x := N ] and, provided x is not free in M ,
M ⇒η λx .Mx . A term M is equivalent to N , written M ≡βη N just in case M and
N can be reduced to the same term O in some finite number of β or η steps. By the
Church–Rosser theorem, this notion of equivalence is in fact an equivalence relation
(Barendregt et al. 2013).
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Ax
x : α � x : α

Γ, x : α � M : β
→I

Γ � λx.M : α → β

Γ � M : α → β Δ � N : α
→E

Γ, Δ � (MN) : β

Fig. 7 Linear typing rules

A term is linear just in case every λ abstraction binds exactly one variable (i.e. in
every subterm of the form λx .M , x occurs free exactly once in M). An important
property of linear terms (up to equivalence) is that they are uniquely determined by
their principal (most general) type (Babaev and Soloviev 1982). A linear λ-term M
has a type α (when its free variables are assigned types as per a variable context Γ )
just in case the sequent Γ � M : α can be derived using the inference rules in Fig. 7
(in the → E rule it is assumed that the domains of Γ and Δ are disjoint, see the text
below for the definition of the comma notation). A (variable) context Γ : X ↪→ TA

is a partial function such that |def(Γ )| ∈ N; it is defined only on a finite subset of X .
A context Γ will be sometimes represented as a list x1 : α1, . . . , xn : αn , which is to
be understood as indicating that Γ is defined only on x1, . . . , xn and maps each xi to
αi . If contexts Γ and Δ are compatible, I write Γ,Δ instead of Γ ⊕ Δ.

3 (Graded) Applicative Functors

A fundamental intuition behind cooper storage is that themeaning of a parse tree node,
while complex (of high type), behaves as though it were far simpler (of lower type).
For example, whereas a predicate might intuitively denote a function of type e → t ,
this is only the denotation of the main expression, which comes together with a store.

Our setting can be recast in the following way. We see an object of some type
α (the main expression), which is somehow embedded in an object of some richer
type ©α, for some function © : TA → TA over types. Part of our intuitions about
this embedding come from the fact that (some of) our semantic operations are stated
over these simpler types, yet are given as input more complicated objects—we would
like our grammatical operations to be (by and large) insensitive to the contents of the
stores; they should be systematically derived from simpler operations acting on the
main expressions. The notion of an applicative functor will allow us to do exactly this.

© : TA → TA is an applicative functor (McBride and Paterson 2008) if there are

operations · � and · � such that · � turns objects of type α into ones of type ©α, for

every type α, and · � allows expressions of type ©(α → β) to be treated as functions
from ©α to ©β, for every pair of types α, β, subject to the conditions in Fig. 8.9

9 Notation has been changed fromMcBride and Paterson (2008). The operator (·) � (there called pure) lifts
a value into a functor type. This is reflected notationally by having the arrow point up. The operator (·) �

(there written as a binary infix operator <*> and known as apply) lowers its argument from a function-
container to a function over containers, and so the arrow points down. Viewing © as a necessity operator,

the type of (·) � is familiar as the K axiom, and viewing it as a possibility operator, the type of (·) � is the
axiom T. Lax logic (Fairtlough and Mendler 1997) is the (intuitionistic) modal logic which to the axioms
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Fig. 8 Applicative functors: operations (above) and laws (below)

Fig. 9 Applicative functors: abbreviated laws

While an applicative functor does not permit a function f : α → β to be applied
directly to an α-container a : ©α to yield a β-container b : ©β, it does allow f to

be turned into an (α → β)-container f � , which can be combined with a via (·) � :

f � � a : ©β

This basic structure, where a simple function is lifted into a container type, and then
combined with containers of its arguments one by one, is described by McBride and
Paterson (2008) as the ‘essence of applicative programming,’ and is abbreviated as

(| f a|). In general, (( f � � a1) � . . .) � an is abbreviated as (| f a1 . . . an|); as a special
case, (| f |) = f � . Making use of this abbreviation, the applicative functor laws from
Fig. 8 can be succinctly given as in Fig. 9.

An important property of applicative functors is that they are closed under compo-
sition.

Theorem 1 (McBride and Paterson 2008) If �,♦ : TA → TA are applicative func-
tors, then so too is � ◦ ♦.

Figure 10 provides a list of notation that shall be used in the remainder of this paper.

Footnote 9 continued
above adds © © α → ©α and corresponds via the Curry–Howard correspondance to monads (Moggi
1991; Benton et al. 1998), which are applicative functors enriched with an operation join : © © α → ©α

satisfying certain conditions.
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Fig. 10 Notation for applicative functors and associated operators.#will be used exclusively as ametavari-
able ranging over applicative functors

3.1 Parameters

Wewould like to view cooper storage in terms of applicative functors. To do this, there
should be a type mapping © : TA → TA such that ©α is a cooper store with main
expression of type α. However, the type of a cooper store must depend not only on the
type of the main expression, but also on the types of the stored expressions. Thus for
each possible store type p, we need a possibly different typemapping©p : TA → TA;
the type ©pα is the type of a cooper storage expression with main expression type
α and store type p. With this intended interpretation of the ©p, we see that none of
these are applicative functors on their own; in particular, the only reasonable way to
inject an expression of type α into the world of cooper storage is to associate it with

an empty store. Thus we would like the operation · � to map an expression of type α

to one of type ©0α. Similarly, if two expressions with their own stores are somehow
combined, the store of the resulting expression includes the stores of both. Thus the

desired operation · � must relate the family of type mappings ©p to one another in the
following way:

· � : ©p(α → β) → ©qα → ©p+qβ

The necessary generalization of applicative functors can be dubbed graded applicative
functors, after the gradedmonads ofMelliès (2017).10 Given amonoid (of parameters)
P := 〈P,0,+〉, a graded applicative functor is a function © : P → TA → TA

together with maps · � : α → ©0α and (·) �p,q : ©p(α → β) → ©qα → ©p+qβ

for every α, β ∈ TA and p, q ∈ P such that p + q is defined satisfying the equations
in Fig. 11.11 These equations are the same as those in Fig. 8, though their types are
different. These equations require that 0 is an identity for +, and that + is associative;
in other words, that P is in fact a monoid.12 In our present context, the elements of P
represent the possible types of stores, with 0 the type of the empty store, and + the
function describing the behaviour of the mode of store combination at the type level.

10 Melliès (2017) (circulated in 2012) introduces graded monads under the name parameterized monads.
The adjective graded has replaced parameterized in the relevant literature, which also serves to distinguish
graded monads from the parameterized monads of Atkey (2009).
11 The parameter arguments will sometimes be suppressed for readability; it is always possible to recon-
struct them from the context.
12 Rather, the equations require only that ©0+p = ©p = ©p+0 and that ©p+(q+r) = ©(p+q)+r . This is
automatic if P is in fact a monoid, but would also be satisfied if, for example, © were the constant function
from P into TA → TA .
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Fig. 11 Graded applicative functors: operations (above) and laws (below)

Note that it it not necessary that a graded applicative functor © : P → TA → TA

be such that, for some p ∈ P , ©p is an applicative functor in its own right (although
each ©p is a (graded) functor). Non-graded applicative functors are the special case
of graded applicative functors where the parameters are ignored (i.e. the applicative
functor is a constant mapping from P into TA → TA).

New graded applicative functors can be constructed out of old ones in various
regular ways. In particular, parameters may be pulled back along a homomorphism,
and functors may be composed.

Theorem 2 Let P,Q be monoids, and let h : Q → P be a monoid homomorphism.
Then for any graded applicative functor© : P → TA → TA,©◦h : Q → TA → TA

is a graded applicative functor.

Proof This follows from the fact that h is a monoid homomorphism by a simple
inspection of the parameters in the laws in Fig. 11. ��

Graded applicative functors are closed under composition.

Theorem 3 Let P be a monoid, and let �,♦ : P → TA → TA be graded applicative
functors. Then © is a graded applicative functor, where ©p = �p ◦ ♦p, with

u � = u � �

(u) �p,q = (((λx .(x) �p,q) �) �0,p u) �p,q

= λy.[|λx .x � u y|]
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The proof of Theorem 3 follows from tedious algebraic manipulation and has been
deferred to the appendix.

Note that the definitions of the applicative operations · � and · � given in Theorem 3
are just the graded versions of the ones given by McBride and Paterson (2008) in their
construction for the composition of two non-graded applicative functors.

3.2 Why Monoids?

It may seem strange that the parameters should be monoidal. This is made more
natural when we consider an alternative presentation of applicative functors in terms
of monoidal functors, presented in McBride and Paterson (2008), and explored in
greater detail in Paterson (2012). Thismakes specific reference to the fact that the space
of types and terms is itself monoidal with respect the standard cartesian operations
(product × and unit 1). In addition to a map © : (A → B) → ©A → ©B which is
part of every functor, a monoidal functor © also has the following operations.

– 0 : ©1
– + : ©A → ©B → ©(A × B)

The laws which 0 and + must satisfy require 1 to be a unit for ×. Paterson (2012)
shows the equivalence between the presentation given previously [based on McBride
and Paterson (2008)] and this one.13 Of course, the benefit of the applicative functor
presentation is that it requires only implication.

Graded applicative functors then give rise to the following operations.

– 0 : ©01
– + : ©p A → ©q B → ©p+q(A × B)

Here one sees immediately that the behaviour of the parameters exactly mirrors the
behaviour of the types—in 0, the parameter is the unit, as is the type, and in +
the parameters are multiplied together just as are the types. Indeed, the product of
two monoids is itself a monoid (with operations defined pointwise), and so a graded
monoidal functor can be viewed simply as a (non-graded) monoidal functor whose
domain is a product monoid.

4 Implementing Cooper Storage

Cooper storage is here reconceptualized in terms of graded applicative functors, with
parameters representing the types of the contents of the store. Section 4.1, begins with

13 The applicative functor operations are interdefinable with these, as follows (K = λx, y.x , (, ) =
λx, y.〈x, y〉, uncurry = λ f, x . f (π1x)(π2x), app = λx, y.xy, and 〈〉 is the empty tuple—the monoidal
unit for the product operation).

u � = ©(Ku) 0 0 = 〈〉 �

u � v = ©(app ◦ uncurry) (u + v) u + v = (|(, ) u v|)
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the case of unbounded cooper storage (where there is no a priori size limit on how
large a store can be), which is followed in Sect. 4.2 by nested cooper storage (Keller
1988), and in Sect. 4.6 by finite cooper storage. Section 4.3 presents a useful sequent
calculus notation for cooper storage.

4.1 Basic Cooper Storage

I define here twomaps♦,� : P → TA → TA, where P is the free monoid over types,
P = T ∗

A , together with the associated applicative functions. The map ♦w, for w ∈ P ,
is intended to represent the type of an expression of type α, which contains |w| free
variables of typesw1, . . . , w|w|, intended to be bound by elements in the cooper store.

Definition 1

♦εα = α

♦awα = a → ♦wα

It is convenient to represent terms of applicative functor type in a uniform way, one
which facilitates both the visualization of the relevant manipulations of these terms, as
well as comparison tomore traditional cooper-storage notation; this will be explored in
more depth in Sect. 4.3. I will write x1 : u1, . . . , xn : un �♦ M : α as a representation
of the term λx1, . . . , xn .M : ♦u1...unα.

Definition 2

M � = M

(M) �u,v N = λx1, . . . , x|u|, y1, . . . , y|v|.M x1 . . . x|u| (N y1 . . . y|v|)

Note that for M : α, M � = �♦ M : α, and that, leaving parameters implicit,

(Γ �♦ M : α → β) � (Δ �♦ N : α) = Γ,Δ �♦ (M N ) : β.

Theorem 4 ♦ is a graded applicative functor.

The map �w, for w ∈ P , is intended to represent the type of an expression which
is associated with a store containing |w| elements of types w1, . . . , w|w|. One way of
implementing this idea (suggested in the introduction) is to encode a store as an n-tuple
of expressions, 〈M1, . . . , Mn〉. Instead, I will encode products using implication in the
standard way, using continuations; a pair 〈M, N 〉 is encoded as the term λk.kMN .
When M : α and N : β, λk.kMN : (α → β → o) → o for some type o.

Definition 3

�wα := (♦wα o) → o
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Something of type �wα is a term of type (w1 → . . . → w|w| → α → o) → o.
Again, as a convenient notation, N1 : u1, . . . , Nn : un �� M : α represents the term
λk.kN1 . . . NnM : �u1...unα.

Definition 4

M � = λk.kM

(M) �u,v N = λk.M(λx1, . . . , x|u|,m.

N (λy1, . . . , y|v|, n.kx1 . . . x|u|y1 . . . y|v|(mn)))

Note that, once again, for M : α, M � = �� M : α, and that, leaving parameters

implicit, (Γ �� M : α → β) � (Δ �� N : α) = Γ,Δ �� (M N ) : β.

Theorem 5 � is a graded applicative functor.

Let t : TA → TA be arbitrary. The type tα , to be read as “the trace type of α”,
is intended to represent the type of a variable which is to be bound by an expression
in the store of type α. Let map extend functions over a set X homomorphically over
X∗. By Theorems 2 and 4, ♦ ◦ (map t) is a graded applicative functor. The desired
structure is the composition of � and ♦ ◦ (map t).

Definition 5

©w := �w ◦ ♦map t w

M � = M � � = λk.kM

(M) �u,v N = [|λx .(x) �u,v M N |]
≡ λk.M(λx1, . . . , x|u|,m.

N (λy1, . . . , y|v|, n.

kx1 . . . x|u|y1 . . . y|v|(λp1, . . . , p|u|, q1, . . . , q|v|.
mp1 . . . p|u|(nq1 . . . q|v|))))

An expression of type ©wα has type (w1 → . . . → w|w| → (tw1 → . . . →
tw|w| → α) → o) → o. While the sequent-like notation suggested previously would
yield N1 : u1, . . . , Nn : un �� (x1 : tu1 , . . . , xn : tun �♦ M : α) : ♦u1...unα, it is
more convenient to write instead the following, which takes advantage of the fact that
the parameters are shared across the two composands of ©w = �w ◦ ♦map t w:

[N1 : u1]x1, . . . , [Nn : un]xn �© M : α

Then for M : α, M � = �© M : α, and, still leaving parameters implicit,

(Γ �© M : α → β) � (Δ �© N : α) = Γ,Δ �© (M N ) : β.
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Corollary 1 © is a graded applicative functor.

Corollary 1 demonstrates that expressions of type ©wα can be manipulated as
though they were of type α. This is only half of the point of cooper storage. The other
half is that the store must be manipulable; expressions should be able to be put into
(storage) and taken out of (retrieval) the store.

Formulating these operations at first in terms of the sequent representation is more
congenial to intuition. First, with retrieval, given an expression Γ, [M : α]x ,Δ �©
N : β, the goal is to combine M with λx .N to obtain a sequent of the form Γ,Δ �©
f M(λx .N ) : γ , where f : α → (tα → β) → γ is some antecedently given way
of combining expressions M and λx .N . In the canonical case, α = (e → t) → t ,
tα = e, β = t , and f is function application.14

Definition 6

retrieve© u α v : (α → (tα → β) → γ ) → ©uαvβ → ©uvγ

retrieve© u α v f M

= λk.M(λx1, . . . , x|u|, n, y1, . . . , y|v|,m.

kx1 . . . x|u|y1 . . . y|v|(λp1, . . . , p|u|, q1, . . . , q|v|.
f n(λr.mp1 . . . p|u|rq1 . . . q|v|)))

An expression which cannot be interpreted in its surface position must be put into the
store, until such time as it can be retrieved. In the sequent-style notation, �© M : α

is mapped to [M : α]x �© x : tα; an expression of type ©0α can be turned into one
of type ©αtα simply by putting the expression itself into the store.

Definition 7

store© : ©0α → ©αtα

store© M = λk.kM(λx .x)

This is not faithful toCooper’s original proposal, as here only expressions associated
with empty stores are allowed to be stored. Cooper’s original proposal simply copies
themain expression of typeα directly over to the store. From the perspective advocated
for here, this cannot be done simply because there is no closed term of type α in
an expression of type ©wα;15 only closed terms of type ♦wα and of type wi , for
1 ≤ i ≤ |w|, are guaranteed to exist.16 This is taken up again in the next section.

14 While the operations and types involving cooper storage are linear, there is no such guarantee about the
objects being somanipulated. A natural way to think about this involves treating the types beingmanipulated
as abstract types [as in abstract categorial grammars de Groote (2001a)], the internal details of which are
irrelevant to the storage mechanisms.
15 Except in the uninteresting case where wi = α for some i .
16 A misguided attempt to generalize the current proposal to arbitrary stores is, when attempting to
store something of type ©uvα = �uv(♦uvα), to put the entire expression of type ♦uvα into the store
(Kobele 2006). This would yield an alternative storage operator store’© u v : ©uvα → ©u(♦uvα)vt♦uvα .
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4.2 Nested Stores

Cooper’s original proposal, in which syntactic objects with free variables were manip-
ulated, suffered from the predictable difficulty that occasionally variables remained
free even when the store was emptied. In addition to being artificial (interpreting terms
with free variables requires making semantically unnatural distinctions), this is prob-
lematic because the intent behind the particular use of free variables in cooper storage
is that they should ultimately be bound by the expression connected to them in the store.

Keller (1988) observed that Cooper’s two-step generate-and-test semantic construc-
tion process could be replaced by a direct one if the store data type was changed from
a list of expressions to a forest of expressions. An expression was stored by making
it the root of a tree whose daughters were the trees on its original store. Thus if an
expression in the store contained free variables, they were intended to be bound by
expressions it dominated. An expression could only be retrieved if it were at the root
of a tree. These restrictions together ensured that no expression with free variables
could be associated with an empty store.

From the present type-theoretic perspective, the structure of the store must be
encoded in terms of types. The monoid of parameters is still based on sequences
(with the empty sequence being the identity element of the monoid), except that now
the elements of these sequences are not types, but trees of types.17 The operation rt
maps a tree to (the label of) its root, and dtrs maps a tree to the sequence of its
daughters. Given a tree t = a(t1, . . . , tn), rt t = a, and dtrs t = t1, . . . , tn .

Note the following about nested stores. First, all and only the roots of the trees in
the store bind variables in the main expression. Second, for each tree in the store, the
expression at any node in that tree may bind a variable only in the expressions at nodes
dominating it. These observations motivate the following type definitions.

As the type of the main expression is determined by the types of the traces of the
roots of the trees in the sequence only, the type function � can be defined in terms of
♦ in the previous section, and is by Theorem 2 itself a graded applicative functor.

Definition 8

� = ♦ ◦ (map t) ◦ (map rt)

In contrast to the previous, non-nested setting, an expression in the store may very
well be an expression with an associated store (and so on). This is reflected in terms
of the set of parameters having a recursive structure. Accordingly, the type function
for stores (�) is defined in terms of the type function for (nested) cooper storage (�),
which is, just as before, the composition of � and �.

Footnote 16 continued
(The given store© would correspond to store’© e e.) While such a generalization is logically possible,
it is problematic in the sense that there is no obvious way for the other elements in the store to bind what
should intuitively be their arguments, which have been abstracted over in the newly stored expression.
17 More precisely, P = ε | TA(P), P is a forest of unranked trees. For a, b, c, d ∈ TA , ε, a(ε), and
a(b(ε), c(ε)), d(ε) are elements of P . The term a(ε) will be written as a, and so these elements of P will
be represented rather as ε, a, and a(b, c), d.
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Definition 9

�εα = α

�wα = �w(�wα)

� := � ◦ (map (λt.�dtrs trt t))

Given a parameter w = w1 · · ·wk , where wi = ai (t i1, . . . , t
i
ni ) for each 1 ≤ i ≤ k,

�wα = (�t11 ···t1n1a1 → · · · → �tk1 ···tknk
ak → ♦a1···akα → o) → o

As before, a sequent-style notation aids the understanding; observe that sequents for
nested stores have as antecedents sequents for nested stores! A sequent �� M : α

represents an expression �� M : α = λk.kM : �0α = (α → o) → o, and a
sequent [Γ1 �� M1 : a1]x1 , . . . , [Γn �� Mn : an]xn �� M : α represents an expression
λk.k(Γ1 �� M1 : a1) . . . (Γn �� Mn : an)(λx1, . . . , xn .M).

The type function � : P → TA → TA is a graded applicative functor; indeed,
modulo the types, its applicative functor operations are the same as those of ©.

In the nested context, storage is straightforward, and fully general; it should simply
map an expression Γ �� M : α to [Γ �� M : α]x �� x : tα . Indeed, this is just
store© at every parameter value:

Definition 10

store� w : �wα → �α(w)tα

store� w M := λk.kM(λx .x)

Retrieval should, given a mode of combination f : α → (tα → β) → γ , turn an
expression Γ, [Ξ �� M : α]x ,Δ �� N : β into Γ,Ξ,Δ �� f M(λx .N ) : γ .

Definition 11

retrieve� u α(w) v : (α → (tα → β) → γ ) → �uα(w)vβ → �uwvγ

retrieve� u α(w) v f M

= λk.M(λx1, . . . , x|u|, N , y1, . . . , y|v|,m.

N (λz1, . . . , z|w|, n.

kx1 . . . x|u|
z1 . . . z|w|
y1 . . . y|v|
(λp1, . . . , p|u|, q1, . . . , q|w|, r1, . . . , r|v|.

f (nq1 . . . q|w|)
(λx .mp1 . . . p|u|xr1 . . . r|v|))))
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Fig. 12 A sequent notation for cooper storage

4.3 Sequent Notation for Cooper Storage

The cooper storage idiom is succinctly manipulated using the sequent notation, as
presented in Fig. 12. It is easy to see that basic cooper storage (Sect. 4.1) is the special
case of nested cooper storage (Sect. 4.2) where the store rule requires that Γ be
empty. Somewhat perversely, the usual natural deduction proof system for minimal
(implicational) logic can be viewed as the special case of the system in figure 12, where
1. tα→α = α, 2. the axiom rule at a type α is simulated by first injecting the identity
function at type α using ⇒, and then using the store rule, and 3. implication introduction
is simulated by the rule of retrieval, constrained in such a manner as to always use the
Church encoding of zero as its first argument (i.e. M = λx, y.y). Alternatively, the
cooper storage system is just the usual natural deduction system where assumptions
are associated with closed terms, and upon discharge of an assumption its associated
term is applied to the resulting term.

Moving away from the implementation of these abstract operations in the previous
sections, observe that a sequent Γ �# M : α corresponds to an expression of a
particular type in the following way.

ty([Γ1 �# M1 : α1]x1, . . . , [Γn �# Mn : αn]xn �# M : α) =
#α1(ty(Γ1))+···+αn(ty(Γn))α

In other words, the monoid of parameters of the expression is determined by the types
of the elements in the antecedent, and the comma (,) connective in the antecedent
corresponds to the+ operation in themonoid of parameters, with the empty antecedent
corresponding to the monoidal 0.

The sequent representation facilitates proving a type function © to be a graded
applicative functor.

Definition 12 Given a monoid P , a sequent representation is determined by a set Φ

of possible antecedent formulae and a function ty : Φ → P . The extension of ty over
sequences of elements of Φ is also written ty.

As an example, the set Φ♦ of possible antecedent formulae for the function ♦ is
X × TA, and ty(〈x, α〉) = α. In the case of �, Φ� = {〈M, α〉 : � M : α}, and
ty(〈M, α〉) = α.
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Definition 13 Given a monoid P , an interpretation of a sequent representation deter-
mined by Φ is a map φ : Φ∗ × Λ → Λ.

In the case of ♦, φ♦(〈x1, α1〉, . . . , 〈xn, αn〉, M) = λx1, . . . , xn .M . For the case of �,
φ�(〈N1, α1〉, . . . , 〈Nn, αn〉, M) = λk.kN1 . . . NnM .

Definition 14 Given a map © : P → TA → TA and an associated sequent repre-
sentation, an interpretation φ respects © just in case for any sequent Γ � M : α,
φ(Γ, M) : ©ty(Γ )α. An interpretation φ is full for © just in case for all parameters
p and types α, for every M : ©pα, there is some sequent Γ � N : α such that
φ(Γ, N ) ≡βη M . An interpretation is complete for © just in case it respects © and
is full for ©.

It is straightforward to see that φ♦ and φ� are complete for ♦ and � respectively.
Respect is immediate. Fullness follows from the fact that the sequence representations
can be viewed (via φ♦ and φ�) as manipulating η-long forms: given a term of type
♦α1,...,αnα = α1 → · · · → αn → α, its η-long form has the shape λx1, . . . , xn .N ,
and similarly, for a term of type �α1,...,αnα = (α1 → · · · → αn → α → o) → o, its
η-long form has the shape λk.kN1 . . . NnN . (Recall that these are linear terms, whence
k does not occur free in any N1, . . . , Nn, N .) Both long forms are the images under
φ♦ (resp. φ�) of the sequent ψ1, . . . , ψn � N , where ψi is 〈xi , αi 〉 (resp. 〈Ni , αi 〉).

Given a sequent representation, operations ⇒ and ⇐ can be defined as per Fig. 12.
Provided the sequent representation is complete, these operations induce an applicative
functor.

Theorem 6 Given a complete sequent representation for ©, if φ(Γ �© M : α) ≡βη

φ(Γ �© N : α)whenever M ≡βη N, then© is an applicative functor with operations

· � and · � .
Proof As the sequent representation is complete for ©, expressions of type ©pα can
be converted back and forth to sequents of the form Γ � M : α, where ty(Γ ) = p.

Thus, by inspection of Fig. 12, and making implicit use of conversions between

expressions and sequents, observe that · � : α → ©0α, and that (·) �ty(Γ ),ty(Δ) :
©ty(Γ )(α → β) → ©ty(Δ)α → ©ty(Γ )+ty(Δ)β.

I now show that the four applicative functor equations are satisifed. I assume func-
tion extensionality (that f = g iff for all x , f x = gx), and convert implicitly between
terms and sequents. In particular, sequent derivation trees are to be understood as
standing for the sequent at their roots; an equality with a sequent derivation tree on
one or both sides is asserting that the term that the sequent at the root of the tree is
interpreted as is equal to some other term. The types of expressions in the sequent
representation is suppressed for concision.

identity: (id �) �0,p = id

id

��© id Γ �© M

�Γ �© id M ≡βη

Γ �© M

= id(Γ �© M) = Γ �© M
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composition: (((◦ �) �0,p u) �p,q v) �p+q,r = (u) �p,q+r ◦ (v) �q,r

◦
��© ◦ Γ �© M

�Γ �© ◦ M Δ �© N

�Γ, Δ �© M ◦ N Ξ �© O

�Γ, Δ, Ξ �© (M ◦ N )O ≡βη

Γ, Δ, Ξ �© M(NO)

=

Γ �© M
Δ �© N Ξ �© O

�Δ, Ξ �© NO

�Γ, Δ, Ξ �© M(NO)

homomorphism: ( f �) �0,0 x � = ( f x) �

f

��© f
x

��© x

��© f x
= f x

��© f x

interchange: (u) �p,0 x � = ((λ f. f x) �) �0,p u

Γ �© M
x

��© x

�Γ �© Mx
=

λ f. f x

��© λ f. f x Γ �© M
�Γ �© (λ f. f x)M ≡βη

Γ �© Mx

��

4.4 An Example with Nesting

The motivating example in Sect. 1.1.1 can be recast using the type theoretical machin-
ery of this section as in Fig. 13.18 The parse tree in the figure represents the derivation
in which storage takes place at each DP. The interesting aspect of the derivation of
this sentence lies in the application of the storage rule to the object DP a judge from
every city. The types of expressions in the sequent notation is suppressed for legibility.
The denotation of the D’ is

[ �� every city
]
z �� a(judge ∧ from z)

After applying store�, the denotation of the DP is

[[ �� every city
]
z �� a(judge ∧ from z)

]

x
�� x

18 The rules in the figure are only annotated with a semantic component, the pronounced components
remain the same as in Fig. 1.
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Fig. 13 Revisiting the grammar of Fig 2 with nested cooper storage

The denotation of the lowest IP is given below.

[[ �� every city
]
z �� a(judge ∧ from z)

]

x
,
[ �� no reporter

]
y �� will(praise x) y

There are exactly two possibilities for retrieval:19 1. the subject, or 2. the object.
Crucially, the embedded prepositional argument (every city) to the object is not able
to be retrieved at this step. Retrieving the object first, the denotation of the next IP
node is the below.

[ �� every city
]
z,

[ �� no reporter
]
y �� a(judge ∧ from z)(λx .will(praise x) y)

There are again two possibilities for retrieval. Retrieving the subject first, the denota-
tion of the penultimate IP node is as follows.

[ �� every city
]
z �� no reporter(λy.a(judge ∧ from z)(λx .will(praise x) y))

Finally, the denotation of the entire parse tree is below.

�� every city(λz.no reporter(λy.a(judge ∧ from z)(λx .will(praise x) y)))

This is claimed in the linguistic literature not to be a possible reading of this sen-
tence, as quantificational elements from the same nested sequent (cities and judges) are
separated by an intervening quantificational element from a different nested sequent
(reporter). Section 4.5 takes this up again.

19 As in example 2, the rule for retrieve is non-deterministic.
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4.5 Avoiding Nesting via Composition

Keller (1988) proposes the use of nested stores in particular in the context of noun
phrases embedded within noun phrases, as in the example sentences below.

7. An agent of every company arrived.
8. They disqualified a player belonging to every team.
9. Every attempt to find a unicorn has failed miserably.

This sort of configuration is widely acknowledged in the linguistic literature as
a scope island; the scope of a quantified NP external to another cannot intervene
between the scope of this other quantified NP and the scope of a quantified con-
tained within it (May and Bale 2005). In unpublished work, Larson (1985) proposes
a version of nested stores which enforces this restriction; upon retrieval of some-
thing containing a nested store, all of its sub-stores are recursively also immediately
retrieved.

These ideas can be implemented without using nested stores at all, if certain restric-
tions on types are imposed. First note that the canonical type of expression on stores
is (α → t) → t , for some type α, and designated type t , and that the canonical value
of t(α→t)→t is α. Assume for the remainder of this section that all elements in stores
have a type of this form, and that t is as just described. For convenience, I will write
c a for (a → t) → t .

Now consider an expression of type ©u c a with a simple (i.e. non-nested) store;
assume as well ui = c ai for each 1 ≤ i ≤ |u| = n. This will be represented
as a sequent [ �© N1 : u1]x1, . . . , [ �© Nn : un]xn �© N : c a. In order to put the
main expression into storage using store© , the current store must first be emptied
out (store© requires that Γ = ∅). In order to use retrieve© , some operation M :
ui → (tui → c a) → α must be supplied which allows the retrieved element to
be combined with the main expression. As the resulting type should be something
which can be stored, α = c b for some b; as the type of an expression in the context
of cooper storage should be the same regardless of what it may have in the store,
b = a. Given the present assumptions about ui and t, the desired operation has
type c ai → (ai → c a) → c a. Unpacking abbreviations, expressions of type
(ai → t) → t and ai → (a → t) → t should be combined in such a manner as to
obtain an expression of type (a → t) → t . The obviousmode of combination involves
composing the first expression with the second with its arguments exchanged (and so
of type (a → t) → ai → t); using combinators Bxyz := x(yz) and Cxyz := xzy,
the desired term is λx, y.Bx(Cy). This is familiar in the programming language theory
literature as the bind operation of the continuation monad (Moggi 1991), and in the
linguistic literature as argument saturation (Büring 2004). I will write it here as the
infix operator >>=.

This procedure can be iterated until the store is empty, and an expression of type
©0((a → t) → t) remains. The store© operation can then be applied to this expres-
sion. Clearly, the order in which the elements of the store are retrieved is irrelevant to
this procedure, although it will of course give rise to different functions (corresponding
to different scope-taking behaviours of the stored QNPs).
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Fig. 14 Eliminating the need for nested cooper storage

This is illustrated in Fig. 14. The grammar of the figure differs from that of Fig. 13
by the addition of the rule allowing D’ to be immediately derived from a D’, which in
turn allows for the recursive retrieval of any elements in storage before an expression
can be stored. Recall that m >>= f = λk.m(λx . f xk). The interesting aspect of this
derivation centers around the matrix object a judge from every city. The meaning of
the lower of the two successive nodes labeled D’, of type ©(et)t (et)t , is given below.

[�© every city
]
z �© a(judge ∧ from z)

Then retrieval applies, giving rise to the following meaning of the higher D’ node,
which is of type ©0(et)t .

�© every city >>= λz.a(judge ∧ from z)

The denotation of the object DP involves simply putting the above meaning into
storage.

[�© every city >>= λz.a(judge ∧ from z)
]
x �© x

4.6 Finite Stores

Many restrictive grammar formalisms can be viewed as manipulating not strings but
rather finite sequences of strings (Vijay-Shanker et al. 1987). In these cases, there is an
a priori upper bound on the maximal number of components of the tuples. It is natural
to attempt to connect the tuples of strings manipulated by the grammar to tuples of
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semantic values,20 which then allows the interpretation of the elements on the store to
be shifted from one where they are simply being held until they should be interpreted,
to one where they are the meanings of particular strings in the string tuple. Now the
position of an element in the store becomes relevant; it is the formal link between
semantics and syntax. Accordingly, this information should be encoded in the monoid
of store types. What is relevant in a store is twofold: 1. what positions are available,
and 2. what is in each position.

The positions available are indexed by a set I of names. The type of a store is given
by specifying the type of element at each store position (or that there is no element
at a particular position). This is modeled as a partial function f : I ↪→ TA, where
f (i) = α iff there is an expression at position i of typeα. Such a function f is occupied
at i if i ∈ def( f ), and thus two compatible functions are never occupied at the same
positions.

Intuitively, stores can be combined only if their elements are in complementary
positions. In this case, combination is via superposition. The empty store has nothing at
any position; its behaviour is given by the everywhere undefined function ε : I ↪→ TA.

In order to represent finite cooper storage using λ-terms, a linear order must be
imposed on the index set I . For convenience, I will be identified with an initial subset
of the positive integers with the usual ordering; [n] = {1, . . . , n}. Then f : [n] ↪→ TA

is identified with the sequence 〈 f (1), . . . , f (n)〉 ∈ (TA ∪ {⊥})n (where if f (i) is
undefined, then⊥ is in the i th position in the sequence). In this notation, two functions
f, g : [n] ↪→ TA are compatible just in case for every position i at least one of f and
g has ⊥ at that position.

Fix I = [n]. For any S ⊆ I , and g : S ↪→ TA, let g : I ↪→ TA such that
def(g) = def(g) and for all i ∈ S, g(i) = g(i). For any sets X,Y and any x ∈ X ,
y ∈ Y , define [x �→ y] : {x} → Y to be the function that maps x to y. Given
f : I ↪→ TA, clearly f = [1 �→ f (1)] + . . . + [n �→ f (n)] (note that for some i ∈ I ,
f (i) might be ⊥).
The following type functions are not based on a freemonoid of parameters, and thus

the easy correlation between left hand sides of sequents and parameters breaks down
in this setting. The obvious way to associate a sequent with left hand side ψ1, . . . , ψn

with a parameter is to treat each ψi as representing the function [i �→ ty(ψi )]; in
other words, the linear order of the left hand side elements indicates the index they
are associated with. To represent the function where some index i ≤ n is undefined,
the set Φ of possible antecedent formulae must include an element ⊥ representing
undefinedness, with ty(⊥) = ⊥. There will be then many ways to represent the
everywhere undefined function as a sequence of antecedent formulae; to show fullness
of the sequent interpretation, the canonical sequent will not have ⊥ as its right most
antecedent formula (and so the everywhere undefined function will have as canonical
sequent the one with an empty left hand side).

The definitions of the graded applicative functors and associated operations are
changed slightly to reflect the different partial monoid of parameters. The symbols ♦

20 In the case of minimalist grammars (Stabler 1997) this has been made explicit in Kobele (2006, 2012).
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and � are reused (with a different meaning!) in this new setting. For any applicative

functor #, (·) ⇐

u,v is only defined when u + v is.

Definition 15

♦εα = α

♦⊥wα = ♦wα

♦awα = a → ♦wα

The set of antecedent formulae are Φ♦ = (X × TA)⊥, with ty(〈x, α〉) = α

and ty(⊥) = ⊥. The sequent ψ1, . . . , ψn �♦ M : α represents the term
φ♦(ψ1, . . . , ψn, M) of type ♦f α, where f = ⊕n

i=1 [i �→ ty(ψi )]. Here, as before,
φ♦(M) = M and φ♦(〈x, α〉, ψ1, . . . , ψn, M) = λx .φ♦(ψ1, . . . , ψn, M), while
φ♦(⊥, ψ1, . . . , ψn, M) = φ♦(ψ1, . . . , ψn, M). It is straightforward to see that φ♦
respects ♦. Fullness again depends on long forms.

Corollary 2 ♦ is a graded applicative functor.

Proof By Theorem 6. ��
Definition 16

�wα = (♦wα o) → o

The set of antecedent formulae are Φ� = {〈M, α〉 : � M : α}⊥, with
ty(〈M, α〉) = α and ty(⊥) = ⊥. The sequent ψ1, . . . , ψn �� M : α repre-
sents the term φ�(ψ1, . . . , ψn, M) = λk.φ′(ψ1, . . . , ψn, M, k) of type � f α, where
f = ⊕n

i=1 [i �→ ty(ψi )]. Here the last argument of φ′ plays the role of an accumu-
lator, and so φ′(M, N ) = NM , φ′(⊥, ψ1, . . . , ψn, M, N ) = φ′(ψ1, . . . , ψn, M, N ),
and φ′(〈O, α〉, ψ1, . . . , ψn, M, N ) = φ′(ψ1, . . . , ψn, M, NO). It is again straight-
forward to see that φ� respects �. Fullness depends again on long forms.

Corollary 3 � is a graded applicative functor.

Proof By Theorem 6. ��
Definition 17 ©w := �w ◦ ♦tw

Corollary 4 © is a graded applicative functor.

The grammar of Fig. 5 can be expressed more naturally in terms of finite storage, as
illustrated in Fig. 15. There is still a deal of unnecessary clutter in this figure, which can
be rectified, however, once the strings manipulated by the grammar are recast in type
theoretic terms [following de Groote (2001a) and others]. A string

/
abc

/
is viewed

as a λ-term of type str := s → s: λxs .a(b(c s)). The empty string /ε/ := λxs .x ,
and concatenation is function composition:

/
abc

/� /
de

/ := /
abc

/ ◦ /
de

/ =
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Fig. 15 Recasting the grammar of Fig. 5 in terms of finite storage

Fig. 16 Cooper storage on strings and meanings

λxs .a(b(c(d(e s)))). Define tstr := str, and define up : str → (str → str) → str
such that upw f := w�( f /ε/). Then cooper storage can be used on strings (based on
©). In particular, store©(λkstr→o.k /w/) = λk.k /w/ (λxstr.x). Using cooper storage
on the string side as well in Fig. 15 allows for a simpler presentation of the grammar,
and is shown in Fig. 16. In the figure, it can be seen that there is a deep symmetry
between the operations on the strings and those on the meanings, which is broken in
two instances. The reason for the broken symmetry stems from the fact that meanings,
in this grammar, are designed to have a wider distribution than strings; a quantifier
can be interpreted either in its surface position (corresponding to its position in the
string), or in its deep position (corresponding to its position in the derivation tree).
Strings, of course, are only pronounced in their surface positions; this is implemented
by the operation up w f , which uniformly puts the string w in its upper, ‘surface’,
position, and the empty string /ε/ in the lower, ‘deep’, position.

The two readings (5 and 6) of sentence 3 are shown in at the top of Fig. 17. Both
derivations give rise to the same pronunciation, the incremental construction of which
is shown at the bottom of the figure.

5 Conclusion

I have shown that cooper storage, in many variations, can be given a simple treatment
in the linear λ-calculus. Working within the simply typed λ-calculus has forced us to
confront and address problems plaguing more traditional presentations involving free
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Fig. 17 Two readings of 3 (top) and their common pronunciation (bot.)

variables, which allow for the (undesired) generation of ill-formed meaning represen-
tations. One of the interests of linearity lies in the fact that linear λ-homomorphisms
(acting on trees) are particularly well-behaved for the purposes of parsing and gener-
ation (Kanazawa 2007).

This work allows a straightforward and directly compositional semantics for frame-
works utilizing finite cooper storage, such as the minimalist grammar semantics of
Kobele (2012). While finite cooper storage may seem somewhat arbitrary, it is here
that the type theoretic approach really pays off. By limiting in advance the size of
the store,21 the parameter information can be encoded in the syntactic category. This
allows for a truly homomorphic interpretation scheme for tree-like syntactic struc-
tures. In contrast, full cooper storage requires a richer, polymorphic, type theory in
order to have a finitely presented homomorphic interpretation scheme.

Acknowledgements My thanks toChrisBarker,DylanBumford, SimonCharlow, Itamar Francez, Philippe
de Groote, and Carl Pollard for their feedback.

A Proofs

The purpose of this section is to provide a proof of Theorem 3, that graded applicative
functors are closed under composition.22 It is helpful to first prove a lemma that, for

any applicative functor �, (·) � � distributes over composition.

21 Where size is measured in terms of the sum of the sizes of the types is the store; this bounds as well the
maximal size of stored types.
22 A short Coq development of this proof is available at https://github.com/gkobele/cooper-storage.
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Lemma 1 If� : P → TA → TA is a graded applicative functor, then for any p ∈ P,

g : β → γ and f : α → β, ((g ◦ f ) �) �0,p = (g �) �0,p ◦ ( f �) �0,p
Proof

(g �) �0,p ◦ ( f �) �0,p = (((◦ �) �0,0 g �) �0,0 f �) �0,p (composition)

= (((◦ g) �) �0,0 f �) �0,p (homomorphism)

= ((g ◦ f ) �) �0,p (homomorphism)

��
Theorem 3 is repeated below.

Theorem 7 Let P be a monoid, and let �,♦ : P → TA → TA be graded applicative
functors. Then © is a graded applicative functor, where ©p = �p ◦ ♦p, with

u � = u � �

(u) �p,q = (((λx .(x) �p,q) �) �0,p u) �p,q

The following lemma identifies a useful equality.

Lemma 2 (u �) �0,p = ((u � ) �0,p

�) �0,p

Proof

(u �) �0,p = (((λx .(x) �0,p) �)

�

0,0 (u � �)) �0,p (def)

= (((λx .(x) �0,p) u � ) �)

�

0,p (homomorphism�)

= ((u � ) �0,p

�) �0,p (≡β )

��
Proof (Proof of Theorem 3) Note first that (·) � : α → (�0 ◦ ♦0)α, and that (·) � :
(�p ◦ ♦p)(α → β) → (�q ◦ ♦q)α → (�p+q ◦ ♦p+q)β, as can be seen by inspection
of the definitions.

identity

(id �) �0,p = ((id � ) �0,p

�) �0,p (Lemma 2)

= (id �) �0,p (identity♦)

= id (identity�)
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composition

((( ◦ �) �0,p u) �p,q v) �p+q,r = (( ((◦ � ) �0,p

�) �0,p u ) �p,q v) �p+q,r (Lemma 2)

= (((( λx .(x) �p,q ) �) �0,p (( (◦ � ) �0,p

�) �0,p u)) �p,q v) �p+q,r (def (·) �p,q )

= ( ((((λx .(x) �p,q) ◦ (◦ � ) �0,p) �)

�

0,p u) �p,q v ) �p+q,r (Lemma 1)

= (( (λx .(x) �p+q,r ) � )

�

0,p+q (( (((λx .(x) �p,q) ◦ (◦ � ) �0,p) �)

�

0,p u ) �p,q v)) �p+q,r

(def (·) �p+q,r )

= ((((( ◦ �) �0,0 ( λx .(x) �p+q,r ) �) �0,p ((((λx .(x) �p,q) ◦ (◦ � ) �0,p) �)

�

0,p u)) �p,q) v) �p+q,r

(composition�)

= ((((( (◦) (λx .(x) �p+q,r ) ) �) �0,p ((( (λx .(x) �p,q) ◦ (◦ � ) �0,p ) �) �0,p u)) �p,q) v) �p+q,r

(homomorphism�)

= (((( ((◦) (λx .(x) �p+q,r )) ◦ (λx .(x) �p,q) ◦ (◦ � ) �0,p ) �) �0,p u) �p,q v) �p+q,r (Lemma 1)

= ((((λg, h.(((◦ � ) �0,p g ) �p,q h ) �p+q,r ) �)

�

0,p u) �p,q v) �p+q,r (≡β,η)

= (((( λg, h.(g) �p,q+r ◦ (h) �q,r ) �) �0,p u) �p,q v) �p+q,r (composition♦)

= (((( (λP.P(λx .(x) �q,r )) ◦ (◦) ◦ (◦) ◦ (λx .(x) �p,q+r ) ) �) �0,p u) �p,q v) �p+q,r (≡β,η)

= ((((λP.P( λx .(x) �q,r )) �) �0,p ((((◦) ◦ (◦) ◦ (λx .(x) �p,q+r )) �)

�

0,p u) ) �p,q v) �p+q,r

(Lemma 1)

= ((((( (◦) ◦ (◦) ◦ (λx .(x) �p,q+r ) ) �) �0,p u) �p,0 (λx .(x) �q,r ) �)

�

p,q v) �p+q,r

(interchange�)

= (((((◦) �) �0,p ((((◦) ◦ (λx .(x) �p,q+r )) �)

�

0,p u) ) �p,0 (λx .(x) �q,r ) � )

�

p,q v) �p+q,r

(Lemma 1)

= (((( (◦) ◦ (λx .(x) �p,q+r ) ) �) �0,p u) �p,q (((λx .(x) �q,r ) �)

�

0,q v)) �p+q,r

(composition�)

= (((◦ �) �0,p (((λx .(x) �p,q+r ) �)

�

0,p u) ) �p,q (((λx .(x) �q,r ) �)

�

0,q v) ) �p+q,r (Lemma 1)
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= (((λx .(x) �p,q+r ) �)

�

0,p u ) �p,q+r ◦ (((λx .(x) �q,r ) �)

�

0,q v ) �q,r (composition�)

= (u) �p,q+r ◦ (v) �q,r (def)

homomorphism

( f �) �0,0 x � = (( f � ) �0,0

�) �0,0 x � (Lemma 2)

= (( f � ) �0,0

�) �0,0 x � � (def)

= (( f � ) �0,0 x � ) � (homomorphism�)

= ( f x) � � (homomorphism♦)

= ( f x) � (def)

interchange

(u) �p,0 x � = (((λz.(z) �p,0) �) �0,p u) �p,0 x � � (def)

= ((λ f. f (x � )) �) �0,p (((λz.(z) �p,0) �) �0,p u) (interchange�)

= (((λ f. f (x � )) �) �0,p ◦ ((λz.(z) �p,0) �) �0,p) u (def ◦)
= (((λ f. f (x � )) ◦ (λz.(z) �p,0)) �) �0,p u (Lemma 1)

= ((λv.(v) �p,0 x � ) �) �0,p u (≡β,η)

= ((λv.((λ f. f x) � ) �0,p v) �) �0,p u (interchange♦)

= ((((λ f. f x) � ) �0,p) �)

�

0,p u (≡η)

= ((λ f. f x) �) �0,p u (Lemma 2)

��
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