
J Log Lang Inf (2015) 24:149–191
DOI 10.1007/s10849-015-9217-4

A Double Team Semantics for Generalized Quantifiers

Antti Kuusisto1,2

Published online: 28 April 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract We investigate extensions of dependence logic with generalized quantifiers.
We also introduce and investigate the notion of a generalized atom. We define a
system of semantics that can accommodate variants of dependence logic, possibly
extended with generalized quantifiers and generalized atoms, under the same umbrella
framework. The semantics is based on pairs of teams, or double teams. We also devise
a game-theoretic semantics equivalent to the double team semantics. We make use of
the double team semantics by defining a logic DC2 which canonically fuses together
two-variable dependence logic D2 and two-variable logic with counting quantifiers
FOC2. We establish that the satisfiability and finite satisfiability problems of DC2 are
complete for NEXPTIME.

Keywords Team semantics · Dependence logic · Generalized quantifiers ·
Game-theoretic semantics

Part of this work was carried out during a tenure of the ERCIM Alain Bensoussan Fellowship Programme.
The reported research has received funding from the European Union Seventh Framework Programme
(FP7/2007–2013) under grant agreement number 246016. The author also acknowledges funding received
from the Jenny and Antti Wihuri Foundation.

B Antti Kuusisto
antti.j.kuusisto@gmail.com

1 Institute of Computer Science, University of Wrocław, ul. Joliot-Curie 15, 50-383 Wroclaw,
Poland

2 Department of Philosophy, Stockholm University, 10-691 Stockholm, Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10849-015-9217-4&domain=pdf

150 A. Kuusisto

1 Introduction

Independence-friendly logic is an extension of first-order logic motivated by issues
concerning Henkin quantifiers and game-theoretic semantics. Independence-friendly
logic, also known as IF-logic, was first defined by Hintikka and Sandu (1989). The
logic extends first-order logic FO by quantifiers of type ∃x/{y1, . . . , yk}. The back-
ground intuition concerning the interpretion of these quantifiers is that when a formula
∃x/{y1, . . . , yk} ϕ is evaluated game-theoretically, then the value of x is chosen in
ignorance of the values of the variables y1, . . . , yk .

While game-theoretic semantics of ordinary first-order logic gives rise to a game
of perfect information, the game for IF-logic is a game of imperfect information.
Hodges (1997) gave a compositional semantics for IF-logic. While ordinary Tarskian
semantics for first-order logic is based on evaluating formulae with respect to single
assignments,1 the semantics of Hodges is based on sets of assignments.

Väänänen (2007) introduced dependence logic, which provides a novel alternative
approach to issues concerning independence-friendly logic and Henkin quantifiers.
Instead of quantifiers of type ∃x/{y1, . . . , yk}, dependence logic extends first-order
logic by novel atomic expressions =(x1, . . . , xk) which state that the value of xk is
functionally determined by the values of x1, . . . , xk−1. The compositional semantics
of dependence logic is similar to Hodges’ semantics for IF-logic. The semantics is
formulated in terms of sets of assignments. Väänänen named such sets teams, and
since then, the related semantic framework has been called team semantics.

After the introduction of dependence logic, research on team semantics has been
very active, and a notably large number of related papers has appeared in the course of
a relatively short period. In addition to dependence logic, several related logics have
been introduced and studied.

Independence logic, introduced by Grädel and Väänänen (2013), extends first-order
logic with atoms of x ⊥ y. The intuitive meaning of this atom is that x and y are inde-
pendent of each other in the sense that nothing can be said about the value of x based
on the value of y, and vice versa. Independence logic even allows for atoms x ⊥z y
which state that the tuples x and y are independent when the values of the variables
in z are kept constant; see Grädel and Väänänen (2013) for the formal details.

Galliani (2012) introduced inclusion logic. This is yet a further variant of depen-
dence logic. Inclusion logic extends first-order logic by atoms of type x ⊆ y which
state that any tuple of values defined by x is also a tuple of values defined by y.
Galliani (2012) also defined two separate systems of team semantics called strict and
lax semantics. The systems differ from each other in their treatment of the existential
quantifier and disjunction.

In strict semantics, the existential quantifier is treated in the original way familiar
fromdependence logic: amodelA and a teamX satisfy a formula ∃x ϕ if and only if it is
possible to extend2 each valuation s ∈ X with a pair (x, a), where a ∈ Dom(A), such
that the resulting extended team satisfies ϕ. The key issue here is that each valuation

1 Assignments are functions that give values to variables in the domain of the model under consideration.
2 Strictly speaking, if the valuations in X already give an interpretation to x, then the team X is modified
by altering the assignments rather than extending them.

123

A Double Team Semantics for Generalized Quantifiers 151

s ∈ X is extended by exactly one pair (x, a) that provides an interpretation for x. In lax
semantics, each assignment s ∈ X can be extended by more than one pair (x, a), and
this results in a whole set of extensions of the valuation s. For the technical difference
between the strict and lax semantics in their treatment of the disjunction, see Galliani
(2012) or Sect. 3 below.

There are interesting and perhaps surprizing differences between the lax and strict
semantics. It has been shown by Galliani and Hella (2013) that with lax semantics,
inclusion logic is equi-expressive with positive greatest fixed point logic, and therefore
captures PTIME in restriction to linearly ordered finite models. On the other hand,
it was observed by Galliani et al. (2013) that with strict semantics, inclusion logic
captures NP.

In addition to extensions of first-order logic with different kinds of atoms, also
generalized quantifiers have been studied in the context of team semantics. Engström
(2012) defined a semantics that can accommodate generalized quantifiers in the frame-
work of team semantics. Inter alia, Engström (2012) studied branching quantifiers
consisting of partially ordered generalized quantifiers. Investigations in the setting of
Engström (2012) have been recently continued for example in the articles Engström
and Kontinen (2013) and Engström et al. (2013).

In this article, we define a novel semantics that can deal with extensions of depen-
dence logic and its variants with generalized quantifiers. Our approach is based on
double teams and differs significantly from the semantics in Engström (2012). There
are several reasons—discussed below—whywebelieve that the double team semantics
is particularly natural, general, and useful.

The semantics we shall define is fully symmetric in the sense that it respects obvious
canonical duality principles concerning negation. The semantics is also compositional
for negation in a very natural way. In investigations related to team semantics, the
syntax of the logic studied is usually given in negation normal form, which means that
negations are only allowed in front of atomic formulae.3 In the framework of double
team semantics, such syntactic limitations are avoided.

In addition to the double team semantics, we also define a corresponding canonical
game-theoretic semantics and prove equivalence of the two semantic frameworks.
Importantly, the game-theoretic semantics gives a natural action-based framework
that can be used in order to interpret and analyze the meaning of logical operators—
such as quantifiers and connectives—whose semantics has been given using the double
team semantics.

The double team semantics and its game theoretic counterpart provide a suitable
setting for the definition of a novel notion of a minor quantifier. The definition is a
slight generalization of Lindström’s definition of the notion of a generalized quantifier
in Lindström (1966). The notion of a minor quantifier provides a natural way of
accommodating the lax and strict versions of the existential quantifier under the same
umbrella framework.

While the strict and lax existential quantifiers canonically give rise to two corre-
spondingminor quantifiers, it turns out that the ordinary existential quantifier—viewed

3 In some cases non-first-order atoms cannot be negated at all.

123

152 A. Kuusisto

as a generalized quantifier—gives rise to a third minor quantifier different from the
strict and lax operators. The semantic framework based on double teams provides
a natural setting for interpretation of the meaning of the strict and lax quantifiers.
In particular, the framework enables investigation of the relationship between ordi-
nary generalized quantifiers and the strict and lax quantifiers, thereby providing novel
insight into the nature of these formal tools that occupy an important role in current
research on team semantics.

In addition to the notion of a minor quantifier, we introduce the notion of a gen-
eralized atom. Generalized atoms declare properties of (double) teams. The atoms
=(x1, . . . , xk), x ⊥z y and x ⊆ y are examples of generalized atoms. In addition
to minor quantifiers, the double team semantics and its game-theoretic counterpart
accommodate generalized atoms under the same general system of semantics. Gener-
alized atoms were originally defined in the technical report Kuusisto (2012).

Recent research on team semantics has revealed—as one perhaps could expect—
that subtle changes in semantic choices, such as using the lax semantics instead of strict,
can give rise to logics with different expressivities. To understand related phenomena
better, it definitely makes sense to study systems based on team semantics in a general
unified umbrella framework. The double team semantics provides such a framework.

In order to demonstrate how the double team semantics works in practice, we define
a logic DC2 which extends two-variable dependence logic D2 by counting quantifiers
∃≥k . We prove that the satisfiability problem of this logic is decidable. In fact, we
show that both the finite and standard satisfiability problems of DC2 are NEXPTIME-
complete.

The logic DC2 is an extension of both two-variable dependence logic D2 and two-
variable logic with counting FOC2. It was shown by Pratt-Hartmann (2005) that the
satisfiability and finite satisfiability problems of FOC2 are NEXPTIME-complete. In
Kontinen et al. (2011), the corresponding problems for D2 were shown to also be
NEXPTIME-complete.

Research on two-variable logics is currently particularly active. Recent articles
in the field include for example Benaim et al. (2013), Charatonik and Witkowski
(2013), Kieroński andMichaliszyn (2012), Kieroński et al. (2012),Manuel and Zeume
(2013), Szwast and Tendera (2013), and several others. Mainly the related research
has concerned decidability and complexity issues in restriction to particlar classes
of structures, and also questions related to different built-in features and operators
that increase the expressivity of the base language. Team semantics has so far been
discussed in this context only in Kontinen et al. (2011).

The article Kontinen et al. (2011) discusses ordinary two-variable dependence logic
D2 which does not include counting quantifiers. In fact, when writing Kontinen et al.
(2011), no direct semantics for counting quantifiers was available in the team seman-
tics framework. The double team approach provides an appropriate canonical system
of semantics, and furthermore, facilitates the NEXPTIME-completeness proof given
below. Concerning the proof, our objective is not so much to study the particular logic
DC2. Instead, we wish to demonstrate how the double team framework can in practice
be used in order to study fragments of team-semantics-based logics extended with
generalized quantifiers.

123

A Double Team Semantics for Generalized Quantifiers 153

The double team semantics provides a general system that can deal with generalized
quantifiers as well as generalized atoms, but on the face of it, the move from single
teams to double teams may seem like an undesirable step towards a more complicated
framework. We claim that this issue is not so simple, for two reasons.

Firstly, the syntax of a typical currently studied variant of dependence logic gives
formulae in negation normal form, leading to systems with more connectives and
quantifiers than necessary. Disjunction and conjunction have to be both included as
primitive connectives in the logics, and the same applies to the existential and univer-
sal quantifiers. In proofs, all connectives and quantifiers must be considered. In the
framework of double team semantics, the number of necessary connectives is smaller,
but the treatment of each operator can of course be more laborious. In any case, the
double team semantics offers a more liberal syntax.

Secondly, as we shall demonstrate below in Sect. 10, it is not difficult to define a
natural semantics which is rather similar to our double team semantics—facilitating
investigations analogous to those carried out in this article—but formulated in terms
of single teams.

Finally, it is worth noting that while the double team semantics can be used in inves-
tigations related to dependence logic and its variants, it is also a canonical semantics
for ordinary extensions of first-order logic with generalized quantifiers, i.e., extensions
that do not include generalized atoms.

The structure of this article is as follows. In Sects. 2 and 3, we discuss the necessary
background definitions. In Sect. 4, we define the double team semantics and discuss
some of its basic properties. In Sects. 5 and 6, we introduce and investigate generalized
atoms and minor quantifiers. In Sect. 7, we define a game-theoretic counterpart for the
double team semantics.We also show that the two systems of semantics are equivalent.
In Sect. 8, we discuss issues related to the interpretation of quantifiers and atoms in the
framework of team semantics. In Sect. 9, we investigate the logicDC2. In particular, we
prove NEXPTIME-completeness of the satisfiability and finite satisfiability problems
of the logic. In Sect. 10, we briefly discuss a single team semantics for generalized
quantifiers.

2 Preliminaries

Let Z+ denote the set of positive integers, and let VAR = { vi | i ∈ Z+ } be the
set of exactly all first-order variable symbols. We shall mainly use metavariables
x, y, z, x1, x2, etc., in order to refer to variable symbols in VAR.We let x, y, z, x1, x2,
etc., denote finite nonempty tuples of variable symbols, i.e., tuples in VARn for some
n ∈ Z+.

Let X ⊆ VAR be a finite, possibly empty set. Let A be a model with domain A. We
do not allow for models to have an empty domain, so A �= ∅. A function f : X → A
is called an assignment for the model A.

Let a be any finite nonempty tuple.We let a(k) denote the k-th member of the tuple:
for example (a, b)(1) = a and (a, b)(2) = b. When we write u ∈ a, we mean that u
is a member of the tuple a, i.e., if a = (a1, . . . , an), then u ∈ a iff u ∈ {a1, . . . , an}. If
f is a function mapping into some set Sk of tuples of length k ∈ Z+, then fi denotes
the function with the same domain as f defined such that

123

154 A. Kuusisto

fi (x) = (
f (x)

)
(i),

i.e., fi is the i-th coordinate function of f.
Let s be an assignment with domain X and for the model A. Let n ∈ Z+. Let

x ∈ VARn be a finite nonempty tuple of variables, and let a ∈ An . Assume that if
x repeats a variable, then a repeats the corresponding value, i.e., if x(i) = x(j) for
some i, j ∈ {1, . . . , n}, then a(i) = a(j). We say that a respects x-repetitions. We let
s[x/a] denote the variable assignment forAwith the domain X ∪{ x | x ∈ x } defined
as follows.

1. s[x/a](y) = a(k) if y = x(k),
2. s[x/a](y) = s(y) if y �∈ x .

Let T ∈ P(An), where P denotes the power set operator and n ∈ Z+. Assume
that each tuple in T respects x-repetitions. We define

s[x/T] = { s[x/a]|a ∈ T }.

Note that s[x/∅] = ∅. Let S be a set and z a tuple of variables of length k ∈ Z+.
If T ⊆ Sk is a relation such each u ∈ T respects z-repetitions, then we say that the
relation T respects z-repetitions.

Let X ⊆ VAR be a finite, possibly empty set of first-order variable symbols. Let U
be a set of assignments f : X → A. Such a set U is a team with domain X and for
the model A. The domain A of the model A is a codomain of the team U. Note that
the empty set is a team for A, as is the set {∅} containing only the empty assignment.
The team ∅ does not have a unique domain; any finite subset of VAR is a domain of
∅. The domain of the team {∅} is ∅.

A pair of teams (U, V) is a double team ifU andV are teamswith the same domain;
the pairs (U,∅), (∅, V) are double teams when U and V are teams.

Let V be a team with domain X and for the model A. Let n ∈ Z+, and let S ⊆ An .
Let f : V → P(S) be a function. Let x = (x1, . . . , xn) be a tuple of variables.
Assume that for each s ∈ V , the relation f (s) respects x-repetitions. Then we say that
f respects x-repetitions. We define

V [x/ f] =
⋃

s ∈ V

s[x/ f (s)].

Note that it V = ∅, then we have V [x/ f] = ∅. Let B denote the set

{ a ∈ An | a respects x-repetitions }.

We let f ′ : V → P(B) denote the function defined such that f ′(s) = B \ f (s) for
all s ∈ V . Naturally

V [x/ f ′] =
⋃

s ∈ V

s[x/ f ′(s)].

123

A Double Team Semantics for Generalized Quantifiers 155

Let V be a team with domain X and for the model A. Let k ∈ Z+. Let y1, . . . , yk
be variable symbols. Assume that {y1, . . . , yk} ⊆ X . Define

Rel
(
V,A, (y1, . . . , yk)

) = { (
s(y1), . . . , s(yk)

) | s ∈ V }.

If V is empty, then the obtained relation is the empty relation. Notice that the rela-
tion Rel

(
V,A, (y1, . . . , yk)

)
does not depend on A, so we occasionally simply write

Rel
(
V, (y1, . . . , yk)

)
instead of Rel

(
V,A, (y1, . . . , yk)

)
.

Let (i1, . . . , in) be a non-empty sequence of positive integers. A generalized quanti-
fier (cf. Lindström 1966) of type (i1, . . . , in) is a classC of structures (A, B1, . . . , Bn)

such that the following conditions hold.

1. A �= ∅.
2. For each j ∈ {1, . . . , n}, we have Bj ⊆ Ai j .
3. If (A′, B ′

1, . . . , B
′
n) ∈ C and if there is an isomorphism f : A′ → A′′

from (A′, B ′
1, . . . , B

′
n) to another structure (A′′, B ′′

1 , . . . , B ′′
n), then we have

(A′′, B ′′
1 , . . . , B ′′

n) ∈ C .

Let Q be a generalized quantifier of type (i1, . . . , in). We let Q denote the gener-
alized quantifier of type (i1, . . . , in) defined such that

Q = { (A,C1, . . . ,Cn) | (A,C1, . . . ,Cn) �∈ Q }.

Let A be a model with domain A. We define QA to be the set

{ (B1, . . . , Bn) | (A, B1, . . . , Bn) ∈ Q }.

Similarly, we define

Q
A = {(B1, . . . , Bn) | (A, B1, . . . , Bn) ∈ Q}.

If ϕ is a formula of first-order logic, possibly extended with generalized quantifiers,
we writeA, s |�FO ϕ when the modelA satisfies ϕ under the assignment s. The related
semantic clause for generalized quantifiers is as follows.

Let Q denote a generalized quantifier of type (i1, . . . , in). Consider expressions
of type Qx1, . . . , xn(ϕ1, . . . , ϕn), where x j is a tuple of variables of length i j and
ϕ j is a formula of first-order logic, possibly extended with generalized quantifiers.
Let A be a model with domain A and s an assignment with codomain A. If x is a
tuple of variables of length k ∈ Z+, we let Ak[x] denote the set of exactly all tuples
in Ak that respect x-repetitions. We define A, s |�FO Qx1, . . . , xn(ϕ1, . . . , ϕn) iff(
A, S1, . . . , Sn

) ∈ QA, where S j = { a ∈ Ai j [x j] | A, s[x j/a] |�FO ϕ j }. The
quantifier Qx1, . . . , xn binds the variables x j in the formula ϕ j . We of course assume
that s interprets all the free variables in the formula Qx1, . . . , xn(ϕ1, . . . , ϕn) and that
A interprets the non-logical symbols that appear in the formulae ϕ1, . . . , ϕn .

Below, once we have defined the notion of a minor quantifier, we occasionally call
generalized quantifiers ordinary generalized quantifiers.

123

156 A. Kuusisto

In the investigations below, each instance of a subformula of a formula ϕ is consid-
ered to be a distinct subformula: for example, in the formula (P(x) ∨ P(x)), the left
and right instances of the formula P(x) are considered to be two distinct subformulae
of the formula (P(x) ∨ P(x)). It is not important how this distinction is achieved
formally.

We let SUBϕ denote the set of subformulae of the formula ϕ. For example, the
set SUB(P(x)∨P(x)) has three subformulae in it, the formula (P(x) ∨ P(x)) and both
instances of P(x).

We consider onlymodels with a purely relational vocabulary, without function sym-
bols or constant symbols. When we informally leave brackets unwritten in formulae,
the order of priority of binary connectives is such that ∧ is first, and then come ∨, →
and ↔, in the given order. The notation A, [x �→ a, y �→ b] |�FO ϕ means that we
have A, s |�FO ϕ, where s is an assignment whose domain is {x, y}, and it holds that
s(x) = a and s(y) = b. If U is a team, we let Dom(U) denote the domain of the
team. Similarly, if A is a model, we let Dom(A) denote the domain of A.

3 Dependence Logic and its Variants

Let τ be a vocabulary containing relation symbols only. Let A (τ) be the smallest set
T such that the following conditions are satisfied.

1. Let x1 and x2 be (not necessarily distinct) variable symbols. Then x1 = x2 ∈ T .
2. Let k be a positive integer. If R ∈ τ is a k-ary relation symbol and x1, . . . , xk are

(not necessarily distinct) variable symbols, then R(x1, . . . , xk) ∈ T .
3. Let k be a positive integer. If x1, . . . , xk are (not necessarily distinct) variable

symbols, then =(x1, . . . , xk) ∈ T .

Formulae formed by the rules 1 and 2 above are called first-order atoms. The set
of τ -formulae of dependence logic D is the smallest set T such that the following
conditions hold.

1. A (τ) ⊆ T .
2. If ϕ ∈ A (τ), then ¬ϕ ∈ T .
3. If ϕ,ψ ∈ T , then (ϕ ∨ ψ) ∈ T .
4. If ϕ,ψ ∈ T , then (ϕ ∧ ψ) ∈ T .
5. If ϕ ∈ T and z ∈ VAR, then ∃z ϕ ∈ T .
6. If ϕ ∈ T and z ∈ VAR, then ∀z ϕ ∈ T .

Two-variable dependence logic D2 is a fragment of D. Let σ be a vocabulary
containing relation symbols only, and assume that each symbol in σ is either of arity
1 or 2. Fix two distinct variable symbols x and y. The setA (σ) of atomic σ -formulae
of D2 is the smallest set T defined as follows.

1. Assume P ∈ σ and R ∈ σ are unary and binary relation symbols, respectively.
Let z, z′ ∈ {x, y} be (not necessarily distinct) variables. Then P(z) ∈ T and
R(z, z′) ∈ T .

2. Let z, z′ ∈ {x, y} be (not necessarily distinct) variables. Then we have =(z) ∈ T
and =(z, z′) ∈ T . Also z = z′ ∈ T .

123

A Double Team Semantics for Generalized Quantifiers 157

The set of σ -formulae ofD2 is the smallest setT satisfying the following conditions.

1. A (σ) ⊆ T .
2. If ϕ ∈ A (σ), then ¬ϕ ∈ T .
3. If ϕ,ψ ∈ T , then (ϕ ∨ ψ) ∈ T .
4. If ϕ,ψ ∈ T , then (ϕ ∧ ψ) ∈ T .
5. If ϕ ∈ T and z ∈ {x, y}, then ∃z ϕ ∈ T .
6. If ϕ ∈ T and z ∈ {x, y}, then ∀z ϕ ∈ T .

We next define the semantics of D. In the definition, A denotes a model and U a
team. The domain of the team U is always assumed to contain the free variables in
the formulae, and the codomain of U is of course assumed to be the domain A of the
model A. Furthermore, it is assumed that the vocabulary of the model A contains the
non-logical symbols in the formulae. The following clauses define the semantics of
dependence logic D.

A |�U x1 = x2 ⇔ ∀s ∈ U
(
A, s |�FO x1 = x2

)
.

A |�U R(x1, . . . , xm) ⇔ ∀s ∈ U
(
A, s |�FO R(x1, . . . , xm)

)
.

A |�U =(x1, . . . , xm) ⇔ if there exist assignments s, t ∈ U such that
s(xi) = t (xi) for all i ∈ {1, . . . ,m} \ {m},
then we have s(xm) = t (xm).

A |�U ¬ x1 = x2 ⇔ ∀s ∈ U
(
A, s �|�FO x1 = x2

)
.

A |�U ¬ R(x1, . . . , xm) ⇔ ∀s ∈ U
(
A, s �|�FO R(x1, . . . , xm)

)
.

A |�U ¬ =(y1, . . . , ym) ⇔ U = ∅.

A |�U (ϕ ∨ ψ) ⇔ A |�U1 ϕ andA |�U2 ψ for some
U1,U2 ⊆ U such thatU1 ∪U2 = U.

A |�U (ϕ ∧ ψ) ⇔ A |�U1 ϕ andA |�U2 ψ.

A |�U ∃z ϕ ⇔ A |�U [z/ f] ϕ for some f : U → { {a} | a ∈ A }.
A |�U ∀z ϕ ⇔ A |�U [z/A] ϕ.

Notice that A |�U =(z) iff s(z) = s′(z) for all s, s′ ∈ U . If ϕ is a sentence, then we
define A |� ϕ iff A |�{∅} ϕ.

To get a taste of how dependence logic works, consider the formula

∀x∀y(¬R(x, y) ∨ (R(x, y)∧ =(x, y))
)
.

As the reader can verify, this formula states that the out-degree of R is at most one
everywhere. For another example, consider the formula

∀x∃y(=(x, y) ∧ R(x, y)
)
.

This formula states that the relation R is a function.
Formulae of D that do not contain instances of atoms = (x1, . . . , xk) are called

first-order formulae. It is well-known and easy to show that for first-order formulae,
A |�U ϕ iff we have A, s |�FO ϕ for all s ∈ U .

Variants of dependence logic studied in the current literature include for example
inclusion logic Galliani (2012). The syntax of inclusion logic is the same as that

123

158 A. Kuusisto

of dependence logic, with the exception that instead of atomic expressions =
(x1, . . . , xm), the non-first-order atoms in inclusion logic are inclusion atoms

(y1, . . . , yk) ⊆ (z1, . . . , zk),

and negated inclusion atoms are not allowed at all. Inclusion atoms are interpreted
such that A |�U (y1, . . . , yk) ⊆ (z1, . . . , zk) if and only if

Rel
(
U,A, (y1, . . . , yk)

) ⊆ Rel
(
U,A, (z1, . . . , zk)

)
.

The existential quantifier is interpreted such thatA |�U ∃z ϕ iffA |�U [z/ f] ϕ for some
function f : U → (

P(A) \ ∅)
. Other semantic clauses are exactly the same as the

ones given for dependence logic above. This results in the interpretation of inclusion
logic with lax semantics.

Inclusion logic can also be interpreted using strict semantics. The difference
between strict and lax semantics concerns the interpretation of the existential quantifier
and disjunction. For the existential quantifier, the semantic clause in strict semantics is
exactly the same as the clause given for dependence logic above. For the disjunction,
the semantic clause in strict semantics dictates thatA |�U ϕ ∨ψ iff we haveA |�U1 ϕ

and A |�U2 ψ for some teamsU1,U2 ⊆ U such thatU1 ∪U2 = U andU1 ∩U2 = ∅.
Galliani and Hella (2013) have established that with lax semantics, inclusion logic

is equi-expressive with the positive greatest fixed point logic and therefore captures
PTIME in restriction to ordered finite models. With strict semantics, inclusion logic
captures NP, as observed by Galliani et al. (2013).

Also independence logic, defined by Grädel and Väänänen (2013), is a widely
studied variant of dependence logic. For formal details related to independence logic,
see Grädel and Väänänen (2013).

Logics in the family of dependence logic and independence-friendly logic have
unorthodox properties that may appear strange. For example, it is easy to see that if
A is a model with exactly two elements, then under strict semantics, we have A �|�{∅}
∃x∀y y ⊆ x , while A |�{∅} ∀z∃x∀y y ⊆ x . We also have A �|�{∅} ∀x =(x), while
A |�{∅} ∀x(=(x)∨ =(x)

)
.

4 A Double Team Semantics

In ordinary team semantics, the background intuition4 concerning satisfaction of for-
mulae is that a team satisfies a formula ϕ iff every member of the team satisfies ϕ. In
the double team semantics we shall define below, the background intuition is that a
double team (U,V) satisfies a formula iff every assignment in the team U satisfies the
formula, and furthermore, every assignment in the team V falsifies the formula. Both
in ordinary and double team semantics, the intuition is actually even formally valid
when the investigated formula is a first-order formula.

4 Intuition only!.

123

A Double Team Semantics for Generalized Quantifiers 159

The truth definition for first-order atoms and connectives is as follows.

A, (U, V) |� x1 = x2 ⇔ ∀s ∈ U
(
A, s |�FO x1 = x2

)
and

∀s ∈ V
(
A, s �|�FO x1 = x2

)
.

A, (U, V) |� R(x1, . . . , xm) ⇔ ∀s ∈ U
(
A, s |�FO R(x1, . . . , xm)

)
and

∀s ∈ V
(
A, s �|�FO R(x1, . . . , xm)

)
.

A, (U, V) |� ¬ϕ ⇔ A, (V,U) |� ϕ.

A, (U, V) |� (ϕ ∨ ψ) ⇔ A, (U1, V) |� ϕ and A, (U2, V) |� ψ for
some U1,U2 ⊆ U such that U1 ∪U2 = U.

Here we of course assume that the domain ofU and V contains the free variables in
the formulae, and thatA interprets the non-logical symbols that occur in the formulae.

We next extend our framework of double team semantics to generalized quantifiers.
The definition is given for quantifiers of any type (i1, . . . , in), but it may be instructive
to consider the details of the definition in the special case of quantifiers of type (1).
For the sake of simplicity, our investigations below concern mostly only quantifiers
of type (1).

The background intuition concerning the satisfaction of a quantified formula
Qx ϕ(x) is based on the idea that the set of witnesses of Qx ϕ(x) is the set of exactly
all values b such that ϕ(b) holds. A proper subset will not do. This intuition easily
generalizes to generalized quantifiersQ of arbitrary types. For a generalized quantifier
Q of type (i1, . . . , in), we define

A, (U, V) |� Qx1, . . . , xn(ϕ1, . . . , ϕn)

if and only if there exist functions f : U → QA and g : V → Q
A
such that

A,
(
U [x1/ f1] ∪ V [x1/g1], U [x1/ f1′] ∪ V [x1/g1′]) |� ϕ1,

...

A,
(
U [xn/ fn] ∪ V [xn/gn], U [xn/ fn ′] ∪ V [xn/gn ′]) |� ϕn .

The functions f and g must have the property that for each i ∈ {1, . . . , n}, the
coordinate functions fi and gi (and also the functions f ′

i and g
′
i) respect xi -repetitions.

Notice that if W = ∅ is the empty team and f : W → QA the empty function
(f = ∅), then W [x/ f] = ∅.
Proposition 1 Let ϕ be a formula of first-order logic, possibly extended with gener-
alized quantifiers. Let (U, V) be a double team. Then

A, (U, V) |� ϕ iff ∀s ∈ U∀t ∈ V
(
A, s |�FO ϕ andA, t �|�FO ϕ

)
.

Proof The claim is established by a straightforward induction on the structure of
formulae. ��

When ϕ is a sentence, we define A |� ϕ iff A, ({∅},∅) |� ϕ. When A is known
from the context, we may write (U, V) |� ψ instead of A, (U, V) |� ψ .

123

160 A. Kuusisto

Note that the truth definition of disjunction could be easily modified without
sacrificing Proposition 1. For example we could define A, (U, V) |� ϕ ∨ ψ iff
A, (U1, V ∪ U ′

1) |� ϕ and A, (U2, V ∪ U ′
2) |� ψ for some U1,U2 ⊆ U such that

U1 ∪U2 = U ; hereU ′
1 = U \U1 andU ′

2 = U \U2. This definition would perhaps be
a better match for our truth definition concerning generalized quantifiers. For the sake
of simplicity, we shall mostly ignore such alternative definitions for connectives in
this article. However, let us define the connective∨s such thatA, (U, V) |� ϕ ∨s ψ iff
A, (U1, V) |� ϕ and A, (U2, V) |� ψ for some U1,U2 ⊆ U such that U1 ∪ U2 = U
and U1 ∩U2 = ∅.

5 Generalized Atoms

Let m and n be non-negative integers such that n + m > 0. Let Q be a generalized
quantifier of type (i1, . . . , in+m). Consider atomic expressions of type

AQ,n(y1, . . . , yn ; yn+1, . . . , yn+m),

where each y j is a tuple of variables of length i j , and AQ,n is simply a symbol. Extend
the double team semantics such that

A, (U, V) |� AQ,n(y1, . . . , yn ; yn+1, . . . , yn+m)

if and only if

(
Rel(U,A, y1), . . . ,Rel(U,A, yn),Rel(V,A, yn+1), . . . ,Rel(V,A, yn+m)

) ∈ QA.

The generalized quantifier Q and the number n define a generalized atom of type

(
(i1, . . . , in), (in+1, . . . , in+m)

)
.

Note that types of generalized quantifiers are tuples and types of generalized atoms
are pairs of tuples; exactly one tuple of such a pair of tuples can be the empty tuple.
(We shall consider neither generalized atoms of type (∅; ∅) nor generalized quantifiers
of type ∅.)

We occasionally call generalized atoms non-first-order atoms. Other atoms are
called first-order atoms.

6 Minor Quantifiers

In this section we generalize the notion of a generalized quantifier given by Lind-
ström (1966). We call the novel operators minor quantifiers. Minor quantifiers have
a natural intuitive game-theoretic interpretation. In addition to the current section,
issues concerning the interpretation will be discussed in Sects. 7 and 8. The intuition
behind minor quantifiers is best illuminated by the game-theoretic semantics given in

123

A Double Team Semantics for Generalized Quantifiers 161

Section 7; it will quite likely be helpful to keep this in mind while going through the
technical definitions in the current section.

Let Q be a generalized quantifier of type (1). Let C be a class of structures
(A, B+, B−) such that the following conditions hold.

1. A �= ∅.
2. B+ ⊆ A and B− ⊆ A.
3. B+ ∩ B− = ∅.
4. If (C, D+, D−) ∈ C and if there is an isomorphism f : C → E from (C, D+, D−)

to another structure (E, F+, F−), then (E, F+, F−) ∈ C .
5. For each (A, B+, B−) ∈ C , there exists a pair (A, H) ∈ Q such that B+ ⊆ H

and B− ⊆ A \ H .
6. If (A, B+, B−) ∈ C , there does not exist a pair (A, H) ∈ Q such that B+ ⊆ H

and B− ⊆ A \ H .
7. For each (A, H) ∈ Q, there exists a tuple (A, B−, B−) ∈ C such that B+ ⊆ H

and B− ⊆ A \ H .

We say that C witnesses Q.
Consider a pair (C ,D) such that C witnesses Q and D witnesses Q. Here Q is a

quantifier of type (1). The pair (C ,D) defines a minor quantifier of type (1). (For
the sake of simplicity, we shall not define minor quantifiers of any other type.) Let
M = (C ,D). We call M a minor of Q. We write M ≤ Q.

A possible intuitive interpretation concerning the relationship between Q and a
minor quantifier M ≤ Q is that in order to verify Qx ϕ(x) in a model A, one does not
necessarily have to be able to find the set B ∈ QA such that b ∈ B iff ϕ(b) holds inA.
Depending on the quantifier Q, it may be enough to find some smaller set B+ ⊆ B of
values that verify ϕ(x), possibly together with a set B− ⊆ Dom(A) \ B of falsifying
values. A tuple (A, B+, B−) ∈ C then provides the sets B+ and B−. On the other
hand, to falsify a formula Qx ψ(x), it suffices to find a tuple (A, E+, E−) inD , where
E+ is a set of verifying and E− a set of falsifying values for ψ(x).

Therefore minor quantifiers provide a generalized perspective on generalized quan-
tifiers. The perspective in some intuitive sense deals with issues concerning the
constructive verification and falsification of formulae.

The semantics of minor quantifiers will be highly analogous to that of ordinary
generalized quantifiers. To make this issue explicit, let us fix some notational conven-
tions.

Let M = (C ,D) be a minor quantifier. Let A be a model with domain A. Define

MA = { (B+, B−) | (A, B+, B−) ∈ C }

and

M
A = { (B+, B−) | (A, B+, B−) ∈ D }.

Let U be a team and f : U → MA a function. When discussing the semantics of
minor quantifiers M = (C ,D), we mostly let U [x/ f] denote the team U [x/ f1],
while U [x/ f ′] denotes the team U [x/ f2]. Here f1 and f2 are the coordinate functions

123

162 A. Kuusisto

of f. Similarly, if V is a team and g : V → M
A
a function, we let V [x/g] denote

the team U [x/g1] and U [x/g′] the team U [x/g2]. This convention makes the con-
nection between ordinary generalized quantifiers and minor quantifiers fully explicit.
All related arguments will be carefully developed below, so no notational confusion
arises. The only exception to this convention is the proof of Proposition 2.

LetM be a minor quantifier of type (1). Consider expressions of type Mx ϕ. Extend
the double team semantics such that A, (U, V) |� Mx ϕ iff there exist functions

f : U → MA and g : V → M
A
such that

A,
(
U [x/ f] ∪ V [x/g], U [x/ f ′] ∪ V [x/g ′]) |� ϕ.

Notice that the form of the above semantic clause is now the same as in the case of
ordinary quantifiers of type (1).

The following proposition is easy to establish.

Proposition 2 Let Q be a generalized quantifier and M ≤ Q aminor quantifier. Let ϕ
be a formula of first-order logic extended with any collection of minor quantifiers and
ordinary generalized quantifiers. Let ϕ′ be a formula obtained from ϕ by replacing any
occurrence of Q by M, or alternatively, any occurrence of M by Q. Then A, (U, V) |�
ϕ iffA, (U, V) |� ϕ′.

Proof The claim of the proposition follows by Proposition by 1 from the properties
of minor quantifiers. Let χ be a formula of first-order logic extended with any collec-
tion of minor quantifiers and ordinary generalized quantifiers. We will establish that
A, (U, V) |� Mx χ iff A, (U, V) |� Qx χ .

Assume that A, (U, V) |� Mx χ . Thus there exist functions h : U → MA and

k : V → M
A
such that

A,
(
U [x/h1] ∪ V [x/k1], U [x/h2] ∪ V [x/k2]) |� ϕ.

Let s ∈ U . Since M ≤ Q, there exist a pair (A, Hs) ∈ Q such that h1(s) ⊆ Hs

and h2(s) ⊆ A \ Hs . Furthermore, there does not exist a pair (A, H ′) ∈ Q such
that h1(s) ⊆ H ′ and h2(s) ⊆ A \ H ′. Therefore we conclude that A, t |�FO ϕ for
each t ∈ s[x/Hs] and A, r �|�FO ϕ for each r ∈ s[x/(A \ Hs)]. Define a function
f : U → QA such that f (s) = Hs for each s ∈ H .
Let s ∈ V . Since M ≤ Q, there exist a pair (A, Hs) ∈ Q such that k1(s) ⊆ Hs

and k2(s) ⊆ A \ Hs . Furthermore, there does not exist a pair (A, H ′) ∈ Q such
that k1(s) ⊆ H ′ and k2(s) ⊆ A \ H ′. Therefore we conclude that A, t |�FO ϕ for
each t ∈ s[x/Hs] and A, r �|�FO ϕ for each r ∈ s[x/(A \ Hs)]. Define a function

g : U → Q
A
such that g(s) = Hs for each s ∈ H .

We have

A,
(
U [x/ f] ∪ V [x/g], U [x/ f ′] ∪ V [x/g ′]) |� ϕ,

whence A, (U, V) |� Qxϕ.

123

A Double Team Semantics for Generalized Quantifiers 163

The converse implication is similar. Assume that A, (U, V) |� Qxϕ. Thus

A,
(
U [x/ f] ∪ V [x/g], U [x/ f ′] ∪ V [x/g ′]) |� ϕ

for some functions f : U → QA and g : V → Q
A
.

Let s ∈ U . As M ≤ Q, there exists a pair (B+, B−)s ∈ MA such that B+ ⊆ f (s)
and B− ⊆ f ′(s). Define a function h : U → MA such that h(s) = (B+, B−)s for

each s ∈ U . Analogously, define a function k : V → M
A
such that for each r ∈ V ,

we have k(r) = (B+, B−)r , where B+ ⊆ g(r) and B− ⊆ g′(r). We have

A,
(
U [x/h1] ∪ V [x/k1], U [x/h2] ∪ V [x/k2]) |� ϕ,

whence A, (U, V) |� Mxϕ. ��
Let Q be a generalized quantifier of type (1). Notice that Q canonically defines the

minor quantifier

MQ :=
(
{ (A, B, A \ B) | (A, B) ∈ Q }, { (A, B, A \ B) | (A, B) ∈ Q }

)

whose semantics is equivalent to that of Q in the double team framework: we can
replace any instance of Q by MQ (or vice versa) in any formula ϕ, and exactly the
same models and double teams will satisfy the two formulae.5 We call MQ the minor
quantifier defined by Q. Ordinary generalized quantifiers can therefore be seen as
special cases of minor quantifiers.

Define the strict existential quantifier ∃s to be the minor quantifier (C ,D), where
C contains exactly all triples (A, B,C) such that A is a nonempty set, B ⊆ A is a
singleton set, and C = ∅, while D contains exactly all triples (D, E, F) such that D
is a nonempty set, E = ∅, and F = D. Define the lax existential quantifier ∃l to be
the minor quantifier (C ,D), where C contains exactly all triples (A, B,C) such that
A is a nonempty set, B ⊆ A is a nonempty set, and C = ∅, while D contains exactly
all triples (D, E, F) such that D is a nonempty set, E = ∅, and F = D. Note that
neither ∃s nor ∃l is equal to the minor quantifier M∃ defined by the ordinary existential
quantifier.

7 Game-Theoretic Semantics

In this section we define a natural game-theoretic semantics for first-order logic
extended with all ordinary generalized quantifiers of type (1), all minor quantifiers
of type (1), and all generalized atoms. We only deal with quantifiers of type (1) in
the rest of the article for the sake of simplicity. For game-theoretic approaches to
the semantics of dependence logic and its variants, see for example Bradfield (2013),

5 The formulaϕ can indeed belong to any extension of first-order logicwith ordinary generalized quantifiers,
minor quantifiers, and generalized atoms.

123

164 A. Kuusisto

Galliani (2012), Grädel (2013), and Väänänen (2007). The semantics we shall define
is based on the approach introduced in the technical report Kuusisto (2012).

Strictly speaking, we could of course avoid discussing ordinary generalized quan-
tifiers here since they are essentially special cases of minor quantifiers, but we shall
discuss them anyway since it makes the exposition of the background intuitions behind
the game-theoretic semantics particularly transparent.

Let A be a model with domain A. Let s be an assignment that maps a finite set of
first-order variable symbols into A. We define a semantic game G(A, s, #, ϕ), where
∈ {+,−} is a symbol and ϕ a formula. Here we assume that the assignment s
interprets all the free variables in ϕ.

The game is played by an agent A against an interrogator I . The intuition
is that the interrogator poses questions, and the agent tries to answer them. In a
game G(A, s,+, ϕ), the agent’s task is to maintain that ϕ holds, while in a game
G(A, s,−, ϕ), the agent’s task is to maintain that ϕ does not hold.

A play of the gameG(A, s, #, ϕ) begins from the position (A, s, #, ϕ). All positions
of the game are tuples of the form (A, t, #, ψ), where t is an assignment for A,
∈ {+,−}, and ψ is a subformula of ϕ.

Assume that we have reached a position (A, t, #,¬ψ) in a play of the game. The
play of the game continues from the position (A, t, #, ψ), where # ∈ {+,−} \ {#}.

Assume a position (A, t,+, ψ ∨ψ ′) has been reached. Then the playerA chooses
exactly one of the sets {ψ,ψ ′}, {ψ}, {ψ ′}. If A chooses {ψ,ψ ′}, then I chooses
a formula χ ∈ {ψ,ψ ′}, and the play continues from the position (A, t,+, χ). If A
chooses {ψ}, then the play of the game continues from the position (A, t,+, ψ). IfA
chooses {ψ ′}, then the play continues from the position (A, t,+, ψ ′).6 The background
intuition concerning the disjunction rule is that A makes one of the following three
claims.

1. Both ψ and ψ ′ hold.
2. At least ψ holds.
3. At least ψ ′ holds.
If a position (A, t,−, ψ ∨ ψ ′) has been reached, the player I chooses one of the

positions (A, t,−, ψ) and (A, t,−, ψ ′). The play of the game then continues from
the position chosen by I .

Assume we have reached a position (A, t,+, Qx ψ) in the game, where Q is an
ordinary generalized quantifier of type (1). The play of the game continues as follows.

1. In the case QA is empty, the play ends in the position (A, t,+, Qx ψ), and we say
that the playerA does not survive the play of the game. Otherwise, the player A
chooses a set S ∈ QA. The background intuition is thatA claims that S is the set
of exactly all values a ∈ A such that t[x/a] verifies the formula ψ .

2. Then the playerI chooses either the set S chosen byA or its complement A \ S.

6 Consider the connective ∨s defined in Sect. 4. We can add this connective into the language considered.
The rules for a position (A, t, +, ψ ∨s ψ ′) are exactly as for (A, t, +, ψ ∨ ψ ′), but with the exception that
the choice {ψ, ψ ′} by A is not allowed. The rules for a position (A, t, −, ψ ∨s ψ ′) are the same as for a
position (A, t, −, ψ ∨ ψ ′). As the reader can easily check, Theorem 1 below goes through even when the
language is extended by ∨s . We could consider further connectives and even define a natural notion of a
minor connective, but we shall not do that for the sake of brevity.

123

A Double Team Semantics for Generalized Quantifiers 165

(a) If I chooses S, then I also chooses an element b ∈ S, and the play of the
game continues from the position (A, t[x/b],+, ψ). In this case the intuition
is that the player I is opposing the claim that b verifies ψ . If S = ∅ and I
chooses S, the play of the game ends in the position (A, t,+, Qx ψ), and the
player A survives the play of the game.

(b) IfI chooses A\ S, thenI also chooses an element b ∈ A\ S. The play of the
game continues from the position (A, t[x/b],−, ψ). The intuition is that the
player I is opposing the claim that b falsifies ψ . If I chooses the set A \ S
and A \ S = ∅, the play of the game ends in the position (A, t,+, Qx ψ), and
the player A survives the play of the game.

Assume we have reached a position (A, t,−, Qx ψ) in a play of the game, where
Q is an ordinary generalized quantifier of type (1). The play continues as follows.

1. If Q
A
is empty, the play of the game ends in the position (A, t,−, Qx ψ), and the

playerA does not survive the play of the game. Otherwise, the playerA chooses

a set S ∈ Q
A
. The intuition is that the player A claims that S is the set of exactly

all values for x that verify ψ , and furthermore, S �∈ QA.
2. The playerI then chooses either the set S chosen byA or its complement A \ S.

(a) If I chooses S, then I also chooses an element b ∈ S, and the play of the
game continues from the position (A, t[x/b],+, ψ). In this case the intuition
is that the player I is opposing the claim that b verifies ψ . If I chooses S
and S = ∅, the play of the game ends ends in the position (A, t,−, Qx ψ),
and the player A survives the play of the game.

(b) If I chooses A \ S, then I also chooses an element b ∈ A \ S. The game
continues from the position (A, t[x/b],−, ψ). The intuition is that the player
I is opposing the claim that b falsifies ψ . IfI chooses A \ S and A \ S = ∅,
the play ends in the position (A, t,−, Qx ψ), and the player A survives the
play of the game.

Assume we have reached a position (A, t,+, Mx ψ) in the game, where M is a
minor quantifier. The play of the game continues as follows.

1. In the case MA is empty, the play ends in the position (A, t,+, Mx ψ), and we
say that the playerA does not survive the play of the game. Otherwise, the player
A chooses a pair (S, T) ∈ MA. The intuition is that S and T are sets of values for
x, witnessing and falsifying ψ , respectively. In other words, the player A claims
that assignments in t[x/S] satisfy ψ , while assignments in t[x/T] falsify ψ . A
further piece of the background intuition of course is that providing such a pair
(S, T) is sufficient for the verification of Mx ψ .

2. Then the player I chooses either the set S or the set T.
(a) If I chooses S, then I also chooses an element b ∈ S, and the play of the

game continues from the position (A, t[x/b],+, ψ). In this case the intuition
is that the player I is opposing the claim that b verifies ψ . If S = ∅ and I
chooses S, the game ends in the position (A, t,+, Mx ψ), and the player A
survives the play of the game.

(b) IfI chooses T, thenI also chooses an element b ∈ T . The play of the game
continues from the position (A, t[x/b],−, ψ). The intuition is that the player

123

166 A. Kuusisto

I is opposing the claim that b falsifies ψ . If T = ∅ and I chooses T, the
game ends in the position (A, t,+, Mx ψ), and the playerA survives the play
of the game.

Assume we have reached a position (A, t,−, Mx ψ) in a play of the game, where
M is a minor quantifier. The play continues as follows.

1. In the caseM
A
is empty, the play of the game ends in the position (A, t,−, Mx ψ),

and the player A does not survive the play of the game. Otherwise, the player A

chooses a pair (S, T) ∈ M
A
. The intuition is that that S and T are sets of values

witnessing and falsifying ψ , respectively, and supplying such a pair (S, T) is
enough to falsify Mx ψ .

2. The player I then chooses either the set S or the set T.
(a) If I chooses S, then I also chooses an element b ∈ S, and the play of the

game continues from the position (A, t[x/b],+, ψ). The intuition is that the
player I is opposing the claim that b verifies ψ . If I chooses S and S = ∅,
the play of the game ends in the position (A, t,−, Mx ψ), and the player A
survives the play of the game.

(b) If I chooses T, then I also chooses an element b ∈ T . The game contin-
ues from the position (A, t[x/s],−, ψ). The intuition is that the player I is
opposing the claim that b falsifies ψ . If I chooses T and T = ∅, the play of
the game ends in the position (A, t,−, Mx ψ), and the playerA survives the
play of the game.

Ifψ is an atomic first-order formula and a position (A, t,+, ψ) is reached in a play
of the game, then A survives the play of the game if A, t |�FO ψ . If A, t �|�FO ψ ,
then A does not survive the play. If a position (A, t,−, χ) is reached, where χ is an
atomic first-order formula, then A survives the play of the game if A, t �|�FO χ . If
A, t |�FO χ , thenA does not survive the play. If a position (A, t,+, ψ) or (A, t,−, ψ)

is reached, where ψ is a generalized atom, thenA survives the play. When a position
with an atomic formula is reached, the play of the game ends in that position.

Let U and V be teams with the same domain. Assume the domain contains the free
variables of ϕ. A play of the game G(A,U, V, ϕ) is played by A and I such that
I picks a beginning position (A, s,+, ϕ) or (A, t,−, ϕ), where s ∈ U and t ∈ V .
The play then proceeds according to the rules discussed above. If U = V = ∅ and
therefore I cannot choose a beginning position, then A survives the unique play of
the game. In this case no end position in the play of the game is generated.

Let F be a strategy of A for the game G(A,U, V, ϕ); a strategy of A is simply a
function that provides a unique choice for A in every possible position of the game
that requires a choice by A . The domain of F is the set of positions in the game
G(A,U, V, ϕ) that can be reached in some play of the game and require a choice by
A . In a position (A, t,+, Kx ψ), if KA is empty, then the function F is undefined
on the input (A, t,+, Kx ψ). Hence F does not provide any move for A in such a

position. Similarly, in a position (A, t,−, Kx ψ), if K
A
is empty, then the function

F is undefined on the input (A, t,−, Kx ψ). Here K can be a minor quantifier or an
ordinary generalized quantifier.

123

A Double Team Semantics for Generalized Quantifiers 167

Consider an atomic formulaχ . Let S be the set of assignments t such that some play,
whereA plays according to the strategy F, ends in the position (A, t,+, χ). The set S
is the team of positive final assignments of the formula χ in the game G(A,U, V, ϕ),
when A plays according to F. Similarly, let T be the set of assignments t such that
some play, whereA plays according to F, ends in the position (A, t,−, χ). The set T
is the team of negative final assignments of the formula χ in the game G(A,U, V, ϕ),
when A plays according to F.

A survival strategy of A in a game G(A,U, V, ϕ) is a strategy that guarantees, in
every play of the gamewhereA followsF, a survival forA . LetF be a survival strategy
forA inG(A,U, V, ϕ). Let S(χ) and T (χ) denote, respectively, the teams of positive
and negative final assignments of the generalized atom χ in the game G(A,U, V, ϕ),
when A plays according to F. The survival strategy F is a uniform survival strategy
for A , if for every generalized atom χ in ϕ, we have A,

(
S(χ), T (χ)

) |� χ .
Recall that all occurrences of a subformula in a formula ϕ are considered to be

distinct subformulae of ϕ. Therefore, for example, if ϕ is a generalized atom and
a game G(A,U, V, ϕ ∨ ϕ) is played according to some strategy, the teams of final
assignments for the different instances of ϕ may turn out different.

When A is known from the context, we sometimes write G(U, V, ψ) instead of
G(A,U, V, ψ). Also, we may write (s, #, ψ) instead of (A, s, #, ψ).

Theorem 1 A, (U, V) |� ϕ iff there exists a uniform survival strategy for A in the
game G(A,U, V, ϕ).

Proof The claim is proved by induction on the structure of ϕ. The case for atomic
formulae is trivial.

Assume that (U, V) |� ¬ψ . Therefore (V,U) |� ψ . By the induction hypothesis,
A has a uniform survival strategyF inG(V,U, ψ). The strategyF provides a uniform
survival strategy in G(U, V,¬ψ).

Assume thatA has a uniform survival strategy in G(U, V,¬ψ). ThereforeA has
a uniform survival strategy in G(V,U, ψ). By the induction hypothesis, (V,U) |� ψ .
Therefore (U, V) |� ¬ψ .

Assume that (U, V) |� ψ ∨ψ ′. Thus we have (U1, V) |� ψ and (U2, V) |� ψ ′ for
some U1,U2 ⊆ U such that U1 ∪ U2 = U . By the induction hypothesis, the player
A has a uniform survival strategy F1 in the game G(U1, V, ψ) and F2 in the game
G(U2, V, ψ ′). Define a strategy F for G(U, V, ψ ∨ ψ ′) such that

F
(
(s,+, ψ ∨ ψ ′)

) =

⎧
⎪⎨

⎪⎩

{ψ,ψ ′} if s ∈ U1 ∩U2

{ψ} if s ∈ U1 \U2

{ψ ′} if s ∈ U2 \U1

for each s ∈ U . On other positions, F agrees with F1 or F2, depending on whether
the input position contains a subformula of ψ or ψ ′. Let χ be an atomic subformula
of ψ ∨ ψ ′. If χ is a subformula of ψ , then the strategy F gives the same final team of
assignments for χ as F1. If, on the other hand, χ is a subformula ofψ ′, then F F gives
the same final team of assignments for χ as F2. Therefore F is a uniform survival
strategy for A in G(U, V, ψ ∨ ψ ′).

123

168 A. Kuusisto

Assume there exists a uniform survival strategy F for G(U, V, ψ ∨ ψ ′). Define
U1 ⊆ U to be the set of assignments s ∈ U such that F

(
(s,+, ψ ∨ ψ ′)

) = {ψ,ψ ′}
or F

(
(s,+, ψ ∨ ψ ′)

) = {ψ}. Similarly, define U2 ⊆ U to be the set of assignments
s ∈ U such that F

(
(s,+, ψ ∨ψ ′)

) = {ψ,ψ ′} or F(
(s,+, ψ ∨ψ ′)

) = {ψ ′}. Now,
F provides uniform survival strategies for G(U1, V, ψ) and for G(U2, V, ψ ′). By the
induction hypothesis, (U1, V) |� ψ and (U2, V) |� ψ ′. SinceU1 ∪ U2 = U , we have
(U, V) |� ψ ∨ ψ ′.

We shall not discuss the argument for ordinary generalized quantifiers, since the
related details are essentially provided by the argument for minor quantifiers.

Assume that (U, V) |� Mx ψ . Thus there exists functions f : U → MA and

g : V → M
A
such that

(
U [x/ f] ∪ V [x/g],U [x/ f ′] ∪ V [x/g′]) |� ψ.

By the induction hypothesis, there exists a uniform survival strategy F in

G
(
U [x/ f] ∪ V [x/g],U [x/ f ′] ∪ V [x/g′], ψ)

.

Extend the strategy F to a strategy F+ such that F+(
(s,+, Mx ψ)

) = f (s) for each
s ∈ U and F+(

(t,−, Mx ψ)
) = g(t) for each t ∈ V . The strategy F+ gives the

same final teams of assignments as F, and hence F+ is a uniform survival strategy for
A in G(U, V, Mx ψ).

Assume F is a uniform survival strategy in G(U, V, Mx ψ). Define the function
f : U → MA such that f (s) = F

(
(s,+, Mx ψ)

)
for all s ∈ U . Define also the

function g : V → M
A
such that g(s) = F

(
(s,−, Mx ψ)

)
for all s ∈ V . Now, F

provides a uniform survival strategy for

G
(
U [x/ f] ∪ V [x/g],U [x/ f ′] ∪ V [x/g ′], ψ)

.

By the induction hypothesis,

(
U [x/ f] ∪ V [x/g],U [x/ f ′] ∪ V [x/g ′]) |� ψ.

Therefore (U, V) |� Mx ψ . ��

8 Interpreting Dependence Logic with Double Team Semantics

In this section we discuss a simple natural way of interpreting variants of depen-
dence logic with double team semantics. We also address some issues concerning the
interpretation of dependence logic and its variants.

Let k be a positive integer and T a non-empty set. Let R ⊆ T k be a relation. We
say that R is a partial function, if the following conditions hold.

1. If k = 1, then |R| ≤ 1.
2. If k > 1, and if we have (b1, . . . , bk−1, c) ∈ R and (b1, . . . , bk−1, d) ∈ R, then

c = d.

123

A Double Team Semantics for Generalized Quantifiers 169

For each positive integer k, let Dk denote the generalized quantifier of type (k, k)
such that Dk contains the triples (A, R, S) such that the following conditions hold.

1. A is a nonempty set.
2. R ⊆ Ak and S ⊆ Ak .
3. R is a partial function and S = ∅.
Let Δ be the class { Dk | k ∈ Z+ }.
We next define a translation of formulae of dependence logic D into a logic with the

minor quantifier ∃s and generalized atoms Dk(x1, . . . , xk; x1, . . . , xk) for each k ∈
Z+; the semantics of the atom Dk(x1, . . . , xk; x1, . . . , xk) is given by the generalized
quantifier Dk ∈ Δ. Define the following translation function T :

1. If ϕ is a first-order atom, then T (ϕ) = ϕ and T (¬ϕ) = ¬ϕ.
2. T

(=(x1, . . . , xk)
) = Dk(x1, . . . , xk; x1, . . . , xk).

3. T
(¬ =(x1, . . . , xk)

) = ¬Dk(x1, . . . , xk; x1, . . . , xk).
4. T (ϕ ∨ ψ) = (

T (ϕ) ∨ T (ψ)
)
.

5. T (ϕ ∧ ψ) = ¬(¬T (ϕ) ∨ ¬T (ψ)
)
.

6. T (∃z ϕ) = ∃s z ϕ.
7. T (∀z ϕ) = ¬∃s z ¬ T (ϕ).

The following proposition is immediate.

Proposition 3 Let ϕ be a formula of dependence logic. ThenA |�U ϕ iffA, (U,∅) |�
T (ϕ).

Obviously inclusion logic with strict semantics can be similarly translated into
a logic with double team semantics. A different class of generalized quantifiers is
needed in order to define the atoms that inclusion atoms translate to, and the alternative
disjunction ∨s defined in Sect. 4 is used in the target language. Also inclusion logic
with lax semantics can be analogously translated. Standard disjunctions are used in
the target language, and existential quantifiers translate to the lax quantifier ∃l .

8.1 Interpreting Different Existential Quantifiers

It is interesting to note that neither the strict nor the lax existential quantifier is the
same as the minor quantifier M∃ defined by the existential quantifier. It is natural to
consider the three different existential quantifiers as epistemic variants of each other.
Let us briefly discuss what this perspective implies.

Consider the game-theoretic semantics for minor quantifiers. Let ϕ(x) be a first-
order formula. To show that the formula ∃s x ϕ(x) is true, the agent A simply has to
find a single witness b such that the formula ϕ(b) holds. It is enough that the agent
knows one suitable witness b for ϕ(x).

Let ∃t denote the minor quantifier M∃, and call it the total existential quantifier.
Establishing that ∃t x ϕ(x) holds is rather different from showing that ∃s x ϕ(x) is
true. This time it is not enough for the agent to know a single witness for ϕ(x).

123

170 A. Kuusisto

Instead, the agent has to be able to say, for each element b in the domain of the model
under investigation, whether ϕ(b) holds or not. Therefore the agent has to have an
epistemically complete understanding of which elements of the domain satisfy ϕ(x)
and which ones do not.

Indeed, the strict existential quantifier seems to correspond to the intuitive under-
standing of ordinary existence claims better than the total existential quantifier. But
of course ∃t may be more appropriate than ∃s in some non-standard context.

Establishing that ∃l x ϕ(x) is similar to showing that ∃s x ϕ(x), but here the agent
can provide more than one witness to be taken into account in the rest of the semantic
game.

In light of Propositions 2 and 1, the three existential quantifiers are interchange-
able in the context of ordinary first-order logic. But it is possible to conceive natural
non-classical logics—possibly dealing with epistemic considerations, and not neces-
sarily involving generalized atoms—where different epistemic modes of existential
quantification make a crucial difference. And, it is not difficult to define ad hoc atoms
A(x; x) such that, say, the formulae ∃s x A(x; x), ∃l x A(x; x), ∃t x A(x; x) are pairwise
non-equivalent.

Indeed, define the atom A(x; x) such that A, (U, V) |� A(x; x) if and only if we
have |Rel(U, x)| = 2 and Rel(V, x) = ∅. Let B be a model whose domain contains
exactly two elements. NowB |� ∃l x A(x; x),B |� ∃t x A(x; x), butB �|� ∃s x A(x; x).
Now let C be a model whose domain contains exactly three elements. We have C |�
∃l x A(x; x), while C �|� ∃t x A(x; x). Therefore the formulae ∃s x A(x; x), ∃l x A(x; x),
∃t x A(x; x) are pairwise non-equivalent.

Let T denote the trivial generalized quantifier of type (1) defined such that
A |�FO T x ϕ always holds. In the double team framework, the statementA, ({∅},∅) |�
T x P(x) means that the playerA can classify all elements b ∈ Dom(A) according to
whether P(b) holds or not, i.e., A can point out exactly the set of values b such that
P(b). The statement A, ({∅},∅) |� ∃t x P(x) means that the player A can classify
all elements b of the domain of A according to whether P(b) holds or not, and the set
of values such that P(b) holds, is nonempty. These are constructive statements that
clearly differ from the ordinary reading of the generalized quantifiers T and ∃. The
notion of a minor quantifier provides a novel way of generalizing the notion of a gen-
eralized quantifier by providing a fine-grained picture of constructive issues related to
verification of quantified formulae.

A possible future research direction could include considering semantic games
where choosing (sets of) witnesses would be associated with a cost, and of course
the player(s) involved would have limited amounts of resources with which to meet
the costs. For example, in a very simple case, each element of the domain of a model
could be associated with a unit cost. Such games could help in the analysis of proving
or verifying theorems with limited resources. The article Kuusisto (2010) describes a
related tentative resource conscious approach to the semantics of first-order logic. In
that article, verifying the formula ∃x P(x) requires a single witness that satisfies the
formula P(x). Thus the existential quantifier there corresponds to ∃s . The article does
not consider alternative existential quantifiers, but it would indeed be interesting to
define a resource conscious semantics also for the total quantifier ∃t . We leave these
investigations for the future.

123

A Double Team Semantics for Generalized Quantifiers 171

8.2 Observations Concerning Atoms

Above we translated dependence atoms =(x1, . . . , xk) into atomic expressions

Dk(x1, . . . , xk; x1, . . . , xk).

This creates an unnecessary syntactic complication: it seems rather pointless to write
x1, . . . , xk twice. We can of course avoid such complications in similar translations
simply by allowing for syntactic atomic expressions A(x1, . . . , xk), whose seman-
tics is defined by a generalized quantifier of type (k, k), and more generally, atoms
B(x1, . . . , xk) defined by quantifiers of type (i1, . . . , ik, i1, . . . , ik).

Let (Q, P) be a pair of generalized quantifiers of type (i1, . . . , ik). Consider atomic
expressions of type B(x1, . . . , xk), where each tuple x j is of length i j . Extend the
double team semantics such that A, (U, V) |� B(x1, . . . , xk) iff

(
Rel(U,A, x1), . . . ,Rel(U,A, xk)

) ∈ QA

and
(
Rel(V,A, x1), . . . ,Rel(V,A, xk)

) ∈ P A.

If P = Q, we call the atom defined by (Q, P) a symmetric atom.
It is interesting to note that above it would not have been possible to translate

atoms =(x1, . . . , xk) to symmetric atoms B(x1, . . . , xk). The truth definitions of the
dependence atom =(x1, . . . , xk) and its negated counterpart ¬ =(x1, . . . , xk) are not
related in a way that would lead to the required symmetry.

Currently, there does not seem to be an account in the dependence logic literature
that thoroughly analyzes issues related to the definition A |�U ¬ =(x1, . . . , xk) iff
U = ∅. It is well known that dependence logic is downwards closed, i.e., if A |�U ϕ

and V ⊆ U , then A |�V ϕ. The definition A |�U ¬ =(x1, . . . , xk) ⇔ A �|�U =
(x1, . . . , xk)would lead to a logic that is not downwards closed. Downwards closure is
a natural intuitive property of dependence logic. The property reflects the background
intuition that a team satisfies a formula if all assignments in the team satisfy it.7 With
the semantics A |�U ¬ =(x1, . . . , xk) ⇔ U = ∅ for negated dependence atoms,
dependence logic is downwards closed, but still this choice of definition may perhaps
seem intuitively somewhat strange. At least the definition calls for further reflection.

In inclusion logic (seeGalliani 2012), negated non-first-order atoms are not allowed,
and thereby no analogous problem of interpretation arises. However, the possibility of
negating atomic formulae—a syntactically rather natural feature—is compromised.

We shall not attempt to analyze the issue concerning negated atoms further, but we
wish to point out that the double team framework can perhaps help in advancing the
interpretation of formalisms in the family of dependence logic for the following three
reasons.

Firstly, the double team semantics provides a general framework for interpreting
different variants of dependence logic. A general framework offers a setting for inter-

7 We of course recall that this is nothing more than the background intuition.

123

172 A. Kuusisto

preting and comparing different systems embeddable in the framework. For example,
we have above given natural possible interpretations for the quantifiers ∃s , ∃l , ∃t and
discussed their differences in the interpreting framework.

Secondly, the double team semantics has obvious symmetric duality properties con-
cerning the interpretation of negation. Whatever the explanatory power of symmetries
may be, at least symmetric duality properties have an obvious mathematical appeal.

Finally, the double team semantics has a very natural game-theoretic counterpart.
A game-theoretic semantics can—at least in some reasonable sense—be seen as fun-
damental in relation to most other approaches, because it provides an action-based
account of the meaning of formulae. Tarski’s semantics for first-order logic essen-
tially only gives a translation of symbols into their natural language counterparts.8

This resembles translating a language into another. An interpreter has to be famil-
iar with the target language in order to understand the truth definition. The situation
seemsdifferent in the context of action-based truth definitions.9 Action-based language
acquisition is discussed for example in Steels and Kaplan (2001). Wittgenstein’s lan-
guage games, described in Wittgenstein (1953), are a classical example of related
considerations.

9 Complexity of DC2

9.1 The Logic DC2

In this section we define the logic DC2. This logic extends both ordinary two variable
dependence logic D2 and two-variable logic with counting FOC2 in a canonical way,
as we shall see.

Let k be a positive integer. Define the classes

E := { (A, B,∅) | A is a non-empty set and B ⊆ A satisfies |B| ≥ k }

and

F := { (A,∅, B) | A is a non-empty set, B ⊆ A and, |A \ B| < k }.

The pair (E ,F) defines the minor counting quantifier ∃≥k . Notice that ∃≥k is a
minor of the generalized quantifier { (A, B) | A �= ∅, |B| ≥ k }.

Let τ be a relational vocabulary consisting of the union of a countably infinite set
of unary relation symbols and a countably infinite set of binary relation symbols. Fix
two distinct first-order variable symbols x and y. DefineA (τ) to be the smallest set T
such that the following conditions hold.

1. If P ∈ τ is a unary relation symbol and z ∈ {x, y}, then P(z) ∈ T .
2. If R ∈ τ is a binary relation symbols and z, z′ ∈ {x, y}, then R(z, z′) ∈ T .

8 Of courseTarski’s semantics also ties truth of first-order formulae to the notion of amodel, and additionally
provides an inductive method for computing truth values of formulae based on the truth values of atoms.
9 Of course game-theoretic truth definitions are still usually described in natural language.

123

A Double Team Semantics for Generalized Quantifiers 173

3. If z, z′ ∈ {x, y}, then z = z′ ∈ T .

Define two-variable first-order logic with counting (FOC2) to be the smallest set T
such that the following conditions are satisfied.

1. A (τ) ⊆ T .
2. If ϕ ∈ T , then ¬ϕ ∈ T .
3. If ϕ,ψ ∈ T , then (ϕ ∨ ψ) ∈ T .
4. If ϕ ∈ T , z ∈ {x, y}, and k is a positive integer, then ∃≥k z ϕ ∈ T .

Here ∃≥k denotes the minor quantifier
(
E ,F

)
. The syntax of FOC2 contains only

first-order atoms, and in light of Propositions 2 and 1, it makes no difference whether
we use ordinary Tarskian semantics or double team semantics in the interpretation of
FOC2-formulae; if ϕ is a formula of FOC2 and ϕ′ denotes the formula obtained from
ϕ by replacing each symbol ∃≥k by a symbol that denotes the corresponding ordinary
generalized quantifier, then A, s |�FO ϕ′ iff A,

({s},∅) |� ϕ.
Define A +(τ) to be the smallest set T such that the following conditions hold.

1. If ϕ ∈ A (τ), then ϕ ∈ T .
2. If z, z′ ∈ {x, y}, then =(z, z′) ∈ T and =(z) ∈ T .

The set of formulae of DC2 is the smallest set T such that the following conditions
hold.

1. A +(τ) ⊆ T .
2. If ϕ ∈ T , then ¬ϕ ∈ T .
3. If ϕ,ψ ∈ T , then (ϕ ∨ ψ) ∈ T .
4. If ϕ ∈ T and z ∈ {x, y}, then ∃s z ϕ ∈ T .
5. If ϕ ∈ T , z ∈ {x, y} and k is a positive integer, then ∃≥k z ϕ ∈ T .

Let z, z′ ∈ {x, y} be variables. The semantics of the atom =(z) in is defined in
DC2 such that A, (U, V) |�=(z) iff A, (U, V) |� D1(z; z). Similarly, A, (U, V) |�
=(z, z′) iff A, (U, V) |� D2

(
(z, z′); (z, z′)

)
.

The following lemma is trivial.

Lemma 1 Let (U, V) and (S, T) be double teams such that S ⊆ U and T ⊆ V .
Let ϕ ∈ A +(τ) be any atomic formula of DC2.
If (U, V) |� ϕ, then (S, T) |� ϕ.

Obviously FOC2 is contained in DC2, but also D2 is essentially contained in DC2

via the translation T defined in Sect. 8 (see Proposition 3).
We have somewhat blindly copied the atoms of D into DC2; it is an interesting

question what these atoms exactly mean in DC2, and what other kinds of atoms and
quantifiers should be considered.We leave such questions for the future. Our objective
in the rest of the current article is simply to show how the double team semantics nicely
facilitates the NEXPTIME-completeness proof of the logic DC2 and other sufficiently
similar logics.

9.2 DC2 is NEXPTIME-Complete

An input to the satisfiability or finite satisfiability problem of DC2 is any sentence ϕ

of DC2. Note that the set of non-logical symbols of ϕ is limited to unary and binary

123

174 A. Kuusisto

relation symbols only. The satisfiability problem asks whether there exists a model A
such that A,

({∅},∅) |� ϕ, while the finite satisfiability asks whether there exists a
finite model B such that B,

({∅},∅) |� ϕ.
An input to the satisfiability or finite satisfiability problem of FOC2 is any sentence

ϕ of FOC2; the set of non-logical symbols of ϕ is here limited to unary and binary
relation symbols only. The satisfiability problem asks whether there exists a model A
such that A |�FO ϕ, while the finite satisfiability problem asks whether there exists a
finite model B such that B |�FO ϕ.

Below we show that the satisfiability and finite satisfiability problems of DC2

are NEXPTIME-complete. Our proof uses the fact that the satisfiability and finite
satisfiability problems of FOC2 areNEXPTIME-complete (see Pratt-Hartmann 2005).
We translate DC2 formulae into equisatisfiable formulae of FOC2 with a polynomial
cost in the formula length. A formula ϕ translates to a formula

ϕ∗ := ψini tial ∧
∧

χ ∈ SUBϕ

ψχ ,

which we define in detail below.
Each conjunct ψχ contains two fresh relation symbols Sχ and Tχ . Intuitively, the

pair (Sχ , Tχ) encodes the double team (Uχ , Vχ) that satisfies χ when ϕ is evaluated
in a model where ϕ holds. If χ is not an atom, the formula ψχ also contains auxiliary
formulae that describe how double teams evolve when ϕ is evaluated. For example, if
χ = ∃s x α, then ψχ describes how the double team (Uχ , Vχ) gives rise to a double
team (Uα, Vα) that satisfies α.

In addition to relation symbols Sχ , Tχ corresponding to double teams, further fresh
variable symbols are used in ψχ when χ is a formula whose main connective is a

quantifier. The fresh symbols EUf
α , EVg′

α correspond to the teams U [z/ f], V [z/g′]
needed in the truth definition of quantified formulae.10

The logic FOC2 uses only two variables, and this creates some obstacles that need
to be overcome when writing the formulae ψχ . Due to the expressivity limitations of
FOC2, we need to control the evaluation of double teams (Uχ , Vχ). For example, if
χ = ∃s x α and the domain of Uχ contains x, then we need to ensure that the new
values of x in U [x/ f] are in a sense independent of the old values of x in Uχ ; the
related definitions are formally discussed below. Lemma 2 ensures that we can indeed
control the evaluation of the teams (Uχ , Vχ) in the desired way, and therefore the
two-variable logic FOC2 is sufficiently expressive for our purposes.

While formulae ψχ describe double teams corresponding to subformulae of ϕ, the
formula ψini tial simply sets the stage by asserting that the team satisfying ϕ itself
corresponds to the double team

({∅},∅)
.

10 It turns out that there is no need for symbols EUf ′
α , EVg. In fact, even the symbols EUf

α and EVg′
α could be

eliminated, but we keep them for the sake of presentation. The reader may consider further minor quantifiers

for which the proofs in this section go trough. In doing so, using extra predicates EUf
α , EVg′

α , EUf ′
α , EVg

may help. By analyzing our proof below, it is easy to see that for example the total existential quantifier ∃t
could be added to DC2 without sacrificing NEXPTIME-completeness.

123

A Double Team Semantics for Generalized Quantifiers 175

We are now ready for the formal details of the proof that the logic DC2 is complete
for NEXPTIME. We begin by some auxiliary definitions and the auxiliary Lemmata
2 and 3. We then formally define the conjuncts of ϕ∗ and show that ϕ and ϕ∗ are
equisatisfiable.

LetU be a team for amodelA. LetAbe the domain ofA. Let s, t ∈ U be assignments
such that s(z) = t (z) for all z ∈ Dom(U) \ {x}. Then t is called an x-variant of s (in
U). Note that s is an x-variant of itself.

Let M be a minor quantifier, and let N ∈ { MA, M
A }. Let f : U → N be a

function. Assume that we have we have f (s) = f (t) for all valuations s, t ∈ U such
that t is an x-variant of s. Then we say that f is x-independent. Let g : U → N be
a function. Assume g0 : U → N is an x-independent function such that for each
s ∈ U , there exists an x-variant t ∈ U of s such that g0(s) = g(t). Then g0 is an
x-independent minor of g.

Let U be a team with domain {x, y} and for a model A, where x and y are the
variables used inDC2 and FOC2.We let Rel(U) denote the relation Rel

(
U,A, (x, y)

)
,

as opposed to Rel
(
U,A, (y, x)

)
. This means that we in a sense nominate x as the first

variable and y as the second one. This convention will simplify the notation below.
If U is a team with the domain {z}, where z ∈ {x, y}, then we let Rel(U) denote
Rel

(
U,A, z

)
.

Lemma 2 Letψ be a formula of DC2. Let M ∈ {∃s, ∃≥k}, where k is a positive integer.
Let z ∈ {x, y} be a variable. Let f : U → MA and g : V → M

A
be functions, and

let f0 and g0 be z-independent minors of f and g, respectively. If

A,
(
U [z/ f] ∪ V [z/g], U [z/ f ′] ∪ V [z/g ′]) |� ψ,

then

A,
(
U [z/ f0] ∪ V [z/g0], U [z/ f0 ′] ∪ V [z/g0 ′]) |� ψ.

Proof Assume that

(
U [z/ f] ∪ V [z/g], U [z/ f ′] ∪ V [z/g ′]) |� ψ. (1)

It is clear that U [z/ f0] ⊆ U [z/ f] and V [z/g0 ′] ⊆ V [z/g ′]. It is also clear that
V [z/g0] = V [z/g] = U [x/ f0 ′] = U [x/ f ′] = ∅. Therefore

U [z/ f0] ∪ V [z/g0] ⊆ U [z/ f] ∪ V [z/g] (2)

and

U [z/ f0 ′] ∪ V [z/g0 ′] ⊆ U [z/ f ′] ∪ V [z/g ′]. (3)

We define a strategy for the player A in the game

G∗ := G
(
A,U [z/ f0] ∪ V [z/g0],U [z/ f0 ′] ∪ V [z/g0 ′], ψ)

.

123

176 A. Kuusisto

Due to Eq. 1, player A has a uniform survival strategy F in the game

G := G
(
A,U [z/ f] ∪ V [z/g],U [z/ f ′] ∪ V [z/g ′], ψ)

.

Due to Eqs. 2 and 3, the strategy F can be canonically restricted to a strategy H for
the game G∗. We need to show that H is a uniform survival strategy for A in G∗.

Since H is a restriction of the uniform survival strategy F, the player A survives
each play of the game G∗ played according to H. To see that H is a uniform survival
strategy, consider the sets S∗(χ) and T ∗(χ) of positive and negative final assignments
for an atomic subformula χ of ψ in the game G∗ when A follows H. Let S(χ) and
T (χ) be the corresponding sets in the game G when A follows F.

It is clear that S∗(χ) ⊆ S(χ) and T ∗(χ) ⊆ T (χ). Due to Eq. 1, we have(
S(χ), T (χ)

) |� χ . By Lemma 1, we have
(
S∗(χ), T ∗(χ)

) |� χ , and therefore
H is a uniform survival strategy for A in the game G∗. ��

Consider a logic where each atom χ satisfies the property that if (U, V) |� χ ,
S ⊆ U , and T ⊆ V , then we have (S, T) |� χ . By analyzing the proof of Lemma
2, it is easy to see that we have actually proved that each such logic satisfies also the
property that if (U, V) |� ϕ, S ⊆ U , and T ⊆ V , then we have (S, T) |� ϕ, where ϕ

does not have to be an atom. So, intuitively, downwards closure of satisfaction in the
double team framework is equivalent to downwards closure of atomic satisfaction.

It turns out that we do not actually need Lemma 2 in full generality. The essential
part of the Lemma is that functions f : U → ∃sA can be assumed to be z-independent;
see the proof of Lemma 4 for further details.

Let ψ be a sentence of DC2. Define Domψ(ψ) = ∅. Assume then that we have
defined Domψ(χ) for χ ∈ SUBψ .

1. If χ = ∃≥k x α or χ = ∃s x α, define Domψ(α) = Domψ(χ) ∪ {x}.
2. If χ = ∃≥k y α or χ = ∃s y α, define Domψ(α) = Domψ(χ) ∪ {y}.
3. If χ = χ1 ∨ χ2, define Domψ(χ1) = Domψ(χ2) = Domψ(χ).
4. If χ = ¬α, define Domψ(α) = Domψ(χ).

Lemma 3 Let ψ be a sentence of DC2 and U a team with exactly one assignment.
Then A,

(
U,∅) |� ψ iff A,

({∅},∅) |� ψ .

Proof Let s be the unique assignment in U. Assume that A, (U,∅) |� ψ . The player
A has a uniform survival strategy F in the game G

({s},∅, ψ
)
. (Recall that we may

write G
(
U,∅, ψ

)
instead of G

(
A,U,∅, ψ

)
.)

Now, let F ′ be the strategy for G({∅},∅, ψ), where A canonically copies the
moves determined by F in G({s},∅, ψ). This means that for each position (A, t, #, α)

inG({∅},∅, ψ), we define F ′(A, t, #, α) := F(A, t ′, #, α), where t = t ′ � Domψ(α),
i.e., t is the restriction of t ′ to the set Domψ(α). It is easy to show that F ′ is well-
defined. Let χ be an arbitrary atom of ψ , and let S(χ) and T (χ) be the sets of positive
and negative final assignments for χ in the game G

({s},∅, ψ
)
when A follows the

strategy F. Recalling that ψ is a sentence, it is easy to see that the teams of positive
and negative final assignments S∗(χ) and T ∗(χ) that arise in G({∅},∅, ψ) when A
follows F ′ are essentially the same teams as those that arise in G({s},∅, ψ) when A

123

A Double Team Semantics for Generalized Quantifiers 177

follows F: if χ has the tuple z of variables, we have Rel
(
S∗(χ), z

) = Rel
(
S(χ), z

)

and Rel
(
T ∗(χ), z

) = Rel
(
T (χ), z

)
. Therefore A, ({∅},∅) |� ψ .

The converse implication is rather similar. Assume that A, ({∅},∅) |� ψ . Thus
A has a uniform survival strategy H in the game G({∅},∅, ψ). Let H ′ be the strat-
egy for G({ s},∅, ψ), where A canonically copies the moves determined by H in
G({∅},∅, ψ). This means that for each position (A, t, #, α) inG({ s},∅, ψ), we define
H ′(A, t, #, α) := H(A, t ′, #, α), where t ′ = t � Domψ(α). Let χ be an arbitrary
atom of ψ , and let S(χ) and T (χ) be the sets of positive and negative final assign-
ments for χ in the game G

({∅},∅, ψ
)
when A follows the strategy H . It is easy

to see that the teams of positive and negative final assignments S∗(χ) and T ∗(χ)

that arise in G({s},∅, ψ) when A follows H ′ are essentially the same teams as
those that arise in G({∅},∅, ψ) when A follows H: if χ has the tuple z of vari-
ables, we have Rel

(
S∗(χ), z

) = Rel
(
S(χ), z

)
and Rel

(
T ∗(χ), z

) = Rel
(
T (χ), z

)
.

Thus A, ({s},∅) |� ψ . ��
Now fix a sentence ϕ of DC2. Our next aim is to define the FOC2-sentence

ϕ∗ := ψini tial ∧
∧

χ ∈ SUBϕ

ψχ

in full detail, and then prove that ϕ and ϕ∗ are equisatisfiable.
Let ψ be an arbitrary subformula of ϕ. Having fixed the sentence ϕ, we shall write

Dom(ψ) instead of Domϕ(ψ) in the rest of the article. Let σ be the set of relation
symbols that occur in ϕ. As discussed above, ϕ∗ contains extra relation symbols
that encode information concerning subformulae of ϕ. Let QSUBϕ denote the set of
formulae α ∈ SUBϕ such that there exists another subformula ψ = Qz α ∈ SUBϕ ,
where Q ∈ {∃≥k, ∃s}. For each formula α ∈ QSUBϕ , define the fresh relation symbols

EUf
α and EVg′

α . The arity of each of these symbols is |Dom(α)|, i.e., the number of
variables in Dom(α).

Additionally, for each formula χ ∈ SUBϕ , define fresh relation symbols Sχ and
Tχ . The arity of the symbols Sχ and Tχ is equal to max{|Dom(χ)|, 1}. The set of
relation symbols in ϕ∗ is the set

σ ∪ { EUf
α | α ∈ QSUBϕ } ∪ { EVg′

α | α ∈ QSUBϕ }
∪ { Sχ | χ ∈ SUBϕ } ∪ { Tχ | χ ∈ SUBϕ }.

Let σ ∗ denote this set.
Define ψini tial := ∃=1x Sϕ(x) ∧ ¬∃xTχ (x). Here ∃=1x is the FOC2-expressible

quantifier stating that exactly one x satisfies the quantified formula. To fully define ϕ∗,
we still need to define the formula ψχ for each formula χ ∈ SUBϕ .

Let χ ∈ SUBϕ . If χ = χ1 ∨ χ2 and Dom(χ) = {x, y}, then ψχ is the conjunction
of the formulae

ψ1
χ := ∀x∀y

(
Sχ (x, y) ↔ (

Sχ1(x, y) ∨ Sχ2(x, y)
))

,

ψ2
χ := ∀x∀y

(
Tχ (x, y) ↔ Tχ1(x, y)

)
,

123

178 A. Kuusisto

ψ3
χ := ∀x∀y

(
Tχ (x, y) ↔ Tχ2(x, y)

)
.

If χ = ∃≥k y α and Dom(χ) = {x, y}, then ψχ is the conjunction of the formulae

ψ1
χ := ∀x∀y(Sχ (x, y) → ∃≥k y EUf

α (x, y)
)
,

ψ2
χ := ∀x∀y(EUf

α (x, y) → ∃y Sχ (x, y)
)
,

ψ3
χ := ∀x∀y(Tχ (x, y) → ¬∃≥k y ¬EVg′

α (x, y)
)
,

ψ4
χ := ∀x∀y(EVg′

α (x, y) → ∃y Tχ (x, y)
)
,

ψ5
χ := ∀x∀y(Sα(x, y) ↔ EUf

α (x, y)
)
,

ψ6
χ := ∀x∀y(Tα(x, y) ↔ EVg′

α (x, y)
)
.

If χ is the atomic formula =(x, y), and thus necessarily Dom(χ) = {x, y}, then
ψχ is the conjunction of the formulae

ψ1
χ := ¬∃x∃≥2y Sχ (x, y),

ψ2
χ := ¬∃x∃y Tχ (x, y).

The structure of each formula ψχ , where χ ∈ SUBϕ , depends on χ and Dom(χ).
A complete list of these formulae is given in the Appendix.

Lemma 4 Assume A is a σ -model such that A,
({∅},∅) |� ϕ. Let A be the domain of

A. Then there exists a σ ∗-model A∗ with the same domain A such that A∗ |�FO ϕ∗.

Proof The relation symbols R ∈ σ are interpreted in A∗ such that RA∗ := RA. The
interpretations of the relation symbols in σ ∗ \ σ are given below.

LetU is an team with domain {x} and for the model A. AssumeU contains exactly
one assignment. Since A, ({∅},∅) |� ψ , we have A, (U,∅) |� ϕ by Lemma 3. We
shall next recursively define a double team (Uχ , Vχ) for each subformula χ ∈ SUBϕ

such that A, (Uχ , Vχ) |� χ holds.
We shall simultaneously define the interpretations of the symbols in σ ∗ \σ , thereby

completing the definition of the model A∗.
First define (Uϕ, Vϕ) := (U,∅). Define SA

∗
ϕ = Rel(Uϕ). Also define TA∗

ϕ := ∅.
Now consider a formula χ ∈ SUBϕ , and assume that we have definedUχ and Vχ such
that A, (Uχ , Vχ) |� χ .

Assume first that χ = ∃≥k x α. As A, (Uχ , Vχ) |� ∃≥k x α, there exist functions

f : Uχ → ∃≥k A and g : Vχ → ∃≥k
A
such that

(
Uχ [x/ f] ∪ Vχ [x/g], Uχ [x/ f ′] ∪ Vχ [x/g′]) |� α.

Furthermore, by Lemma 2, we assume, w.l.o.g., that the functions f and g are
x-independent. We make the following definitions.

1. Uα := Uχ [x/ f] ∪ Vχ [x/g] = Uχ [x/ f]

123

A Double Team Semantics for Generalized Quantifiers 179

2. Vα := Uχ [x/ f ′] ∪ Vχ [x/g′] = Vχ [x/g′]
3. SA

∗
α := Rel

(
Uα

)

4. TA∗
α := Rel

(
Vα

)

5. EUf
α

A∗
:= Rel

(
Uχ [x/ f]) = SA

∗
α

6. EVg′
α

A∗
:= Rel

(
Vχ [x/g′]) = TA∗

α

The cases whereχ is a formula of any of the types ∃≥k y α, ∃s x α, ∃s y α, are treated
analogously. It is essential—as we shall see—that the function f is x-independent in
the case χ = ∃s x α and y-independent when χ = ∃s y α.

Consider then the case where χ is α ∨ β. Since (Uχ , Vχ) |� α ∨ β, we have
(U1, Vχ) |� α and (U2, Vχ) |� β for some U1,U2 ⊆ Uχ such that U1 ∪ U2 = Uχ .
We define (Uα, Vα) := (U1, Vχ) and (Uβ, Vβ) := (U2, Vχ). We also define SA

∗
α :=

Rel(Uα), TA∗
α := Rel(Vα), SA

∗
β := Rel(Uβ), and TA∗

β := Rel(Vβ).
In the case where χ is ¬α, we define Uα := Vχ and Vα := Uχ . We also define

SA
∗

α := Rel(Uα) and TA∗
α := Rel(Vα).

We have now defined the teams Uχ and Vχ for each χ ∈ SUBϕ such that we have
A, (Uχ , Vχ) |� χ . We have also fully defined a σ ∗-modelA∗. We shall next show that
A∗ |�FO ϕ∗. While it is clear that A∗ |�FO ψini tial , we must show that A∗ |�FO ψχ

for each χ ∈ SUBϕ .
Let us first consider the case where χ is of the form ∃s y α for some α ∈ SUBϕ .

This case divides into further subcases, depending on Dom(χ).
We assume first that Dom(χ) = {x, y}.
We know that there exist y-independent functions f : Uχ → ∃s A and g : Vχ →

∃s A such that

A,
(
Uχ [y/ f] ∪ Vχ [y/g], Uχ [y/ f ′] ∪ Vχ [y/g ′]) |� α.

We have Rel(Uχ [y/ f]) = EUf
α

A∗
, Rel(Vχ [y/g]) = ∅, Rel(Uχ [y/ f ′]) = ∅

and Rel(Vχ [y/g ′]) = EVg′
α

A∗
.

We shall first show that A∗ |�FO ψ1
χ . Here it is essential that the function f is

y-independent. Assume that A∗, [x �→ a, y �→ b] |�FO Sχ (x, y). Thus (a, b) ∈
SA

∗
χ = Rel(Uχ). Since f is y-independent, there exists exactly one element b′ ∈ A

such that (a, b′) ∈ Rel(Uχ [y/ f]) = EUf
α

A∗
. Therefore we have A∗, [x �→ a] |�FO

∃=1y EUf
α (x, y), as required.

We have A∗ |�FO ψ2
χ since for every assignment s ∈ Uχ [y/ f] such that s(x) = a,

there must exist an assignment s′ ∈ Uχ such that s′(x) = a. We can similarly show
that A∗ |�FO ψ3

χ ∧ ψ4
χ .

The fact that A∗ |�FO ψ5
χ ∧ ψ6

χ follows immediately since Uα = Uχ [y/ f] ∪
Vχ [y/g] and Vα = Uχ [y/ f ′] ∪ Vχ [y/g ′].

The cases where Dom(χ) is {x}, {y}, or ∅, are similar, as are the cases where
χ := ∃s x α. Also all cases where χ := ∃≥k y α or ∃≥k x α are similar; we shall discuss
the details of the case where χ := ∃≥k x α and Dom(χ) = {x}.

123

180 A. Kuusisto

We know that there exist functions f : Uχ → ∃≥kA and g : Vχ → ∃≥k
A
such that

A,
(
Uχ [x/ f] ∪ Vχ [x/g], Uχ [x/ f ′] ∪ Vχ [x/g ′]) |� α.

We have Rel(Uχ [x/ f]) = EUf
α

A∗
, Rel(Vχ [x/g]) = ∅, Rel(Uχ [x/ f ′]) = ∅

and Rel(Vχ [x/g ′]) = EVg′
α

A∗
. Let us show thatA∗ |�FO ψ1

χ . Assume thatA∗, [x �→
a] |�FO Sχ (x) for some a ∈ A. Thus SA

∗
χ = Rel(Uχ) �= ∅, whence Uχ �= ∅.

Therefore there exist at least k elements b ∈ A such that b ∈ Rel(Uχ [x/ f]) = EUf
α

A∗
.

Therefore A∗ |�FO ∃≥k x EUf
α (x), as required.

We have A∗ |�FO ψ2
χ since if Uχ [x/ f] �= ∅, then Uχ �= ∅. To show that A∗ |�FO

ψ3
χ , assume that A∗, [x �→ a] |�FO Tχ (x) for some a ∈ A. Thus TA∗

χ = Rel(Vχ) is
not empty. Let s ∈ Vχ . Recall that g2 denotes the second coordinate function of g. By
the definition of the minor quantifier ∃≥k , there are at most k − 1 elements in the set
A \ g2(s). Thus there are at most k − 1 elements in A \ Rel

(
Vχ [x/g ′]). Therefore

we have A∗ |�FO ¬∃≥k x¬EVg′
α (x), and hence A∗ |�FO ψ3

χ .
We have A∗ |�FO ψ4 since if Vχ [x/g ′] is not empty, then Vχ cannot be empty.

We have A∗ |�FO ψ5 ∧ ψ6 since Uα = Uχ [x/ f] and Vα = Vχ [x/g ′].
The caseswhereχ = χ1∨χ2 andχ = ¬α are straightforward, sowe omit them and

move directly to the caseswhereχ is an atomic formula.Assumefirst thatχ = R(y, x)
for some relation symbol R. We must show that A∗ |�FO ∀x∀y(SR(y,x)(x, y) →
R(y, x)

)
. (Notice indeed the order of all tuples of variables.) Assume that A∗, [x �→

a, y �→ b] |�FO SR(y,x)(x, y). By the definition of the relation SA
∗

R(y,x), this means
that (a, b) ∈ Rel(UR(y,x)).We haveA, (UR(y,x), VR(y,x)) |�FO R(y, x), and therefore
A∗, s |�FO R(y, x) for all s ∈ UR(y,x). Thus A∗, [x �→ a, y �→ b] |�FO R(y, x). All
the remaining arguments for the cases where χ is an atomic first-order formula, are
similar.

Assume then that χ is the atom =(x, y). We must establish that we have A∗ |�FO
¬∃x∃≥2y S=(x,y)(x, y). Assume A∗, [x �→ a, y �→ b] |�FO S=(x,y)(x, y) for some
a, b ∈ A. Therefore (a, b) ∈ Rel(U=(x,y)).We haveA,

(
U=(x,y), V=(x,y)

) |�=(x, y),
and therefore s(y) = s′(y) for all s, s′ ∈ U=(x,y) such that s(x) = s′(x). Hence there
exists no pair (a, b′) ∈ Rel(U=(x,y)) = SA

∗
=(x,y) such that b �= b′. Thus A∗ |�FO

¬∃x∃≥2y S=(x,y)(x, y), as required.
All remaining arguments concerning non-first-order atoms are similar. ��

Lemma 5 Let B∗ be a σ ∗-model such that B∗ |�FO ϕ∗. Let B be the domain ofB∗.
Then there exists a σ -model B with the same domain B such thatB,

({∅},∅) |� ϕ.

Proof Assume that B∗ |�FO ϕ∗.
LetB be the reduct ofB∗ to the vocabulary σ , i.e., the domain ofB is B, and each

relation symbol R ∈ σ is interpreted such that RB := RB∗
.

We shall next define a double team (Uχ , Vχ) for each χ ∈ SUBϕ . We shall then
establish that B,

(
Uχ , Vχ

) |� χ for each χ ∈ SUBϕ .
If Dom(χ) is any of the sets {x}, {y}, {x, y}, we let Uχ and Vχ be the teams with

domain Dom(χ) and codomain B such that Rel(Uχ) = SB
∗

χ and Rel(Vχ) = TB∗
χ .

123

A Double Team Semantics for Generalized Quantifiers 181

If Dom(χ) is ∅, we let Uχ and Vχ be the teams with the domain {x} and codomain B
such that Rel(Uχ) = SB

∗
χ and Rel(Vχ) = TB∗

χ .
We shall prove by induction on the structure of ϕ that B,

(
Uχ , Vχ

) |� χ for each
χ ∈ SUBϕ . We shall then establish that B,

({∅},∅) |� ϕ.
Assume first that χ is the atomic formula R(y, x). Let s ∈ UR(y,x) be an assign-

ment. Thus B∗, s |�FO SR(y,x)(x, y). Since B∗ |�FO ψR(y,x), we have B∗, s |�FO
R(y, x). We show similarly that if t ∈ VR(y,x), then B∗, t �|� R(y, x). Therefore
B,

(
UR(y,x), VR(y,x)

) |� R(y, x). The corresponding argument for other first-order
atoms is similar.

Let χ be the atom =(x, y). SinceB∗ |�FO ψχ , there exist no pairs (a, b), (a, b′) ∈
SB

∗
χ such that b �= b′. Furthermore, TB∗

α = ∅. Therefore B, (Uχ , Vχ) |� χ . The
corresponding arguments for other non-first-order atoms of DC2 are similar.

For the sake of induction, let χ := ∃≥k y α be a subformula of ϕ, and assume that
B, (Uα, Vα) |� α. We need to show that B, (Uχ , Vχ) |� χ . Let us consider the case

where Dom(χ) = {x, y}. We define a function f : Uχ → ∃≥k B as follows. Assume
s ∈ Uχ is an assignment such that s(x) = a and s(y) = b for some a, b ∈ B. Thus
(a, b) ∈ SB

∗
χ . Since B∗ |�FO ψ1

χ , the set

Bs := { c ∈ A | B∗, [x �→ a, y �→ c] |� EUf
α (x, y) } (4)

has at least k elements. Define f : Uχ → ∃≥k B such that f (s) := (Bs,∅) for each

s ∈ Uχ . Thus Rel(Uχ [y/ f]) ⊆ EUf
α

B∗
.

Let us then similarly define a function g : Vχ → ∃≥k
B
. Let s ∈ Vχ be an

assignment such that s(x) = a and s(y) = b for some a, b ∈ B. Thus (a, b) ∈ TB∗
χ .

Since B∗ |�FO ψ3
χ , the number of elements in the set

Cs := { c ∈ A | B∗, [x �→ a, y �→ c] |� EVg′
χ (x, y) } (5)

satisfies the condition |B \Cs | < k. Define g : Vχ → ∃≥k
B
such that g(s) := (∅,Cs)

for each s ∈ Vχ . Thus Rel(Vχ [y/g ′]) ⊆ EVg′
α

B∗
.

As Uχ [y/ f ′] = Vχ [y/g] = ∅, we now know that

Rel
(
Uχ [y/ f]) ∪ Rel(Vχ [y/g]) ⊆ EUf

α

B∗
(6)

and
Rel

(
Uχ [y/ f ′]) ∪ Rel(Vχ [y/g ′]) ⊆ EVg′

α

B∗
. (7)

We then show that also the converse inclusion of Eq. 6 holds. Assume that (a, c) ∈
EUf

α

B∗
. As B∗ |�FO ψ2

χ , there exists some b ∈ B such that (a, b) ∈ Rel(Uχ). Let
s ∈ Uχ be the assignment such that s(x) = a and s(y) = b. Now, by the definition

of f (see Eq. 4), we observe that since (a, c) ∈ EUf
α

B∗
, we have c ∈ f1(s); recall

123

182 A. Kuusisto

here that f1 denotes the first coordinate function of f. Thus (a, c) ∈ Rel(Uχ [y/ f]).
Therefore the converse inclusion of Eq. 6 holds.

We then establish that also the converse inclusion of Eq. 7 holds. Assume that

(a, c) ∈ EVg′
α

B∗
. AsB∗ |�FO ψ4

χ , there exists someb ∈ B such that (a, b) ∈ Rel(Vχ).
Let s ∈ Vχ be the assignment such that s(x) = a and s(y) = b. By the definition
of the function g (Eq. 5), we observe that c ∈ g2(s). Thus (a, c) ∈ Rel(Vχ [y/g ′]).
Hence the converse inclusion of Eq. 7 holds.

As B∗ |�FO ψ5
χ ∧ ψ6

χ , we conclude that Uχ [y/ f] ∪ Vχ [y/g] = Uα and
Vχ [y/ f ′] ∪ Vχ [y/g ′] = Vα . As B, (Uα, Vα) |� α, we therefore conclude that
B, (Uχ , Vχ) |� χ . The remaining cases where χ = ∃≥k y α or χ = ∃≥k x α, are
similar. We next deal with the strict existential quantifier ∃s .

Let χ := ∃s x α, and assume B, (Uα, Vα) |� α. Let us consider the details of the
case where Dom(χ) = {y}. We define a function f : Uχ → ∃s B as follows. Assume
s ∈ Uχ is an assignment such that s(y) = a for some a ∈ B. Thus a ∈ SB

∗
χ . Since

B∗ |�FO ψ1
χ , the size of the set

Bs := { c ∈ A | B∗, [x �→ c, y �→ a] |� EUf
α (x, y) } (8)

is exactly one. Define f : Uχ → ∃s B such that f (s) := (Bs,∅) for each s ∈ Uχ .

Thus Rel(Uχ [x/ f]) ⊆ EUf
α

B∗
. We also of course have Rel(Uχ [x/ f ′]) = ∅.

Let us then define the function g : Vχ → ∃s B such that g(s) = (∅, B) for each
s ∈ Vχ . Assume s ∈ Vχ is an assignment such that s(y) = a. Thus a ∈ TB∗

χ . Since

B∗ |�FO ψ3
χ , we have (c, a) ∈ EVg′

α

B∗
for each c ∈ A. Thus Rel(Vχ [x/g ′]) ⊆

EVg′
α

B∗
.

As Rel(Vχ [x/g]) and Rel(Vχ [x/ f ′]) are empty, we have

Rel
(
Uχ [x/ f]) ∪ Rel(Vχ [x/g]) ⊆ EUfB ∗

α (9)

and

Rel
(
Uχ [x/ f ′]) ∪ Rel(Vχ [x/g ′]) ⊆ EVg′

α

B∗
. (10)

We then show that the converse inclusion of Eq. 9 holds. Assume that (a, b) ∈
EUf

α

B∗
. As B∗ |�FO ψ2

χ , we have b ∈ Rel(Uχ). Let s ∈ Uχ be the assignment such

that s(y) = b. Now, by the definition of f (see Eq. 8), since (a, b) ∈ EUf
α

B∗
, we have

(a, b) ∈ Rel
(
U [x/ f]). Therefore the converse inclusion of Eq. 9 holds.

It is easy to establish that also the converse inclusion of Eq. 10 holds. Therefore,
as B∗ |�FO ψ5

χ ∧ ψ6
χ , we infer that Uχ [y/ f] ∪ Vχ [y/g] = Uα and Vχ [y/ f ′] ∪

Vχ [y/g ′] = Vα . AsB, (Uα, Vα) |� α, we therefore conclude thatB, (Uχ , Vχ) |� χ .

123

A Double Team Semantics for Generalized Quantifiers 183

We have now discussed the cases where χ = ∃≥k z α or χ = ∃s z α; here z ∈ {x, y}.
The arguments for the cases where χ = α ∨ β or χ = ¬α, are straightforward.

We conclude that B, (Uϕ, Vϕ) |� ϕ. Since B∗ |� ψini tial , we have Rel(Uϕ) =
SB

∗
ϕ = {b} for some b ∈ B and Rel(Vϕ) = TB∗

ϕ = ∅. Hence B,
({∅},∅) |� ϕ by

Lemma 3. ��

Theorem 2 The satisfiability and finite satisfiability problems of DC2 are complete
for NEXPTIME.

Proof The satisfiability and finite satisfiability problems of DC2 are in NEXPTIME
due to the translation from DC2 into FOC2 defined above; it is shown in Pratt-
Hartmann (2005) that the satisfiability and finite satisfiability problems for FOC2 are
NEXPTIME-complete. Furthermore, the satisfiability andfinite satisfiability problems
for DC2 are NEXPTIME-hard since DC2 contains FOC2. ��

By analyzing our proofs above, we notice that for example the total existential
quantifier ∃t could be added to DC2 without sacrificing NEXPTIME-completeness.
The related formulae for the case where χ = ∃t y α and Dom(χ) = {x, y}, are listed
below. We let ∨̃ denote the exclusive disjunction and use a novel symbol EUf′

α that
corresponds to the team Uχ [y/ f ′].

ψ1
χ := ∀x∀y(Sχ (x, y) → ∃y EUf

α (x, y)
)
,

ψ2
χ := ∀x∀y

(
Sχ (x, y) → ∀y(EUf

α (x, y) ∨̃ EUf ′
α (x, y)

))
,

ψ3
χ := ∀x∀y

((
EUf

α (x, y) ∨ EUf ′
α (x, y)

) → ∃y Sχ (x, y)
)
,

ψ4
χ := ∀x∀y(Tχ (x, y) → ∀y EVg′

α (x, y)
)
,

ψ5
χ := ∀x∀y

(
EVg′

α (x, y) → ∃y Tχ (x, y)
)
,

ψ7
χ := ∀x∀y

(
Sα(x, y) ↔ EUf

α (x, y)
)
,

ψ8
χ := ∀x∀y

(
Tα(x, y) ↔ (

EUf ′
α (x, y) ∨ EVg′

α (x, y)
))

.

Interestingly, it is essential for our argument here that f can be assumed to be
y-independent. Otherwise we would run into trouble with the formula ψ2

χ .

10 A Semantics for Single Teams

In this section we define a semantics for variants of dependence logic with generalized
quantifiers based on single teams. We also modify the notion of a generalized atom so
that it works naturally in this context. Let us first define the following semantics with
two turnstiles |�+ and |�−.

123

184 A. Kuusisto

A,U |�+ y1 = y2 ⇔ ∀s ∈ U
(
A, s |�FO y1 = y2

)
.

A,U |�− y1 = y2 ⇔ ∀s ∈ U
(
A, s |�FO y1 �= y2

)
.

A,U |�+ R(y1, . . . , ym) ⇔ ∀s ∈ U
(
A, s |�FO R(y1, . . . , ym)

)
.

A,U |�− R(y1, . . . , ym) ⇔ ∀s ∈ U
(
A, s �|�FO R(y1, . . . , ym)

)
.

A,U |�+ ¬ϕ ⇔ A,U |�− ϕ.

A,U |�− ¬ϕ ⇔ A,U |�+ ϕ.

A,U |�+ (ϕ ∨ ψ) ⇔ A,U1 |�+ ϕ and A,U2 |�+ ψ for
some U1,U2 ⊆ U such that U1 ∪U2 = U.

A,U |�− (ϕ ∨ ψ) ⇔ A,U |�− ϕ and A,U |�− ψ.

For a generalized quantifier Q of type (i1, . . . , in), the semantic clause is defined
such thatA,U |�+ Qx1, . . . , xn(ϕ1, . . . , ϕn) iff there exists a function f : U → QA

such that

A,U [x1/ f1] |�+ ϕ1 and U [x1/ f1′] |�− ϕ1,
...

A,U [xn/ fn] |�+ ϕn and U [xn/ fn ′] |�− ϕn .

We also define that A,U |�− Qx1, . . . , xn(ϕ1, . . . , ϕn) iff there exists a function

g : U → Q
A
such that

A,U [x1/g1] |�+ ϕ1 and U [x1/g1′] |�− ϕ1,
...

A,U [xn/gn] |�+ ϕn and U [xn/gn ′] |�− ϕn .

It is straightforward to establish the following proposition.

Proposition 4 Let ϕ be a formula of first-order logic, possibly extended with gener-
alized quantifiers. Let U be a team. Then the equivalences A,U |�+ ϕ ⇔ ∀s ∈
U (A, s |�FO ϕ) and A,U |�− ϕ ⇔ ∀s ∈ U (A, s �|�FO ϕ) hold.

For a minor quantifier M, we define A,U |�+ Mx ϕ if and only if there exists a
function f : U → MA such that A,U [x/ f] |�+ ϕ andA,U [x/ f ′] |�− ϕ. We also

define A,U |�− Mx ϕ if and only if there exists a function g : U → M
A
such that

A,U [x/g] |�+ ϕ andA,U [x/g′] |�− ϕ. IfQ is a generalized quantifier and M ≤ Q
its minor, we can replace any instance of Q by M or vice versa, without affecting the
satisfaction of formulae. Note, however, that this interchangeability does not generally
hold if we add generalized atoms into the picture.

Indeed, we can naturally extend the single team framework with a suitable notion
of a generalized atom. Let (Q, P) be a pair of generalized quantifiers, each of type
(i1, . . . , ik). Consider syntactic atomic expressions of type A(y1, . . . , yk), where each
y j is of the length i j . We define

123

A Double Team Semantics for Generalized Quantifiers 185

A,U |�+ A(y1, . . . , yk) ⇔ (
Rel(U,A, y1), . . . , Rel(U,A, yk)

) ∈ QA

and

A,U |�− A(y1, . . . , yk) ⇔ (
Rel(U,A, y1), . . . , Rel(U,A, yk)

) ∈ PA.

It is not difficult to devise a corresponding symmetric game-theoretic semantics
for single teams, but we shall not do this in the current article for the sake of brevity.
The uniformity condition here seems to be—in a subtle way—quite different from
the uniformity condition of the game theoretic semantics corresponding to the double
team semantics. Indeed, we do not claim that the single team semantics is simply
another way of presenting the double team semantics. The analysis of the differences
between the single team and double team semantics is left for the future.

11 Concluding Remarks

We have defined the notions of a generalized atom and minor quantifier, and shown
how these notions can be used in defining extensions and variants of dependence logic.
We have devised a double team semantics that can accommodate such extensions and
variants under the same umbrella framework in a natural way. We have established
that the double team semantics has a natural game-theoretic counterpart, and discussed
issues related to the interpretation of logics based on team semantics. We have put
double team semantics into use by defining the extension DC2 of D2 with counting
quantifiers. We have shown that the satisfiability and finite satisfiability problems of
DC2 are complete for NEXPTIME.

Obvious interesting future questions involve the investigation of logics that mix
different minor quantifiers and generalized atoms. It is also interesting to see how
natural generalized atoms are in logical investigations. Phenomena that appear strange
arise easily in logics that belong to the family of independence-friendly logic, often
because technical operators are carelessly associated with intuitions that arise from
the use of the same symbols in first-order logic. Signalling (see Mann et al. 2011) is a
classical example of such a phenomenon. It remains to be investigated what kinds of
systems embeddable in the double team semantics are natural, and up to what extent.
For example the notion of negation calls for further analysis in this context.

There already exists a wide range of papers on logics based on team semantics.
Subtle changes in semantic choices, such as using the lax existential quantifier instead
of the strict one, lead to logics with different expressivities. To understand related
phenomena better, it definitely makes sense to study systems based on team semantics
in a unified framework. The double team semantics aims to provide such a framework.

Acknowledgments The author wishes to thank for comments the colleagues to whom he communicated
his double team approach to generalized quantifiers in ESSLLI 2011, namely Fredrik Engström, Pietro
Galliani, and Lauri Hella.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/

186 A. Kuusisto

12 Appendix: Formulae for the Translation DC2 → FOC2

12.1 Formulae for χ = ∃≥kx α.

Dom(χ) = {x, y}:
ψ1

χ := ∀x∀y(Sχ (x, y) → ∃≥k x EUf
α (x, y)

)
,

ψ2
χ := ∀x∀y(EUf

α (x, y) → ∃x Sχ (x, y)
)
,

ψ3
χ := ∀x∀y(Tχ (x, y) → ¬∃≥k x ¬EVg′

α (x, y)
)
,

ψ4
χ := ∀x∀y(EVg′

α (x, y) → ∃x Tχ (x, y)
)
,

ψ5
χ := ∀x∀y(Sα(x, y) ↔ EUf

α (x, y)
)
,

ψ6
χ := ∀x∀y(Tα(x, y) ↔ EVg′

α (x, y)
)
.

Dom(χ) is either of the sets {x}, ∅:
ψ1

χ := ∃x Sχ (x) → ∃≥k x EUf
α (x),

ψ2
χ := ∃x EUf

α (x) → ∃x Sχ (x),

ψ3
χ := ∃x Tχ (x) → ¬∃≥k x ¬EVg′

α (x),

ψ4
χ := ∃xEVg′

α (x) → ∃x Tχ (x),

ψ5
χ := ∀x(Sα(x) ↔ EUf

α (x)
)
,

ψ6
χ := ∀x(Tα(x) ↔ EVg′

α (x)
)
.

Dom(χ) is {y}:

ψ1
χ := ∀y(Sχ (y) → ∃≥k x EUf

α (x, y)
)
,

ψ2
χ := ∀x∀y(EUf

α (x, y) → Sχ (y)
)
,

ψ3
χ := ∀y(Tχ (y) → ¬∃≥k x ¬EVg′

α (x, y)
)
,

ψ4
χ := ∀x∀y(EVg′

α (x, y) → Tχ (y)
)
,

ψ5
χ := ∀x∀y(Sα(x, y) ↔ EUf

α (x, y)
)
,

ψ6
χ := ∀x∀y(Tα(x, y) ↔ EVg′

α (x, y)
)
.

12.2 Formulae for χ = ∃≥k y α.

Dom(χ) = {x, y}:

ψ1
χ := ∀x∀y(Sχ (x, y) → ∃≥k y EUf

α (x, y)
)
,

ψ2
χ := ∀x∀y(EUf

α (x, y) → ∃y Sχ (x, y)
)
,

ψ3
χ := ∀x∀y(Tχ (x, y) → ¬∃≥k y ¬EVg′

α (x, y)
)
,

123

A Double Team Semantics for Generalized Quantifiers 187

ψ4
χ := ∀x∀y(EVg′

α (x, y) → ∃y Tχ (x, y)
)
,

ψ5
χ := ∀x∀y(Sα(x, y) ↔ EUf

α (x, y)
)
,

ψ6
χ := ∀x∀y(Tα(x, y) ↔ EVg′

α (x, y)
)
.

If Dom(χ) is either of the sets {y},∅, exactly the same formulae ψ1
χ , . . . , ψ6

χ are
used as in the case where χ = ∃≥k x α and Dom(χ) is {x} or ∅.
Dom(χ) is {x}:

ψ1
χ := ∀x(Sχ (x) → ∃≥k y EUf

α (x, y)
)
,

ψ2
χ := ∀x∀y(EUf

α (x, y) → Sχ (x)
)
,

ψ3
χ := ∀x(Tχ (x) → ¬∃≥k y ¬EVg′

α (x, y)
)
,

ψ4
χ := ∀x∀y(EVg′

α (x, y) → Tχ (x)
)
,

ψ5
χ := ∀x∀y(Sα(x, y) ↔ EUf

α (x, y)
)
,

ψ6
χ := ∀x∀y(Tα(x, y) ↔ EVg′

α (x, y)
)
.

12.3 Formulae for χ = ∃sx α.

Below we let ∃=1x ψ denote the (FOC2-expressible) condition that exactly one x
satisfies ψ .
Dom(χ) = {x, y}:

ψ1
χ := ∀x∀y(Sχ (x, y) → ∃=1x EUf

α (x, y)
)
,

ψ2
χ := ∀x∀y(EUf

α (x, y) → ∃x Sχ (x, y)
)
,

ψ3
χ := ∀x∀y(Tχ (x, y) → ∀xEVg′

α (x, y)
)
,

ψ4
χ := ∀x∀y(EVg′

α (x, y) → ∃x Tχ (x, y)
)
,

ψ5
χ := ∀x∀y(Sα(x, y) ↔ EUf

α (x, y)
)
,

ψ6
χ := ∀x∀y(Tα(x, y) ↔ EVg′

α (x, y)
)
.

Dom(χ) is either of the sets {x}, ∅:

ψ1
χ := ∃x Sχ (x) → ∃=1x EUf

α (x),

ψ2
χ := ∃x EUf

α (x) → ∃x Sχ (x),

ψ3
χ := ∃x Tχ (x) → ∀xEVg′

α (x),

ψ4
χ := ∃xEVg′

α (x) → ∃x Tχ (x),

ψ5
χ := ∀x(Sα(x) ↔ EUf

α (x)
)
,

ψ6
χ := ∀x(Tα(x) ↔ EVg′

α (x)
)
.

123

188 A. Kuusisto

Dom(χ) is {y}:

ψ1
χ := ∀y(Sχ (y) → ∃=1x EUf

α (x, y)
)
,

ψ2
χ := ∀x∀y(EUf

α (x, y) → Sχ (y)
)
,

ψ3
χ := ∀y(Tχ (y) → ∀xEVg′

α (x, y)
)
,

ψ4
χ := ∀x∀y(EVg′

α (x, y) → Tχ (y)
)
,

ψ5
χ := ∀x∀y(Sα(x, y) ↔ EUf

α (x, y)
)
,

ψ6
χ := ∀x∀y(Tα(x, y) ↔ EVg′

α (x, y)
)
.

12.4 Formulae for χ = ∃s y α.

Dom(χ) = {x, y}:

ψ1
χ := ∀x∀y(Sχ (x, y) → ∃=1y EUf

α (x, y)
)
,

ψ2
χ := ∀x∀y(EUf

α (x, y) → ∃y Sχ (x, y)
)
,

ψ3
χ := ∀x∀y(Tχ (x, y) → ∀yEVg′

α (x, y)
)
,

ψ4
χ := ∀x∀y(EVg′

α (x, y) → ∃y Tχ (x, y)
)
,

ψ5
χ := ∀x∀y(Sα(x, y) ↔ EUf

α (x, y)
)
,

ψ6
χ := ∀x∀y(Tα(x, y) ↔ EVg′

α (x, y)
)
.

If Dom(χ) is either of the sets {y},∅, exactly the same formulae ψ1
χ , . . . , ψ6

χ are
used as in the case where χ = ∃s x α and Dom(χ) is {x} or ∅.
Dom(χ) is {x}:

ψ1
χ := ∀y(Sχ (x) → ∃=1y EUf

α (x, y)
)
,

ψ2
χ := ∀x∀y(EUf

α (x, y) → Sχ (x)
)
,

ψ3
χ := ∀x∀y(Tχ (x, y) → ∀yEVg′

α (x, y)
)
,

ψ4
χ := ∀x∀y(EVg′

α (x, y) → Tχ (x)
)
,

ψ5
χ := ∀x∀y(Sα(x, y) ↔ EUf

α (x, y)
)
,

ψ6
χ := ∀x∀y(Tα(x, y) ↔ EVg′

α (x, y)
)
.

12.5 Formulae for χ = χ1 ∨ χ2

Dom(χ) = {x, y}:

ψ1
χ := ∀x∀y

(
Sχ (x, y) ↔ (

Sχ1(x, y) ∨ Sχ2(x, y)
))

,

123

A Double Team Semantics for Generalized Quantifiers 189

ψ2
χ := ∀x∀y

(
Tχ (x, y) ↔ Tχ1(x, y)

)
,

ψ3
χ := ∀x∀y

(
Tχ (x, y) ↔ Tχ2(x, y)

)
.

Dom(χ) is any of the sets {x}, {y},∅:

ψ1
χ := ∀x

(
Sχ (x) ↔ (

Sχ1(x) ∨ Sχ2(x)
))

,

ψ2
χ := ∀x

(
Tχ (x) ↔ Tχ1(x)

)
,

ψ3
χ := ∀x

(
Tχ (x) ↔ Tχ2(x)

)
.

12.6 Formulae for χ = ¬α

Dom(χ) = {x, y}:

ψ1
χ := ∀x∀y(Sχ (x, y) ↔ Tα(x, y)

)
,

ψ2
χ := ∀x∀y(Tχ (x, y) ↔ Sα(x, y)

)
.

Dom(χ) is any of the sets {x}, {y},∅:

ψ1
χ := ∀x(Sχ (x) ↔ Tα(x)

)
,

ψ2
χ := ∀x(Tχ (x) ↔ Sα(x)

)
.

12.7 χ is an Atomic Formula

χ is a first-order atom and Dom(χ) = {x, y}:

ψ1
χ := ∀x∀y(Sχ (x, y) → χ

)
,

ψ2
χ := ∀x∀y(Tχ (x, y) → ¬χ

)
.

χ is a first-order atom and Dom(χ) is {x}:

ψ1
χ := ∀x(Sχ (x) → χ

)
,

ψ2
χ := ∀x(Tχ (x) → ¬χ

)
.

χ is a first-order atom and Dom(χ) is {y}:

ψ1
χ := ∀y(Sχ (y) → χ

)
,

ψ2
χ := ∀y(Tχ (y) → ¬χ

)
.

123

190 A. Kuusisto

If χ is the formula =(x, y), then Dom(χ) = {x, y}. We define ψ1
χ := ¬∃x∃≥2y

Sχ (x, y) and ψ2
χ := ¬∃x∃y Tχ (x, y). If χ is the formula =(y, x), then Dom(χ) =

{x, y}. We define ψ1
χ := ¬∃y∃≥2x Sχ (x, y) and ψ2

χ := ¬∃x∃y Tχ (x, y).
If χ is the formula =(x) and Dom(χ) = {x, y}, we define ψ1

χ := ¬∃≥2x ∃y
Sχ (x, y) and ψ2

χ := ¬∃x∃y Tχ (x, y). If χ is the formula =(x) and Dom(χ) = {x},
we define ψ1

χ := ¬∃≥2x Sχ (x) and ψ2
χ := ¬∃x Tχ (x).

If χ is the formula =(y) and Dom(χ) = {x, y}, we define ψ1
χ := ¬∃≥2y ∃x Sχ

(x, y) and ψ2
χ := ¬∃x∃y Tχ (x, y). If χ is the formula =(y) and Dom(χ) = {y}, we

define ψ1
χ := ¬∃≥2x Sχ (x) and ψ2

χ := ¬∃x Tχ (x).

References

Benaim, S., Benedikt, M., Charatonik, W., Kieroński, E., Lenhardt, R., Mazowiecki, F., & Worrell., J.
(2013). Complexity of two-variable logic on finite trees. In: Proceedings of the 40th international
colloquium on automata, languages and programming (ICALP 2013), pp. 74–88.

Bradfield, J. (2013). Team building in dependence. In: Proceedings of the 22nd EACSL annual conference
on computer science logic (CSL 2013), pp. 116–128.

Charatonik, W., &Witkowski, P. (2013). Two-variable logic with counting and trees. In: Proceedings of the
28th annual ACM/IEEE symposium on logic in computer science (LICS 2013), pp. 73–82.

Engström, F. (2012). Generalized quantifiers in dependence logic. Journal of Logic, Language and Infor-
mation, 21(3), 299–324.

Engström, F., & Kontinen, J. (2013). Characterizing quantifier extensions of dependence logic. Journal of
Symbolic Logic, 78(1), 307–316.

Engström, F., Kontinen, J., & Väänänen, J. (2013). Dependence logic with generalized quantifiers: axiom-
atizations. In: Proceeings of the 20th workshop on logic, language, information and computation
(WoLLiC 2013), pp. 138–152.

Galliani, P. (2012). Inclusion and exclusion dependencies in team semantics: On some logics of imperfect
information. Annals of Pure and Applied Logic, 163(1), 68–84.

Galliani, P., Hannula, M., & Kontinen, J. (2013). Hierarchies in independence logic. In: Proceedings of the
22nd EACSL annual conference on computer science logic (CSL 2013), pp. 263–280.

Galliani, P., & Hella, L. Inclusion logic and fixed point logic. In: Proceedings of the 22nd EACSL annual
conference on computer science logic (CSL 2013), pp. 281–295.

Grädel, E. (2013). Model-checking games for logics of imperfect information. Theoretical Computer Sci-
ence, 493, 2–14.

Grädel, E., & Väänänen, J. (2013). Dependence and independence. Studia Logica, 101(2), 399–410.
Hintikka, J., & Sandu, G. (1989). Informational independence as a semantical phenomenon. In: Logic,

methodology and philosophy of science, studies in logic and foundations of mathematics (vol. 126).
North-Holland, Amsterdam.

Hodges, W. (1997). Compositional semantics for a langauge of imperfect information. Logic Journal of the
IGPL, 5(4), electronic.

Kieroński, E.,&Michaliszyn, J. (2012). Two-variable universal logicwith transitive closure. In:Proceedings
of the 21st EACSL annual conference on computer science logic (CSL 2012), pp. 396–410.

Kieroński, E., Michaliszyn, J., Pratt-Hartmann, I., & Tendera, L. (2012). Two-variable first-order logic with
equivalence closure. In: Proceedings of the 27th annual ACM/IEEE symposium on logic in computer
science (LICS 2012), pp. 431–440.

Kontinen, J., Kuusisto, A., Lohmann, P., & Virtema, J. (2011). Complexity of two-variable dependence
logic and IF-logic. In: Proceedings of the 26th annual ACM/IEEE symposium on logic in computer
science (LICS 2011), pp. 289–298.

Kuusisto, A. (2010). Resource conscious quantification and ontologies with degrees of significance. Tech-
nical report. University of Tampere, Tampub electronic publications.

Kuusisto, A. (2012). Defining a double team semantics for generalized quantifiers. Technical report. Uni-
versity of Tampere, Tampub electronic publications.

123

A Double Team Semantics for Generalized Quantifiers 191

Lindström, P. (1966). First order predicate logic with generalized quantifiers. Theoria, 32, 286–195.
Mann, A., Sandu, G., & Sevenster, M. (2011). Independence-friendly logic: A game theoretic approach.

Cambridge: Cambridge University Press.
Manuel, A., & Zeume, T. (2013). Two-variable logic on 2-dimensional structures. In: Proceedings of the

22nd EACSL annual conference on computer science logic (CSL 2013), pp. 484–499.
Pratt-Hartmann, I. (2005). Complexity of the two-variable fragment with counting quantifiers. Journal of

Logic, Language and Information, 14(3), 369–395.
Steels, L. & Kaplan, F. (2001). AIBO’s first words. The social learning of language and meaning. In:

Evolution of Communication (Vol. 4, no. 1), Amsterdam: John Benjamins Publishing Company.
Szwast W., & Tendera, L. (2013). FO2 with one transitive relation is decidable. In: Proceedings of the 30th

symposium on theoretical aspects of computer science (STACS 2013), pp. 317–328.
Väänänen, J. (2007). Dependence logic. Cambridge: Cambridge University Press.
Wittgenstein, L. (1953). Philosophical investigations. Oxford: Blackwell.

123

	A Double Team Semantics for Generalized Quantifiers
	Abstract
	1 Introduction
	2 Preliminaries
	3 Dependence Logic and its Variants
	4 A Double Team Semantics
	5 Generalized Atoms
	6 Minor Quantifiers
	7 Game-Theoretic Semantics
	8 Interpreting Dependence Logic with Double Team Semantics
	8.1 Interpreting Different Existential Quantifiers
	8.2 Observations Concerning Atoms

	9 Complexity of DC2
	9.1 The Logic DC2
	9.2 DC2 is NEXPTIME-Complete

	10 A Semantics for Single Teams
	11 Concluding Remarks
	Acknowledgments
	12 Appendix: Formulae for the Translation DC2rightarrowFOC2
	12.1 Formulae for chi = existsgeq k x alpha.
	12.2 Formulae for chi = existsgeq k y alpha.
	12.3 Formulae for chi = existss x alpha.
	12.4 Formulae for chi = existss y alpha.
	12.5 Formulae for chi = chi1 vee chi2
	12.6 Formulae for chi = neg alpha
	12.7 χ is an Atomic Formula

	References

