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Abstract The main aim of the present paper is to use a proof system for hybrid modal
logic to formalize what are called false-belief tasks in cognitive psychology, thereby
investigating the interplay between cognition and logical reasoning about belief. We
consider two different versions of the Smarties task, involving respectively a shift
of perspective to another person and to another time. Our formalizations disclose
that despite this difference, the two versions of the Smarties task have exactly the
same underlying logical structure. We also consider the Sally-Anne task, having a
more complicated logical structure, presupposing a “principle of inertia” saying that
a belief is preserved over time, unless there is belief to the contrary.

Keywords Modal logic · Hybrid logic · False-belief tasks · Theory of mind

1 Introduction

In the area of cognitive psychology there is a reasoning task called the Smarties task.
The following is one version of this task.

The present paper is a revised and extended version of the conference paper Braüner (2013). Beside a
number of minor revisions, the formalization of the Sally-Anne task has been significantly revised [Sect. 7
in both the present paper and in Braüner (2013)]. Moreover, the discussion of related work has been
significantly extended.
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416 T. Braüner

A child is shown a Smarties tube where unbeknownst to the child the Smarties
have been replaced by pencils. The child is asked: “What do you think is inside
the tube?” The child answers “Smarties!” The tube is then shown to contain
pencils only. The child is then asked: “If your mother comes into the room and
we show this tube to her, what will she think is inside?”

It is well-known from experiments that most children above the age of four correctly
say “Smarties” (thereby attributing a false belief to the mother) whereas younger
children say “Pencils” (what they know is inside the tube). For autistic1 children the
cutoff age is higher than 4 years, which is one reason to the interest in the Smarties task.

The Smarties task is one out of a family of reasoning tasks called false-belief tasks
showing the same pattern, that most children above four answer correctly, but autistic
children have to be older. This was first observed in the paper Baron-Cohen et al. (1985)
in connection with another false-belief task called the Sally-Anne task. Starting with
the authors of that paper, many researchers in cognitive psychology have argued that
there is a link between autism and a lack of what is called theory of mind, which
is a person’s capacity to ascribe mental states to oneself and to others, for example
beliefs. For a very general formulation of the theory of mind deficit hypothesis of
autism, see the book Baron-Cohen (1995). The results of false-belief tasks are robust
under many different variations, for example across various countries and various task
manipulations, as shown in the meta-analysis Wellman (2001) involving 178 individual
false-belief studies and more than 4,000 children. Beside the research considering
theory of mind at a cognitive level, such as in connection with false-belief tasks, there
is also an extensive research from the point of view of neuropsychology, for example
the paper Gallese and Goldman (1998), that suggests an explanation of theory of mind
in terms of mirror neurons, which are neurons that fire not only when an individual
performs a particular action, but also when the individual observes someone else
performing the same action.

Giving a correct answer to the Smarties task involves a shift of perspective to another
person, namely the mother. You have to put yourself in another person’s shoes, so to
speak. Since the capacity to take another perspective is a precondition for figuring
out the correct answer to the Smarties task and other false-belief tasks, the fact that
autistic children have a higher cutoff age is taken to support the claim that autists
have a limited or delayed theory of mind. For a critical overview of these arguments,
see the book Stenning and van Lambalgen (2008) by Keith Stenning and Michiel van
Lambalgen. The books Stenning and van Lambalgen (2008) and Baron-Cohen (1995)
not only consider theory of mind at a cognitive level, but they also discuss it from a
biological point of view.

In a range of works van Lambalgen and co-authors have given a detailed logical
analysis (but not a full formalization) of the reasoning taking place in the Smarties
task and other false-belief tasks in terms of non-monotonic closed world reasoning as
used in logic programming, see in particular Stenning and van Lambalgen (2008). The

1 Autism is a psychiatric disorder with the following three diagnostic criteria: 1. Impairment in social
interaction. 2. Impairment in communication. 3. Restricted repetitive and stereotyped patterns of behavior,
interests, and activities. For details, see Diagnostic and Statistical Manual of Mental Disorders, 4th Edition
(DSM-IV), published by the American Psychiatric Association.
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analysis of the Sally-Anne and Smarties tasks of Stenning and van Lambalgen (2008),
subsections 9.4.1–9.4.4, makes use of a modality2 B for belief satisfying two standard
modal principles. The first principle is B(φ → ψ) → (Bφ → Bψ) [principle (9.5)
at page 251 in Stenning and van Lambalgen (2008)], which usually is called axiom
K. The second principle is the rule called necessitation, that is, from φ derive Bφ
[this rule is not mentioned explicitly in Stenning and van Lambalgen (2008), but in
the Sally-Anne case, the necessitation rule is implicitly applied to clauses (9.12) and
(9.13) at page 253, and in the Smarties case, it is implicitly applied to clause (9.22)
at page 256). Axiom K together with the necessitation rule imply that belief is closed
under logical consequence, that is, Bψ can be derived from φ → ψ and Bφ, which at
least for human agents is implausible (when the modal operator stands for knowledge,
this is called logical omniscience].3

The papers Arkoudas and Bringsjord (2008) and Arkoudas and Bringsjord (2009)
give a formalization of the Sally-Anne task, but no other false-belief tasks. The papers
have several aims, one of them is described as follows.

One intended contribution of our present work is ... to provide a formal model
of false-belief attributions, and, in particular, a description of the logical com-
petence of an agent capable of passing a false-belief task. It addresses questions
such as the following: What sort of principles is it plausible to assume an agent
has to deploy in order to be able to succeed on a false-belief task? What is the
depth and complexity of the required reasoning? Can such reasoning be auto-
mated, and if so, how? (Arkoudas and Bringsjord (2008), p. 18)

The papers specifiy a number of axioms and proof-rules formulated in a many-sorted
first-order modal logic, and it is briefly described how the reasoning in the Sally-Anne
task has been implemented in an interactive theorem prover using this machinery
(but the papers do not explicitly give a full formalization). The paper Arkoudas and
Bringsjord (2009) is an extended version of Arkoudas and Bringsjord (2008), con-
taining a section discussing how to encode the system in (non-modal) many-sorted
first-order logic. The papers describe how their axioms and proof-rules are taylor-
made to avoid logical omniscience, cf. page 22 in Arkoudas and Bringsjord (2008).
The proof-rules employed in the papers do not explicitly formalize the perspective
shift required to pass the Sally-Anne task.

2 Strictly speaking, the modality B in Stenning and van Lambalgen (2008) is not formalized in terms of
modal logic, but in terms of what is called event calculus, where B is a predicate that can take formulas as
arguments.
3 The observation that Stenning and van Lambalgen (2008) applies axiom K and (implicitly) the necessi-
tation rule, raises the following question: How could the logical analyses of the Smarties and Sally-Anne
tasks in Stenning and van Lambalgen (2008) be turned into full formalizations, that is, fully formal proofs
in some well-defined proof-system? The book Stenning and van Lambalgen (2008) puts much emphasis on
applying the closed world reasoning mechanism of logic programming, that is, the standard procedural eval-
uation mechanism of Horn clauses, extended with the metalinguistic predicate negation as failure (classical
negation is not expressible using Horn clauses), and this would in a principled way have to be combined
with machinery like axiom K and the necessitation rule, stemming from Hilbert-style axiom systems, which
is a very different type of reasoning.
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418 T. Braüner

In the present paper we give a logical analysis of the perspective shift required to
give a correct answer to the Smarties and Sally-Anne tasks, and we demonstrate that
these tasks can be fully formalized in a hybrid-logical proof system not assuming prin-
ciples implying logical omniscience, namely the natural deduction system described
in Chapter 4 of the book Braüner (2011), and the paper Braüner (2004) as well. Beside
not suffering from logical omniscience, why is a natural deduction system for hybrid
modal logic appropriate to this end?

• The subject of proof-theory is the notion of proof and formal, that is, symbolic,
systems for representing proofs. Formal proofs built according to the rules of
proof systems can be used to represent—describe the structure of—mathematical
arguments as well as arguments in everyday human practice. Beside giving a
way to distinguish logically correct arguments from incorrect ones, proof systems
also give a number of ways to characterize the structure of arguments. Natural
deduction style proofs are meant to formalize the way human beings actually
reason, so natural deduction is an obvious candidate when looking for a proof
system to formalize the Smarties task in.

• In the standard Kripke semantics for modal logic, the truth-value of a formula is
relative to points in a set, that is, a formula is evaluated “locally” at a point, where
points usually are taken to represent possible worlds, times, locations, epistemic
states, persons, states in a computer, or something else. Hybrid logics are extended
modal logics where it is possible to directly refer to such points in the logical
object language, whereby locality can be handled explicitly, for example, when
reasoning about time one can formulate a series of statements about what happens
at specific times, which is not possible in ordinary modal logic. Thus, when points
in the Kripke semantics represent local perspectives, hybrid-logical machinery can
handle explicitly the different perspectives in the Smarties task.

For the above reasons, we have been able to turn our informal logical analysis of
the Smarties and Sally-Anne tasks into fully formal hybrid-logical natural deduction
proofs closely reflecting the shift between different perspectives.

The natural deduction system we use for our formalizations is a modified version of
a natural deduction system for a logic of situations similar to hybrid logic, originally
introduced in the paper Seligman (1997) by Jerry Seligman. The modified system was
introduced in the paper Braüner (2004), and later on considered in Chapter 4 of the
book Braüner (2011), both by the present author. In what follows we shall simply refer
to the modified system as Seligman’s system. Very recently a tableau system has been
developed along similar lines, see Blackburn et al. (2013).

Now, Seligman’s natural deduction system allows any formula to occur in it, which
is different from the most common proof systems for hybrid logic that only allow
formulas of a certain form called satisfaction statements. This is related to a different
way of reasoning in Seligman’s system, which captures particularly well the reasoning
in the Smarties and Sally-Anne tasks. We prove a completeness result which also says
that Seligman’s system is analytic, that is, we prove that any valid formula has a
derivation satisfying the subformula property. Analyticity guarentees that any valid
argument can be formalized using only subformulas of the premises and the conclusion.
The notion of analyticity goes back to G.W. Leibniz (1646–1716) who called a proof
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analytic if and only if the proof is based on concepts contained in the proven statement,
the main aim being to be able to construct a proof by an analysis of the result, cf. Baaz
and Leitsch (2011).

The present paper is structured as follows. In the second section we recapitulate the
basics of hybrid logic, readers well-versed in hybrid logic can safely skip this section.
In the third section we introduce Seligman’s natural deduction system for hybrid logic
and in the fourth section we give a first example of reasoning in this system. In the fifth
and sixth sections we formalize two versions of the Smarties task using this system,
and in the seventh section we formalize the Sally-Anne task. In the eight section there
are some brief remarks on other work, and in the final section some remarks on further
work. In the appendix we prove the above mentioned completeness result, which also
demonstrates analyticity.

2 Hybrid Logic

The term “hybrid logic” covers a number of logics obtained by adding further expres-
sive power to ordinary modal logic. The history of what now is known as hybrid logic
goes back to the philosopher Arthur Prior’s work in the 1960s. See the handbook
chapter Areces and ten Cate (2007) for a detailed overview of hybrid logic. See the
book Braüner (2011) on hybrid logic and its proof-theory.

The most basic hybrid logic is obtained by extending ordinary modal logic with
nominals, which are propositional symbols of a new sort. In the Kripke semantics a
nominal is interpreted in a restricted way such that it is true at exactly one point. If the
points are given a temporal reading, this enables the formalization of natural language
statements that are true at exactly one time, for example

it is five o’clock May 10th 2007

which is true at the time five o’clock May 10th 2007, but false at all other times.
Such statements cannot be formalized in ordinary modal logic, the reason being that
there is only one sort of propositional symbol available, namely ordinary propositional
symbols, which are not restricted to being true at exactly one point.

Most hybrid logics involve further additional machinery than nominals. There is
a number of options for adding further machinery; here we shall consider a kind of
operator called satisfaction operators. The motivation for adding satisfaction operators
is to be able to formalize a statement being true at a particular time, possible world,
or something else. For example, we want to be able to formalize that the statement “it
is raining” is true at the time five o’clock May 10th 2007, that is, that

at five o’clock May 10th 2007 it is raining.

This is formalized by the formula @ar where the nominal a stands for “it is five
o’clock May 10th 2007” as above and where r is an ordinary propositional symbol
that stands for “it is raining”. It is the part @a of the formula @ar that is called a
satisfaction operator. In general, if a is a nominal and φ is an arbitrary formula, then
a new formula @aφ can be built (in some literature the notation a : φ is used instead
of @aφ). A formula of this form is called a satisfaction statement. The formula @aφ
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expresses that the formula φ is true at one particular point, namely the point to which
the nominal a refers. Nominals and satisfaction operators are the most common pieces
of hybrid-logical machinery, and are what we need for the purpose of the present paper.

In what follows we give the formal syntax and semantics of hybrid logic. It is
assumed that a set of ordinary propositional symbols and a countably infinite set of
nominals are given. The sets are assumed to be disjoint. The metavariables p, q,
r , …range over ordinary propositional symbols and a, b, c, …range over nominals.
Formulas are defined by the following grammar.

S :: = p | a | S ∧ S | S → S | ⊥ | �S | @a S

The metavariables φ, ψ , θ , …range over formulas. Negation is defined by the con-
vention that ¬φ is an abbreviation for φ → ⊥. Similarly, ♦φ is an abbreviation for
¬�¬φ.

Definition 1 A model for hybrid logic is a tuple (W, R, {Vw}w∈W ) where

1. W is a non-empty set;
2. R is a binary relation on W ; and
3. for each w, Vw is a function that to each ordinary propositional symbol assigns an

element of {0, 1}.
The pair (W, R) is called a frame. Note that a model for hybrid logic is the same
as a model for ordinary modal logic. Given a model M = (W, R, {Vw}w∈W ), an
assignment is a function g that to each nominal assigns an element of W . The relation
M, g, w |� φ is defined by induction, where g is an assignment, w is an element of
W , and φ is a formula.

M, g, w |� p iff Vw(p) = 1
M, g, w |� a iff w = g(a)

M, g, w |� φ ∧ ψ iff M, g, w |� φ and M, g, w |� ψ

M, g, w |� φ → ψ iff M, g, w |� φ implies M, g, w |� ψ

M, g, w |� ⊥ iff falsum
M, g, w |� �φ iff for any v ∈ W such that wRv, M, g, v |� φ

M, g, w |� @aφ iff M, g, g(a) |� φ

By convention M, g |� φ means M, g, w |� φ for every elementw of W and M |� φ

means M, g |� φ for every assignment g. A formula φ is valid if and only if M |� φ

for any model M.

3 Seligman’s System

In this section we introduce Seligman’s natural deduction systems for hybrid logic.
Before defining the system, we shall sketch the basics of natural deduction. Natural
deduction style derivation rules for ordinary classical first-order logic were originally
introduced by Gerhard Gentzen in Gentzen (1969) and later on developed much further
by Dag Prawitz in Prawitz (1965, 1971). See Troelstra and Schwichtenberg (1996)
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for a general introduction to natural deduction systems. With reference to Gentzen’s
work, Prawitz made the following remarks on the significance of natural deduction.

…the essential logical content of intuitive logical operations that can be formu-
lated in the languages considered can be understood as composed of the atomic
inferences isolated by Gentzen. It is in this sense that we may understand the
terminology natural deduction.
Nevertheless, Gentzen’s systems are also natural in the more superficial sense
of corresponding rather well to informal practices; in other words, the structure
of informal proofs are often preserved rather well when formalized within the
systems of natural deduction. (Prawitz (1971), p. 245)

Similar views on natural deduction are expressed many places, for example in a text-
book by Warren Goldfarb.

What we shall present is a system for deductions, sometimes called a system of
natural deduction, because to a certain extent it mimics certain natural ways we
reason informally. In particular, at any stage in a deduction we may introduce
a new premise (that is, a new supposition); we may then infer things from this
premise and eventually eliminate the premise (discharge it). (Goldfarb (2003),
p. 181)

Basically, what is said by the second part of the quotation by Prawitz, and the quotation
by Goldfarb as well, is that the structure of informal human arguments can be described
by natural deduction derivations.

Of course, the observation that natural deduction derivations often can formalize, or
mimic, informal reasoning does not itself prove that natural deduction is the mechanism
underlying human deductive reasoning, that is, that formal rules in natural deduction
style are somehow built into the human cognitive architecture. However, this view is
held by a number of psychologists, for example Lance Rips in the book Rips (1994),
where he provides experimental support for the claim.

…a person faced with a task involving deduction attempts to carry it out through
a series of steps that takes him or her from an initial description of the problem to
its solution. These intermediate steps are licensed by mental inference rules, such
as modus ponens, whose output people find intuitively obvious. (Rips (1994),
p. x)

This is the main claim of the “mental logic” school in the psychology of reasoning.
See also Rips (2008) which is a reproduction of some chapters from the book Rips
(1994). The major competitor of the “mental logic” school is the “mental models”
school, claiming that the mechanism underlying human reasoning is the construction
of models, rather than the application of topic-neutral formal rules, see Johnson-Laird
(2008).

We have now given a brief motivation for natural deduction and proceed to a
formal definition. A derivation in a natural deduction system has the form of a
finite tree where the nodes are labelled with formulas such that for any formula
occurrence φ in the derivation, either φ is a leaf of the derivation or the imme-
diate successors of φ in the derivation are the premises of a rule-instance which
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has φ as the conclusion. In what follows, the metavariables π , τ , … range over
derivations. A formula occurrence that is a leaf is called an assumption of the
derivation. The root of a derivation is called the end-formula of the derivation. All
assumptions are annotated with numbers. An assumption is either undischarged
or discharged. If an assumption is discharged, then it is discharged at one par-
ticular rule-instance and this is indicated by annotating the assumption and the
rule-instance with identical numbers. We shall often omit this information when
no confusion can occur. A rule-instance annotated with some number discharges
all undischarged assumptions that are above it and are annotated with the number
in question, and moreover, are occurrences of a formula determined by the rule-
instance.

Two assumptions in a derivation belong to the same parcel if they are annotated
with the same number and are occurrences of the same formula, and moreover, either
are both undischarged or have both been discharged at the same rule-instance. Thus,
in this terminology rules discharge parcels. We shall make use of the standard nota-
tion

[φr ]··· π
ψ

which means a derivation π where ψ is the end-formula and [φr ] is the parcel con-
sisting of all undischarged assumptions that have the form φr .

We shall make use of the following conventions. The metavariables �,�, … range
over sets of formulas. A derivation π is called a derivation of φ if the end-formula
of π is an occurrence of φ, and moreover, π is called a derivation from � if each
undischarged assumption in π is an occurrence of a formula in � (note that numbers
annotating undischarged assumptions are ignored). If there exists a derivation of φ
from ∅, then we shall simply say that φ is derivable.

A typical feature of natural deduction is that there are two different kinds of rules for
each connective; there are rules called introduction rules which introduce a connective
(that is, the connective occurs in the conclusion of the rule, but not in the premises) and
there are rules called elimination rules which eliminate a connective (the connective
occurs in a premiss of the rule, but not in the conclusion). Introduction rules have
names in the form (. . . I . . .), and similarly, elimination rules have names in the form
(. . . E . . .).

Now, Seligman’s natural deduction system is obtained from the rules given in
Figs. 1 and 2. We let N′H denote the system thus obtained. The system N′H is
taken from Braüner (2004) and Chapter 4 of Braüner (2011) where it is shown to
be sound and complete wrt. the formal semantics given in the previous section. As
mentioned earlier, this system is a modified version of a system originally intro-
duced in Seligman (1997). The system of Seligman (1997) was modified in Braüner
(2004) and Braüner (2011) with the aim of obtaining a desirable property called clo-
sure under substitution, see subsection 4.1.1 of Braüner (2011) for further explana-
tion.
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Fig. 1 Rules for connectives

1 n

1 n a

Term

a

Name †

1, . . . , n , and are all satisfaction statements and there are no undischarged assumptions in the
derivation of besides the specified occurrences of 1, . . . , n , and a.
† a does not occur in or in any undischarged assumptions other than the specified occurrences of a.

Fig. 2 Rules for nominals

The way of reasoning in Seligman’s system is different from the way of reasoning
in most other proof systems for hybrid logic.4 This in particular applies to rule (Term),
which is very different from other rules in proof systems for hybrid logic, roughly, this
rule replaces rules for equational reasoning in other systems, see for example the rules
in the natural deduction system given in subsection 2.2 of the book Braüner (2011).

4 We here have in mind natural deduction, Gentzen, and tableau systems for hybrid logic, not Hilbert-style
axiom systems. Proof systems of the first three types are suitable for actual reasoning, carried out by a
human, a computer, or in some other medium. Axiom systems are usually not meant for actual reasoning,
but are of a more foundational interest.
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Syntactically, the (Term) rule delimits a subderivation. This is similar to the way
a subderivation is delimited by the introduction rule for the modal operator � in the
natural deduction system for S4 given in Bierman and de Paiva (2000), making use
of explicit substitutions in derivations, and more specifically, it is similar to the way
subderivations are delimited by so-called boxes in linear logic. Using boxes in the style
of linear logic, the (Term) rule could alternatively be formulated as follows (compare
to our formulation in Fig. 2).

4 A First Example

In this section we give the first example of reasoning using the (Term) rule, displayed
in Fig. 2. The example involves spatial locations, more concretely, cities. Beside the
(Term) rule, the key rules in the example are the rules (@I ) and (@E), displayed in
Fig. 1, which are the introduction and elimination rules for the satisfaction operator.
The rules (@I ) and (@E) formalizes the following two informal arguments, adapted
from Seligman (1997).

This is Bloomington; the sun is shining, so the sun is shining in Bloomington.

This is Tokyo; people drive on the left in Tokyo, so people drive on the left.

Now, the (Term) rule enables hypothetical reasoning where reasoning is about what
is the case at a specific location, possibly different from the actual location. Consider
the following informal argument, also adapted from Seligman (1997).

Alcohol is forbidden in Abu Dabi; if alcohol is forbidden then Sake is forbidden,
so Sake is forbidden in Abu Dabi.

The reasoning in this example argument is about what is the case in the city of Abu
Dabi. If this argument is made at a specific actual location, the location of evaluation
is first shifted from the actual location to a hypothetical location, namely Abu Dabi,
then some reasoning is performed involving the premise “if alcohol is forbidden then
Sake is forbidden”, and finally the location of evaluation is shifted back to the actual
location. The reader is invited to verify this shift of spatial location by checking that
the argument is correct, and note that the reader himself (or herself) imagines being
at the location Abu Dabi. Note that the premise “if alcohol is forbidden then Sake is
forbidden” represents a relation holding at all locations.

Now, in a spatial setting, the side-condition on the rule (Term) requiring that all
the formulas φ1, …, φn, ψ are satisfaction statements (see Fig. 2) ensures that these
formulas have the same truth-value at all locations, so the truth-value of these formulas
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@a p

a

a @a p
@E

p
Axiom

p q
E

q
@I

@aq
Term

@aq

Fig. 3 First example formalization

are not affected by a shift of spatial perspective. The rule would not be sound if this
was not the case, that is, if one or more of the formulas were spatially-indexical (in
the terminology of Seligman (1997)).

We now proceed to the formalization of the above argument about what is the case
in the city of Abu Dabi. We make use of the following symbolizations

p Alcohol is forbidden
q Sake is forbidden
a This is Abu Dabi

and we take the formula p → q as an axiom since it represents a relation between
p and q holding everywhere (note that we use an axiom since the relation p → q
holds between the particular propositions p and q, we do not use an axiom schema
since the relation obviously does not hold between any pair of propositions).5 Then
the argument can be formalized as the derivation in Fig. 3.

Note that the derivation in Fig. 3 is obtained by applying the (Term) rule to the
subderivation below.

a

a @a p
(@E)

p
(Axiom)

p → q
(→ E)

q
(@I )

@aq

Thus, the (Term) rule delimits a piece of reasoning taking place at the hypothetical
location Abu Dabi, namely the piece of reasoning encompassed by the subderivation
above.

Formally, the shift to a hypothetical point of evaluation effected by the rule (Term)
can be seen by inspecting the proof that the rule (Term) is sound: The world of evalu-
ation is shifted from the actual world to the hypothetical world where the nominal a is

5 One may ask why the premise “if alcohol is forbidden then Sake is forbidden” is formalized as p → q
using classical implication, rather than a form of non-monotonic implication. Like in many cases when
classical logic is used to formalize natural language statements, there is an idealization in our choice of
classical implication. We think this idealization is justified since our main goal is to formalize the perspective
shift involved in the example argument. We note in passing that classical implication is also used in Seligman
(1997) where this example stems from, or to be precise, machinery equivalent to classical implication. See
also Footnote 7.
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true (see Fig. 2), then some reasoning is performed involving the delimited subderiva-
tion which by induction is assumed to be sound, and finally the world of evaluation is
shifted back to the actual world. Soundness of the system N′H, including soundness
of the rule (Term), is proved in Theorem 4.1 in subsection 4.3 of Braüner (2011).

5 The Smarties Task (Temporal Shift Version)

In this section we will give a formalization which has exactly the same structure as
the formalization in the previous section, but which in other respects is quite different.
It turns out that a perspective shift like the one just described in the previous section
also takes place in the following version of the Smarties task where there is a shift of
perspective to another time.6

A child is shown a Smarties tube where unbeknownst to the child the Smarties
have been replaced by pencils. The child is asked: “What do you think is inside
the tube?” The child answers “Smarties!” The tube is then shown to contain
pencils only. The child is then asked: “Before this tube was opened, what did
you think was inside?”

Compare to the version in the introduction of the present paper where there is a shift
of perspective to another person. See Gopnik and Astington (1988) for more on the
temporal version of the Smarties task.

Below we shall formalize each step in the logical reasoning taking place when
giving a correct answer to the temporal version of the task, but before that, we give an
informal analysis. Let us call the child Peter. Let a be the time where Peter answers
the first question, and let t be the time where he answers the second one. To answer
the second question, Peter imagines himself being at the earlier time a where he was
asked the first question. At that time he deduced that there were Smarties inside the
tube from the fact that it is a Smarties tube. Imagining being at the time a, Peter reasons
that since he at that time deduced that there were Smarties inside, he must also have
come to believe that there were Smarties inside. Therefore, at the time t he concludes
that at the earlier time a he believed that there were Smarties inside.

We now proceed to the full formalization. We first extend the language of hybrid
logic with two modal operators, D and B. We make use of the following symbolizations

D Peter deduces that ...
B Peter believes that ...
p There are Smarties inside the tube
a The time where the first question is answered

and we take the principle Dφ → Bφ as an axiom schema (it holds whatever proposi-
tion is substituted for the metavariable φ, hence an axiom schema). This is principle

6 The author thanks Michiel van Lambalgen for mentioning the Smarties task in an email exchange in
2011 where the author suggested that the shift of perspective in the hybrid-logical rule (Term) could be of
relevance in connection with the theory of mind view of autism.
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@a Dp
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a @a Dp
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@I

@a Bp
Term

@a Bp

Fig. 4 Formalization of the child’s correct response in the Smarties task (both temporal and person shift
versions)

(9.4) in Stenning and van Lambalgen (2008).7 Then the shift of temporal perspec-
tive in the Smarties task can be formalized very directly in Seligman’s system as the
derivation in Fig. 4.Recall that the derivation is meant to formalize each step in Peter’s
reasoning at the time t where the second question is answered. The premise @a Dp
in the derivation says that Peter at the earlier time a deduced that there were Smarties
inside the tube, which he remembers at t .

Note that the formalization in Fig. 4 does not involve the � operator, so this operator
could have been omitted together with the associated rules (�I ) and (�E) in Fig. 1.
Since this proof system is complete, the � operator satisfies logical omniscience. The
operators D and B are only taken to satisfy the principle Dφ → Bφ, as mentioned
above.

Compare the derivation in Fig. 4 to the derivation in Fig. 3 in the previous section
and note that the structure of the derivation is exactly the same. Note that what we
have done is that we have formalized the logical reasoning taking place when giving
the correct answer “Smarties”. Note also that information about the actual content of
the tube, namely pencils, is not needed to draw the correct conclusion, in fact, the
actual content is not even mentioned in the formalization.

6 The Smarties Task (Person Shift Version)

As a stepping stone between the temporal version of the Smarties task we considered
in the previous section, and the Sally-Anne task we shall consider in the next section,
we in the present section take a look again at the version of the Smarties task described
in the introduction. The only difference between the version in the introduction and
the version in the previous section is the second question where

“Before this tube was opened, what did you think was inside?”

obviously gives rise to a temporal shift of perspective, whereas

7 Analogous to the question in Footnote 5, it can be asked why we use classical implication in Dφ → Bφ,
rather than a form of non-monotonic implication. Again, the answer is that this is an idealization. In
this connection we remark that principle (9.4) in Stenning and van Lambalgen (2008) also uses classical
implication (the non-monotonicity in the logical analysis of the Smarties task of Stenning and van Lambalgen
(2008) does not concern principle (9.4), but other principles).
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“If your mother comes into the room and we show this tube to her, what will she
think is inside?”

gives rise to a shift of perspective to another person, namely the imagined mother.
To give a correct answer to the latter of these two questions, the child Peter imagines

being the mother coming into the room. Imagining being the mother, Peter reasons
that the mother must deduce that there are Smarties inside the tube from the fact
that it is a Smarties tube, and from that, she must also come to believe that there are
Smarties inside. Therefore, Peter concludes that the mother would believe that there
are Smarties inside.

The derivation formalizing this argument is exactly the same as in the temporal
case dealt with in previous section, Fig. 4, but the symbols are interpreted differently,
namely as

D Deduces that ...
B Believes that ...
p There are Smarties inside the tube
a The imagined mother

So now nominals refer to persons rather than times. Accordingly, the modal operator
B now symbolize the belief of the person represented by the point of evaluation,
rather than Peter’s belief at the time of evaluation, etc. Thus, the premise @a Dp in
the derivation in Fig. 4 says that the imagined mother deduces that there are Smarties
inside the tube, which the child doing the reasoning takes to be the case since the
mother is imagined to be present in the room.

Incidentally, letting points in the Kripke model represent persons is exactly what is
done in Arthur Prior’s egocentric logic, see subsection 1.3 in the book Braüner (2011),
in particular pp. 15–16. In egocentric logic the accessibility relation represents the
taller-than relation, but this relation is obviously not relevant here.

7 The Sally-Anne Task

In this section we will present a formalization of a more complicated reasoning task
called the Sally-Anne task. In a number of places we shall compare to the detailed
logical analysis of the Sally-Anne task given in the book Stenning and van Lambalgen
(2008), and we shall also make some remarks in relation to the formalization of the
Sally-Anne task given in the papers Arkoudas and Bringsjord (2008) and Arkoudas
and Bringsjord (2009). The following is one version of this task.

A child is shown a scene with two doll protagonists, Sally and Anne, having
respectively a basket and a box. Sally first places a marble into her basket. Then
Sally leaves the scene, and in her absence, the marble is moved by Anne and
hidden in her box. Then Sally returns, and the child is asked: “Where will Sally
look for her marble?”

Most children above the age of four correctly responds where Sally must falsely believe
the marble to be (in the basket) whereas younger children respond where they know
the marble to be (in the box). Again, for autists, the cutoff is higher.
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Below we shall formalize the correct response to the task, but before that, we give an
informal analysis. Let us call the child Peter again. We shall consider three successive
times t0, t1, t2 where t0 is the time at which Sally leaves the scene, t1 is the time at
which the marble is moved to the box, and t2 is the time after Sally has returned when
Peter answers the question. To answer the question, Peter imagines himself being
Sally, and he reasons as follows: At the time t0 when Sally leaves, she believes that the
marble is in the basket since she sees it, and she sees no action to move it, so when she
is away at t1, she also believe the marble is in the basket. At t2, after she has returned,
she still believe that the marble is in the basket since she has not seen Anne moving it
at the time t1. Therefore, Peter concludes that Sally believes that the marble is in the
basket.

In our formalization we make use of a tiny fragment of first-order hybrid logic,
involving the predicates l(i, t) and m(t) as well as the modal operators S and B,
but no quantifiers. This should be compared to Stenning and van Lambalgen (2008)
and Arkoudas and Bringsjord (2008) which both uses the event calculus, encoded in
first-order logic, involving quantification8 over times, and in the case of Arkoudas
and Bringsjord (2008), also quantification over events and fluents (a fluent is a con-
dition that can change truth-value over time). However, we think that quantification
over times is really not needed for formalizing the Sally-Anne task, the reason being
that the scenario only involves a fixed finite number number of times (in our formal-
ization three distinct times). Even though Stenning and van Lambalgen (2008) and
Arkoudas and Bringsjord (2008) both uses the event calculus, it should be remarked
that they interpret logical constructs in a very different way: Clauses are in Stenning
and van Lambalgen (2008) evaluated as Horn clauses in logic programs, and nega-
tion is interpreted using negation as failure (classical negation is not expressible using
Horn clauses, to be more precise, a Horn clause program cannot have negative con-
sequences in the classical sense, cf. for example Schöning (1989), page 151). On the
other hand, logical constructs are in Arkoudas and Bringsjord (2008) interpreted using
an interactive theorem prover having a classical logic basis.

The argument i in the predicate l(i, t) denotes a location, and the argument t in
l(i, t) and m(t) denotes a timepoint. We take time to be discrete, and the successor
of the timepoint t is denoted t + 1. This should be compared to Stenning and van
Lambalgen (2008) and Arkoudas and Bringsjord (2008) where time is taken to be
continuous, since this is how time is represented in the event calculus. Now, we make
use of the following symbolizations

l(i, t) The marble is at location i at time t
m(t) The marble is moved at time t
S Sees that ...
B Believes that ...
a The person Sally

8 Formally, there are no quantifiers in the object language used by Stenning and van Lambalgen (2008)
to formalize the Sally-Anne task, but quantification relies on the fact that uninstantiated variables in logic
programs are automatically quantified, as described in Footnote 9.
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We also make use of the following three principles

(D) Bφ → ¬B¬φ
(P1) Sφ → Bφ
(P2) Bl(i, t) ∧ ¬Bm(t) → Bl(i, t + 1)

Principle (D) is a common modal axiom and it says that beliefs are consistent, that
is, if something is believed, then its negation is not also believed. Principle (D) is the
only purely modal principle we are going to make use of. Strictly speaking, we use
B¬φ → ¬Bφ which is equivalent to (D). Principle (P1) formalizes how a belief in
something may be formed, namely by seeing it. This principle is identical to principle
(9.2) in the book Stenning and van Lambalgen (2008), page 251.

Principle (P2) is remiscent of principle (9.11)9 in the book Stenning and van
Lambalgen (2008), page 253, and axiom [A5]10 in the paper Arkoudas and Bringsjord
(2008), page 20. Principle (P2) formalizes a “principle of inertia” saying that a belief
in the predicate l being true is preserved over time, unless it is believed that an action
has taken place causing the predicate to be false. Of course, this requires taking into

9 Slightly reformulated, principle (9.11) of Stenning and van Lambalgen (2008) is the following

Bal(i, t) ∧ t < u ∧ ¬Baclipped(t, i, u) → Dal(i, u)

where a stands for an agent, and where clipped(t, i, u) means that the marble ceases to be at location i at
some time between t and u, that is, there exists a time r between t and u such thet the marble ceases to be
at location i at the time r . This principle is in Stenning and van Lambalgen (2008) interpreted as a clause in
a logic program where the negation prefixing the second occurrence of the Ba operator is interpreted using
negation as failure. The predicate clipped(t, i, u) stems from the event calculus where it is defined as

∀t∀ f ∀u(clipped(t, f, u) ↔ ∃e∃r(happens(e, r) ∧ t < r < u ∧ terminates(e, f, r)))

and where f stands for fluents and e stands for events. Notice the existential quantifiers ∃e and ∃r ranging
over events and times. The book Stenning and van Lambalgen (2008) defines clipped using the clauses
(9.12) and (9.13) at page 253. These two clauses are similar, and slightly reformulated, clause (9.12) is the
following

l(i, t) ∧ m(r) ∧ t < r < u → clipped(t, i, u)

Note that there is no quantification in the object language of this clause, rather, quantification is taken care of
by the evaluation mechanism in logic programs, where uninstantiated variables are automatically quantified
over, cf. also Footnote 8, in particular, an uninstantiated variable in the body of a clause, not occurring in
its head, is automatically existentially quantified, which is exactly what is going on with the variable r
above. So the book Stenning and van Lambalgen (2008) existentially quantifies over times like in the usual
definition of clipped, displayed above, but contrary to the usual definition, the book does not quantify over
events, rather, the action of moving the marble is formalized as a predicate, namely the predicate m(r).
10 Axiom [A5] of Arkoudas and Bringsjord (2008) is the following

C∀a∀ f ∀t∀u(Baholds( f, t) ∧ Ba(t < u) ∧ ¬Baclipped(t, f, u) → Baholds( f, u))

where C is the common knowledge operator. The paper Arkoudas and Bringsjord (2008) defines clipped
as usual in the event calculus, that is, as displayed in Footnote 9, except that the definition is prefixed by the
common knowledge operator. So Arkoudas and Bringsjord (2008) makes use of quantification over times
and events as well as fluents.
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account all actions that might make the predicate l false, but only one such action
is mentioned in the Sally-Anne scenario, namely the action of moving the marble,
formalized as m. One might envisage other actions that could make i false, for example
heating the marble so much that it evaporates, but no such action is mentioned in the
scenario. If another such action h had been mentioned, the predicate m(t) in Principle
(P2)would have to be replaced by m(t)∨h(t), and the formalization of the Sally-Anne
task we give below, would have to be adjusted accordingly.

Note that Principle (P2) is not schematic in the sense that it only holds for the
particular predicates l and m, not predicates or formulas in general, the reason being
that it encodes a specific interaction between the two predicates: If the action m takes
place, then it causes the predicate l to be false.

The principle l(i, t) ∧ ¬m(t) → l(i, t + 1) obtained by removing the occurrences
of the belief modality B from (P2) says that if a predicate is true, and no action takes
place causing it to be false, then the predicate stays true. In Artificial Intelligence this
principle is captured by so-called successor-state axioms, which is one standard way
to solve the famous frame problem, see for example the textbook Russell and Norvig
(2009). In accordance with the idea of successor-state axioms, the action of moving the
marble is formalized as a predicate, the predicate m(t), meaning that the same generic
action can be performed at different times (so we consider the action as a type). This
is contrary to the approach taken in the paper Arkoudas and Bringsjord (2008), where
actions are taken as events, and hence are time-stamped (thus, that paper considers
actions as tokens). This is related to the fact that Arkoudas and Bringsjord (2008)
involve quantification over events. See Galton (2006) for a discussion on types versus
tokens in temporal reasoning. The use of first-order machinery in our formalization of
the Sally-Anne tasks, in comparison to the formalizations of Arkoudas and Bringsjord
(2008) and Stenning and van Lambalgen (2008), can be summed up as follows, cf.
also footnotes 9 and 10.

Our work The book Stenning and
van Lambalgen (2008)

The paper Arkoudas and
Bringsjord (2008)

Terms referring to times Yes Yes Yes
Quantification over times No Yes Yes
Quantification over events No No Yes
Quantification over fluents No No Yes

Beside the principles (D), (P1) and (P2), we shall also encode the information11

that seeing the marble being moved is the only way a belief that the marble is being
moved can be acquired (this is an arguable assumption in the Sally-Anne scenario, but
it of course depends on the scenario under consideration, and other scenarios might
call for other ways to acquire belief). We encode this information as

(P3) Bm(t) → Sm(t)

11 Thanks to one of the reviewers for a comment prompting the author to include this information in the
formalization, thereby making it more cognitively faithful.

123



432 T. Braüner
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Fig. 5 Formalization of the child’s correct response in the Sally-Anne task

Strictly speaking, we will use the contrapositive formulation ¬Sm(t) → ¬Bm(t).
When Peter figures out that Sally does not believe that the marble has been moved at
t1, he uses that she did not see this happening, as she was not present in the room.
This step in Peter’s reasoning is exactly what Principle (P3) enables. The information
encoded in (P3) is of course dependent on the concrete scenario, wherefore one cannot
expect that it can be formalized as an axiom schema.

Principle (P3) is not explicitly taken as a principle in the book Stenning and van
Lambalgen (2008), but it is implicit, the reason being that the (P1) principle Sφ → Bφ
is interpreted as a clause in a logic program, cf. subsection 9.4.2 in the book, and in
the absence of other clauses whose heads can be instantiated to Bm(t), the logic
programming query ?Bm(t) is successful only if ?Sm(t) is successful.12 If negation
is interpreted using negation as failure, this means by contraposition that if the query
?Sm(t) is not successful, that is, if ?¬Sm(t) is successful, then ?¬Bm(t) is successful,
which is parallel to our Principle (P3). Since our formalization rely on classical logic,
not the closed world reasoning mechanism in logic programming, we need explicit
encoding of the information that a belief that the marble is being moved can only be
acquired by seeing it.

In order to make the formalization more compact, and also more in the spirit of
natural deduction style, we do not take the four principles above as axioms or axiom
schemas, but instead we turn them into the following proof-rules.

B¬φ
(D)¬Bφ

Sφ
(P1)

Bφ

Bl(i, t) ¬Bm(t)
(P2)

Bl(i, t + 1)

¬Sm(t)
(P3)¬Bm(t)

With this machinery in place, the shift of person perspective in the Sally-Anne task can
be formalized as the derivation in Fig. 5 where to save space, we have omitted names

12 In the interest of comparison, we here disregard that Stenning and van Lambalgen (2008) allows a
couple of other ways to acquire belief than seeing something, but this this can also be incorporated in our
formalization at the expence of making it slightly more complicated.
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of the introduction and elimination rules for the @ operator. Recall that the derivation
in Fig. 5 is meant to formalize the child Peter’s reasoning at the time t2 where the
question is answered. The first two premises @a Sl(basket, t0) and @a S¬m(t0) in the
derivation say that Sally (the reference the nominal a) at the earlier time t0 saw that the
marble was in the basket and that no action was taken to move it, which the child Peter
remembers. The third premise, @a¬Sm(t1), says that Sally did not see the marble
being moved at the time t1, this being the case since she was absent, which Peter
remembers.

Note that the actual position of the marble at the time t2 is irrelevant to figure out
the correct response. Note also that in the Sally-Anne task there is a shift of person
perspective which we deal with in a modal-logical fashion letting points of evaluation
stand for persons, like in the person version of the Smarties task in the previous section,
but there is also a temporal shift in the Sally-Anne task, which we deal with using
first-order machinery.

8 Some Remarks on Other Work

Beside analysing the reasoning taking place when giving a correct answer to a rea-
soning task, the works by van Lambalgen and co-authors also analyse what goes
wrong when an incorrect answer is given. We note that Stenning and van Lambalgen
in Stenning and van Lambalgen (2008) warn against simply characterizing autism as
a lack of theory of mind. Rather than being an explanation of autism, Stenning and
van Lambalgen see the theory of mind deficit hypothesis as “an important label for a
problem that needs a label”, cf. Stenning and van Lambalgen (2008), page 243. They
argue that another psychological theory of autism is more fundamental, namely what
is called the executive function deficit theory. Very briefly, executive function is an
ability to plan and control a sequence of actions with the aim of obtaining a goal in
different circumstances. In comparison with the work of the present paper, a decisive
difference is which psychological theory is taken as the basis of the logical analysis.
If the executive function deficit theory is taken as the basis, then it appears natural to
try to formalize a false-belief task in some sort of non-monotonic logic. This is what
van Lambalgen and co-authors do. On the other hand, if the theory of mind deficits
theory is taken as the basis, then we find that it is natural to use a classical version of
hybrid logic and hybrid-logical proof-theory.

The paper Pijnacker et al. (2009) reports empirical investigations of closed world
reasoning in adults with autism. Incidentally, according to the opening sentence of
that paper, published in 2009, “While autism is one of the most intensively researched
psychiatric disorders, little is known about reasoning skills of people with autism.”

With motivations from the theory of mind literature, the paper van Ditmarsch and
Labuschagne (2007) models examples of beliefs that agents may have about other
agents’ beliefs, one example is an autistic agent that always believes that other agents
have the same beliefs as the agent’s own. This is modelled by different agents prefer-
ence relations between states, where an agent prefers one state over another if the agent
considers it more likely. The beliefs in question turn out to be frame-characterizable
by formulas of epistemic logic.
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The paper Flobbe et al. (2008) reports empirical investigations of what is called
second-order theory of mind, which is a person’s capacity to take into account other
people’s beliefs about other people’s beliefs, for example the person’s own beliefs (in
comparison to first-order theory of mind, which is the capacty to take into account
other peoples beliefs about simple world facts, in line with what we previously in
the present paper just have called theory of mind). The investigations in Flobbe et al.
(2008) make use of a second-order false-belief task, as well as other tasks.

The paper Gierasimczuk et al. (2013) does not deal with false-belief tasks or theory
of mind, but it is nevertheless relevant to mention since it uses formal proofs to compare
the cognitive difficulty of deductive tasks. To be more precise, the paper associates the
difficulty of a deductive task in a version of the Mastermind game with the minimal
size of a corresponding tableau tree, and it uses this measure of difficulty to predict the
empirical difficulty of game-plays, for example the number of steps actually needed
for solving a task.

The method of reasoning in tableau systems can be seen as attempts to construct
a model of a formula: A tableau tree is built step by step using rules, whereby more
and more information about models for the formula is obtained, and either at some
stage a model can be read off from the tableau tree, or it can be concluded that there
cannot be such a model (in fact, in the case of Gierasimczuk et al. (2013), any formula
under consideration has exactly one model, so in that case it is a matter of building a
tableau tree that generates this model). Hence, if the building of tableau trees is taken
to be the underlying mechanism when a human is solving Mastermind tasks, then the
investigations in Gierasimczuk et al. (2013) can be seen to be in line with the mental
models school (see the third section of the present paper).

A remark from a more formal point of view: The tableau system described in
Gierasimczuk et al. (2013) does not include the cut-rule.13 Much has been written on
the size of proofs in cut-free proof systems, in particular, the paper Boolos (1984) gives
examples of first-order formulas whose derivations in cut-free systems are much larger
than their derivations in natural deduction systems, which implicitly allow unrestricted
cuts (in one case more than 1038 characters compared to less than 3280 characters).
Similarly, the paper D’Agostino and Mondadori (1994) points out that ordinary cut-
free tableau systems have a number of anomalies, one of them being that for some
classes of propositional formulas, decision procedures based on cut-free systems are
much slower than the truth-table method (in the technical sense that there is no polyno-
mial time computable function that maps truth-table proofs of such formulas to proofs
of the same formulas in cut-free tableau systems). Instead of prohibiting cuts com-
pletely, the paper D’Agostino and Mondadori (1994) advocates allowing a restricted
version of the cut-rule, called the analytic cut-rule.

13 The cut-rule says that the end of any branch in a tableau tree can extended with two branches with φ on
the one branch and ¬φ on the other (expressing the bivalence of classical logic).
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9 Future Work

We would like to extend the work of the present paper to further false-belief tasks,
perhaps using different hybrid-logical machinery (and moreover, use hybrid-logical
proof-theory to analyse what goes wrong when incorrect answers are given). Not
only will formalization of further reasoning tasks be of interest on their own, but we
also expect that such investigations can be feed back into logical research, either as
corroboration of the applicability of existing logical constructs, or in the form of new
logical constructs, for example new proof-rules or new ways to add expressive power
to a logic.

We are also interested in further investigations in when two seemingly dissimilar
reasoning tasks have the same underlying logical structure, like we in the present paper
have disclosed that two different versions of the Smarties task have exactly the same
underlying logical structure.14 Such investigations might be assisted by a notion of
identity on proofs (exploiting the longstanding effort in proof-theory to give a notion
of identity between proofs, that is, a way to determine if two arguments have common
logical structure, despite superficial dissimilarity). If two experiments make use of
seemingly dissimilar reasoning tasks, but which have the same underlying logical
structure, then we would expect similar empirical results (for example in terms of
number of correct answers and/or reaction time). In this case the identity of logical
structure can be seen as an explanation of the similarity of the results. On the other
hand, if the experiments give differing empirical results, despite having the same
logical structure, then it calls for an explanation: One such explanation could be
differing levels of abstraction, in the extreme case a purely symbolic reasoning task
in comparison to a reasoning task dealing with a familiar everyday situation.15
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10 Proof of Analyticity

Usually, when considering a natural deduction system, one wants to equip it with a
normalizing set of reduction rules such that normal derivations satisfy the subformula

14 Other examples of dissimilar, but logically equivalent, reasoning tasks are the two-player games called
Marble Drop and the Matrix Game, used to investigate higher-order social reasoning. They are equivalent
in the sense of being game-theoretically equivalent. See the papers Meijering et al. (2010) and Szymanik
et al. (2013).
15 It is well-known that such differences can give rise to differences in performance, see for example the
extensive literature on the Wason selection task, as surveyed in Stenning and van Lambalgen (2008) and
Dutilh Novaes (2012). Another example is the above mentioned games Marble Drop and the Matrix Game.
In Meijering et al. (2010) it is demonstrated that subjects perform better when a game is embedded in a
concrete physical context (Marble Drop) than when it is given a more abstract formulation (the Matrix
Game).
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property. Normalization says that any derivation by repeated applications of reduction
rules can be rewritten to a derivation which is normal, that is, no reduction rules apply.
From this it follows that the system under consideration is analytic.

Now, the works Braüner (2004) and Braüner (2011), subsection 4.3, by the present
author devise a set of reduction rules for N′H obtained by translation of a set of
reduction rules for a more common natural deduction system for hybrid logic. This
more common system, which we denote NH, can be found in Braüner (2004) and
in Braüner (2011), subsection 2.2. All formulas in the system NH are satisfaction
statements. Despite other desirable features, it is not known whether the reduction rules
for N′H are normalizing, and normal derivations do not always satisfy the subformula
property. In fact, Chapter 4 of the book Braüner (2011) ends somewhat pessimistically
by exhibiting a normal derivation without the subformula property. It is remarked that
a remedy would be to find a more complete set of reduction rules, but the counter-
example does not give a clue how such a set of reduction rules should look.

In what follows we shall take another route. We prove a completeness result saying
that any valid formula has a derivation in N′H satisfying a version of the subformula
property. This is a sharpened version of a completeness result for N′H originally given
in Braüner (2004) and in subsection 4.3 of Braüner (2011) (Theorem 4.1 in Braüner
(2011)). Thus, we prove that N′H is analytic without going via a normalization result.
So the proof of the completeness result does not involve reduction rules. The result
is mathematically weaker than normalization together with the subformula property
for normal derivations, but it nevertheless demonstrates analyticity. Analyticity is a
major success criteria in proof-theory, one reason being that analytic provability is a
step towards automated theorem proving (which obviously is related to Leibniz’ aim
mentioned in the intoduction of the present paper).

In the proof below we shall refer to NH as well as a translation (·)◦ from NH to
N′H given in Braüner (2004) and subsection 4.3 of Braüner (2011). This translates a
derivation π in NH to a derivation π◦ in N′H having the same end-formula and parcels
of undischarged assumptions. The reader wanting to follow the details of our proof is
advised to obtain a copy of the paper Braüner (2004) or the book Braüner (2011).

The translation (·)◦ satisfies the following.

Lemma 1 Let π be a derivation in NH. Any formula θ occuring in π◦ has at least
one of the following properties.

1. θ occurs in π .
2. @aθ occurs in π for some satisfaction operator @a.
3. θ is a nominal a such that some formula @aψ occurs in π .

Proof Induction on the structure of the derivation of π . Each case in the translation
(·)◦ is checked.

Note that in item 1 of the lemma above, the formula θ must be a satisfaction statement
since only satisfaction statements occur in π . In what follows @d� denotes the set of
formulas {@dξ | ξ ∈ �}.
Theorem 1 Let π be a normal derivation of @dφ from @d� in NH. Any formula θ
occuring in π◦ has at least one of the following properties.
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1. θ is of the form @aψ such that ψ is a subformula of φ, some formula in �, or
some formula of the form c or ♦c.

2. θ is a subformula of φ, some formula in �, or some formula of the form c or ♦c.
3. θ is a nominal.
4. θ is of the form @a(p → ⊥) or p → ⊥ where p is a subformula of φ or some

formula in �.
5. θ is of the form @a⊥ or ⊥.

Proof Follows from Lemma 1 above together with Theorem 2.4 (called the quasi-
subformula property) in subsection 2.2.5 of Braüner (2011).

We are now ready to give our main result, which is a sharpened version of the com-
pleteness result given in Theorem 4.1 in subsection 4.3 of Braüner (2011).

Theorem 2 Let φ be a formula and � a set of formulas. The first statement below
implies the second statement.

1. For any model M, any world w, and any assignment g, if, for any formula ξ ∈ �,
M, g, w |� ξ , then M, g, w |� φ.

2. There exists of derivation of φ from � in N′H such that any formula θ occuring in
the derivation has at least one of the five properties listed in Theorem 1.

Proof Let d be a new nominal. It follows that for any model M and any assignment g,
if, for any formula @dξ ∈ @d�, M, g |� @dξ , then M, g |� @dφ. By completeness
of the system NH, Theorem 2.2 in subsection 2.2.3 of the book Braüner (2011), there
exists a derivation π of @dφ from @d� in NH. By normalization, Theorem 2.3 in
subsection 2.2.5 of the book, we can assume that π is normal. We now apply the rules
(@I ), (@E), and (Name) to π◦ obtaining a derivation of φ from � in N′H satisfying
at least one of the properties mentioned in Theorem 1.

Remark If the formula occurrence θ mentioned in the theorem above is not of one of
the forms covered by item 4 in Theorem 1, and does not have one of a finite number of
very simple forms not involving propositional symbols, then either θ is a subformula
of φ or some formula in �, or θ is of the form @aψ such that ψ is a subformula of φ
or some formula in �. This is the version of the subformula property we intended to
prove.
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