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Abstract The aimof this paper is to provide a contribution to the natural logic program
which explores logics in natural language. The paper offers two logics calledR(∀, ∃)

andG(∀, ∃) for dealing with inference involving simple sentences with transitive verbs
and ditransitive verbs and quantified noun phrases in subject and object position.
With this purpose, the relational logics (without Boolean connectives) are introduced
and a model-theoretic proof of decidability for they are presented. In the present
paper we develop algebraic semantics (bounded meet semi-lattice) of the logics using
congruence theory.

Keywords Logic of natural languages · Relational syllogistics · Binary syllogistics ·
Ternary syllogistics · Conguerences · Lattices

1 Introduction

Syllogistic theories have been found wide roles in different areas such as in for-
mal logic (Corcoran 1972; Moss 2008, 2010, 2011; Pratt-Hartmann and Moss 2009;
Łukasiewicz 1957), in natural language theory and generalized quantifiers (Benthem
1984; Van Eijck 1985, 2005a, b; Westerståhl 2005; D’Alfonso 2012; Van Benthem
1985), in information and lattice theory (Schroeder 2012; Schumann 2006), in alge-
braic structures (Sotirov 1999; Bocharov 1986; Peirce 1880; Black 1945). However,
the Aristotelian syllogistic did not account for the validity of neither sentences con-
taining transitive or ditransitive verbs. De Morgan (1847) offered some extensions
of traditional syllogism with relational facts. The presentations of De Morgan did not
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include syllogisms with binary and ternary relations. Pratt-Hartmann andMoss (2009)
extended syllogismwith binary relations. Pratt-Hartmann and Third (2006) gave some
complexity classes of deciding whether any given set of sentences including ditransi-
tive verbs. Ivanov and Vakarelov (2012) presented a system of relational syllogistic,
based on classical propositional logic. The relational variableswere interpreted as tran-
sitive verbs, and the set variables-as count-nouns in Ivanov and Vakarelov (2012) and
Pratt-Hartmann and Moss (2009) with linguistic perspective. The canonical model
construction of Ivanov and Vakarelov (2012) is based on the Stone representation
theorem for Boolean algebra.

There are two logics called binary syllogisticR(∀, ∃) and ternary syllogisticG(∀, ∃)

in this paper. Sentences of the language ofR(∀, ∃) consist of two quantifiers “for all”
(∀) and “exists” (∃), and plural nous and also transitive verbs. Sentences of the language
in natural English are such as “all students see some teachers”, “some television
channels show all realities”. On the other hand, sentences of the language of G(∀, ∃)

consist of two quantifiers “for all” (∀) and “exists” (∃), and plural nous and also
ditransitive verbs. Sentences of the language in natural English are such as “all students
give all pencils to all teachers”, “some logicians bring all books to all libraries”.
Sentences like “all students see some teachers” and “all logicians bring some books to
all libraries” in English are ambiguous.We use them inmeaning of “there is at least one
teacherwho is seen by all students” and “all of logicians bring at least one book to every
library”. Our usage of the sentences reflects binary and ternary relational perspective
directly. Formal languages of the logics are not closed in Boolean operations and does
not have recursion and all models of the logics are finite.

1.1 A Linguistic Point that Affects the Semantics

This paper considers just the so-called informative verbs. In its atomic propositions
“QS + verb + QP” and “QS + verb + QP1+ to +QP2” where Q ∈ {some, all}.
These verbs designate actions which can be observed and are not depended on their
utterances (‘to run’, ‘to take’, etc.). However, there are also the so-called performative
verbs. They are carried out only by means of uttering them aloud (‘to love’, ‘to hate’,
etc.). The syllogistic for performative propositions is first introduced in Schumann
(2013). In this system there are examined concepts which have no denotations at all
like ‘love’, ‘hate’, etc. For these concepts, therefore, we can not define an including
relation and we need a novel formal system. Some applications of that new syllogistic
are proposed in Schumann and Akimova (2015).

1.2 Explanations on Algebraic Semantics

Algebraicmethods for logics based upon correspondence between theorems on logical
systems were fertilized by J. Lukasiewicz and A. Tarski, and were irrigated by G.
Boole. In order to define an algebra for logics in the traditional sense is followed such
a way: two formulas ϕ and ψ are equivalent if and only if ϕ � ψ and ψ � ϕ are
provable in such deductive system, and the deductive equivalence relation, usually
denoted by ϕ ≡ ψ , is clearly an equivalence relation, and the set of equivalence
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Equivalential Structures for Binary and Ternary Syllogistics 81

classes modulo ≡ can be formed naturally. Then one builds the quotient algebra up,
based on the equivalent relation that is also a congruence, where the operations of
this algebra are induced by the connectives of the logic. On the one hand, one of the
names that has spent a considerable amount of time working on algebraic semantics
(lattice-based) of logics and presented valuable works is Vakarelov with co-authors.
His traces can be found at many points of this article, especially are left by his papers
(Orłowska and VaKarelov 2005; Vakarelov 1977; MacCaull and Vakarelov 2005;
Font and Verdu 1991) which contains boolean based sentences. Our intention differs
by the methods above because our logics does not contains the connectives. As we
will explain below, the congruential approach in this paper works on model-theoretic
models rather than proof-theoretic semantics. The languages of our logics are not
closed under and in Boolean connectives and we would like to provide a new model
construction technique for the logics with a new semantic perspective. Our languages
do not include the traditional Aristotelian sentences. If we considered Aristotle’s with
binary and ternary syllogistics together, we could make inferences as follows:

All x see all y All a are y

All x see all a
(i)

All x see all y All a are x

All a see all y
(i i)

All x give all y to z All a are x

All a give all y to z
(i i i)

All x give all y to z All a are y

All x give all a to z
(iv)

All x give all y to z All a are z

All x give all y to a
(v)

Those kinds of inferences allow sentences in binary and ternary syllogistics to obtain
nouns in their conclusions from different ones in their premises. Turning to binary and
ternary syllogistics without Aristotle’s sentences, the conclusions must have the same
nous (in the same orders) and relations in a valid inferences. For example, although the
sentenceswith binary relations in (i) and (ii) includes the nouns x and y, the sentences in
the conclusions have the nouns x and a allowing Aristotle’s sentences in the premisses
[it works for ternary syllogistics as well, see (iii), (iv), (v)]. As Corcoran’s syllogistic
system (Corcoran 1972), the interpretation of nous does not allow to be empty set
in this paper. Naturally, this situation leads up universal sentences and quantifiers
entails existential sentences and quantifiers. Under the circumstances, the changes
must take place on quantifiers in derivations of the syllogistics but no changes for
nouns and relations. The changes for quantifiers ∀ and ∃ in the syllogistics will be
represented by elements 1 and 0. Of course, we could use the quantifiers themselves
instead of 1 and 0 such a way for the new representation. We did not prefer to do
that way not to lead to confusion. For this purpose, we will define a translation called
FR from {∀, ∃} to L∧. L∧ will be a bounded meet semi-lattice so that it reflects
that the existential variables follows the universal variables. On the other hand, as
we will see in Sect. 2, an inference (or derivations �) from a sentence to another
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Table 1 Syntax and their
natural readings

Syntax Reading of syntax

∀(x, r(∀, y)) All x r all y

∀(x, r(∃, y)) All x r some y

∃(x, r(∀, y)) Some x r all y

∃(x, r(∃, y)) Some x r some y

sentence (the same sentence case is obvious) in logical sense shall be correspond
to a kind of comparison of the representations of the two sentences under a binary
relation-like≤. The unchangeability of nouns and relations will force the structures to
have equivalence classes. For that reason, it will be necessary to obtain restricted sets
(BRes

α ) from general sets (BRes) to use ≤ in valid inferences while doing translations
and obtaining sets.

2 Binary Syllogistic R(∀, ∃)
In this section, we will construct the new proposed semantics with helpful definitions
and translations after we present the logicR(∀, ∃) and review the syntax and semantics
given by Pratt-Hartmann and Moss (2009) and Ivanov and Vakarelov (2012).

Syntax The language of R(∀, ∃) consists of one collection PR of unary atoms (for
nouns) and another collection, RR of binary atoms (for transitive verbs) (Table 1).

Semantics A model MR is a set MR , together with interpretation functions

[[ ]] : PR −→ PR(MR)

[[ ]] : RR −→ P(MR × MR)

This means that for each unary atom p ∈ PR , [[p]] ⊆ MR , and for each binary
atom r , [[r ]] ⊆ MR × MR . We interpret set terms by subsets of MR in the following
way:

[[∀(r, y)]] = { x ∈ MR : for all v ∈ [[y]], (x, v) ∈ [[r ]] }
[[∃(r, y)]] = { x ∈ MR : some v ∈ [[y]], (x, v) ∈ [[r ]] }

Here is how set terms are read:

∀(r, y) those who r all y
∃(r, y) those who r some y

Finally, we have the definition of truth in a model (Fig. 1):

MR |� ∀(p, r(∀, y)) iff [[p]] ⊆ [[r(∀, y)]]
MR |� ∀(p, r(∃, y)) iff [[p]] ⊆ [[r(∃, y)]]
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Fig. 1 Rules for binary syllogistic

MR |� ∃(p, r(∃, y) iff [[p]] ∩ [[r(∃, y)]] 
= ∅
MR |� ∃(p, r(∀, y)) iff [[p]] ∩ [[r(∀, y)]] 
= ∅

Remark 2.1 The following rule is not sound:

∀(x, ∃(r, y)) ∀(x,∀(r, y))

∃(x,∀(r, y))

To see the unsoundness, we construct a counter-model. Suppose that [[r ]] =
{(x1, y1), (x1, y2), (x1, y3), (x2, y1), (x2, y2)} and [[y]] = {y1, y2, y3} and
also [[x]] = {x1, x2}. Whereas the premises are true in the model, the conclusion
∀(x,∀(r, y)) is false.

Observation 2.2 If the rule in Remark 2.1 was sound, a sentence with full univer-
sal quantifiers such as ∀(x,∀(r, y)) would might be followed by ∃(x,∀(r, y)) and
∀(x, ∃(r, y). If this case hold and the logic had boolean incorporating, we would have
to add an additive operation to apply this derivation to the model construction we will
make and also would prefer to use L∨ rather than L∧.

Lemma 2.3 Let � be a set of sentences. The followings are true for the logic.

(1) � � ∀(x,∀(r, y)) iff ∀(x,∀(r, y)) ∈ �.
(2) If � � ∀(x,∀(r, y)) and � � ∃(x,∀(r, y)), then ∃(x,∀(r, y)) ∈ �.
(3) If � � ∀(x,∀(r, y)) and � � ∀(x, ∃(r, y)), then ∀(x, ∃(r, y)) ∈ �.
(4) If � � ∀(x,∀(r, y)) and � � ∀(x, ∃(r, y)) and � � ∃(x,∀(r, y)) and � �

∃(x, ∃(r, y)), then ∃(x, ∃(r, y)) ∈ �.

2.1 Definitions and Translations

In this subsection, we get ready to construct semantics for the logic. For this purpose,
we will give some definitions and translations step by step.

Definition 2.4 L∧ = ({0, 1}, ∧) such that L∧ is a bounded meet-semi-lattice where
1 ∧ 0 = 0, 0 ∧ 0 = 0, 1 ∧ 1 = 0, 0 ∧ 1 = 0 and x ∧ y = x ⇔ x ≤ y for an order
theoretic binary relation ≤ on {0, 1}. We will use L∧ in many places such Definitions
2.5, Translation 1, Translation 2, the next section and so on in order to reflect the fact
that “existential clauses and sentences are derived from the universal ones”.

Definition 2.5 A five tuple BRes is a subset of L∧ × L∧ × V × V × R where V =
{p0, p1, p2, . . .}, L∧ = ({0, 1},∧), R = {r0, r1, r2, . . .}.
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Fig. 2 A derivation diagram for
rules (1), (2), (3) and (4)

Definition 2.6 A quotient set [(x, y, r)]R is {(a, b, x, y, r) : (a, b, x, y, r) ∈ BRes}.
A quotient space BRes

α is obtained by sets of [(x, y, r)]R such {u ∈ BRes : u ∈ α}
where α = [(x, y, r)]R . It is easy to see that BRes

α ⊆ BRes for all [α]R . Hence, two
elements of BRes are in an equivalence class if and only if their third, fourth and fifth
elements are the same.

Remark 2.7 The intuition underlying the definition of BRes
α , valid derivations in the

logic requires sentences in premises and conclusions having the same nouns and
relations (verbs). In other words, there is no such valid derivation which premises and
their conclusion have different nouns and relations.

Example 2.8 We illustrate Definitions 2.5 and 2.6.
For a give BRes = {(1, 0, x, y, r0), (1, 1, x, y, r0), (1, 0, k,m, r1), (0, 1,m, n, r2),

(1, 1,m, l, r2)},
Quotient sets: [(x, y, r0)]R = {(1, 0, x, y, r0), (1, 1, x, y, r0)}, [(k,m, r1)]R =

{(1, 0, k,m, r1)},
[(m, n, r2)]R = {(0, 1,m, n, r2)}, [(m, l, r2)]R = {(1, 1,m, l, r2)}.
Some quotient spaces: BRes

[(x,y,r0)] = {(1, 0, x, y, r0), (1, 1, x, y, r0),
(0, 0, x, y, r0), (0, 1, x, y, r0)}

BRes
[(k,m,r1)] = {(1, 0, k,m, r1), (1, 1, k,m, r1), (0, 0, k,m, r1), (0, 1, k,m, r1)}.

Definition 2.9 We define a binary relation≤r
res on BRes

α such that x = (a, b, x, y, r1)
≤r
res y = (c, d, x, y, r1) if and only if a ≤ c and b ≤ d. Note that two elements of

BRes are comparable by the relation if and only if they belong to the same quotient
set.

Observation 2.10 (T Res
α ,≤r

res) is a bounded meet semi-lattice.

After this point, we will make restrictions and translations to show the above
bounded meet semi-lattice definition and semantics of the logic we will give are
appropriate. The arrows in Fig. 2 indicates “if � � ϕ, then � � ψ” and the arrows do
not guarantee the reverse direction.

Translation 1 Let � be a set of sentences of binary syllogistic, PR be a set of nouns
of sentences in � and RR is set of binary relations in �. We define a translation from
quantifiers ∀ and ∃ in the language of binary syllogistic to L∧.

123



Equivalential Structures for Binary and Ternary Syllogistics 85

FR : {∀, ∃} −→ L∧

∀ −→ 1

∃ −→ 0

Please note that the translation is an one to one correspondence.

Translation 2 A BRes(�) is a restriction of BRes with � where BRes(�) ⊆ {1, 0} ×
{1, 0} × PR

� × PR
� × R� . We define a mapping [ ]R from � to BRes(�):

[ ]R : � −→ BRes(�)

β −→ [β]R
γ (x, α(r, y)) −→ (FR(γ ), FR(α), x, y, r)

Example 2.11 BRes(�) = {(0, 1, x, y, r), (1, 0, u, w, h)} for a given � =
{∃(x,∀(r, y)),∀(u, ∃(h, w))}.
Definition 2.12 [(x, y, r)]� = {(a, b, x, y, r) : (a, b, x, y, r) ∈ BRes(�) such that
(x, y, r) ∈ PR

� × PR
� × R�}.

Definition 2.13 BRes
[(x,y,r)]� (�) is a restriction of BRes(�) by [(x, y, r)]� . We will

abbreviate BRes
[(x,y,r)]� (�) by BRes

α (�) where [(x, y, r)]� is to be α.

Remark 2.14 We defined BRes
α (�) in the previous definition because the binary rela-

tion ≤R that will define in the right next definition is definable on only one restriction.
For example, suppose we have BRes

α (�) and BRes
β (�) be two restrictions on for a given

BRes(�) where α 
= β. Then ≤R can not compare i and j such that i ∈ BRes
α (�)

and j ∈ BRes
β (�). On the other hand, this definition will help us to make frequent

explanations for comparable elements.

Definition 2.15 We define a binary relation ≤R on BRes
α (�) such that (a, b, x, y, g)

≤R (k, l, x, y, g) if and only if a ≤ k and b ≤ l.

Example 2.16 (0, 1, x, y, r) ≤R (1, 1, x, y, g), (0, 0, x, y, r) ≤R (0, 1, x, y, r),
(0, 0, x, y, r) ≤R (1, 0, x, y, r). Note that two elements of BRes(�) are not in same
equivalence class iff the elements can not be comparable each other.

Figure 3 is a summarial illustrative demonstration of the definitions given so far.
Down arrows at the top of the figure indicate that the existential nouns or fragments
of sentences in the language follow the universal quantified ones. Inferences and the
semantical comparisons and the mapping between them are at the bottom of the figure.

Observation 2.17 Every (BRes
α (�),≤R) is a bounded meet semi-lattice.

Definition 2.18 A down-set of an element (a, b, x, y, r) of BRes(�) is a set
DR

Res[(a, b, x, y, r)] = {(k, l, x, y, r) : (k, l, x, y, r) ≤R (a, b, x, y, r)}.
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Fig. 3 Translations FR and [ ]R

Example 2.19 DR
Res[(0, 1, x, y, r)] = {(0, 0, x, y, r), (0, 1, x, y, r)}, DR

Res[(0, 0, x,
y, r)] = {(0, 0, x, y, r)}.
Definition 2.20 DR

Res[BRes(�)] = {DR
Res[i] : i ∈ BRes(�)}

Lemma 2.21 For a given BRes(�), the followings hold:

(1) If (0, 0, x, y, r) /∈ DR
Res[BRes(�)], then neither of (1, 1, x, y, r), (0, 1, x, y, r),

(1, 0, x, y, r) in BRes(�).
(2) If (0, 1, x, y, r) /∈ DR

Res[BRes(�)], then (1, 1, x, y, r) /∈ BRes(�).
(3) If (1, 0, x, y, r) /∈ DR

Res[BRes(�)], then (1, 1, x, y, r) /∈ BRes(�).

Observation 2.22 Lemma 2.21 provides important information about decisions on
derivations and will be used in the next lemma.

Lemma 2.23 For a given BRes(�), the followings hold:

(1) (1, 1, x, y, r) ∈ DR
Res[BRes(�)] iff (1, 1, x, y, r) ∈ BRes(�).

(2) If (1, 0, x, y, r) ∈ DR
Res[BRes(�)] and (1, 1, x, y, r) /∈ DR

Res[BRes(�)], then
(1, 0, x, y, r) ∈ BRes(�).

(3) If (0, 1, x, y, r) ∈ DR
Res[BRes(�)] and (1, 1, x, y, r) /∈ DR

Res[BRes(�)], then
(0, 1, x, y, r) ∈ BRes(�).

(4) If (0, 0, x, y, r) ∈ DR
Res[BRes(�)] and (1, 1, x, y, r) /∈ DR

Res[BRes(�)] and
(0, 1, x, y, r) /∈ DR

Res[BRes(�)] and (1, 0, x, y, r) /∈ DR
Res[BRes(�)] then

(0, 0, x, y, r) ∈ BRes(�).

Theorem 2.24 � � α(x, θ(r, y)) iff (FR(α), FR(θ), x, y, r) ∈ DR
Res[BRes(�)], in

other words,MR = (MR, [[ ]]) : ⇔ Mres
R = (DR

Res[BRes(�)], ∈).

Proof 2.24. If α(x, θ(r, y)) ∈ �, then (FR(α), FR(θ), x, y, r) ∈ BRes(�) and fur-
thermore (FR(α), FR(θ), x, y, r) ∈ DR

Res[BRes(�)] by the construction. We will
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Table 2 Syntax and their
natural readings

Syntax Reading of syntax

∀(x, g(∀, y; ∀, z)) All x g all y to all z

∀(x, g(∀, y; ∃, z)) All x g all y to some z

∀(x, g(∃, y; ∀, z)) All x g some y to all z

∀(x, g(∃, y; ∃, z)) All x g some y to some z

∃(x, g(∀, y; ∀, z)) Some x g all y to all z

∃(x, g(∃, y; ∀, z)) Some x g some y to all z

∃(x, g(∀, y; ∃, z)) Some x g all y to some z

∃(x, g(∃, y; ∃, z)) Some x g some y to some z

prove the theorem by considering α(x, θ(r, y)) /∈ � for all cases (except Case 1 due
to Lemma 2.3.)

(⇒) :
Case 1: If � � ∀(x,∀(r, y)), then the proof is trivial by Lemma 2.3 (1).
Case 2: If � � ∃(x,∀(r, y)) and � � ∀(x,∀(r, y)), then ∃(x,∀(r, y)) ∈ � by Lemma

2.3. Then (0, 1, x, y, r) ∈ BRes(�). Hence, ∃(x,∀(r, y)) ∈ DR
Res[BRes(�)]

directly.
Case 3: If � � ∀(x, ∃(r, y)) and � � ∀(x,∀(r, y)), then ∀(x, ∃(r, y)) ∈ � by

Lemma 2.3. So, (1, 0, x, y, r) ∈ BRes(�). Therefore, (1, 0, x, y, r) ∈
DR

Res[BRes(�)].
Case 4: If � � ∃(x, ∃(r, y)) and � � ∀(x,∀(r, y)) and � � ∃(x,∀(r, y)) and

� � ∀(x, ∃(r, y)), then ∃(x, ∃(r, y)) ∈ � by Lemma 2.3. We conclude
∃(x, ∃(r, y)) ∈ DR

Res[BRes(�)] directly.
(⇐) :

Case i: (1, 1, x, y, r) ∈ DR
Res[BRes(�)] iff ∀(x,∀(r, y)) ∈ � by Lemma 2.23.

Case ii: Assume that (1, 0, x, y, r) ∈ DR
Res[BRes(�)] but (1, 1, x, y, r) /∈ DR

Res[BRes

(�)]. Then (1, 0, x, y, r) ∈ BRes(�) by Lemma 2.23 (1). Finally, ∀(x, ∃
(r, y)) ∈ �.

Case iii: Assume that (0, 1, x, y, r)∈DR
Res [BRes(�)] but (1, 1, x, y, r) /∈ DR

Res[BRes

(�)]. Then (0, 1, x, y, r) ∈ BRes(�) by Lemma 2.23 (2). Finally, ∃(x,∀
(r, y)) ∈ �.

Case iv: Assume that (0, 0, x, y, r)∈DR
Res[BRes(�)] but (1, 0, x, y, r) /∈ DR

Res[BRes

(�)] and (0, 1, x, y, r) /∈ DR
Res[BRes(�)] and (1, 1, x, y, r) /∈ DR

Res
[BRes(�)]. Then (0, 1, x, y, r) ∈ BRes(�) by Lemma 2.23 (3). Finally,
∃(x, ∃(r, y)) ∈ �.

3 Ternary Syllogistic: G(∀, ∃)
Syntax Language of G(∀, ∃) starts with one collection PG of unary atoms (for nouns)
and another collection, GG of ternary atoms (for ditransitive verbs) (Table 2).

Semantics A model MG is a set MG , together with interpretation functions
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[[ ]] : PG −→ P(MG)

[[ ]] : GG −→ P(MG × MG × MG)

This means that for each unary atom p ∈ PG , [[p]] ⊆ MG , and for each ternary
atom g, [[g]] ⊆ MG × MG × MG . We then interpret set terms by subsets of MG in
the following way:

[[g(∃, y; ∀, z)]] = { x ∈ MG : for all v ∈ [[Y ]], for all w ∈ [[z]], (x, v, w) ∈ [[g]] }
[[g(∃, y; ∀, z)]] = { x ∈ MG : for some v ∈ [[y]], for all w ∈ [[z]], (x, v, w) ∈ [[g]] }
[[g(∀, y; ∃, z)]] = { x ∈ MG : for all v ∈ [[y]], for some w ∈ [[z]], (x, v, w) ∈ [[g]] }
[[g(∃, y; ∃, z)]] = { x ∈ MG : for some v ∈ [[y]], for some w ∈ [[z]], (x, v, w) ∈ [[g]] }

Here is how set terms are read:
g(∀, y; ∀, z) those who g all y to all z
g(∀, y; ∃, z) those who g all y to some z
g(∃, y; ∀, z) those who g some y to all z
g(∃, y; ∃, z) those who g some y to some z

Finally, we have the definition of truth in a model:

MG |� ∀(p, g(∀, y; ∀, z)) iff [[p]] ⊆ [[g(∀, y; ∀, z)]]
MG |� ∀(p, g(∀, y; ∃, z)) iff [[p]] ⊆ [[g(∀, y; ∃, z)]]
MG |� ∀(p, g(∃, y; ∀, z)) iff [[p]] ⊆ [[g(∃, y; ∀, z)]]
MG |� ∀(p, g(∃, y; ∃, z)) iff [[p]] ⊆ [[g(∃, y; ∃, z)]]
MG |� ∃(p, g(∀, y; ∀, z)) iff [[p]] ∩ [[g(∀, y; ∀, z)]] 
= ∅
MG |� ∃(p, g(∀, y; ∃, z)) iff [[p]] ∩ [[g(∀, y; ∃, z)]] 
= ∅
MG |� ∃(p, g(∃, y; ∀, z)) iff [[p]] ∩ [[g(∃, y; ∀, z)]] 
= ∅
MG |� ∃(p, g(∃, y; ∃, z)) iff [[p]] ∩ [[g(∃, y; ∃, z)]] 
= ∅

4 Proof System

It’s worth reminding again, the arrows in Fig. 4 indicates “if � � ϕ, then � � ψ” and
the arrows do not guarantee the reverse direction (Table 3).

Lemma 4.1 Let � be a set of sentences. The followings are true for the logic.

(1) � � ∀(x, g(∀, y; ∀, z)) iff ∀(x, g(∀, y; ∀, z)) ∈ �.
(2) If � � ∀(x, g(∀, y; ∀, z)) and � � ∃(x, g(∀, y; ∀, z)), then ∃(x, g(∀, y; ∀, z)) ∈

�.
(3) If� � ∀(x, g(∀, y; ∀, z)) and� � ∃(x, g(∀, y; ∀, z)) and� � ∃(x, g(∃, y; ∀, z)),

then ∃(x, g(∃, y; ∀, z)) ∈ �.
(4) If� � ∀(x, g(∀, y; ∀, z)) and� � ∃(x, g(∀, y; ∀, z)) and� � ∃(x, g(∀, y; ∃, z)),

then ∃(x, g(∀, y; ∃, z)) ∈ �.
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Table 3 Rules for ternary syllogistic

∀(x,g(∀,y;∀,z))
∃(x,g(∀,y;∀,z)) (1)

∀(x,g(∀,y;∀,z))
∀(x,g(∃,y;∀,z)) (2)

∀(x,g(∀,y;∀,z))
∀(x,g(∀,y;∃,z)) (3)

∃(x,g(∀,y;∀,z))
∃(x,g(∃,y;∀,z)) (4)

∃(x,g(∀,y;∀,z))
∃(x,g(∀,y;∃,z)) (5)

∀(x,g(∃,y;∀,z))
∃(x,g(∃,y;∀,z)) (6)

∀(x,g(∃,y;∀,z))
∀(x,g(∃,y;∃,z)) (7)

∀(x,g(∀,y;∃,z))
∃(x,g(∀,y;∃,z)) (8)

∀(x,g(∀,y;∃,z))
∀(x,g(∃,y;∃,z)) (9)

∀(x,g(∃,y;∃,z))
∃(x,g(∃,y;∃,z)) (10)

∃(x,g(∀,y;∃,z))
∃(x,g(∃,y;∃,z)) (11)

∃(x,g(∃,y;∀,z))
∃(x,g(∃,y;∃,z)) (12)

Fig. 4 A derivation diagram for rules from (1) to (12)

(5) If � � ∀(x, g(∀, y; ∀, z)) and � � ∀(x, g(∃, y; ∀, z)), then ∀(x, g(∃, y; ∀, z)) ∈
�.

(6) If� � ∀(x, g(∀, y; ∀, z)) and� � ∀(x, g(∃, y; ∀, z)) and� � ∀(x, g(∃, y; ∃, z)),
then ∀(x, g(∃, y; ∃, z)) ∈ �.

(7) If� � ∀(x, g(∀, y; ∀, z)) and� � ∀(x, g(∃, y; ∀, z)) and� � ∃(x, g(∃, y; ∀, z)),
then ∃(x, g(∃, y; ∀, z)) ∈ �.

(8) If � � ∀(x, g(∀, y; ∀, z)) and � � ∃(x, g(∀, y; ∀, z)) and � � ∀(x, g(∃, y; ∀, z))
and � � ∀(x, g(∃, y; ∃, z)) and � � ∃(x, g(∀, y; ∃, z)) and � � ∃(x, g(∃, y;
∀, z)) and � � ∃(x, g(∃, y; ∃, z)) then ∃(x, g(∃, y; ∃, z)) ∈ �.
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4.1 Definitions and Translations

Definition 4.2 Aseven tuple T Res is a subset of {0, 1}×{0, 1}×{0, 1}×V×V×V×G
where V = {p0, p1, p2, . . .}, L∧ = ({0, 1},∧), G = {g0, g1, g2, . . .}.
Definition 4.3 If two elements of T Res are in the same equivalence class, then their
fourth, fifth, sixth, seventh elements are the same. [(x, y, z, g)]G = {(a, b, c, x, y,
z, g) : (a, b, c, x, y, z, g) ∈ T Res and (x, y, z, g) ∈ V ×V ×V ×G}. Other definition
is quotient sets T Res

β = {x ∈ T Res : x ∈ [β]G}. Note that T Res
β ⊆ T Res for each

[β]G . Moreover, T Res = �T Res
β for all [β]G .

Example 4.4 For a given T Res = {(1, 0, 0, x, y, z, g0), (1, 1, 0, x, y, z, g0), (1, 0, 1,
k,m, l, g1), (0, 1, 0,m, n, z, g2), (1, 1, 1,m, l, x, g2)}, quotient sets of elements are
[(x, y, z, g0)]G = {(1, 0, 0, x, y, z, g0), (1, 1, 0, x, y, z, g0)}, [(k,m, l, g1)]G =
{(1, 0, 1, k,m, l, g1)}, [(m, n, z, g2)]G = {(0, 1, 0,m, n, z, g2)}, [(m, l, x, g2)]G =
{(1, 1, 1,m, l, x, g2)}.
Definition 4.5 ≤g

res is a binary relation on T Res
β such that x = (a, b, c, x, y, z, g1)

≤g
res y = (d, e, f, x, y, z, g1) if and only if a ≤ d and b ≤ e and c ≤ f . Note that

two elements of T Res are comparable if the elements belong to the same quotient set.
The comparison issue forced us to make the definition T Res

β .

Translation 1 We define a mapping from quantifiers of the language of ternary syllo-
gistic to L∧ as the following.

FG : {∀, ∃} −→ L∧

∀ −→ 1

∃ −→ 0

Translation 2 A seven tuple T Res(�) is a set which is T Res restricted to �. T Res(�)

is a subset of {1, 0} × {1, 0} × {1, 0} × PG
� × PG

� × PG
� × G� . We define a bijective

mapping [ ]G from � to T Res(�):

[ ]G : � −→ T Res(�)

γ (x, g(α, y;β, z)) −→ (FG(γ ), FG(α), FG(β), x, y, z, g)

Example 4.6 T Res(�) = {(0, 1, 1, x, y, z, g), (0, 0, 1, u, v, w, h)} for given � =
{∃(x, g(∀, y; ∀, z)), ∃(u, h(∃, v; ∀, w))}.
Definition 4.7 We define a binary relation ≤G

Res on T
Res(�)β such that (a, b, c, x, y,

z, g) ≤G
Res (k, l,m, x, y, z, g) if a ≤ k and b ≤ l and c ≤ m. In other words, two

elements of T Res(�) are comparable iff they are belong to the same equivalence class.

Definition 4.8 A down-set is DG
Res[(a, b, c, x, y, z, g)] = {(k, l,m, x, y, z, g) :

(k, l,m, x, y, z, g) ≤G
Res (a, b, c, x, y, z, g)}.
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Example 4.9

DG
Res[(0, 1, 0, x, y, z, g)] = {(0, 1, 0, x, y, z, g), (0, 0, 0, x, y, z, g)}

DG
Res[(0, 0, 0, x, y, z, g)] = {(0, 0, 0, x, y, z, g)}

Definition 4.10

DG
Res[T G

Res(�)] = {DG
Res[i] : i ∈ T G

Res(�)}

Lemma 4.11 For a given DR
Res[T Res(�)], the followings hold:

(1) If (0, 0, 0, x, y, z, g) /∈ DR
Res[T Res(�)], then neither of (1, 1, 1, x, y, z, g),

(0, 1, 1, x, y, z, g), (1, 0, 1, x, y, z, g), (1, 1, 0, x, y, z, g), (1, 0, 0, x, y, z, g),
(0, 0, 1, x, y, z, g), (0, 1, 0, x, y, z, g) in T Res(�).

(2) If (0, 0, 1, x, y, z, g) /∈ DR
Res[T Res(�)], then neither of (1, 1, 1, x, y, z, g),

(0, 1, 1, x, y, z, g), (1, 0, 1, x, y, z, g) in T Res(�).
(3) If (0, 1, 0, x, y, z, g) /∈ DR

Res[T Res(�)], then neither of (1, 1, 1, x, y, z, g),
(0, 1, 1, x, y, z, g), (1, 1, 0, x, y, z, g) in T Res(�).

(4) If (0, 0, 1, x, y, z, g) /∈ DR
Res[T Res(�)], then neither of (1, 1, 1, x, y, z, g),

(0, 1, 1, x, y, z, g), (1, 0, 1, x, y, z, g) in T Res(�).
(5) If (0, 1, 1, x, y, z, g) /∈ DR

Res[T Res(�)], then (1, 1, 1, x, y, z, g) /∈ T Res(�).
(6) If (1, 1, 0, x, y, z, g) /∈ DR

Res[T Res(�)], then (1, 1, 1, x, y, z, g) /∈ T Res(�).
(7) If (1, 0, 1, x, y, z, g) /∈ DR

Res[T Res(�)], then (1, 1, 1, x, y, z, g) /∈ T Res(�).

Lemma 4.12 For a given DR
Res[T Res(�)], the followings hold:

(1) (1, 1, 1, x, y, z, g) ∈ DR
Res[T Res(�)] iff (1, 1, 1, x, y, z, g) ∈ T Res(�).

(2) If (1, 1, 0, x, y, z, g)∈DR
Res[T Res(�)] and (1, 1, 1, x, y, z, g) /∈DR

Res[T Res(�)],
then (1, 1, 0, x, y, z, g) ∈ T Res(�).

(3) If (1, 0, 1, x, y, z, g)∈DR
Res[T Res(�)] and (1, 1, 1, x, y, z, g) /∈DR

Res[T Res(�)],
then (1, 0, 1, x, y, z, g) ∈ T Res(�).

(4) If (0, 1, 1, x, y, z, g)∈DR
Res[T Res(�)] and (1, 1, 1, x, y, z, g) /∈DR

Res[T Res(�)],
then (0, 1, 1, x, y, z, g) ∈ T Res(�).

(5) If (1, 0, 0, x, y, z, g) ∈ DR
Res[T Res(�)]and (1, 0, 1, x, y, z, g) /∈ DR

Res[T Res(�)]
and (1, 1, 0, x, y, z, g) /∈ DR

Res[T Res(�)], then (1, 0, 0, x, y, z, g) ∈ T Res(�).
(6) If (0, 1, 0, x, y, z, g) ∈ DR

Res[T Res(�)]and (0, 1, 1, x, y, z, g) /∈ DR
Res[T Res(�)]

and (1, 1, 0, x, y, z, g) /∈ DR
Res[T Res(�)], then (0, 1, 0, x, y, z, g) ∈ T Res(�).

(7) If (0, 0, 1, x, y, z, g) ∈ DR
Res[T Res(�)]and (0, 1, 1, x, y, z, g) /∈ DR

Res[T Res(�)]
and (1, 0, 1, x, y, z, g) /∈ DR

Res[T Res(�)], then (0, 0, 1, x, y, z, g) ∈ T Res(�).
(8) If (0, 0, 0, x, y, z, g) ∈ DR

Res[T Res(�)]and (0, 1, 0, x, y, z, g) /∈ DR
Res[T Res(�)]

and (1, 0, 0, x, y, z, g) /∈ DR
Res[T Res(�)] and (0, 0, 1, x, y, z, g) /∈ DR

Res[T Res

(�)], then (0, 0, 0, x, y, z, g) ∈ T Res(�).

Theorem 4.13 � � α(x, g(θ, y; δ, z)) iff (FG(α), FG(θ), FG(δ), x, y, z, g) ∈
DG

Res[T G
Res(�)], in other words,MG = (MG, [[]]) :⇔ Mres

G = (DG
Res[T G

Res(�)], ∈).
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Proof 4.15. The proof is very similar to Theorem 2.24 and routine by using Lem-
mas 4.1 and 4.12. We omit the proof to save space.

5 Conclusion

This paper offers some new algebraic structures for binary and ternary syllogistics.
Mappings, translations and definitions to obtain the algebraic structures show that
binary, ternary and probably n-ary syllogistics can be represented with bounded meet
semi-lattice structures on quotient sets. We do not account more than three-arity syl-
logistics because they do not take place in natural languages.

We hope that linguists, computer scientists and logicians might be interested in
results in this paper and the results will help with other results in several areas.We also
hope that this paper contributes to the natural logic program initiated by Van Benthem,
and have been being continued by Moss and others. We would like to continue the
study adding intersective adjectives to sentences with transitive and ditransitive verbs.

One may extend the syllogistic structures with boolean connectives and restricted
to relative clauses without more change to find new algebraic structures.

Acknowledgements The authors would like to thank the anonymous reviewers for their helpful comments
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