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Abstract Blockage revision is a version of descriptor revision, i.e. belief change in
which a belief set K is changedwith inputswhose success conditions aremetalinguistic
expressions containing the belief predicateB. This is a highly general framework that
allows a single revision operator ◦ to take inputs corresponding to sentential revision
(K ◦Bp), contraction (K ◦¬Bp) as well as more complex and composite operations.
In blockage revision, such an operation is based on a relation ⇁ of blockage among
the set of potential outcomes. X ⇁ Y signifies that if X satisfies the success condition
of a belief change, then Y cannot be its outcome. The properties of blockage revision
are investigated, and conditions on the blocking relation are specified that characterize
various properties of the resulting operation of change.

Keywords Belief change · Blockage revision · Descriptor revision · Monoselective
choice function · Outcome set · Repertoire

1 Introduction

Descriptor revision was introduced in (Hansson 2014a) as an alternative, more general
approach to belief change. Like most other belief change models it employs logically
closed sets (belief sets) to represent an epistemic agent’s state of belief, and a change
in belief is represented by an input-driven transformation from one such belief set to
another. These transformations have two major characteristics.

The first of these is the form in which the input is expressed. Traditional belief
change models use sentences as inputs, and we distinguish between different types of
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38 S. O. Hansson

operations according to what is expected be done with the input sentence. In belief
contraction, the input sentence should be removed from the belief set, whereas in
revision it should be added to the belief set. In other words a contraction has the
success condition that a specified sentence should be removed, whereas the success
condition of a revision is that a specified sentence should be added to the belief set.
In descriptor revision, success conditions are expressed in a unified way, employing
a metalinguistic operatorB representing belief.Bp denotes that p is believed, ¬Bp
that p is not believed,Bp∨Bq that either p or q is believed, etc.With this generalized
way to express success conditions we only need one operator of change, denoted ◦.
A revision of the current belief set K by the sentence p can be written K ◦ Bp
and a contraction of the same set by the sentence q can be written K ◦ ¬Bq. Other
more complex success conditions can also be expressed in this way, for instance
the operation K ◦ (¬Bp & Bq) (or equivalently K ◦ {¬Bp,Bq}) in which p is
replaced by q, the multiple operation K ◦ {¬Bp1, . . . ,¬Bpn} in which a set of
sentences is simultaneously removed, and the operation K ◦ (Bp ∨ B¬p) in which
the agent makes up its mind concerning p. The formal construction of such composite
descriptors follows a simple recursive pattern:

L is the object language whose sentences are believed or disbelieved. An atomic
belief descriptor is a metalinguistic expression Bp with p ∈ L. A molecular
belief descriptor is a truth-functional combination of atomic descriptors. A com-
posite belief descriptor (descriptor; denoted by upper-case Greek letters) is a set
of molecular descriptors.1

Bp is satisfied by a belief set K if and only if p ∈ K . Satisfaction formolecular
belief descriptors is defined inductively, hence K satisfies ¬α if and only if it
does not satisfy α, and it satisfies α ∨ β if and only if it satisfies either α or β.
A composite belief descriptor is satisfied by K if and only if all its elements are
satisfied by K .
K � � means that K satisfies �, and � � � that all belief sets satisfying

� also satisfy �. The corresponding equivalance relation is written ��, hence
� �� � holds if and only if both � � � and � � � hold.

The descriptor disjunction � is defined by the relationship

� � � = {α ∨ β | (α ∈ �) & (β ∈ �)}.2
The second major characteristic of descriptor revision is that changes take place as
choices among a given repertoire, or set of plausible outcomes. The repertoire is a set
of belief sets and will be denoted X. Hence, K ◦Bp is assumed to be an element X of
X such that X � Bp. In (Hansson 2014a) two ways to construct a descriptor revision
◦ were investigated:

1 A finite composite descriptor can be replaced by the molecular descriptor that is the conjunction of all
its elements. However, an infinite composite descriptor cannot in general be replaced by a single molecular
descriptor.
2 Descriptor disjunction will be used in Observation 3 and the discussion following it.
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◦ is a monoselective descriptor revision if and only if: (i) if there is some X ∈ X

with X � �, then K ◦ � = ̂C({X ∈ X | X � �}), where ̂C is a monoselective
choice function,3 and (ii) otherwise, K ◦ � = K .

◦ is a relational descriptor revision if and only if there is a relation � on X

with K � X for all X ∈ X, and: (i) if there is some X ∈ X with X � �, then
K ◦� is the unique �-minimal element of X that satisfies �, and (ii) otherwise,
K ◦ � = K .

It is the purposeof the present contribution to introduce another constructionof descrip-
tor revision. It is based on blockage relations that express how, whenwe choose among
potential outcomes (elements ofX) satisfying the success condition�, the presence of
one such potential outcome can make another ineligible. To each descriptor revision
◦ we can associate a blockage relation ⇁ on its repertoire X, defined as follows:4

For all X,Y ∈ X: X ⇁ Y if and only if it holds for all descriptors � that if
X � � then K ◦ � �= Y .

X ⇁ Y can be interpreted as signifying that the plausibility of X is so high in relation
to that of Y that the epistemic agent will not settle for Y as the outcome of a revision
if X is available as a possible outcome of that revision. Importantly, this can be the
case even if X is less plausible than Y . Examples can be found in which two potential
outcomes seem to block each other although one of them is somewhat more plausible
than the other.5 For one such example, let p denote that Peter has stolen money from
his mother and r that his sister Rebecca has done so. In my initial belief set K I believe
in neither of these sentences, i.e. K � ¬Bp & ¬Br . However, I receive information
that induces me to perform the revision K ◦B(p∨r). Let X and Y be two elements of
X, both of which satisfyB(p ∨ r) but such that X � B(p&¬r) and Y � B(r&¬p).
Even if X is for some reason somewhat less plausible than Y, X can still be plausible
enough to prevent me from adopting Y as my new set of beliefs. Consequently, X
and Y block each other, and neither of them can become the outcome. Instead, the
outcome can be some third belief set Z with Z � B(p ∨ r), Z � Bp, and Z � Br .

If we define a blockage relation for a given revision operator, as above, then the
resulting blockage relation may not contain sufficient information to reconstruct the
revision operator from which it was derived.6 In order to avoid such indeterminacy it
is better to introduce the blockage relation as a primitive notion.

3 I.e. ̂C(Y) ∈ Y whenever Y �= ∅.
4 Blockage relations were first introduced in Hansoon (2013b) where they were used to construct a con-
traction operator.
5 Cf. Hansoon (2013b, pp. 418–419) and Rott (2014).
6 Two different monoselective descriptor revisions ◦ and ◦′ may give rise to the same blockage relation.
Let X = {K , X, Y, Z ,W }, and let ◦ be based on a monoselective choice function ̂C such that ̂C(Y) = K
whenever K ∈ Y ⊆ X and that ̂C({X, Y }) = X, ̂C({X, Z}) = Z , ̂C({X,W }) = X, ̂C({Y, Z}) =
Y, ̂C({Y,W }) = W, ̂C({Z ,W }) = Z , ̂C({X, Y, Z}) = X, ̂C({X, Z ,W }) = W, ̂C({Y, Z ,W }) =
Z , ̂C({X, Y,W }) = W , and ̂C({X, Y, Z ,W }) = Y . Furthermore, let ̂C ′ coincide with ̂C ′ with the sole
exception that ̂C ′({X, Y }) = Y , and let ◦′ be based on ̂C ′. Then ◦ and ◦′ give rise to the same blockage
relation namely ⇁= {〈K , X, 〉, 〈K , Y 〉, 〈K , Z〉, 〈K ,W 〉}. However, let � be a descriptor that is satisfied
by X and Y but not by K , Z , or W . Then K ◦ � = X and K ◦′ � = Y .
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40 S. O. Hansson

2 The Basic form of Blockage Revision

We can define blockage revision as follows:

Definition 1 Let ⇁ be a binary relation on the set X of belief sets with K ∈ X. The
blockage revision on K generated by ⇁ is the operation ◦ such that for all descriptors
�:

(i) If X is the unique �-satisfying element of X that is not blocked by any other
�-satisfying element of X, then K ◦ � = X .

(ii) If there is no such unique�-satisfying and unblocked element ofX, then K ◦� =
K .

Note that we can arrive at clause (ii) of the definition either because (1) there is no
�-satisfying element of X, (2) all �-satisfying elements of X are blocked within the
�-satisfying part of X, or (3) at least two �-satisfying elements of X are unblocked
within the �-satisfying part of X.

The set X in Definition 1 is a repertoire, i.e. a set of potential (or viable) belief sets
among which the outcomes of the ◦ operation have to be chosen. By the outcome set
(Hansson 2013a) is meant the set of actually chosen outcomes, i.e. the set of belief sets
X for which there exists a descriptor � with X = K ◦ �. The following observation
identifies the cases when the repertoire and the outcome set of a blockage revision
coincide.

Observation 1 Let ◦ be the blockage revision on K that is generated by the relation
⇁ on the set X of belief sets. Then X is the outcome set of ◦ if and only if K ∈ X and
⇁ satisfies irreflexivity within X \ {K }.
The proofs of this and all other formal results are given in an Appendix. (The proof of
Observation 1 is based on a lemma showing that for each belief set there is a descriptor
that is satisfied only by that belief set.)

In what follows it will be assumed that ⇁ is irreflexive and that consequently, the
repertoire and the outcome set coincide. (Alternatively we could distinguish between
the repertoire X and the outcome set which could then be identified as {K }∪ {X ∈ X |
X –⇁X}, but nothing important would be gained in that more complicated account.)

In order to compare blockage revision with monoselective and relational descriptor
revision, the two operations mentioned in the previous section, we will have use for
the following four postulates:

If K ◦ � � � then K ◦ � � � (regularity)
If K ◦ � � � then K ◦ � = K ◦ (� ∪ �) (cumulativity)
If K ◦ � � � and K ◦ � � � then K ◦ � = K ◦ � (reciprocity)
If K � � then K ◦ � = K (confirmation)

Regularity holds for all monoselective descriptor revisions. The other three postulates
hold for relational (but not in general for monoselective) descriptor revision. Blockage
revision does not satisfy any of them:

Observation 2 Let ◦ be the blockage revision on K that is generated by the relation
⇁ on its outcome set X. Then:
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Blockage Revision 41

(1) It does not hold in general that ◦ satisfies regularity.
(2) It does not hold in general that ◦ satisfies cumulativity.
(3) It does not hold in general that ◦ satisfies reciprocity.
(4) It does not hold in general that ◦ satisfies confirmation.

On the other hand, the following observation introduces twopostulates that are satisfied
by all blockage revisions but not by all monoselective descriptor revisions.

Observation 3 (1) Let ◦ be the blockage revision on K that is generated by the rela-
tion ⇁ on its outcome set X. Then ◦ satisfies:

If K ◦ � �= K �= K ◦ (� ∪ �) and K ◦ � � �, then K ◦ � = K ◦ (� ∪ �).
(peripheral cumulativity), and
If K �= K ◦ � = K ◦ � then K ◦ � = K ◦ (� � �) (peripheral disjunctive
identity).

(2) Let ◦ be a monoselective descriptor revision. It does not hold in general that ◦
satisfies peripheral cumulativity. Furthermore, it does not hold in general that ◦
satisfies peripheral disjunctive identity.

The term “peripheral” restricts the scope of the postulates to the part of the outcome set
that does not include the original belief set K . Peripheral cumulativity and peripheral
disjunctive identity are restriction of the following postulates:

If K ◦ � � �, then K ◦ � = K ◦ (� ∪ �) (cumulativity)
If K ◦ � = K ◦ � then K ◦ � = K ◦ (� � �) (disjunctive identity)

Their analogues in sentential revision:

If K ∗ p  q, then K ∗ p = K ∗ (p&q) (cumulativity), and
If K ∗ p = K ∗ q then K ∗ p = K ∗ (p ∨ q) (disjunctive identity)

both hold in transitively relational AGM revision.7

3 Additional Properties of Blockage Revision

In this section we will focus on the four postulates for monoselective and relational
descriptor revision thatwere shown inObservation 2 not to hold in general for blockage
revision. What properties must the blockage relation ⇁ satisfy in order for these
postulates to hold? The following theorem answers that question for regularity:

7 The sentential version of cumulativity seems to have appeared in the belief revision literature for the first
time in Makinson and Gärdenfors (1991, p. 198). It has often been divided into two parts, “If K ∗ p  q
then K ∗ p ⊆ K ∗ (p&q)” and “If K ∗ p  q then K ∗ (p&q) ⊆ K ∗ p” that are called cautious monotony
respectively cut, due to their close relationships with patterns of nonmonotonic reasoning with the same
names (Rott 1992, p. 49). On these postulates, see also Rott (2001). Disjunctive identity does not seem
to have been referred to in the belief revision literature, but it is a trivial consequence of the postulate of
disjunctive factoring (Either K ∗ (p∨q) = K ∗ p or K ∗ (p∨q) = K ∗q or K ∗ (p∨q) = K ∗ p∩ K ∗q)
that holds for transitively relational AGM revision. (Disjunctive factoring was proved by Hans Rott and
first reported in Gärdenfors (1988, pp. 57, 212, and 244).)
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Theorem 1 Let ◦ be the blockage revision on K that is generated by the relation ⇁

on its outcome set X. Then ◦ satisfies regularity if and only if ⇁ satisfies the two
postulates:

If K � � but there is some X ∈ Xwith X � �, then there is at least one unblocked
element within the set of �-satisfying elements of X. (peripheral non-occlusion), and

If X �= Y and X �= K �= Y then either X ⇁ Y or Y ⇁ X (peripheral weak
connectivity)

These properties of ⇁ are also what it takes for a blockage revision to be a mono-
selective descriptor revision:

Observation 4 Let ◦ be the blockage revision on K that is generated by the relation
⇁ on its outcome set X. Then ◦ is a monoselective revision on K if and only if ⇁

satisfies peripheral non-occlusion and peripheral weak connectivity.

The following characterization of cumulativity (If K ◦ � � � then K ◦ � = K ◦
(� ∪ �)) reveals an interesting connection between cumulativity and regularity:

Theorem 2 Let ◦ be the blockage revision on K that is generated by the relation ⇁

on its outcome set X. Then ◦ satisfies cumulativity if and only if⇁ satisfies peripheral
non-occlusion, peripheral weak connectivity, and:

If X �= K �= Y and X ⇁ Y ⇁ K, then either X ⇁ K –⇁X or both K ⇁ X and
K ⇁ Y . (top adjacency).

It follows from Theorems 1 and 2 that if a blockage revision satisfies cumulativity,
then it satisfies regularity. However, the converse relationship does not hold.8 The
following theorem provides a condition that may be seen as the “missing part” that
can be added to regularity in order to obtain cumulativity.

Theorem 3 A blockage revision ◦ satisfies cumulativity if and only if it satisfies both
regularity and:

If K ◦ � � � and K ◦ � � �, then K ◦ � = K ◦ �. (reciprocity)

Reciprocity has a close analogue in sentential revision:
If K ∗ p  q and K ∗ q  p then K ∗ p = K ∗ q. (reciprocity)9

For descriptor revision, regularity and reciprocity are independent conditions:

Observation 5 Let ◦ be the blockage revision on K that is generated by the relation
⇁ on its outcome set X. Then: (1) It does not hold in general that if ◦ satisfies
regularity then it satisfies reciprocity, and (2) it does not hold in general that if ◦
satisfies reciprocity then it satisfies regularity.

8 This follows from Theorem 3 and Observation 5.
9 Reciprocity seems to have been introduced independently in Alchourrón and Makinson (1982, p. 32) and
Gärdenfors (1982, p. 97). It has been further discussed for instance in Makinson (1985, p. 354) where it
was called the Stalnaker property, Makinson and Gärdenfors (1991, p. 198), Rott (2001, p. 110), and Rott
(2014).

123



Blockage Revision 43

Let us now turn to the fourth of the postulates that were shown in Observation 2 not
to hold in general for blockage revision, namely confirmation. It can be characterized
as follows:

Theorem 4 Let ◦ be the blockage revision on K that is generated by the relation⇁ on
its outcome set X. Then ◦ satisfies confirmation if and only if ⇁ satisfies the postulate

If X �= K �= Y and X ⇁ K then (1) K ⇁ X and (2) either K ⇁ Y or X ⇁ Y .
(near-superiority)

Top adjacency and near-superiority represent different ways to ensure that K has a
strong position within X in terms of ⇁. The following are stronger and somewhat
simpler properties with similar effects:

If K �= X then K ⇁ X (superiority)
X –⇁K (non-inferiority)

Observation 6 Let ⇁ be an irreflexive relation on a set X with K ∈ X. Then:

(1) If ⇁ satisfies superiority, then it satisfies top adjacency and near-superiority.
(2) If ⇁ satisfies non-inferiority, then it satisfies top adjacency and near-superiority.
(3) It does not hold in general that if ⇁ satisfies top adjacency then it satisfies near-

superiority.
(4) It does not hold in general that if ⇁ satisfies near-superiority then it satisfies top

adjacency.

As the following two observations show, confirmation is independent of the other three
postulates.

Observation 7 Let ◦ be a blockage revision that satisfies cumulativity. It does not
hold in general that ◦ satisfies confirmation.

Observation 8 Let ◦ be a blockage revision that satisfies confirmation. (1) It does not
hold in general that ◦ satisfies regularity. (2) It does not hold in general that ◦ satisfies
reciprocity.

Finally, the combination of cumulativity and confirmation, and therefore also of the
postulates that characterize them, is necessary and sufficient for a blockage revision
to also be a relational descriptor revision, in the sense defined in Sect. 1.

Theorem 5 Let ◦ be a descriptor revision on K . Then ◦ is a relational descriptor
revision if and only if it is a blockage revision generated by a relation ⇁ that satis-
fies peripheral non-occlusion, peripheral weak connectivity, near-superiority, and top
adjacency.

4 Discussion

The results from the previous section are summarized in Fig. 1. They provide a series
of classes of operations representing different degrees of orderliness. It may be of some
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Relational
descriptor revision

Blockage revision
satisfying cumulativity and confirmation

Blockage revision
satisfying

cumulativity

Blockage revision
satisfying

confirmation

Blockage revision
satisfying regularity

Blockage revision
satisfying reciprocity

Monoselective
descriptor revision

Blockage revision

&

&

Fig. 1 Relationships of implication among the classes of descriptive revision studied in this paper

interest to compare them toHansRott’s (2014) arguments for the need, inAGM theory,
of “floors” between the (at least in some respects) implausibly weak level of the basic
postulates and the exceptionally strong level of transitively relational operations. The
classes of operations investigated here are not directly comparable to those proposed
by Rott for the AGM framework, partly because descriptor revision represents a more
general type of belief change than the AGM operations and partly because some of
the basic postulates of AGM are not satisfied even by the strongest class of descriptor
revision studied here.10 Generally speaking, the “floors” introduced above are lower
(logically weaker) than those discussed by Rott in relation to the AGM operations.
However, the results obtained here can be summarized in terms of four floors of
blockage revision, describable from the top downwards in the following series where
each item is logically stronger than those that follow below it:

– Blockage revision satisfying regularity, reciprocity, cumulativity, and confirmation.
– Blockage revision satisfying regularity, reciprocity, and cumulativity.
– Blockage revision satisfying regularity.
– Blockage revision (the general case).

Important issues concerning blockage revision remain to investigate. In particular, it
remains to characterize blockage revision axiomatically, and a wider range of proper-
ties of the ⇁ relation than those studied here should be investigated.

10 This applies in particular to the success conditions for contraction and sentential revision that can be
translated into K ◦ ¬Bp � ¬Bp respectively K ◦Bp � Bp. It also applies to the recovery postulate for
contraction that can be translated into (K ◦ ¬Bp) ◦ Bp ⊆ K and to the vacuity property for sentential
revision that can be translated into: If K � B¬p then K ◦ Bp = Cn(K ∪ {p}).
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Appendix: Proofs

Definition 2 (Hansson 2014a) For any belief set X , we denote by �X the descriptor
{Bp | p ∈ X} ∪ {¬Bp | p /∈ X}.
Definition 3 For any set X of belief sets and any descriptor �:

���X = {X ∈ X | X � �}.

The index can be omitted if no ambiguity follows from doing so, i.e. we can then write
��� instead of ���X.

Lemma 1 If a binary relation satisfies non-occlusion then it satisfies acyclicity. If it
satisfies acyclicity then it satisfies asymmetry. If it satisfies asymmetry then it satisfies
irreflexivity.

Proof of Lemma 1: Left to the reader. ��
Lemma 2 K � � � � holds if and only if either K � � or K � � holds.

Proof of Lemma 2: See Hansson (2014b, p. 85). ��
Proof of Observation 1: For one direction, let K ∈ X and let ⇁ satisfy irreflexivity
within X \ {K }. It follows directly from K ∈ X and Definition 1 that the outcome
set is a subset of X. We also have to show that each element of X is an element of
the outcome set. For each X ∈ X \ {K }, {X} is the set of �X -satisfying elements of
X, and due to the irreflexivity of ⇁, X is the unique unblocked element of {X}, thus
K ◦�X = X . Furthermore, K = K ◦¬B� (where � is a tautology) due to clause (ii)
of Definition 1. Thus all elements of X are elements of the outcome set.

For the other direction, we assume that either (i) K /∈ X or (ii) X ⇁ X for some
X ∈ X \ {K }. In the first case it follows from K ◦ ¬B� = K that the outcome set has
an element that is not in X. In the second case K ◦ � �= X for all �, thus X is not in
the outcome set although it is in X. ��
Proof of Observation 2: Part 1: Let X = {K , X,Y } and:

⇁= {〈K , X〉, 〈K ,Y 〉, 〈X,Y 〉, 〈Y, X〉}.

Then K ◦ �X � �X � �Y but K ◦ (�X � �Y ) � �X � �Y .
Part 2: Let X = {K , X,Y } and ⇁= {〈K , X〉, 〈X,Y 〉, 〈Y, K 〉}. Then K ◦ (�K �

�X � �Y ) = K and K ◦ ((�K � �X � �Y ) ∪ (�K � �Y )) = K ◦ (�K � �Y ) = Y ,
thus K ◦ (�K � �X � �Y ) � �K � �Y but K ◦ (�K � �X � �Y ) �= K ◦ ((�K �
�X � �Y ) ∪ (�K � �Y )).

Part 3: Let X = {K , X,Y } and ⇁= {〈K , X〉, 〈X,Y 〉, 〈Y, K 〉}. Then K ◦ (�K �
�X��Y ) � �K��Y and K ◦(�K��Y ) � �K��X��Y but K ◦(�K��X��Y ) �=
K ◦ (�K � �Y ).

Part 4: LetX = {K , X} and let⇁= {〈X, K 〉}. Then K � �K ��X but K ◦ (�K �
�X ) = X . ��

123



46 S. O. Hansson

Proof of Observation 3: Part 1, peripheral cumulativity: Let K ◦� �= K �= K ◦(� ∪
�) and K ◦ � � �. It follows from Definition 1 and K �= K ◦ � that K ◦ � � �,
thus K ◦ � � � ∪ �, i.e. K ◦ � ∈ �� ∪ ��. It also follows from K �= K ◦ � that
K ◦ � is unblocked within ���, and since �� ∪ �� ⊆ ��� it is then also unblocked
within �� ∪ ��. Thus K ◦ � is � ∪ �-satisfying and unblocked within �� ∪ ��.
Since K �= K ◦ (� ∪ �) there is exactly one belief set with that property, namely
K ◦ (� ∪ �). It follows that K ◦ � = K ◦ (� ∪ �).

Part 1, peripheral disjunctive identity: Since K �= K ◦ �, all elements of ��� \
{K ◦ �} are blocked within ���, and similarly all elements of ��� \ {K ◦ �} are
blocked within ���. Since �� � �� = ��� ∪ ���, all elements of �� � �� \ {K ◦ �}
are blocked within �� � ��. Since K ◦ � is unblocked both within ��� and within
���, it is unblocked within �� ���. Thus K ◦� is the only unblocked element within
�� � ��, thus K ◦ � = K ◦ (� � �).

Part 2, peripheral cumulativity: Let X = {K , X,Y, Z} and let ◦ be based on a
monoselective choice function ̂C such that ̂C({X,Y, Z}) = {Y } and ̂C({Y, Z}) = {Z}.
Then K ◦ (�X � �Y � �Z ) = Y and Y � �Y � �Z but K ◦ ((�X � �Y � �Z ) ∪
(�Y � �Z )) = K ◦ (�Y � �Z ) = Z .

Part 2, peripheral disjunctive identity: Let X = {K , X,Y, Z} and let ◦ be based
on a monoselective choice function ̂C such that ̂C({X,Y }) = ̂C({Y, Z}) = Y and
̂C({X,Y, Z}) = X . Then K ◦ (�X ��Y ) = Y, K ◦ (�Y ��Z ) = Y , and K ◦ ((�X �
�Y ) � (�Y � �Z )) = X . ��
Proof of Theorem 1: From regularity to peripheral non-occlusion: Let K /∈ ��� and
X ∈ ���. Due to Observation 1 and our assumption that⇁ is irreflexive there is some
� with X = K ◦�. Then K ◦� � � and regularity yields K ◦� � �. From this and
K ◦ � �= K it follows according to Definition 1 that K ◦ � is an unblocked element
within ���.

From regularity to peripheral weak connectivity: Let X,Y ∈ X, X �= Y and X �=
K �= Y . Due to Observation 1 and our assumption that⇁ is irreflexive there is some�

with X = K ◦�. Thus K ◦� � �X��Y . Regularity yields K ◦(�X��Y ) � �X��Y ,
thus K ◦ (�X � �Y ) ∈ {X,Y }, from which it follows that either X ⇁ Y or Y ⇁ X .

From peripheral non-occlusion and peripheral weak connectivity to regularity: Let
K ◦ � � �.

First case, K � �: Due to peripheral non-occlusion it follows from K ◦ � � �

and K � � that ��� has at least one non-blocked element. It follows from peripheral
weak connectivity that it has at most one such element. Due to clause (i) of Definition
1, that element is equal to K ◦ �, thus K ◦ � � �.

Second case, K � �: According to Definition 1, K ◦� is either an element of ���
or equal to K . In both cases, K ◦ � � �. ��
Proof of Observation 4: For one direction, let ◦ be a monoselective descriptor revi-
sion. Then ◦ satisfies regularity, and we can conclude from Theorem 1 that⇁ satisfies
peripheral non-occlusion and peripheral weak connectivity.

For the other direction, let ⇁ satisfy peripheral non-occlusion and peripheral weak
connectivity, and let ◦ be the revision operator generated from ⇁. It follows from
Theorem 1 that ◦ satisfies regularity. Let X = {X | (∃�)(X = K ◦ �)} and let ̂C be
a function such that (a) when ∅ �= Y ⊆ X, then ̂C(Y) = K ◦ � for all � such that
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{X | X � �} = Y and (b) otherwise ̂C(Y) is undefined. We need to show (1) that ̂C
is a monoselective choice function on X, and (2) that ◦ is the monoselective descriptor
revision on X that is based on ̂C .

For (1) it is sufficient to show that ̂C is indeed a function. This can be done by
noting that since ◦ is a blockage relation it satisfies the uniformity postulate:

If K ◦ � � � iff K ◦ � � � ′ for all �, then K ◦ � = K ◦ � ′
For (2) we need to consider the two cases referred to in Sect. 1. In case (i) there is

some X ∈ X with X � �. It follows directly from regularity that K ◦� is in this case
indeed identical to ̂C({X ∈ X | X � �}). In case (ii) there is no X ∈ X with X � �.
It follows from Definition 1 that K ◦ � = K , as required. ��

Proof of Theorem 2: From cumulativity to peripheral non-occlusion: Suppose to the
contrary that K /∈ ��� �= ∅ and ��� has no unblocked element. Let X ∈ ���. Then
K ◦� = K , K ◦� � �K ��X , and K ◦ (� ∪ (�K ��X )) = K ◦�X = X , contrary
to cumulativity.

From cumulativity to peripheral weak connectivity: Suppose to the contrary that
there are X,Y ∈ X such that X �= Y �= K �= X and X –⇁Y –⇁X . Then K ◦ (�X �
�Y ) = K , thus K ◦ (�X � �Y ) � �K � �Y , but K ◦ ((�X � �Y ) ∪ (�K � �Y )) =
K ◦ �Y = Y , contrary to cumulativity.

From cumulativity to top adjacency: Let ◦ be a blockage revision based on ⇁,
and furthermore suppose that top adjacency does not hold. We are going to show that
cumulativity does not hold. Let X,Y ∈ X\{K } and X ⇁ Y ⇁ K . Since top adjacency
does not hold, if K ⇁ X then K –⇁Y , and furthermore, if K –⇁X then X –⇁K . We
therefore have the following two cases:

Case 1, K ⇁ X and K –⇁Y : Then there is no unblocked element within {K , X,Y }
but there is a unique unblocked element within {K ,Y }, namely Y . It follows that
K ◦ (�K ��X ��Y ) = K , thus K ◦ (�K ��X ��Y ) � �K ��Y , but K ◦ ((�K �
�X � �Y ) ∪ (�K � �Y )) = Y , contrary to cumulativity.

Case 2, K –⇁X and X –⇁K : We have X ⇁ Y and by applying peripheral non-
occlusion (that we have just proved) to {X,Y }we obtain Y –⇁X . Thus {K , X,Y } has a
unique unblocked element namely X , whereas {K , X} has the unblocked elements K
and X . It follows that K ◦(�K ��X��Y ) = X , thus K ◦(�K ��X��Y ) � �K ��X ,
but K ◦ ((�K � �X � �Y ) ∪ (�K � �X )) = K , contrary to cumulativity.

Thus in both cases, if top adjacency does not hold, then neither does cumulativity.
From peripheral non-occlusion, peripheral weak connectivity, and top adjacency

to cumulativity: Let K ◦ � � �.
Case 1, ��� = ∅: Then �� ∪�� = ∅, and we have K ◦� = K and K ◦(� ∪�) =

K .
Case 2, K /∈ ��� �= ∅: It follows from peripheral non-occlusion and peripheral

weak connectivity that ��� has exactly one unblocked element, and due to Definition
1 that element is equal to K ◦ �. It follows that K ◦ � � � and we already have
K ◦ � � �, so K ◦ � � � ∪ �. Since K ◦ � is unblocked within ���, it is also
unblocked within its subset �� ∪ ��. It follows from K /∈ ��� and �� ∪ �� ⊆ ���
that K /∈ �� ∪ ��. It follows from peripheral non-occlusion and peripheral weak
connectivity that �� ∪ �� has exactly one unblocked element, and then K ◦ � is that
element. Due to Definition 1, K ◦ � = K ◦ (� ∪ �).
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Case 3, K ∈ ��� and K �= K ◦ �: It follows from Definition 1 that K ◦ � is the
unique unblocked element of ���. Since K ◦ � � � we have K ◦ � ∈ �� ∪ ��.
Since K ◦ � is unblocked within ���, it is also unblocked within its subset �� ∪ ��.

Case 3A, K /∈ �� ∪ ��: It follows from peripheral non-occlusion and peripheral
weak connectivity that �� ∪ �� has exactly one unblocked element, and then K ◦ �

is that element. Due to Definition 1, K ◦ � = K ◦ (� ∪ �).
Case 3B, K ∈ �� ∪��: Since K ◦� is the unique unblocked element of ���, there

is some X ∈ ��� with X ⇁ K . Since K ◦ � is unblocked within ��� we also have
X –⇁K ◦ � and K –⇁K ◦ �. Due to peripheral weak connectivity, K ◦ � ⇁ X . We
conclude from top adjacency that K ◦ � ⇁ K .

Next, let Z ∈ �� ∪ �� \ {K , K ◦ �}. Since K ◦ � is unblocked within �� ∪ �� it
follows from peripheral weak connectivity that K ◦ � ⇁ Z . Thus K ◦ � is the only
unblocked element within �� ∪ ��, thus K ◦ � = K ◦ (� ∪ �).

Case 4, K ∈ ��� and K = K ◦ �: It follows from K ◦ � � � that K ∈ �� ∪ ��.
Case 4A, K is unblocked within ��∪��: If K is the only unblocked element within

�� ∪ ��, then K = K ◦ (� ∪ �) due to clause (i) of Definition 1. If it is one of at
least two unblocked elements within �� ∪ ��, then K = K ◦ (� ∪ �) due to clause
(ii) of the same definition.

Case 4B, K is blocked within ��∪��: Due to peripheral non-occlusion and periph-
eral weak connectivity there is some Y ∈ �� ∪ �� \ {K } such that Y ⇁ X –⇁Y for
all X ∈ �� ∪ �� \ {K ,Y }. It follows that K ◦ (� ∪ �) is either Y or K . We are going
to show that it is not Y . Suppose that it is. Then clearly K –⇁Y .

Case 4Ba, Y –⇁K : Since K is blocked within �� ∪ �� there is then some X ∈
�� ∪ �� \ {K ,Y } such that X ⇁ K . We then have Y ⇁ X –⇁Y, K –⇁Y –⇁K and
X ⇁ K , contrary to top adjacency.

Case 4Bb, Y ⇁ K : Due to peripheral non-occlusion and peripheral weak connec-
tivity there is some Z ∈ ��� \ {K } such that Z ⇁ V –⇁Z for all V ∈ ��� \ {K , Z}.
Since K is blocked (within �� ∪�� and therefore also) within ��� and K ◦� �= Z , Z
is blocked within ���, thus K ⇁ Z . Since by assumption K –⇁Y,Y �= Z . We then
have Z ⇁ Y –⇁Z , K –⇁Y ⇁ K and K ⇁ Z , contrary to top adjacency.

Thus, in neither subcase can K ◦ (� ∪ �) be equal to Y . We can conclude that
K ◦ (� ∪ �) = K , thus K ◦ � = K ◦ (� ∪ �) in case 4B as well. ��
Proof of Theorem 3: From cumulativity to regularity: Directly from Theorems 1
and 2.

Fromcumulativity to reciprocity :Let K ◦� � � and K ◦� � �. Then cumulativity
yields K ◦ � = K ◦ (� ∪ �) = K ◦ �.

From regularity and reciprocity to cumulativity: Let K ◦ � � �. There are two
cases.

Case (i), K ◦� � �: Regularity yields K ◦(�∪�) � �, thus K ◦(�∪�) � �∪�.
It follows from Definition 1 that K ◦ � = K = K ◦ (� ∪ �).

Case (ii), K ◦� � �: Then K ◦� � �∪�. Regularity yields K ◦(�∪�) � �∪�.
We thus have K ◦ � � � ∪ � and K ◦ (� ∪ �) � �, and reciprocity yields
K ◦ � = K ◦ (� ∪ �). ��
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Proof of Observation 5: Part 1: Let X = {K , X,Y } and ⇁= {〈X,Y 〉, 〈Y, K 〉}. It
follows fromTheorem 1 that regularity is satisfied.We have K ◦(�K ��X ��Y ) = X
and K ◦(�K ��X ) = K , thus K ◦(�K ��X ��Y ) � �K ��X and K ◦(�K ��X ) �
�K � �X � �Y but K ◦ (�K � �X � �Y ) �= K ◦ (�K � �X ), which shows that
reciprocity does not hold.

Part 2: Let X = {K , X,Y } and ⇁= {〈K , X〉, 〈K ,Y 〉}. In order to show that
reciprocity holds it is sufficient to that there are no � and � such that either (1)
K ◦ � = K , K � �, K ◦ � = X , and X � �, (2) K ◦ � = K , K � �, K ◦ � = Y ,
and Y � �, or (3) K ◦ � = X, X � �, K ◦ � = Y , and Y � �.

Suppose that (1) holds. Due to our construction of ◦ it follows from K ◦ � = X
that X � �, K � �, and Y � �. But we also have K � �, thus (1) does not hold. A
symmetrical proof shows that (2) does not hold. Suppose that (3) holds. It then follows
from K ◦ � = X that X � �, K � �, and Y � �, but we also have Y � �, so
that this case is impossible as well. Thus there are no � and � that satisfy either (1),
(2), or (3), thus reciprocity holds. It follows from K ◦ �X = X, X � �X � �Y , and
K ◦ (�X � �Y ) = K that regularity does not hold. ��

Proof of Theorem 4: From confirmation to near-superiority: Let X ⇁ K . Confirma-
tion yields K ◦ (�K � �X ) = K , which would not be the case if X ⇁ K –⇁X . Thus
K ⇁ X .

If also follows from confirmation that K ◦ (�K � �X � �Y ) = K . Since X ⇁

K , K ◦ (�K � �X � �Y ) cannot follow from clause (i) of Definition 1, so it must be
based on clause (ii). We already have K ⇁ X , thus Y must be blocked by either K or
X .

From near-superiority to confirmation: Let K � �. If ��� does not have exactly
one unblocked element, then clause (ii) of Definition 1 yields K ◦ � = K . It remains
to treat the case when ��� has exactly one unblocked element. Suppose that element is
not K . Then there is some X ∈ ���with X ⇁ K . It follows from near-superiority that
all elements of ��� are blocked (either by K or by X ). This contradicts the assumption
that the only unblocked element of ��� is not K . We conclude that it is K and that
therefore K ◦ � = K in this case as well. ��

Proof of Observation 6: Parts 1 and 2 are left to the reader.
Part 3: Let X = {K , X,Y } and ⇁= {〈X,Y 〉, 〈X, K 〉, 〈Y, K 〉}.
Part 4: Let X = {K , X,Y } and ⇁= {〈X,Y 〉, 〈Y, X〉, 〈Y, K 〉, 〈K ,Y 〉}.

Proof of Observation 7: Let X = {K , X,Y } and ⇁= {〈X,Y 〉, 〈X, K 〉, 〈Y, K 〉}. It
follows from Theorem 2 that ◦ satisfies cumulativity and from K ◦ (�K � �X ) = X
that it does not satisfy confirmation. ��

Proof of Observation 8: Part 1: Let X = {K , X,Y } and ⇁= {〈K , X〉, 〈K ,Y 〉}. It
follows from Theorem 4 that ◦ satisfies confirmation and from K ◦ �X = X, X �
�X � �Y , and K ◦ (�X � �Y ) = K that it does not satisfy regularity.

Part 2: Let X = {K , X,Y, Z , V } and:

⇁= {〈K , X〉, 〈K ,Y 〉, 〈K , Z〉, 〈K , V 〉, 〈X, Z〉, 〈Z ,Y 〉, 〈Y, V 〉, 〈V, X〉}.
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It follows from Theorem 4 that ◦ satisfies confirmation. However, K ◦ (�X � �Y �
�Z ) = X and K ◦(�X ��Y ��V ) = Y . Since K ◦(�X ��Y ��Z ) � �X ��Y ��V

and K ◦ (�X ��Y ��V ) � �X ��Y ��Z , it follows that reciprocity is not satisfied.
��

Proof of Theorem 5: From relational revision to blockage revision:Let⇁ be the strict
part of �. Note that near-superiority and top adjacency are satisfied vacuously. (Since
� is antisymmetric, ⇁ is irreflexive. Since it also has the property that K � X for all
X ∈ X, there is no X with X ⇁ K .)

From blockage revision to relational revision: It was shown in Hansson (2014a)
that ◦ is a relational descriptor revision if it satisfies extensionality (If � �� � ′ then
K ◦ � = K ◦ � ′), closure (K ◦ � = Cn(K ◦ �)), relative success (K ◦ � � � or
K ◦ � = K ), regularity, cumulativity, and confirmation. It follows straight-forwardly
fromDefinition 1 that the first three of these conditions are satisfied. That the last three
are satisfied follows from Theorems 1, 2, and 4. ��
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