
J Log Lang Inf (2015) 24:1–26
DOI 10.1007/s10849-014-9211-2

On the Effect of the IO-Substitution on the Parikh
Image of Semilinear Full AFLs

Pierre Bourreau

Published online: 27 November 2014
© Springer Science+Business Media Dordrecht 2014

Abstract Back in the 1980’s, the class of mildly context-sensitive formalisms was
introduced so as to capture the syntax of natural languages. While the languages gen-
erated by such formalisms are constrained by the constant-growth property, the most
well-known and used ones—like tree-adjoining grammars or multiple context-free
grammars—generate languages which verify the stronger property of being semi-
linear. In (Bourreau et al. 2012), the operation of IO-substitution was created so as
to exhibit mildly-context sensitive classes of languages which are not semilinear. In
the present article, we extend the notion of semilinearity, and characterize the Parikh
image of the languages in IO(L), the closure of a class L of semilinear languages
under IO-substitution, as universally-semilinear. Based on this result and on the work
of Fischer on macro-grammars, we then show that IO(L) is not closed under inverse
homomorphism when L is closed under inverse homomorphism, and encompasses
the class of regular languages. This result proves that IO(MCFL) is not a full AFL,
where MCFL denotes the class of multiple context-free languages, closing an open
question in Bourreau et al. (2012). More importantly, our proof gives an insight into
the relation between the non-closure under inverse homomorphism of IO(MCFL)

and how IO-substitution breaks semilinearity.

Keywords Formal languages · Mildly context-sensitive formalisms · Semilinearity ·
Constant-growth · IO macro-grammars · Multiple context-free grammars ·
Abstract family of languages

P. Bourreau (B)
Institut für Sprache und Information, Heine-Heinrich Universität Düsseldorf,
Universitätstr. 1, 40225 Düsseldorf, Germany
e-mail: pierre.bourreau@gmail.com

123

2 P. Bourreau

1 Introduction

The mathematical description of natural language syntax is a problem which has
captured the attention of scientists for many years. The initial work of Chomsky (1956)
on formal languages led to the first approximation of natural languages as context-
free languages. Nowadays, it is commonly accepted that the class of context-free
languages is too weak to entirely capture the structure of syntax. This was first proved
in Huybregts (1984) and Shieber (1985) through examples in Swiss-German, and later
on confirmed in Michaelis and Kracht (1997) and discussed in Kobele (2006). In order
to define a new family of formal languages that would approximate natural languages,
Joshi (1985) defined a class of formalisms which he called mildly context-sensitive, in
an attempt to answer the question: “How much context-sensitivity is needed to provide
reasonable structural descriptions?”; mildly context-sensitive formalisms are defined
through the following conditions:

1. the class of languages generated by such a formalism must encompass the class
of context-free languages;

2. they must take into account some limited cross-serial dependencies;
3. they must be recognizable in polynomial-time;
4. and, the generated languages must verify the constant-growth property;

While this definition and the answer it gives to the initial question are under debate,
we focus on the fourth point of the definition and the notion of constant-growth
property. Indeed, many mildly context-sensitive formalisms are known to verify the
stronger property of generating semilinear languages. That is for instance the case of
tree-adjoining grammars, multiple context-free grammars (Seki et al. 1991) (or alter-
natively linear context-free rewriting systems Vijay-Shanker et al. 1987), or minimalist
grammars (Stabler 1996; Michaelis 1998). In the following work, we investigate the
gap between semilinear languages and languages which verify the constant-growth
property.

In (Bourreau et al. 2012), an operation on languages called IO-substitution was
defined. This operation allows one to enrich a class of languages with a limited copy-
ing mechanism. IO-substitution can indeed be seen as a bounded copying operation
on strings. In this preliminary work, Bourreau et al. (2012) proved three main prop-
erties. First, given a full abstract family of semilinear languages L, its closure under
IO-substitution IO(L) forms a family of languages which is closed under union, con-
catenation, homomorphism and intersection with regular sets; an open question is
therefore to prove whether IO(L) is a full abstract family of languages. Moreover,
it was proved that if the languages in L verify the constant-growth property, so do
the languages in IO(L). Finally, in the special case where L = MCFL, the class of
multiple context-free languages, the authors showed that any language in IO(MCFL)

can be recognized in polynomial-time; these first results lead to considering the for-
malisms whose generated languages fall within IO(MCFL) as candidates for being
mildly context-sensitive.

In the present article, we investigate a precise characterization of the Parikh image
of languages in IO(L), where L is a family of semilinear languages (i.e. as a particular
case, the results we obtain apply when L is the family of regular, context-free, or

123

The IO-Substitution on the Parikh Image of Semilinear Full AFLs 3

multiple context-free languages of strings). In order to do so, we extend the notion
of semilinearity in a natural way, by defining two new characterizations for sets of
vectors: existentially-semilinear sets and universally-semilinear sets, and show that
the Parikh image of IO(L) falls within the second one, leading, as a corollary, to
an alternative proof that such languages verify the constant-growth property. In the
second part of the article, we give a proof of the non-closure of IO(L) under inverse
homomorphism, where L is a full abstract family of semilinear languages which
contains REG, the set of regular languages. This result, which is obtained thanks
to the previous characterization of the Parikh image for the considered languages and
by generalizing the main ideas of Fischer’s proof of the non-closure of IO-macro
grammars under inverse homomorphism, shows that IO(MCFL) is not a full abstract
family of languages.

The outline of this document is the following: Sect. 2 defines the fundamental
notions needed from formal language theory: the Parikh image, semilinearity, the
constant-growth property, and the IO-substitution. In Sect. 3, we introduce universal-
semilinearity and existential-semilinearity as natural extensions of semilinearity, we
compare these notions with each other and with the constant-growth property, and we
show that the languages in IO(L) verify the constant-growth property. Finally, Sect. 4
is dedicated to proving the non-closure of IO(L) under inverse homomorphism, for L
a semilinear full AFL such that REG ⊆ L; this proof will also bring the opportunity
to study new structural properties of IO(L).

2 Semilinearity, Constant-Growth and IO-Substitution

2.1 Formal Languages, Constant-Growth and Semilinearity

We first introduce the notations for various usual notions related to formal languages.
Given a set Σ (called an alphabet), we write Σ∗ for the set of words built on Σ , and
ε for the empty word. Given w in Σ∗, we write |w| for its length, and |w|a for the
number of occurrences of a letter a of Σ in w. A language on Σ is a subset of Σ∗.
Given a language L , we will speak of the alphabet Σ of L to designate any set such
that L ⊆ Σ∗. Given two languages L1, L2 ⊆ Σ∗, L1 · L2, the concatenation of L1
and L2, is the language {w1w2 | w1 ∈ L1 ∧ w2 ∈ L2}; the union of L1 and L2 is
written L1 + L2.

We write N for the set of natural numbers. For a finite alphabet Σ , N
Σ is the

set of vectors whose coordinates are indexed by the letters of Σ . Vectors will be
denoted by −→v , and an n-dimensional vector (n ∈ N) will be written 〈c1, . . . , cn〉
(where c1, . . . , cn ∈ N) when we wish to exhibit the values of the vector on each of
its dimension. Given a ∈ Σ and −→v ∈ N

Σ , −→v [a] will denote the value of −→v on the
dimension a.

In (Joshi 1985), the constant-growth property was introduced as a condition lan-
guages generated by mildly context-sensitive formalisms must verify. This condition
expresses some constraints on the distribution of the length of the words in a language:

123

4 P. Bourreau

Definition 1 (Constant-growth) A language L ⊆ Σ∗ is said to be constant-growth if
there exist k, c ∈ N such that, for every w ∈ L , if |w| > k, then there is w′ ∈ L for
which |w| < |w′| ≤ |w| + c.

As mentioned in the introduction, most of the mildly context-sensitive formalisms
commonly used in modeling natural language syntax generate languages which verify
the stronger property of semilinearity.

Definition 2 (Parikh image) Let us consider a word w in a language L ⊆ Σ∗. The
Parikh image of w, written −→p (w) is the vector of N

Σ such that, for every a ∈ Σ ,−→p (w)[a] = |w|a . The Parikh image of L is defined as −→p (L) = {−→p (w) | w ∈ L}.
Definition 3 (Semilinearity) A set V of vectors of N

Σ is said to be linear when there
are vectors −→v0 , …, −→vn in N

Σ such that V = {−→v0 +k1
−→v1 +. . .+kn

−→vn | k1, . . . , kn ∈ N}.
A set of vectors is said to be semilinear when it is a (possibly empty) finite union

of linear sets.

Given two sets of vectors V1 and V2 of N
k , for k ∈ N, we will write V1 + V2 for

the set {−→v1 + −→v2 | −→v1 ∈ V1,
−→v2 ∈ V2}. Similarly, given c ∈ N and a set of vectors V

of N
k , we will write cV = {c−→v | −→v ∈ V }.

Definition 4 A language L is said semilinear when −→p (L) is a semilinear set.

Well-known classes of semilinear languages are the class REG of regular languages,
the class CFL of context-free languages, the class yTAL of yields of tree-adjoining
languages or the class MCFL of multiple context-free languages.

Definition 5 Given a class of languages L and a class of sets of vectors V , we say that
L yields V if the two following conditions are verified:

– for every language L ∈ L, −→p (L) ∈ V;
– for every V ∈ V , there exists L ∈ L such that −→p (L) = V .

It is known that REG yields the class of semilinear sets. Consequently, CFL, yTAL
and MCFL also verify this property as they include all languages in REG, and every
language in these classes is a semilinear language.

Given two alphabets Σ1 and Σ2, a string homomorphism h from Σ∗
1 to Σ∗

2 is a
function such that h(ε) = ε and h(w1w2) = h(w1)h(w2), where w1, w2 ∈ Σ∗

1 . Given
L ⊆ Σ∗

1 , we write h(L) for the language {h(w) ∈ Σ∗
2 | w ∈ L}.

Let us consider a class L of languages. Given an n-ary operationop : (Σ∗)n → Σ∗
on strings (where n ∈ N), we say that L is closed underop if for every L1, . . . , Ln ∈ L,
op(L1, . . . , Ln) ∈ L.

Definition 6 (Full AFLs) A class of languages L is called a full abstract family of
languages (written full AFL for concision) if it is closed under union, concatenation,
Kleene star, homomorphism, inverse homomorphism and intersection with regular
sets.

The previously defined classes REG, CFL, yTAL, and MCFL are known to be
full AFLs. Moreover, because the languages in these classes are semilinear, we say
that they are semilinear full AFLs.

123

The IO-Substitution on the Parikh Image of Semilinear Full AFLs 5

2.2 IO-Substitution: Going Beyond Semilinearity

In (Bourreau et al. 2012), the operation of IO-substitution was defined so as to enrich
languages with a limited copying operation.

Definition 7 (IO-substitution) Let us consider the alphabets Σ1 and Σ2, and two
languages L1 ⊆ Σ∗

1 and L2 ⊆ Σ∗
2 . Given a word w ∈ L2, and a symbol a ∈ Σ1, we

define the homomorphism ioa,w based on the function

ioa,w : Σ1 → Σ∗
2

c �→
{

w if c = a
c otherwise

We define the language resulting from the IO-substitution of the symbol a by the
language L2 in the language L1 as

L1[a := L2]IO =
⋃

w∈L2

ioa,w(L1)

and we call L1[a := L2]IO the IO-substitution of a by L2 in L1.

Note that, if for every word w ∈ L1, a has no occurrence in w (i.e. |w|a = 0) then
L1[a := L2]IO = L1 is verified. We adopt a convention of left-associativity for the
IO-substitution operation: therefore L1[x1 := L2]IO[x2 := L3]IO will denote the
language (L1[x1 := L2]IO)[x2 := L3]IO.

Example 1 Let us consider the languages L1 = a∗ and L2 = ab + c; the language
L = L1[a := L2]IO is then defined as (ab)∗ +c∗. In this particular case, L is a regular
language, just like L1 and L2.

A more interesting example is Lnprime = {a p | p is not a prime number}, which
verifies Lnprime = xx∗x[x := aa∗a]IO. Such a language is not semilinear since its
Parikh image is equal to {nm〈1〉 | n, m > 1}. Therefore Lnprime does not belong to
REG, while xx∗x and aa∗a do.

Definition 8 (IO(L)) Given a class of languages L, we define the class IOn(L) by
induction on n ∈ N as

1. IO0(L) = L
2. for n ≥ 0,

IOn+1(L) = IOn(L) ∪
⋃

L1,L2∈IOn(L)

⋃
x∈Σ1

L1[x := L2]IO

where Σ1 is the alphabet of L1

The smallest class of languages containing L and closed under IO-substitution is
defined by IO(L) = {L ∈ IOn(L) | n ∈ N}

We introduce a notion of derivation tree associated to a language in IO(L).

123

6 P. Bourreau

Fig. 1 Example of a derivation
tree associated to a language in
IO(L)

y

x

x1

L1 L2

x2

L3 L4

L5

Definition 9 (Derivation tree) Given a language L in IO(L), we define the set of
derivation trees TL associated to L as the smallest set such that:

– if L ∈ L, t = n ∈ TL , where n is a node labelled with L;
– if L1[x := L2]IO = L for L1, L2 ∈ IO(L), then, given n a node labelled with x ,

{n(t1, t2) | t1 ∈ TL1 , t2 ∈ TL2} ⊆ TL .

Example 2 Let us consider some languages Li ∈ L for 1 ≤ i ≤ 5 and the language

((L1[x1 := L2]IO)[x := (L3[x2 := L4]IO)]IO)[y := L5]IO

The corresponding derivation tree is represented by the binary tree in Figure 1.

There is an obvious correspondence between the notation x(t1, t2) of a derivation
tree of a language L (where t1 ∈ TL1 and t2 ∈ TL2), and the notation L1[x := L2]IO

of the language L itself; in the rest of the article, whenever we have an equality
L1[x := L2]IO = L , we will say that L1[x := L2]IO is a representation of L . More
formally, given L ∈ IO(L)), L is a representation of L; and if L = L1[x := L2]IO,
where L1, L2 ∈ IO(L) for every representation r1 of L1, and every representation r2
of L2, r1[x := r2]IO is a representation of L .

As pointed out in Bourreau et al. (2012), the IO-substitution operation can be seen
as a restriction of the copying power of IO-macro grammars in Fischer (1968a) and
Fischer (1968b). Indeed, the authors gave a grammatical formalism in terms of abstract
categorial grammars (de Groote 2001; Muskens 2001) which generates languages in
IO(MCFL), and the construction exhibits the use of copies in a non-recursive way, i.e.
the use of a bounded number of copies; this restriction leads, for instance, to exclude
languages like Lsq = {an2 | n ∈ N} from IO(MCFL), while such a language is known
to be generated by IO-macro grammars (and also by parallel MCFGs (Seki et al. 1991),
another formalism that enriches MCFGs with deletion and copying operations).

One will note that Lsq is not a constant-growth language. In fact, one can show
that the IO-substitution preserves the constant-growth property of languages under the
constraints given in the following theorem:

Theorem 1 (Bourreau et al. 2012) Given L a full abstract family of semilinear lan-
guages:

– IO(L) is a family of constant-growth languages
– IO(L) is closed under homomorphism, intersection with regular sets, finite union

and concatenation.

123

The IO-Substitution on the Parikh Image of Semilinear Full AFLs 7

We now investigate a precise characterization of the Parikh image of languages in
IO(L), and give an alternative proof of the constant-growth property for the languages
in this class. In order to do so, we will provide and discuss some natural extensions of
semilinear sets.

3 IO-MCFLs have Factorized Parikh Images

3.1 Constant-Growth, ∃-Semilinear and ∀-Semilinear Sets

As mentioned in the previous section, the Parikh image of IO(L) goes beyond semi-
linear sets, while being captured by the notion of constant-growth. We present a gen-
eralization of the notion of semilinear sets with respect to the following remark:
one can see a linear set V = {−→v0 + x1

−→v1 + · · · + xn
−→vn | x1, . . . , xn ∈ N},

where −→v0 , . . . ,−→vn ∈ N
p, as the image of the function f : N

n → N
p such that

f (x1, . . . , xn) = −→v0 + x1
−→v1 + · · · + xn

−→vn , hence parameterized by the variables
x1, x2, . . . , xn . In this context, we will establish relaxed conditions of linearity on the
function f such that the sets of vectors built on these new functions approximate the
Parikh image of constant-growth languages, or those of languages in IO(L), where L
yields semilinear sets.

Definition 10 (Functional Decomposition) Given a vector set E ⊆ N
p, (where

p ≥ 1), and a finite set of vector functions F = {F1, . . . , Fm}, m ≥ 0 such that,
for every 1 ≤ k ≤ m, the codomain of Fk is N

p, we call F a functional decomposition
of E if E = ⋃

1≤k≤m Im(Fk).

Following this definition, a semilinear set can be defined as a vector set for which
there exists a functional decomposition made of linear functions. Remark that, in the
decomposition F of a vector set, we will assume that the functions in F share the same
codomain.

Next we define specific functions with the aim of approximating the ideas behind
the constant-growth property.

Definition 11 (i-linear function) Given a vector function F : N
n → N

m and 1 ≤ i ≤
n, F is said to be i-linear, if there exists (f j ,

−→v j)1≤ j≤m , where for all 1 ≤ j ≤ m,
f j : N

n → N and −→v j ∈ N
m , such that F(x1, . . . , xn) = ∑

1≤ j≤m f j (x1, . . . , xn)−→v j

and for every 1 ≤ j ≤ m, f j is affine in xi :

f j (x1, . . . , xn) = A j (x1, . . . , xi−1, xi+1, . . . , xn)xi + B j (x1, . . . , xi−1, xi+1, . . . , xn)

where A j , B j : N
n−1 → N, and A j is not constantly 0.

We say that F is:

– existentially-linear (written ∃-linear) if there exists 1 ≤ i ≤ n, for which F is
i-linear.

– universally-linear (written ∀-linear) if for every 1 ≤ i ≤ n, F is i-linear.

An important remark is that the notion of ∀-linear functions is a natural exten-
sion of that of linear functions; indeed, a linear function f (x1, . . . , xn) has an affine

123

8 P. Bourreau

form on each of its parameters: f (x1, . . . , xn) = xi
−→vi + (vo + Σ1≤k≤i−1xk

−→vk +
Σi+1≤k≤n xk

−→vk); with respect to the notion of multilinear functions (a well-established
notion in the domain of multilinear algebra), such a function could be called multi-
affine. The notion of ∀-linear functions generalizes this property and seems to capture
all multi-affine functions.

These definitions are then naturally extended to sets of vectors:

Definition 12 (Existentially- and Universally-semilinear sets) A vector set E is said
to be:

– existentially-linear (written ∃-linear) if there exists a functional decomposition of
E in which at least one function is ∃-linear.

– universally-linear (written ∀-linear) if there exists a functional decomposition of E
in which all functions are ∀-linear.

Finally, a ∃-semilinear (resp. ∀-semilinear) set is a finite union of ∃-linear (resp.
∀-linear) sets.

It is trivial that a ∀-linear vector function is ∃-linear. Similarly, a ∀-semilinear
set is ∃-semilinear. Following the terminology for semilinearity, we will speak of
a ∃-semilinear (resp. ∀-semilinear) language when its Parikh image is ∃-semilinear
(resp. ∀-semilinear).

Lemma 1 Given a language L, if L is ∃-semilinear then L is constant-growth.

Proof Let us consider such a language L; there exists a functional decomposition of−→p (L) such that
⋃

1≤i≤k Im(Fi) = −→p (L) and there exists 1 ≤ i ≤ k such that Fi is
∃-linear, i.e., for Dom(Fi) = N

n , there exists a finite family of functions (fi, j)1≤ j≤mi

such that Fi (x1, . . . , xn) = ∑
1≤ j≤mi

fi, j (x1, . . . , xn)−→v j , and there exists 1 ≤ l ≤ n
for which, for every 1 ≤ j ≤ mi :

fi, j (x1, . . . , xn)= A j (x1, . . . , xl−1, xl+1, . . . , xn)xl +B j (x1, . . . , xl−1, xl+1, . . . , xn)

Let us consider c1, . . . , cn ∈ N. We then write

A =
∑

1≤ j≤mi

A j (c1, . . . , cl−1, cl+1, . . . , cn)

B =
∑

1≤ j≤mi

B j (c1, . . . , cl−1, cl+1, . . . , cn)

K = Acl + B

Then, because A cannot be constantly 0, we can build an (increasing) sequence of
words (wi)i∈N, such that |wi | = K + i A, for every i ∈ N. Therefore, given a word
w ∈ L such that |w| > K , we can find i ∈ N such that |wi | < |w| ≤ |wi+1|, i.e.
|wi | < |w| ≤ |wi | + A. ��

The family of ∃-semilinear sets seems to be the biggest family of constant-growth
sets of vectors definable from the definition of functional decomposition of vector-
sets. Moreover, ∃-semilinear sets gives an insight into the gap between constant-growth

123

The IO-Substitution on the Parikh Image of Semilinear Full AFLs 9

and semilinear languages generated by mildly context sensitive formalisms. This is
illustrated, for instance, with the language L = {an2

bmcnm | n, m ∈ N}, whose Parikh
image is given by Im(F), where F(x1, x2) = x2

1 〈1, 0, 0〉+ x2〈0, 1, 0〉+ x1x2〈0, 0, 1〉.
Then F is ∃-linear (for x2) and therefore, L is constant-growth.

Languages whose Parikh images are ∃-semilinear vector sets can be seen as lan-
guages which have a “linear sub-basis”. Indeed, the definition of a ∃-semilinear set of
vectors states that an infinite subset of it verifies a linear growth. As a particular case,
and if we only consider the formal definition of mildly context-sensitivity, formalisms
which allow copy mechanisms should be considered as candidates for mildly-context
sensitive formalisms as soon as they ensure such a linear sub-basis in the languages
generated. Such a property might be interesting in the description of natural language
syntax, in case one wants to describe ellipsis through copying operations (Sarkar
and Joshi 1996; Kobele 2007; Bourreau 2013), or to integrate copying phenomena
appearing in Yes-No questions in Mandarin (Radzinski 1990), or in relatives in Bam-
bara (Culy 1987), for instance.

Finally, we can remark that ∀-semilinear languages seem to be closer to the ideas
expressed in the revisited constant-growth property of Kallmeyer (2010), where a
language is constant-growth if there exists a constant c ∈ N, such that for every word
w ∈ L verifying |w| > c, there are vectors −→v1 and −→v2 for which −→p (w) = −→v1 +−→v2 and
for every k ≥ 1, −→v1 + k−→v2 ∈ −→p (L). Indeed, any word w in a ∀-semilinear language
L belongs to a sublanguage of L which verifies the revised constant-growth property,
and this sublanguage is given by the vector function associated to w.

3.2 Factored Parikh Image

We now give a precise characterization of the Parikh image of languages in IO(L). We
will prove that such an image is a particular case of ∀-semilinear sets. This result leads
to a proof of the constant-growth property of these languages, which differs from the
one given in Bourreau et al. (2012). Moreover, we show that IO(L) does not yield
∀-semilinear sets, and instead, we exhibit a less natural family of vector sets yielded
by IO(L).

In what follows, we denote by F(Nn, N
m) the set of vector functions whose domain

is N
n and whose codomain is N

m . Moreover, given a vector −→v = 〈v1, . . . , vn〉 on
N

n and an integer 1 ≤ k ≤ n, we use Onk(
−→v) to denote the value vk on the kth

projection of −→v , and Wttk(
−→v) to denote the vector 〈v1, . . . , vk−1, 0, vk+1, . . . , vn〉.

These notations are extended in the following definition:

Definition 13 Let us consider a function F : N
n → N

m , and 1 ≤ k ≤ m. We define
the functions Wttk (without the kth projection) and Onk (value on the kth projection)
as:

– Wttk : F(Nn, N
m) → F(Nn, N

m) such that Wttk(F)(x1, . . . , xn) = Wttk(F(x1,

. . . , xn))

– Onk : F(Nn, N
m) → F(Nn, N) such that Onk(F)(x1, . . . , xn) = Onk(F(x1,

. . . , xn))

123

10 P. Bourreau

When a vector will be associated to the Parikh image of a language, we will allow
ourselves to index these two functions by the letter corresponding to the dimension,
and use the notations Wttx and Onx .

From the functions Wttk and Onk , we define the following notion of a factored-
semilinear Parikh image.

Definition 14 (Factored function) A function F : N
n → N

m is said to be factored if
the following induction is verified:

1. F is a linear function, or
2. there exist 1 ≤ k ≤ m, F1 : N

n1 → N
m and F2 : N

n2 → N
m , factored vector

functions such that n = n1 + n2 and

F(x1, . . . , xn) = Wttk(F1)(x1, . . . , xn1) + Onk(F1)(x1, . . . , xn1)F2(xn1+1, . . . xn)

In the rest of the document, we allow ourselves to write Wttk(F1) + Onk(F1)F2
for a function as in 2. in the definition above.

Definition 15 (Synchronized set of factored functions) A finite set of factored function
E = {F1, . . . , Fn} is called a synchronized set of factored functions if the functions in
E share the same codomain N

m and the following induction is verified:

1. for every 1 ≤ i ≤ n, Fi is a linear function; or
2. there exist 1 ≤ k ≤ m, and synchronized sets of factored vector functions E1 =

{F1,1, . . . , F1,n1} and E2 = {F2,1, . . . , F2,n2} such that,

E =
⋃

1≤i1≤n1

⋃
1≤i2≤n2

Wttk(F1,i1) + Onk(F1,i1)F2,i2

A set S for which there exists a functional decomposition S = ⋃
1≤i≤n Im(Fi) such

that {F1, . . . , Fn} forms a synchronized set of factored functions is called a factored-
semilinear set.

We now prove that IO(L) yields factored-semilinear sets, if L yields linear sets.

Proposition 1 If every language L ∈ L has a semilinear Parikh image, then every
language in IO(L) has a factored-semilinear Parikh image.

Proof By definition, there exists n ∈ N such that L ∈ IOn(L). We proceed by induc-
tion on n:

– if n = 0, then L belongs to L. By definition −→p (L) is a semilinear set, therefore a
factored-semilinear vector set.

– otherwise, there exist L1, L2 ∈ IOn−1(L) such that L1[x := L2]IO = L . By
induction hypothesis, there exist {F1,1, . . . , F1,n1} and {F2,1, . . . , F2,n2}, synchro-
nized sets of factored vector functions such that −→p (L1) = ⋃

1≤i1≤n1
Im(F1,i1) and−→p (L2) = ⋃

1≤i2≤n2
Im(F2,i2). Let us show that

−→p (L) =
⋃

1≤i1≤n1

⋃
1≤i2≤n2

Im(Wttx (F1,i1) + Onx (F1,i1)F2,i2)

123

The IO-Substitution on the Parikh Image of Semilinear Full AFLs 11

First, if we consider a word w ∈ L , there exists w1 ∈ L1 and w2 ∈ L2 such
that w = iox,w2(w1). Then, there exist 1 ≤ k1 ≤ n1 and 1 ≤ k2 ≤ n2 such that−→p (w1) = F1,k1(c1,1, . . . , c1,m1) and −→p (w2) = F2,k2(c2,1, . . . , c2,m2), where ci, ji
belongs to N, for i ∈ {1, 2} and 1 ≤ ji ≤ mi . Moreover, we observe that

−→p (w) = Wttx (F1,k1(c1,1, . . . , c1,m1))

+ Onx (F1,k1(c1,1, . . . , c1,m1))F2,k2(c2,1, . . . , c2,m2)

We conclude that−→p (w) is in
⋃

1≤i1≤n1

⋃
1≤i2≤n2

Im(Wttx (F1,i1)+Onx (F1,i1)F2,i2).
Now consider a vector

−→v = (Wttx (F1,k1) + Onx (F1,k1)F2,k2)(c1,1, . . . , c1,m1 , c2,1, . . . , c2,m2)

for some 1 ≤ k1 ≤ n1, 1 ≤ k2 ≤ n2. The element w ∈ L such that −→p (w) = −→v is
trivially obtained by considering words w1 ∈ L1 and w2 ∈ L2 such that −→p (w1) =
F1,k1(c1,1, . . . , c1,n1) and −→p (w2) = F2,k2(c2,1, . . . , c2,n2). ��

Proposition 2 If for every semilinear set E ′, there exists a language L ′ ∈ L such that−→p (L ′) = E ′, then for every factored-semilinear set E, there is a language L in IO(L)

such that −→p (L) = E.

Proof Let us consider a synchronized set F = {F1, . . . , Fn} of factored functions
such that E = ⋃

1≤i≤n Im(Fi) is a factored-semilinear set. We proceed by induction
on the construction of F :

– if for every 1 ≤ i ≤ n, Fi is a linear function, then E is a semilinear set; hence, by
hypothesis, there is a language L ∈ L = I O0(L) such that −→p (L) = E .

– otherwise, there exist 1 ≤ k ≤ p (where N
p is the codomain of every function in

F), and two synchronized sets of factored vector functions {F1,1, . . . , F1,n1} and
{F2,1, . . . , F2,n2} such that

E =
⋃

1≤i1≤n1

⋃
1≤i2≤n2

Im(Wttk(F1,i1) + Onk(F1,i1)F2,i2)

By induction hypothesis, there exist L1 and L2 in IO(L) such that

−→p (L1) =
⋃

1≤i1≤n1

Im(F1,i1) and −→p (L2) =
⋃

1≤i2≤n2

Im(F2,i2)

With the same reasoning as in the proof of the previous proposition, we see that,
given L = L1[x := L2]IO, we have −→p (L) = E . ��
From Propositions 1 and 2, we can deduce the following corollary, which establishes

the strong relation between IO(REG) (or IO(CFL), IO(yTAL) IO(MCFL)) and
factored-semilinear languages.

Corollary 1 Assume L is a family of languages which yields semilinear sets. Then,
IO(L) yields factored-semilinear sets.

123

12 P. Bourreau

This corollary leads to an alternative proof of the constant-growth property for
languages in IO(L); it suffices to show that factored-semilinear sets are ∃-linear; we
prove the stronger statement that these languages are ∀-linear.

Theorem 2 Every factored-semilinear set is ∀-linear.

Proof Let us consider an arbitrary factored-semilinear set E , and a synchronized set
of factored vector functions F = {F1, . . . , Fn} such that E = ⋃

1≤i≤n Im(Fi). We
proceed by induction on the construction of F :

– first, if every function in F is linear, then it is also ∀-linear. We conclude that E is
then a ∀-semilinear set.

– otherwise, there exist 1 ≤ k ≤ p, for N
p the codomain of the functions in F , and

two synchronized sets of vector functions {F1,1, . . . , F1,n1} and {F2,1, . . . , F2,n2}
such that

E =
⋃

1≤i1≤n1

⋃
1≤i2≤n2

Im(Wttk(F1,i1) + Onk(F1,i1)F2,i2)

By induction hypothesis, every function in {F1,1, . . . , F1,n1} and {F2,1, . . . , F2,n2}
is ∀-linear.
Let us consider a function Hk1,k2 = Wttk(F1,k1) + Onk(F1,k1)G2,k2 , for some
1 ≤ k1 ≤ n1 and some 1 ≤ k2 ≤ n2. We also suppose F1,k1 : N

p1 → N
p,

F2,k2 : N
p2 → N

p and Hk1,k2 : N
p1+p2 → N

p. We show that Hk1,k2

is q-linear, for every 1 ≤ q ≤ p1 + p2. Let us write Hk1,k2,q(x) =
Hk1,k2(c1, . . . , cq−1, x, cq+1, . . . , cp1+p2), where cr ∈ N for every r such that
1 ≤ r ≤ q − 1 or q + 1 ≤ r ≤ p1 + p2. The problem reduces to showing that
Hk1,k2,q is an affine function.

– if 1 ≤ q ≤ p1, then:

Hk1,k2,q(x) = Wttk(F1,k1)(c1, . . . , cq−1, x, cq+1, . . . , cp1)

+ Onk(F1,k1)(c1, . . . , cq−1, x, cq+1, . . . , cp1)

× F2,k2(cp1+1, . . . , cp1+p2)

= (
−→
A x + −→

B) + (A′x + B ′)−→C as F1,k1 is ∀-linear

= (
−→
A + A′−→C)x + (

−→
B + B ′−→C)

and Hk1,k2,q is affine.
– if p1 + 1 ≤ q ≤ p1 + p2, then:

Hk1,k2,q(x) = Wttk(F1,k1)(c1, . . . , cp1)

+ Onk(F1,k1)(c1, . . . , cp1)

× F2,k2(cp1+1, . . . , cq−1, x, cq+1, . . . , cp1+p2)

= −→
A + A′(−→B x + −→

C) as F2,k2 is ∀-linear

= A′−→B x + (
−→
A + A′−→C)

and again Hk1,k2,q is affine.

123

The IO-Substitution on the Parikh Image of Semilinear Full AFLs 13

Therefore, Hk1,k2,q is affine for every 1 ≤ q ≤ p1 + p2, hence Hk1,k2 is ∀-linear.
We conclude that E is a ∀-linear set. ��

We therefore proved that, given L a full abstract family of languages which yields
semilinear sets, IO(L) yields factored-semilinear sets. It is then easy to see that
IO(L) does not yield ∀-semilinear sets. For instance, consider the set Im(F) where
F(x1, x2, x3) = x1x2〈1, 0, 0〉 + x2x3〈0, 1, 0〉 + x1x3〈0, 0, 1〉. According to the defi-
nition, F is ∀-linear but not factored-linear. It is therefore an open question to define
a class of languages which yields ∀-linear sets, or ∃-linear sets. We hope these two
newly introduced classes of sets can be relevant in the study of other classes of lan-
guages.

In the next section, we show that IO(MCFL) is not a full abstract family of
languages, by proving it is not closed under inverse homomorphism. The proof is
done similarly to the proof that IO macro-grammars are not closed under inverse
homomorphism in Fischer (1968a), but differs from it in two related aspects; first
IO-substitution is an operation on languages, while IO-macro languages are defined
with respect to a grammatical formalism; the argument we need to exhibit is there-
fore related to the properties of the languages in IO(L). This leads to the sec-
ond point as Fischer exhibits an IO-macro language L and a homomorphism h
such that, if h−1(L) is an IO-macro language, then L ∈ CFL which is impos-
sible; we show the more general property that, for L ′ ∈ I O(L), h−1(L ′) should
verify some linearity constraints on its Parikh image. This argument reveals the
relation between the way IO-copying breaks semilinearity, and the closure under
inverse homomorphism for a class of languages built with IO-copying opera-
tions.

4 Non-closure of IO-MCFLs Under Inverse Homomorphism

In (Bourreau et al. 2012), the closure of IO(L), under homomorphism, concatenation,
union and intersection with regular sets was proved for L a full abstract family of
languages. We prove that the closure under inverse homomorphism is not satisfied,
when L is a semilinear full AFL such that REG ⊆ L, leading, as a corollary, to the
proof that IO(L) is not a full abstract family of languages. In order to simplify the
proof, we will first give some structural properties of IO(L).

4.1 Standard Representations for IO(L)

In this section, we introduce a specific representation of a language in IO(L), and
prove that to every language in IO(L) we can associate such a representation.

We first introduce a convention on the naming of the symbols on which the IO-
substitutions are performed. Given a language L = L1[x := L2]IO in IO(L), one
can rename x into y if y has no occurrence in the words of L1, i.e. for all words
w1 ∈ L1 and w2 ∈ L2, iox,w2(w1) = ioy,w2(iox,y(w2)). In particular, assume that
there exists a language L1[x := L2]IO ∈ IO(L), and a representation of L2 that uses
the languages L ′

1, . . . , L ′
n ∈ L; we can suppose x has no occurrence in any of the

123

14 P. Bourreau

words of
⋃

1≤i≤n L ′
i .

1 In the rest of the article, we will assume that, without loss of
generality, given a language L ∈ IO(L) and a representation of L , for each letter x on
which an IO-substitution is performed, this IO-substitution is the only one on x for this
representation of L , and x has no occurrence in L .2 This will allow us, in particular,
to designate an IO-substitution by the letter it is performed on without any ambiguity.

Definition 16 (Right-representation) Given a language L ∈ IO(L), a representation
L0[x1 := L1]IO . . . [xn := Ln]IO of Lis called a right-representation if for every
0 ≤ i ≤ n, Li belongs to L. Moreover, we say that such a representation is of length
n.

Lemma 2 For every language L ∈ IO(L) there exists a right-representation.
Moreover, if L is closed under homomorphism, for L ∈ IOn(L), there exists a

right-representation of L of length n.

Proof Given a representation of L , we prove by induction on this representation that it
can be transformed into a right-representation of L . First, if L belongs to L = IO0(L),
the result is trivial. Moreover, the representation of L is of length n = 0.

Otherwise, suppose L = L1[x := L2]IO and, by induction hypothesis, assume
there exist a right-representation L1,0[x1,1 := L1,1]IO . . . [x1,n := L1,n1]IO for L1,
and a right-representation L2,0[x2,1 := L2,1]IO . . . [x2,m := L2,n2]IO for L2, where
n1, n2 ∈ N.

For every 0 ≤ p ≤ n2, consider the language

L p = L1[x := L2,0[x2,1 := L2,1]IO . . . [x2,p := L2,p]IO]IO

We prove by induction on p that there exist symbols y1, . . . , yp such that

L p = L1[x := y1]IO[y1 := L2,1]IO . . . [x p := yp]IO[yp := L p]IO

For p = 0, the result is trivial. Consider a symbol yp which has no occurrence in
the words of L1 ∪ ⋃

0≤i≤p−1 L2,i . Then L p = L p−1[x2,p := yp]IO[yp := L2,p]IO.
Because of the induction hypothesis there exists a right-representation for L p−1, hence
a right-representation for L p. Moreover, if L is closed under homomorphism, because
iox2,p,yp is a homomorphism, and because of the induction hypothesis, it is trivial to
find a right-representation of L p of length n1 + p, and L ∈ IOn1+p(L). ��
Definition 17 (Standard representation) Given two languages L1 ⊆ Σ∗

1 and L2 ⊆
Σ∗

2 , we call the IO-substitution L1[x := L2]IO:

– an irrelevant IO-substitution if for every word w ∈ L1, |w|x = 0.
– a deleting IO-substitution if L2 = {ε}.

1 For readers familiar with the λ-calculus, the precise conditions under which a letter on which an IO-
substitution is performed can be renamed are similar to the α-equivalence on λ-terms: variables can be
renamed under the constraint that no other variable is “captured” by this renaming. We do not detail such
constraints in the present work. The analogy with λ-calculus is made explicit in (Bourreau et al. 2012).
2 Such a strict convention is to be compared with Barendregt’s convention on variables in the λ-calculus.

123

The IO-Substitution on the Parikh Image of Semilinear Full AFLs 15

A right-representation of a language L with no irrelevant or deleting IO-substitution
is called a standard representation of L .

Lemma 3 Let us consider a class L of languages, closed under homomorphism, and
a language L ∈ IO(L). There exists a standard representation of L.

Proof First, if |w|x = 0 for every word w ∈ L1, then L1[x := L2]IO = L1, and such
a substitution can be trivially removed from any (right-)representation of L .

Now consider a language L ∈ IO(L) and n ∈ N such that L ∈ IOn(L) \ IOn−1(L)

(if such a n does not exist, L ∈ L and we trivially have a right-representation of
L with no deleting IO-substitution). Then there is a right-representation of the form
L0[x1 := L1]IO . . . [xn := Ln]IO for L according to Lemma 2. By induction hypoth-
esis, L0[x1 := L1]IO . . . [xn−1 := Ln−1]IO has no deleting substitution; moreover
Ln �= {ε}, because, according to Bourreau et al. (2012), for every n ∈ N, IOn(L),
is closed under homomorphism and ioxn ,ε being a homomorphism, we would have
L ∈ IOn−1(L). ��

4.2 Fully Effective Representations

In this section, we characterize a new kind of representation for languages in IO(L).
This new form will allow us to exhibit only substitutions that are effective, i.e. L1[x :=
L2]IO such that |w|x > 0 for every w ∈ L1. In order to do so, we start by giving a
fundamental lemma, which is a direct consequence of the Myhill-Nerode theorem:

Definition 18 Given an alphabet Σ , a right congruence ∼= on Σ∗ is an equivalence
relation such that for every w1, w2, u ∈ Σ∗, w1 ∼= w2 implies w1u ∼= w2u.

Such a congruence is said

– to be of finite index if Σ/∼= is finite.
– to saturate a language L ⊆ Σ∗ if for every w1, w2 ∈ Σ∗, w1 ∼= w2 implies w1 ∈ L

iff w2 ∈ L (i.e. L is made of a union of congruence classes in Σ∗/∼=)

Theorem 3 (Myhill-Nerode) A language L ⊆ Σ∗ is regular iff there exists a right
congruence ∼= of finite index over Σ∗ which saturates L.

Corollary 2 (Separation Lemma3) Consider an alphabet Σ , a right congruence ∼=
of finite index on Σ∗, a class C ∈ Σ∗/∼= and a language L ⊆ Σ∗, such that L belongs
to a family L of languages closed under intersection with regular sets. Then L ∩ C
belongs to L; moreover, L = ⋃

C∈Σ∗/∼= L ∩ C.

We are now in position of defining fully effective IO-substitutions, and fully effec-
tive representations of languages.

Definition 19 (Full effectiveness) An IO-substitution L1[x := L2]IO is said to be
fully effective if for every word w ∈ L1, we have |w|x > 0.

3 The corresponding version of this lemma is given as the factorization lemma in Fischer (1968a). We use
a different name as we already used the terminology of factorization in Sect. 3.2.

123

16 P. Bourreau

Given a language L ∈ IO(L), a representation of L is in fully effective form when
it is of the shape:

⋃
i∈I

Li0[xi1 := Li1]IO . . . [xini
:= Lini]IO

where

– I is a finite set,
– and for every i ∈ I , the representation Li0[xi1 := Li1]IO . . . [xin := Lini]IO is in

standard form, and every IO-substitution in it is fully effective.

Given a language L ∈ IO(L), a fully effective representation of L is built by
considering a decomposition L = L1 +· · ·+ Ln of L , such that L1, . . . , Ln ∈ IO(L),
and for every 1 ≤ i ≤ n, there is a standard representation of Li where each IO-
substitution is fully effective.

As for standard representations, we show that every language L ∈ IO(L) has a
fully effective representation. In order to do so, we first give the following property
on IO-substitutions.

Lemma 4 Given L11, L12, L21, L22 ∈ IO(L):

(L11 + L12)[x := L21 + L22]IO =
⋃

i, j∈{1,2}
L1i [x := L2 j]IO

Proof By definition,we have:

(L11 + L12)[x := L21 + L22]IO =
⋃

w∈L21+L22

iox,w(L11 + L12)

Then, we easily establish:

⋃
w∈L21+L22

iox,w(L11 + L12) =
⋃

w∈L21+L22

iox,w(L11) ∪
⋃

w∈L21+L22

iox,w(L12)

=
⋃

w∈L21

iox,w(L11) ∪
⋃

w∈L22

iox,w(L11)

∪
⋃

w∈L21

iox,w(L12) ∪
⋃

w∈L22

iox,w(L12)

= L11[x := L21]IO + L11[x := L22]IO

+ L12[x := L21]IO + L12[x := L22]IO

��
Lemma 5 Given a family of languages L closed under intersection with regular sets,
for every language L in IO(L), there exists a representation in fully effective form.

123

The IO-Substitution on the Parikh Image of Semilinear Full AFLs 17

Proof Let us consider such a language L ∈ IO(L) and a representation in standard
form for it: L0[x1 := L1]IO . . . [xn := Ln]IO. Given the alphabet Σ of L , we build
the right congruence ∼= on (Σ ∪ {x1, . . . , xn})∗ such that for every word w1, w2 ∈
(Σ ∪ {x1, . . . , xn})∗

w1 ∼= w2 ⇐⇒ for every 1 ≤ i ≤ n, |w1|xi = 0 iff |w2|xi = 0

This congruence has a finite index I of cardinality 2n . For every 1 ≤ i ≤ n,
according to the separation lemma, we have Li = ⋃

k∈I Lik , where Lik = Li ∩ Ck ,
Ck being the kth class in (Σ ∪ {x1, . . . , xn})∗/∼=. Then we can write:

L =
(⋃

k0∈I

L0k0

)⎡
⎣x1 :=

⋃
k1∈I

L1k1

⎤
⎦

IO

. . .

⎡
⎣xn :=

⋃
kn∈I

Lnkn

⎤
⎦

IO

(Corollary 2)

=
⋃

k0,...,kn∈I

L0k0 [x1 := L1k1]IO . . .
[
xn := Lnkn

]
IO (Lemma 4)

According to the separation lemma, Liki ∈ L, for every 1 ≤ i ≤ n and ki ∈ I ;
therefore the language Lk0...kn = L0k0 [x1 := L1k1]IO . . . [xn := Lnkn]IO, belongs to
IO(L). Moreover, for every 0 ≤ j ≤ n and every k0, . . . , k j ∈ I , let us consider the
language Lk0...k j = L0k0 [x1 := L1k1]IO . . . [x j := L jk j]IO; the construction ensures
that for all the words w1 and w2 in Lk0...k j , w1 and w2 are congruent (which is
provable with a direct induction on j); therefore, the IO-substitution Lk0...k j [x j+1 :=
L(j+1)k j+1]IO is fully effective iff there exists w in Lk0k1...k j such that |w|x j+1 >

0. According to the construction of a standard representation of a language from a
right representation of a language in Lemma 3, we can remove the irrelevant IO-
substitutions, which are exactly the substitutions which are not fully effective. This
leads to the existence of a representation of Lk0...kn in fully effective and standard
form, for every k0, . . . , kn ∈ I ; hence, the representation

⋃
k0,...,kn∈I L0k0 [x1 :=

L1k1]IO . . . [xn := Lnkn]IO of the language L is fully effective. ��

4.3 a-Linearity

Finally, we study with more precision the copying effects of the IO-substitution. We
already saw how this operation allows one to build non-semilinear languages which
verify the constant-growth property. In this section, we study the effect of an IO-
substitution on symbols.

We first define notions of linearity and universal-linearity with respect to the sym-
bols of a given language. These definitions are natural extensions of the definitions
given in Sect. 3.

Definition 20 (a-linearity) Let us consider a language L ⊆ Σ∗ and a letter a ∈ Σ .
Assume that the Parikh image −→p (L) of L is of the form

⋃
1≤i≤k Im(Fi) for some

vector functions F1 : N
n1 → N

n, . . . , Fk : N
nk → N

n , we say that L is:

123

18 P. Bourreau

– a-constant if for every 1 ≤ i ≤ k,

Ona(Fi)(x1, . . . , xni) = ci ∈ N

– a-linear if for every 1 ≤ i ≤ k,

Ona(Fi)(x1, . . . , xni) = ci +
∑

1≤ j≤ni

d j x j

where ci ∈ N and d j ∈ N for every 1 ≤ j ≤ ni ;

– a-functional if for every 1 ≤ i ≤ k,

Ona(Fi)(x1, . . . , xni) = ci +
∑

1≤ j≤mi

f j (x1, . . . , xni)

where f j ∈ N
ni → N for every 1 ≤ j ≤ mi , and ci ∈ N.

It is immediate to see that a finite language L ⊆ Σ∗ is a-constant for every a ∈ Σ ;
similarly, L is a semilinear language if L is a-linear for every a ∈ Σ ; and ∀-linear
if a-functional for every a ∈ Σ , and if the functions f j in the definition above are
k-linear for every 1 ≤ k ≤ ni .

Based on the naming convention we adopted for the representations of languages in
IO(L), the following notion of introducers provides us a mean to precisely study the
copying process which occurs along a sequence of IO-substitutions. Based on these
definitions, we aim at studying conditions under which an IO-substitution leads to
building a-constant, a-linear or a-functional languages.

Definition 21 (a-introducers) Let us consider L ∈ IO(L), the alphabet Σ of L , and
a representation (denoted by r) L0[x1 := L1]IO . . . [xn := Ln]IO of L in standard
form. We define the binary relation Inr⊆ (Σ ∪ {x1, . . . , xn})× (Σ ∪ {x1, . . . , xn}) by
b Inr a iff

b = xi for some 1 ≤ i ≤ n and there exists w ∈ Li such that |w|a > 0.

We define In∗
r as the reflexive and transitive closure of Inr , and the set of introducers

of a ∈ Σ ∪ {x1, . . . , xn} in r will be written Ina
r = {b ∈ Σ ∪ {x1, . . . , xn} | b In∗

r a}.
The idea behind this definition is that a symbol b is an introducer of another symbol

a in a representation r of some language, iff it is involved in creating occurrences of
a at some IO-substitution of the representation: it is either the symbol a itself, or it
introduces a symbol in {x1, . . . , xn} which will itself be substituted by a language that
contains at least one word in which a has an occurrence. Note that the set Ina

r must be
finite, as a representation of a language is finite.

Example 3 Let us consider the language represented by the following representation:

r : x1x2x3[x1 := a]IO[x2 := b]IO[x3 := z∗]IO[z := ab∗a]IO

Then we have x Inr a iff x ∈ {z, x1}; moreover, Ina
r = {a, x1, z, x3}.

123

The IO-Substitution on the Parikh Image of Semilinear Full AFLs 19

Definition 22 (Chain of introducers) Given a standard representation r of a language
L ∈ IO(L), we inductively define a chain of introducers of a in r as a finite sequence
C on Ina

r , such that

1. C = (a), or
2. C = (x0, . . . , xn, xn+1), where (x0, . . . , xn) is a chain of introducers of a, and

xn+1 Inr xn

Moreover, for r : L0[x1 := L1]IO . . . [xn := Ln]IO, a chain C = (xi1 , . . . , xi p)

(where 0 ≤ i p < . . . < i1 ≤ n) is said maximal if there exists w ∈ L0 such that
|w|xi p

> 0.

Example 4 Let us consider the language associated to the representation in Example 3.
The chains of a-introducers in it are (a), (a, z), (a, z, x3); (a, x3) and (a, x1). The
maximal chains of a-introducers are (a, z, x3), (a, x3) (represented by the arrows at
the bottom in the following figure) and (a, x1) (represented by the thick arrow at the
top).

Intuitively, considering semilinear languages on which we perform some IO-
substitutions, the only way, for the resulting language to be a-constant or a-semilinear
for a symbol a, is related to the way languages which contain words with occurrences
of a are copied along the IO-substitutions.

Lemma 6 Consider a class of semilinear languages L, languages L , L1, L2 ∈
IO(L), and a non-irrelevant IO-substitution L1[x := L2]IO such that L1[x :=
L2]IO = L ⊆ Σ∗. Given a letter a ∈ Σ , suppose that L1 and L2 are a-linear,
and that L1 is x-linear:

1. if L1 is x-constant or L2 is a-constant, then L is a-linear.
2. if there exists w ∈ L2 such that |w|a > 0, then L is a-constant iff L1 is x-constant

and a-constant, and L2 is a-constant.

Proof We consider the Parikh images of L1 and L2 as, respectively
⋃

1≤i≤n1
Im(F1,i1)

and
⋃

1≤ j≤n2
Im(F2,i2), where F1,i1 and F2,i2 are vector functions, for 1 ≤ i1 ≤ n1

and 1 ≤ i2 ≤ n2. From the proof of Proposition 1, we know that

−→p (L) =
⋃

1≤i1≤n1

⋃
1≤i2≤n2

Im(Wttx (F1,i1) + Onx (F1,i1)F2,i2)

123

20 P. Bourreau

1. if L1 is x-constant: Ona(Wttx (F1,i1)+Onx (F1,i1)F2,i2)(x1, . . . , xmi1
, y1, . . . , ymi2

)

= c1,i1 +
∑

1≤l1≤mi1

d1,l1 xl1 + k1,i1(c2,i2 +
∑

1≤l2≤mi2

d2,l2 yl2)

because L1 and L2are a-linear andL1 is x-constant

= (c1,i1 + k1,i1 c2,i2) +
∑

1≤l1≤mi1

d1,l1 xl1 +
∑

1≤l2≤mi2

k1,i1 d2,l2 yl2

for every 1 ≤ i1 ≤ n1 and every 1 ≤ i2 ≤ n2; it then follows that L is a-
linear. Similarly, if L2 is a-constant, we obtain a similar equation, and the same
conclusion.

2. L is a-constant iff Im(Ona(Wttx (F1,i1) + Onx (F1,i1)F2,i2) = {ci1,i2}, where
ci1,i2 ∈ N, for every 1 ≤ i1 ≤ n1 and every 1 ≤ i2 ≤ n2, which is verified
iff the following equation is true, under the hypothesis that L1 and L2 are a-linear
and L1 is x-linear:

ci1,i2 = c1,i1 +
∑

1≤l1≤mi

d1,l1 xl1 + (c′
1,i1

+
∑

1≤l1≤mi

d ′
1,l1 xl1)(c2,i2 +

∑
1≤l2≤mi2

d2,l2 yl2)

(1)
Under the assumptions that the substitution is not irrelevant, there exists 1 ≤ i ′1 ≤
n1 such that Onx (Fi ′1) �= 0; also, because there exists a word w ∈ L2 s.t. |w|a > 0,
there exists 1 ≤ i ′2 ≤ n2 such that Onx (Gi ′2) �= 0. Therefore, for every 1 ≤ i1 ≤ n1

and every 1 ≤ i2 ≤ n2, (c′
1,i1

+ ∑
1≤l1≤mi1

d ′
1,l1

xl1)(c2,i2 + ∑
1≤l2≤mi2

d2,l2 yl2)

is constant iff d1,l1 = d ′
1,l1

= d2,l2 = 0 for every 1 ≤ l1 ≤ m1 and every
1 ≤ l2 ≤ m2, so that Eq. (1) reduces to:

ci1,i2 = c1,i1 + c′
1,i1

c2,i2

These conditions are equivalent to L1 being both x-constant and a-constant, and
L2 being a-constant.

��
Example 5 Consider the languages

L1 = {bna∗xn | n ∈ N}[x := ab∗]IO = {bna∗(ab∗)n | n ∈ N}
L ′

1 = b∗xa∗[x := a∗]IO = b∗a∗

L1 and L ′
1 respect the conditions of Lemma 6.1, and are both a-linear. Remark that,

if these conditions are not respected, it is possible to build a language which is not
a-linear, just like {bn xn | n ∈ N}[x := a∗]IO = {bnanm |n, m ∈ N}, whose elements
respect a dependence between the number of a’s and the number of b’s in them.

The second part of the Lemma can be illustrated with the language

x4b∗a[x := b∗a3]IO =
{

b4na12bma | n, m ∈ N

}

123

The IO-Substitution on the Parikh Image of Semilinear Full AFLs 21

Intuitively, because all elements which introduce an a in this substitution are constant
in the two languages involved, the resulting language is a-constant.

One should remark that Lemma 6 cannot be reformulated into an equivalence:
indeed, given two semilinear languages L1 and L2, Bourreau et al. (2012) gave some
conditions under which a language L such that L1[x := L2]IO = L is itself semilinear.

The following lemma is obtained from Lemma 6 in the particular case of a standard
representation for a language in IO(L).

Lemma 7 Consider a family L of semilinear languages, a language L ⊆ Σ∗ in
IO(L), a standard representation r : L0[x1 := L2]IO . . . [xn := Ln]IO of L and a
letter a ∈ Σ . Suppose that, for every chain C ∈ Cha

r , there exist at most one xC ∈ C
and at most one 0 ≤ iC ≤ n such that :

– LiC is not xC -constant, but x-constant for every x ∈ C − {xC }, and
– for every x ∈ C and every 0 ≤ j ≤ n such that j �= iC , L j is x-constant

Then L is a-linear.

Proof Let us denote by r the representation L0[x1 := L1]IO . . . [xn := Ln]IO of the
language L . We inductively define L ′

i ∈ IO(L), for every 1 ≤ i ≤ n as: L ′
0 = L0,

and L ′
i = L ′

i−1[xi := Li]IO. By induction on i , we show that L ′
i is x-linear for every

x ∈ Ina
r :

– if i = 0, then L ′
i is a semilinear language by hypothesis, which implies that L ′

i is
in particular x-linear for every x ∈ Ina

r .
– suppose the result is true for every 0 ≤ k ≤ i . We consider L ′

i [xi+1 := Li+1]IO;
by induction hypothesis, L ′

i is x-linear for every x ∈ Ina
r , and by hypothesis, Li+1

is semilinear, hence b-linear for every b ∈ Σ ∪ {x1, . . . , xn}. Suppose first that
xi+1 �∈ Ina

r ; then, for every b such that there exists w ∈ Li+1 for which |w|b > 0,
we have b �∈ Ina

r . Therefore, for every x ∈ Ina
r , L ′

i+1 is x-linear iff L ′
i is x-linear,

which is verified thanks to the induction hypothesis.
Suppose now that xi+1 ∈ Ina

r . By hypothesis, L ′
i is xi+1-linear. If L ′

i is xi+1-
constant, according to Lemma 6.1, L ′

i+1 is x-linear for every x ∈ Ina
r . Otherwise,

L ′
i is not xi+1-constant; according to Lemma 6.2, there exist a chain C of xi+1-

introducers, xC ∈Inxi+1
r and 1 ≤ iC ≤ i such that LiC is not xC -constant. Because

xC is also an a-introducer, for every x ∈ Ina
r , Li+1 must be x-constant by hypothesis.

Finally, by application of Lemma 6.1, we obtain that L ′
i+1 is x-linear for every

x ∈ Ina
r . ��

Example 6 Let us consider the language given in Example 3:

Every maximal chain of a-introducers verifies the conditions given in Lemma 7: for
(a, x1), only the language x∗

1 x2x3 is not constant on an a-introducer (i.e. x1); similarly

123

22 P. Bourreau

for (a, x3, z) and (a, x3), only the language a∗z is not constant on an a-introducer
(i.e. a).

The conditions expressed in Lemma 7 are not complete as illustrated with the rep-
resentation a∗x[x := a∗]IO of the language a∗. The maximal chains of a-introducers
in it are C ′ = (a) and C = (a, x); and both a∗x and a∗ are not a-constant.

4.4 IO(L) is not a Full AFL

Finally, based on the previous results, we prove that, given L a semilinear full AFL
such that REG ⊆ L, the family IO(L) is not closed under inverse homomorphism.

We first prove the following lemma, which states that, whenever a chain of IO-
substitutions generates a language which is not a-linear (i.e. whenever such a chain
can copy words/languages more than once), the derived words must verify a specific
pattern.

Lemma 8 Consider a language L ∈ IO(L) and:

– a representation r of L, of the form L0[x1 := L1]IO . . . [xn := Ln]IO, fully effective
and in standard form;

– a symbol a ∈ Σ , a chain C ∈ Cha
r , distinct symbols y1, y2 ∈ C and 0 ≤ i1, i2 ≤ n,

i1 �= i2 such that for every u1 ∈ Li1 and u2 ∈ Li2 , |u1|y1 > 1 and |u2|y2 > 1

Then, for every w ∈ L, there exists w′, w1, w2, w3 ∈ Σ∗ such that
w = w1aw′aw2aw′aw3.

Proof First note that y1 �= y2 and y1, y2 ∈ C implies either y1 ∈ Iny2
r or y2 ∈ Iny1

r ,
by definition of a chain of introducers; without loss of generality, let us assume that
y1 ∈ Iny2

r . We consider a word u in the language represented by

L0[x1 := L1]IO . . . [xi1−1 := Li1−1]IO

and a word u′ ∈ Li1 . By assumption, u′ is of the form u′
1 y1u′

2 y1u′
3; because the

IO-substitution is not irrelevant, ioxi1−1,u′(u) is of the form u1 y1u2 y1u3.
Because there is no deleting IO-substitution along the representation r , the words

w in the language represented by L0[x1 := L1]IO . . . [xi2−1 := Li2−1]IO must be of
the form w1 yw2 yw3, where y1 I n∗

r y and y I n∗
r y2. Then, because every word in Li2

must be of the general form w′ = w′
1 y2w

′
2 y2w

′
3, the word ioy2,w′(w) is of the form

w′′
1 y2w

′
2 y2w

′′
2 y2w

′
2 y2w

′′
3 .

Again, because the substitutions in r are not deleting, we can conclude that the
words in L are of the form u′

1au′au′
2au′au′

3. ��
We are now in position of proving our main result. Informally, a sketch of the proof is

as follows: if we let Lanp,b = {w ∈ {a, b}∗ | |w|a = nm, where n, m > 1} in IO(L),
and Ldi f f = {bp0 abp1a . . . abpnm | n, m > 1 and for every 0 ≤ i, j ≤ nm, i �=
j ⇒ pi �= p j }, then we can exhibit a language L such that Ldi f f ⊆ L ⊆ Lanp,b,
by removing representations of the form given in Lemma 8 in a representation of
Lanp,b. This means that no IO-substitution of a symbol x can be performed on words

123

The IO-Substitution on the Parikh Image of Semilinear Full AFLs 23

that contain multiple occurrences of that symbol; therefore, the language L must be
a-linear, which is impossible.

Theorem 4 (Non-closure under inverse homomorphism) Given a full abstract family
of semilinear languages L such that REG ⊆ L, the family IO(L) is not closed under
inverse homomorphism.

Proof Let us consider the language consisting of all strings of a∗ whose length is a
non-prime number:

Lnprime = {
anm | n, m > 1

} =
{

a4+2n+2m+nm | n, m ∈ N

}

This language is not semilinear since its Parikh image is equal to Im(F) where
F(x1, x2) = 〈4〉 + x1〈2〉 + x2〈2〉 + x1x2〈1〉. Therefore Lnprime does not belong to L,
but belongs to IO(REG): indeed a2a∗[a := a2a∗]IO = Lnprime and a2a∗ is a regular
language. Therefore, if REG ⊆ L then Lnprime is in IO(L).

Now, consider the homomorphism φ : {a, b} → a∗ such that φ(a) = a and
φ(b) = ε. Then we obtain:

φ−1(Lnprime) = Lanp,b = {w ∈ {a, b}∗ | |w|a = nm, where n, m > 1}

Let us assume Lanp,b belongs to IO(L). Then, according to Lemma 5, there exists
a fully effective representation ranp,b : ⋃

i∈I Li0[xi1 := Li1]IO . . . [xini
:= Lini]IO for

Lanp,b, where for every 0 ≤ j ≤ ni , Li j belongs to L. For every i ∈ I , let us denote
by ri the representation Li0[xi1 := Li1]IO . . . [xini

:= Lini]IO and by Li the resulting
language.

Let us consider the language Ldi f f � Lanp,b defined by:

Ldi f f ={bp0 abp1a . . . abpnm | n, m >1 and for every 0 ≤ i, j ≤ nm, i �= j ⇒ pi �= p j }

We aim at building a language L such that Ldi f f ⊆ L ⊆ Lanp,b. In order to do so,
for every i ∈ I , let us consider the right congruence ∼=i defined as:

w1 ∼=i w2 iff for every y ∈ I na
ri
, |w1|y > 1 ⇐⇒ |w2|y > 1

Such a congruence is of finite index. According to the separation lemma and Lemma
4, we can write:

Li =
⋃

C0,...,Cni ∈Σ∗/∼=i

(Li0 ∩ C0)[x1 := (Li1 ∩ C1)]IO . . . [xni := (Lini ∩ Cni)]IO

Moreover, for every class of equivalence C0, . . . , Cni ∈ Σ∗/∼=i , the representation
(Li0 ∩ C0)[x1 := (Li1 ∩ C1)]IO . . . [xni := (Lini ∩ Cni)]IO is in standard form, and is
fully effective, because Li j ∩ C j is a sublanguage of Li j , for every 1 ≤ j ≤ ni , and
because ranp,b is in fully effective form.

123

24 P. Bourreau

Now let us consider Ri : (Li0 ∩C0)[x1 := (Li1 ∩C1)]IO . . . [xni := (Lini ∩Cni)]IO

where C0, . . . , Cni ∈ Σ∗/∼=i , such that there exist a chain ch ∈ Cha
Ri

, symbols
y1, y2 ∈ ch with y1 �= y2, and integers 0 ≤ i1, i2 ≤ ni , for which:

– for every word w ∈ Ci1 , |w|y1 > 1;
– for every word w ∈ Ci2 , |w|y2 > 1;

Then, according to Lemma 8, any word in L ′
i , the language associated to the rep-

resentation Ri , does not belong to Ldi f f . We can therefore build the language L such
that the following representation R:

⋃
i∈I ′

⋃
C0∈Σ∗/∼=i

. . .
⋃

Cni ∈Σ∗/∼=i

(Li0 ∩ C0)[x1 :=(Li1 ∩ C1)]IO . . . [xni :=(Lini ∩ Cni)]IO

is a representation of L , and results from removing the representations of languages
whose intersection with Ldi f f is empty.

But, for every i ∈ I ′ and every class C0, . . . Cni of Σ∗/∼=i , the representation

(Li0 ∩ C0)[x1 := (Li1 ∩ C1)]IO . . . [xni := (Lini ∩ Cni)]IO

must verify the assumptions of Lemma 7; therefore, the language associated to such
a representation must be a-linear, and L is a finite union of a-linear languages, hence
an a-linear language itself.

But, φ(Ldi f f) = Lnprime ⊆ φ(L) ⊆ φ(Lanp,b) = Lnprime. Therefore, Lnprime

should be a-linear, which is wrong, and we obtain a contradiction. ��
Corollary 3 If L is a semilinear full AFL such that REG ⊆ L, then IO(L) is not a
full AFL. In particular, IO(CFL), IO(yTAL) and IO(MCFL) are not full AFLs.

5 Conclusion

In the present paper, we proposed a study on the effect of IO-substitution on the Parikh
image of languages in L, a full abstract family of semilinear languages. We first gave
a full and complete characterization of these images in terms of factored semilinear
Parikh images, and based on this result, we gave a new proof that languages in IO(L)
verify the constant-growth property. This first step was also the opportunity to define
universally- and existentially-semilinear Parikh images, and to prove that languages
whose Parikh images belong to these classes also verify the constant-growth prop-
erty. We gave some brief arguments in favour of the interest of the newly introduced
classes of universally- and existentially-semilinear Parikh images in capturing natural
language syntax, which would require further investigations. In the second part of
the paper, we proved that IO(L) is not closed under inverse homomorphism, when
REG ⊆ L and L is a semilinear full AFL. The proof relies on the results obtained in
the first section, and in particular in showing that the copying power brought by the IO-
substitution operation forces the words to verify a certain pattern. As a consequence,
we can conclude that IO(MCFL) is not a full abstract family of languages, which was
an open question in Bourreau et al. (2012). Moreover, our result generalizes the one

123

The IO-Substitution on the Parikh Image of Semilinear Full AFLs 25

of Fischer on IO-macro languages, and, on a technical point of view, the argument of
the proof reveals some connection between the way IO-copying breaks semilinearity
and the non-closure under inverse homomorphism of a class of languages built with
IO-copying operations.

This work gives space for further problems. First, the sketch of the proof of the
non-closure property under inverse homomorphism can probably be reused to prove
the same result on other formalisms in which copying material is allowed. In particular,
we can conjecture that parallel multiple context-free languages are not closed under
such an operation, which contradicts the conjecture in the seminal paper (Seki et al.
1991). The same question can be addressed on the language in the IO hierarchy (Damm
1982; Salvati and Kobele 2013), i.e. formalisms in which higher-order operations on
strings can be copied. Some questions can also be addressed related to the first part
of the present article. For instance, how can we create a class of languages which
yields universally-semilinear sets? Addressing the same question on the existentially-
semilinear sets seems less trivial as the functions used to build such sets are free but
on one of their arguments.

Finally, some formal questions on the IO-substitution operation can be addressed.
One of them is to characterize the languages obtained with infinite applica-
tion of such an operation; in particular, IO-macro languages might be gener-
ated by recursive application of some IO-substitutions. For example, the lan-
guage {an2 | n ∈ N} can be expressed as: ε + a([a := aa]IO)∗ = {ε} ∪⋃

n∈N
a [a := aa]IO[a := aa]IO . . . [a := aa]IO︸ ︷︷ ︸

n

. With such patterns, one might be

able to express languages such as macro-languages, index languages or parallel multi-
ple context-free languages. We will therefore investigate whether the IO-substitution
can be used to revisit and classify classes of languages in which some copying mech-
anism is used.

Acknowledgments This work was funded by the Deutsche Forchungsgemeinschaft, under the project
SFB 991 “Die Struktur von Repräsentationen in Sprache, Kognition und Wissenschaft”. I am thankful to
Sylvain Salvati for the motivating discussions on this topic; to Laura Kallmeyer for her insights on the
notions of universally-linear sets; and to Christian Wurm who helped me to improve the formal definitions
with his feedbacks. The responsibility for any mistakes contained herein rests solely on me.

References

Bourreau, P. (2013). Traitement d’ellipses: Deux approches par les grammaires catégorielles abstraites. In
Actes de Traitement Automatique du Langage Naturel—TALN 2013.

Bourreau, P., Kallmeyer, L., & Salvati, S. (2012). On IO-copying and mildly-context sensitive formalisms.
In Proceedings of Formal Grammar 2012.

Chomsky, N. (1956). Three models for the description of language. IRE Transactions on Information Theory,
2, 113–124.

Culy, C. (1987). The complexity of the vocabulary of bambara. In W. Savitch, E. Bach, W. Marsh, & G.
Safran-Naveh (Eds.), The formal complexity of natural language, Studies in linguistics and philosophy
(Vol. 33, pp. 349–357). Netherlands: Springer.

Damm, W. (1982). The IO- and OI-hierarchies. Theoretical Computer Science, 20, 95–207.
de Groote, P. (2001). Towards abstract categorial grammars. In Proceedings of the conference on Association

for computational linguistics, 39th Annual meeting and 10th conference of the European chapter, pp.
148–155.

123

26 P. Bourreau

Fischer, M. J. (1968a). Grammars with macro-like productions. Ph.D. thesis, Harvard University.
Fischer, M. J. (1968b). Grammars with macro-like productions. In IEEE conference record of 9th annual

symposium on switching and automata theory, pp. 131–142.
Huybregts, R. (1984). The weak inadequacy of context-free phrase structure grammars. In Van Preferie

naar Kern, pp. 81–90.
Joshi, A. K. (1985). Tree-adjoining grammars: How much context-sensitivity is required to provide reason-

able strucutral descriptions? In Natural language parsing: psychological, computational and theoret-
ical perspectives, pp. 206–250.

Kallmeyer, L. (2010). On mildly context-sensitive non-linear rewriting. Research on Language and Com-
putation, 8(2), 341–363.

Kobele, G. M. (2006). Generating Copies: An investigation into structural identity in language and gram-
mar. Ph.D. thesis, UCLA.

Kobele, G. M. (2007). Parsing ellipsis. Unpublished Manuscript.
Michaelis, J. (1998). Derivational minimalism is mildly context-sensitive. In M. Moortgat (Ed.), LACL,

Lecture Notes in Computer Science (Vol. 2014, pp. 179–198). Berlin: Springer.
Michaelis, J. & Kracht, M. (1997). Semilinearity as a syntactic invariant. In Proceedings of logical aspects

of computational linguistics.
Muskens, R. (2001). Lambda Grammars and the syntax-semantics interface. In van Rooy, R. & Stokhof,

M., (Eds.), Proceedings of the thirteenth amsterdam colloquium, (pp. 150–155). North-Holland: Ams-
terdam

Radzinski, D. (1990). Unbounded syntactic copying in mandarin chinese. Linguistics and Philosophy, 13(1),
113–127.

Salvati, S. & Kobele, G. (2013). The IO and OI hierarchies revisited. In Proceedings of the 40th international
colloquium on automata, languages and programming (to be published)

Sarkar, A. & Joshi, A. (1996). Coordination in tree adjoining grammars: Formalization and implementation.
In Proceedings of the 16th conference on Computational linguistics, COLING’96 (Vol. 2, pp. 610–
615), Stroudsburg, PA: Association for Computational Linguistics.

Seki, H., Matsamura, T., Mamoru, F., & Kasami, T. (1991). On multiple context-free grammars. Theoretical
Computer Science, 88(2), 191–229.

Shieber, S. (1985). Evidence against the context-freeness of natural language. Linguistic and Philosophy,
8, 333–343.

Stabler, E. P. (1996). Derivational minimalism. In Retoré, C., (Ed.), LACL, Lecture Notes in Computer
Science, (Vol. 1328, pp. 68–95). Berlin: Springer.

Vijay-Shanker, K., Weir, D. J., & Joshi, A. K. (1987). Characterizing structural descriptions produced by
various grammatical formalisms. In Proceedings of the 25th annual meeting of the association for
computational linguistics, Stanford.

123

	On the Effect of the IO-Substitution on the Parikh Image of Semilinear Full AFLs
	Abstract
	1 Introduction
	2 Semilinearity, Constant-Growth and IO-Substitution
	2.1 Formal Languages, Constant-Growth and Semilinearity
	2.2 IO-Substitution: Going Beyond Semilinearity

	3 IO-MCFLs have Factorized Parikh Images
	3.1 Constant-Growth, -Semilinear and forall-Semilinear Sets
	3.2 Factored Parikh Image

	4 Non-closure of IO-MCFLs Under Inverse Homomorphism
	4.1 Standard Representations for IO(L)
	4.2 Fully Effective Representations
	4.3 a-Linearity
	4.4 IO(L) is not a Full AFL

	5 Conclusion
	Acknowledgments
	References

