
J Log Lang Inf (2014) 23:141–168
DOI 10.1007/s10849-014-9192-1

Generation and Selection of Abductive Explanations
for Non-Omniscient Agents

Fernando Soler-Toscano · Fernando R. Velázquez-Quesada

Published online: 25 March 2014
© Springer Science+Business Media Dordrecht 2014

Abstract Among the non-monotonic reasoning processes, abduction is one of the
most important. Usually described as the process of looking for explanations, it has
been recognized as one of the most commonly used in our daily activities. Still, the
traditional definitions of an abductive problem and an abductive solution mention only
theories and formulas, leaving agency out of the picture. Our work proposes a study
of abductive reasoning from an epistemic and dynamic perspective. In the first part
we explore syntactic definitions of both an abductive problem in terms of an agent’s
information and an abductive solution in terms of the actions that modify the agent’s
information. We look at diverse kinds of agents, including not only omniscient ones
but also those whose information is not closed under logical consequence and those
whose reasoning abilities are not complete. In the second part, we look at an existing
logical framework whose semantic model allows us to interpret the previously stated
formulas, and we define two actions that represent forms of abductive reasoning.

Keywords Abductive reasoning · Non-omniscient agents · Dynamic epistemic
logic

1 Abductive Reasoning

Among the non-monotonic reasoning processes, abduction (Aliseda 2006) is one of
the most important. The concept, introduced into modern logic by Charles S. Peirce,
is usually described as the process of looking for an explanation, and it has been
recognized as one of the most commonly used in our daily activities. Observing that

F. Soler-Toscano (B) · F. R. Velázquez-Quesada
Grupo de Lógica, Lenguaje e Información, Universidad de Sevilla, Seville, Spain
e-mail: fsoler@us.es

F. R. Velázquez-Quesada
e-mail: FRVelazquezQuesada@us.es

123



142 F. Soler-Toscano, F. R. Velázquez-Quesada

Mr. Wilson’s right cuff is very shiny for five inches and that his left one has a smooth
patch near the elbow, Holmes assumes that he (Mr. Wilson) has done a considerable
amount of writing lately. Karen knows that when it rains, the grass gets wet, and that
the grass is wet right now; then, she suspects that it has rained. There are also cases in
science: in classical mechanics, rules are introduced in order to explain macroscopical
movements. In Peirce’s own words (Hartshorne and Weiss 1934), abduction can be
described in the following way:

The surprising fact χ is observed.
But if ψ were true, χ would be a matter of course.
Hence, there is reason to suspect that ψ is true.

But though traditional examples of abductive reasoning are given in terms of an
agent’s information and its changes, classic definitions of an abductive problem and its
solutions are given in terms of theories and formulas, without mentioning the agent’s
information and how it is modified.

The present work proposes a study of abductive reasoning from an epistemic and
dynamic perspective, and it is divided into two parts. The first one follows recent
developments in Epistemic Logic [EL; Hintikka (1962)] and Dynamic Epistemic Logic
[DEL; Ditmarsch et al. (2007), Benthem (2011)], and focuses on providing formulas
defining what an abductive problem is in terms of an agent’s information as well as
what an abductive solution is in terms of the actions that modify it. We explore not only
the case of omniscient agents, but also the cases of agents whose information is not
closed under logical consequence and whose reasoning abilities are not complete. The
second part focuses on a framework in which the provided formulas can be interpreted.
We extend the ideas presented in Velázquez-Quesada et al. (2013), Nepomuceno-
Fernández et al. (2013) in order to deal with non-omniscient agents, and we define
two actions that allow us to represent certain forms of abductive reasoning. We finish
with a summary and further research points.

2 From a Classical to a Dynamic Epistemic Approach

Traditionally, it is said that an abductive problem arises when there is a formula χ that
does not follow from the theory Φ. The intuitive idea is that Φ represents the current
information about the world, and observing a situation χ that is not entailed by Φ
shows that the theory is incomplete. Then we should look for extra information that
‘fills the gap’.

But even if the theory Φ does not entail the observed χ , it may as well be the
case that it entails the negation of χ . This case, extensively studied in belief revision
(Gärdenfors 1992; Williams and Rott 2001), has been recently incorporated as an
abductive case.

All in all, the key ingredient for an abductive problem is the existence of a χ that is
not entailed by the current informationΦ. This situation generates two forms of abduc-
tive problems, according to what the information predicts about ¬χ (Aliseda 2006).

Definition 1 (Abductive problem) LetΦ andχ be a theory and a formula, respectively,
in some language L. Let � be a consequence relation on L.
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– The pair (Φ, χ) forms a novel abductive problem when neither χ nor ¬χ are
consequences of Φ, i.e., when

Φ �� χ and Φ �� ¬χ

– The pair (Φ, χ) forms an anomalous abductive problem when, though χ is not a
consequence of Φ, ¬χ is, i.e., when

Φ �� χ and Φ � ¬χ

It is typically assumed that the theory Φ is a set of formulas closed under logical
consequence, and that � is a truth-preserving consequence relation.

Consider a novel abductive problem. The observation of a χ about which the theory
does not have any opinion shows that the theory is incomplete, and then we should
look for information that ‘completes’ it, making χ a consequence of it. This solves
the problem because now the theory is strong enough to explain χ . Consider now an
anomalous abductive problem. The observation of a χ whose negation is entailed by
the theory shows that the theory contains a mistake, and now we need two steps to
solve this. First, perform a theory revision that stops ¬χ from being a consequence of
Φ; after this we are now in a novel abductive case, and we can look for information that
‘completes’ the theory, making χ a consequence of it. Here are the formal definitions.

Definition 2 (Abductive solution)

– Given a novel abductive problem (Φ, χ), the formula ψ is said to be an abductive
solution if

Φ ∪ {ψ} � χ

– Given an anomalous abductive problem (Φ, χ), the formula ψ is an abductive
solution if it is possible to perform a theory revision to get a novel problem (Φ ′, χ)
for which ψ is a solution.

This definition of an abductive solution is often considered as too weak, sinceψ can
take many ‘trivial’ forms, like anything that contradictsΦ (then everything, including
χ , follows from Φ ∪ {ψ}) and even χ itself (we clearly have Φ ∪ {χ} � χ ). Further
conditions can be imposed in order to define more satisfactory solutions; here are some
of them (Aliseda 2006).

Definition 3 (Classification of abductive solutions) Let (Φ, χ) be an abductive prob-
lem. An abductive solution ψ is

consistent iff Φ, ψ �� ⊥
explanatory iff ψ �� χ

minimal iff, for every other solution ϕ, ψ � ϕ implies ϕ � ψ
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The consistency requirement discards those ψ inconsistent withΦ, since a reason-
able explanation should not be in contradiction with the theory. In a similar way, the
explanatory requirement discards those explanations that would justify χ by them-
selves, since it is preferred that the explanation only complements the current theory.
Finally, the minimality requirement works as the Occam’s razor, looking for the sim-
plest explanation: a solution ψ is minimal if it is in fact logically equivalent to any
other solution it implies.

2.1 From an Agent’s Perspective

Abduction, like other forms of non-monotonic inference, is classified as commonsense
reasoning rather than mathematical one, and most of its classic examples involve ‘real’
agents and their information. It is Holmes who observes that Mr. Wilson’s right cuff is
very shiny; it is Karen who observes that the grass is wet; it is the scientific community
who wants to explain the movement of objects. Nevertheless, the classic definitions
of an abductive problem and an abductive solution do not mention agents at all. More
important, an abductive solution is typically defined as a piece of information that will
produce certain results when incorporated into the current information. But, again,
the definition of abductive solutions focuses on the properties a formula should satisfy
in order to be a solution, but not in the different forms it can be incorporated into an
agent’s information.

Epistemic logic deals with agents, their information, and properties of this infor-
mation. Its dynamic counterpart, Dynamic Epistemic Logic, allows us to reason about
the way the agent’s information changes as consequence of different informational
actions. The following three ideas are, from our perspective, the most important of
this methodology. First, the notion of information should be closely related to the
notion of agency. When we talk about information, there is always an abstract agent
(a human being, a computer program, etc.) involved: the one that owns and uses the
information. Second, though in mathematical reasoning there is only one notion of
information, true information, in commonsense ‘human’ reasoning there are several
of them. We usually deal not only with information that is true (what we know), but
also with information that though not certain is very plausible (what we believe),
information that we entertain (what we are aware of ) and so on. And even inside
each one of these notions we can make further refinements, like distinctions between
implicit and explicit forms. As interesting as it is to study each notion in isolation, it
is more interesting to study them together to observe the relations between them and
the way they interact with each other. And third, notions of information are not static:
we are continuously performing informational actions that modify them. Actions are
important, and deserve to appear explicitly in the analysis.

Based on these ideas, our work proposes a dynamic epistemic approach to abductive
reasoning, proposing definitions of abductive problem and abductive solution in terms
of an agent’s information and the way it changes [cf. Velázquez-Quesada et al. (2013)].
The first step is, then, to answer the question: when does an agent have an abductive
problem?

When we put an agent in the picture, the theoryΦ becomes the agent’s information.
Then the key ingredient for an abductive problem, a formula χ that does not follow
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from the theoryΦ, becomes a formula that is not part of the agent’s information. The
following definitions use formulas in EL style, with Inf ϕ read as “ϕ is part of the
agent’s information”.

Definition 4 (Subjective abductive problems) Let χ be a formula.

– An agent has a novel χ -abductive problem when neither χ nor ¬χ are part of her
information, i.e., when the following formula holds:

¬Inf χ ∧ ¬Inf ¬χ

– An agent has an anomalous χ -abductive problem when χ is not part of her infor-
mation but ¬χ is, i.e., when the following formula holds:

¬Inf χ ∧ Inf ¬χ

We have identified Φ with the agent’s information. Then, a solution for the sub-
jective novel case is a formula ψ that, when added to the agent’s information, makes
the agent informed about χ . This highlights the fact that the requisites of a solution
involve an action; an action that changes the agent’s information by adding ψ to it.

We will express changes in the agent’s information by using formulas in DEL
style. In particular, we will use formulas of the form 〈Addψ 〉ϕ (“ψ can be added
to the agent’s information and, after that, ϕ is the case”) and formulas of the form
〈Remψ 〉ϕ (“ψ can be removed from the agent’s information and, after that, ϕ is the
case”).1

Definition 5 (Subjective abductive solution) Suppose an agent has a novel χ -
abductive problem, that is, ¬Inf χ ∧ ¬Inf ¬χ holds. A formula ψ is an abductive
solution to this problem iff, when added to the agent’s information, the agent becomes
informed about χ . In a formula,

〈Addψ 〉 Inf χ

Now suppose the agent has an anomalous χ -abductive problem, that is, ¬Inf χ ∧
Inf ¬χ holds. A formula ψ is an abductive solution to this problem iff the agent can
revise her information to remove ¬χ from it, producing in this way a novelχ -abductive
problem for which ψ is a solution. In a formula,

〈Rem¬χ 〉 (¬Inf ¬χ ∧ 〈Addψ 〉 Inf χ
)

We can also provide formulas that characterize properties of abductive solutions.

1 Note how the operations of adding and removing information cannot be fully specified until we fix a
specific notion and a semantic model. For example, in the possible worlds semantics in which knowledge is
understood as what is true in all epistemically possible situations, change in knowledge amounts to expand
or shrink this set of possible worlds. But if in the same setting we work with the notion of beliefs, usually
understood as what is true in only the most plausible worlds, then change in beliefs amounts only to change
in the plausibility ordering.
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Definition 6 (Classification of subjective abductive solutions) Suppose an agent has
a χ -abductive problem. A solution ψ is

– consistent iff it is a solution and can be added to the agent’s information without
making it inconsistent:

〈Addψ 〉 (
Inf χ ∧ ¬Inf ⊥)

– explanatory iff it is a solution and it does not entail χ , that is, it only complements
the agent’s information to produce χ :

ψ → χ is not valid, and 〈Addψ 〉 Inf χ

– minimal iff it is a solution and, for any other solution ϕ, if ϕ is incorporated into the
agent’s information after ψ is added, then ψ is also incorporated into the agent’s
information after ϕ is added.

〈Addψ 〉 Inf χ ∧
((〈Addϕ〉 Inf χ ∧ 〈Addψ 〉 Inf ϕ

) → 〈Addϕ〉 Inf ψ
)

Our just provided formulas are straightforward translations of the classic definitions
of an abductive problem and an abductive solution. But in these classic definitions the
set of formulasΦ is understood as closed under logical consequence: we have provided
definitions just for omniscient agents. Of course, non-omniscient agents can also face
abductive problems.

3 Different Problems for Different Kinds of Agents

Though examples of abductive reasoning involve agents and their information, not all
abductive problems have the same form. For example, while in the Holmes’ example
what Sherlock is missing is a premise that would allow him to derive Mr. Wilson
cuff’s status, in the mechanics’ one what is missing is a relation between facts (that
is, a rule). And we can even think on situations in which what is missing is not some
piece of information, but rather a reasoning step (see Subsect. 3.1).

Pierce himself did not remain quite convinced that one logical form covers all cases
of abductive reasoning (Peirce 1911). In fact, different forms of abductive problems
arise when we consider agents with different abilities, and even more appear when
we combine different notions of information. In this section we will discuss some
examples, presenting formulas stating that certain χ poses an abductive problem, and
that certain ψ is a solution to it.2

2 A systematic revision of the different cases that arise can be found in Soler-Toscano and Velázquez-
Quesada (2010).
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3.1 Adding Reasoning to the Picture

Suppose that Karl is in his dining room and sees smoke going out of the kitchen.
Karl does not understand why there would be smoke, but then he realizes that the
chicken he put on the fire has been there for a long time, and it should be burnt by now.
Though initially Karl did not have any explanation about the smoke, he did not need
any additional information in order to find a reason for the fire: a simple reasoning
step was more than enough.

This case does not correspond to any of the abductive problems described before
(Definition 4), and the reason is that Karl is not an omniscient agent: he does not have
all logical consequences of his information, and therefore he did not realize that the
information he had before seeing the smoke was enough to predict it (i.e, to infer that
there would be smoke). This shows that non-omniscient agents can face at least a new
kind of abductive problem.

In order to provide formal definitions for abductive problems and solutions involv-
ing non-omniscient agents, we need to distinguish between the information the agent
actually has, her explicit information (InfEx ), and what follows logically from it,
her implicit information (InfIm ) [see, e.g., Levesque (1984), Vardi (1986)]. Based on
this distinction we can say that, for a non-omniscient agent to have an χ -abductive
problem, χ should not be part of her explicit information. Then, just as there are two
abductive problems according to whether the agent is informed about ¬χ or not, a non-
omniscient agent can face eight different abductive problems, according to whether
the agent has explicit information about ¬χ or not, and whether she has implicit infor-
mation about χ and ¬χ or not (Table 1). However, not all these cases are possible:
according to our intuition, explicit information should be also implicit information,
that is, we should have

InfEx ϕ → InfIm ϕ

Then we can discard the cases in which this formula does not hold.3

Definition 7 (Non-omniscient abductive problems) A non-omniscient agent can face
six different abductive problems, each one of them characterized by a formula in
Table 1.

The smoke example corresponds to the case (1.2). Though the observation is sur-
prising before it takes place (that is, the agent is not explicitly informed about the smoke
in the kitchen), she had this information implicitly, and she could have predicted it by
the proper reasoning step(s).
Abductive solutions. A solution for a χ -abductive problem has now as a goal to make
the agent explicitly informed about χ , without having neither implicit nor explicit
information about ¬χ . Each one of the different cases admits different kinds of solu-
tions; let us briefly review the possibilities for the consistent cases, leaving (1.4) and
(2.4) for future work.

3 More cases can be eliminated with further assumptions about the agent’s information, like truth or
consistency; see Subsect. 3.4.
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Table 1 Abductive problems for non-omniscient agents

In case (1.1) the agent needs extra external information; this is because χ is not even
part of her implicit information. If the extra information ψ makes χ already explicit,
nothing else is needed; otherwise, if it makes it only implicit, then the agent will need
to perform a further reasoning step. In case (1.2), the one of our example, reasoning
is enough and extra information is not essential. Cases (1.3) and (2.3) contain an
anomaly: in the first, the anomaly is implicit and the agent needs to make it explicit
before solving it; in the second, the anomaly is already explicit, and after solving it
the agent will be in case (1.1). In each case there is more than one strategy (i.e., more
than one sequence of actions) that solves the abductive problem; for simplicity we
will focus on the most representative one for each one of them.

What is interesting here is how, though cases (1.1) and (2.3) are essentially the novel
and anomalous abductive cases from before (see Definition 4), cases (1.2) and (1.3)
are truly new, and their solutions involve an action that typically is not considered for
solving abductive problems: a reasoning step that makes explicit information that was
only implicit before. For example, though external information can solve case (1.2),
the agent does not really need that: a reasoning step is enough. And for case (1.3),
though the agent only sees a novel abductive problem, she has in fact an anomalous
one that should be made explicit via reasoning before it can be properly solved.

In the following definition, formulas of the form 〈α〉ϕ indicate that the agent can
perform some reasoning step α after which ϕ is the case.

Definition 8 (Non-omniscient abductive solutions) Representative solutions for con-
sistent non-omniscient abductive problems appear in Table 2.

Classification of abductive solutions. The extra requisites of Definition 6 can be
adapted to this non-omniscient case. The consistency and the explanatory requirements
do not have important changes (for the first we ask for the agent’s implicit information
to be consistent at the end of the sequence of actions: ¬InfIm ⊥). The minimality
requirement now gives us more options. We can define it over the action 〈Addψ 〉 ,
looking for the weakest formulaψ , but it can also be defined over the action 〈Rem¬χ 〉 ,
looking for the revision that removes the smallest amount of information. It can even
be defined over the action 〈α〉 , looking for the shortest reasoning chain.
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Table 2 Solutions for
consistent non-omniscient
abductive problems

Case Solution

(1.1) A formula ψ such that

〈Addψ 〉 InfEx χ

(1.2) A reasoning α such that

〈α〉 InfEx χ

(1.3) A reasoning α and a formula ψ such that

〈α〉 (
InfEx ¬χ ∧ 〈Rem¬χ 〉 (¬InfIm ¬χ ∧ 〈Addψ 〉 InfEx χ)

)

(2.3) A formula ψ such that

〈Rem¬χ 〉 (¬InfIm ¬χ ∧ 〈Addψ 〉 InfEx χ
)

3.2 Not Only Formulas But Also Rules

Consider now the mechanics example. At some stage in history, the scientific com-
munity, our ‘agent’, observed the trajectory described by cannonballs, and become
interested in explaining this and other related phenomena. But rather than a plain
piece of information, the found explanation was an equation that relates initial speed,
initial angle and gravity with the described trajectory. In other words, the found expla-
nation was a rule that, given the initial conditions, returns us the movement of the
projectile.4

Again, this case does not fit any of the abductive problems described before. The
difference is that our ‘agent’ is not only non-omniscient in the sense that not all her
implicit information is also explicit; she also lacks of the necessary reasoning tools
that would allow her to make explicit her implicit information. To put it in other
words, besides not having all the logical consequences of her explicit information
automatically, the agent might not be able to even derive them. This gives us another
kind of agent, and therefore a new and finer classification of abductive problems and
abductive solutions.

In order to classify the new abductive problems, we need to make a further distinc-
tion: we need to distinguish between what follows logically from the agent’s explicit
information, the objectively implicit information (InfIm ), and what the agent can actu-
ally derive, the subjectively implicit information (InfDer ). With this refinement, each
one of the six abductive problems of Table 1 turns into four cases, according to whether
the agent can derive or not what follows logically from her explicit information, that is,
according to whether InfDer χ and InfDer ¬χ hold or not. However, we can also make
further reasonable assumptions: explicit information is derivable (by the do-nothing
action) and derivable information is also implicit (this assumes that the agent’s infer-
ential tools are sound). Then we have

InfEx ϕ → InfDer ϕ and InfDer ϕ → InfIm ϕ

4 Physical laws can be properly considered logical formulas, but the action that we define below for
abductive reasoning (Definition 17) uses a formula and a rule as different kinds of information. In this
setting, it is more appropriate to consider that physical laws are rules.
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Table 3 Abductive problems with subjectively/objectively implicit information

Table 4 Solutions for consistent extended abductive problems

Case (1.1.a) (1.2.a) (1.2.b) (1.3.a) (1.3.c) (2.3.c)

〈Addψ 〉 InfEx χ Solved – – – – –

〈Addψ/α〉 InfDer χ – (1.2.b) – – – –

〈α〉 InfEx χ – – Solved – – –

〈Addψ/α〉 InfDer ¬χ – – – (1.3.c) – –

〈α〉 InfEx ¬χ – – – – (2.3.c) –

〈Rem¬χ 〉 ¬InfIm ¬χ – – – – – (1.1.a)

Definition 9 (Extended abductive problems) A non-omniscient agent without com-
plete reasoning abilities can face eleven different abductive problems, each one of
them characterized by a formula in Table 3.

The mechanics example corresponds to the case (1.2.a). The trajectory of a pro-
jectile is fixed (that is, it is implicit information) once the initial conditions are given;
nevertheless, the scientific community could not predict (i.e., derive) the trajectory
without knowing the relevant equations.
Abductive solutions. As in Subsect. 3.1, introducing agents with new limitations
allows us to explore other actions for solving abductive problems. For example, though
case (1.2.b) can be solved by reasoning steps (χ is subjective implicit information so
the agent can derive it), this is not possible in case (1.2.a): χ is objectively but not
subjectively implicit information, so the agent cannot derive it. This case can be solved
with a formula that, when added to the agent’s explicit information, makes χ explicit.
More interestingly, it can be also solved by extending the agent’s reasoning abilities
with a formula/rule that allows her to derive χ . The same happens with other cases.
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As before, different epistemic actions allow us to move between the abductive
problems of Table 3. Again, we will focus on the consistent cases, discarding (1.4.∗)
and (2.4.d); again, though some abductive problems accept more than one sequence of
steps as a solution, in each case we will focus on the most representative one. In Table
4, the action 〈Addψ/α〉 extends the agent’s explicit information by adding a formula
ψ or some inference resource α (e.g., a rule) that increases the agent’s subjectively
implicit information.

Definition 10 (Extended abductive solutions) Solutions for consistent extended
abductive problems are provided in Table 4, which should be read as a transition
table that provides actions and conditions that should hold in order to move from one
abductive problem to another.

Table 4 establishes a natural path to solve the new abductive problems. The longest
path corresponds to case (1.3.a) in which the agent does not have explicit information
about neitherχ nor¬χ and, though¬χ follows logically from her explicit information,
she cannot derive it. In this case, the agent should first get enough information to derive
¬χ , thus going into case (1.3.c). Then, after reasoning to derive ¬χ , she will have
an explicit anomaly, case (2.3.c). Once there she needs to revise her information to
remove ¬χ from it and, when done (case (1.1.a)), she needs to extend her information
with some ψ that will make her be explicitly informed about χ .
Collapsing the cases. From a subjective point of view, the agent does not need to solve
an anomaly that she cannot detect. What guides the process of solving an abductive
problem is the explicit information and what she can derive from it. In other words,
inaccessible anomalies should not matter.

Following this observation, we can notice that some problems in Table 3 are in
fact indistinguishable for the agent. Without further external interaction, she can only
access her explicit information and eventually what she can derive from it; the rest, the
implicit information that is not derivable, is also not relevant. For example, abductive
problems (1.{1,2,3,4}.a) are in fact the same from the agent’s perspective. Then, by
grouping indistinguishable problems, we get the following.

Note how these classes correspond to abductive problems in Table 1 in which InfDer
appears in place of InfIm .
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3.3 Explaining Explicit Information

Abduction is usually defined as the problem of explaining a surprising observation.
Novelty is an important characteristic of the fact to explain. So, what is the purpose of
explaining the information the agent already has explicitly? This information (knowl-
edge or belief) is not supposed to be surprising at all.

But let us look at this from another perspective. When we make a (truthful) observa-
tion, as surprising as it can be, it automatically becomes part of our explicit information.
After observing Mr. Wilson’s cuffs, Holmes knows that while one is very shiny on
some area, the other one has a smooth patch; after observing the grass, Karen knows
it is wet. What makes this explicit information special (that is, what makes the agent
look for an explanation) is that it cannot be justified with the rest of the explicit infor-
mation the agent possesses. For example, the fifth postulate is an obvious piece of
explicit information in Euclidean geometry. But, can it be proved from the first four
postulates?5 This generates a variant of an abductive problem that does not depend
of recent observations but rather from unjustified information. The agent identifies a
piece of explicit information she has and, when she realizes that it cannot be supported
by the rest of her information, she tries to find an explanation for it.

One way of stating abductive problems of this form is the following. We introduce
the modality Disϕ , representing the action through which the formula ϕ is discarded
from the agent’s explicit information. Note how this action differs from Remϕ : while
the latter removes ϕ from the agent’s implicit information, making ϕ inaccessible
without further external interaction, the former removesϕ only from the agent’s explicit
information, and therefore ϕ will be derivable whenever the agent has the proper tools
to do it. This ‘discarding’ action intends to satisfy

InfEx ϕ → [Disϕ] (InfIm ϕ ∧ ¬InfEx ϕ)

With this modality we can now make a further distinction in the agent’s explicit
information, splitting it in what she knows and can actually justify (for example, if
no one provides us the quadratic formula, we can still derive it by using the method
of completing squares), and what she knows but cannot derive if she would have not
observed it (if Holmes had not seen Mr. Wilson, he had not known the status of his
cuffs). More precisely, we say that ϕ is observed explicit information if, after being
discarded, becomes not derivable:

InfEx ϕ ∧ 〈Disϕ〉 ¬InfDer ϕ

On the other hand, we say that ϕ is entailed explicit information if, after being dis-
carded, the agent can still derive it:

InfEx ϕ ∧ 〈Disϕ〉 InfDer ϕ

Abductive problems of Table 3 in which ¬InfDer χ is the case (i.e., abductive
problems (∗.∗.{a,c})) can be adapted for observed explicit information. If � is the

5 In fact, non-Euclidean geometries originated when going in depth into this question.
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formula that represents the abductive problem labelled as n, then:

InfEx χ ∧ 〈Disχ 〉�

is the formula that represents the version of abductive problem n for observed explicit
information. The solutions of these problems start with 〈Disχ 〉 and then proceed as in
Table 4.

3.4 Different Notions of Information

Some of the cases we have reviewed in this section can be dropped by asking for
additional requirements, now on the agent’s information. Two are the main constrains
we can impose. The strongest one is to assume that the information is true; a weaker
assumption is to assume that the information is simply consistent.

The first assumption, truth, corresponds syntactically to Inf ϕ → ϕ in the case of
omniscient agents, and to InfIm ϕ → ϕ in the case of non-omniscient ones. Under this
assumption, the agent can face novel abductive problems because she does not need
to have complete information about the real situation, and therefore there may be a
fact χ that is not part of her information. Solutions in these cases should satisfy the
further requirement of preserving the information’s properties, so a solution ψ for a
χ -abductive problem needs to be true.6 But anomalous abductive problems are not
possible: the agent’s information is true, so if she faces a χ contradicting it, she can
be sure that χ is not true, and therefore can simply discard it.

The second assumption, consistency, corresponds syntactically to ¬Inf ⊥ in the
case of omniscient agents, and ¬InfIm ⊥ in the case of non-omniscient ones. With this
assumption, novel abductive problems are possible, but also anomalous ones since
the agent’s information does not need to be true. As in the previous cases, a solution
should preserve the relevant property of the agent’s information, that is, the solution
should not create an inconsistency when added to the agent’s information. This makes
all solutions consistent.

Although other requirements can be imposed, these two allow us to deal with two
of the most important notions of information: knowledge, often assumed to be true,
and beliefs, often assumed to be just consistent.

4 A Semantic Model

Through the discussion in Sects. 2 and 3 we have observed how considering particular
kinds of agents and particular notions of information gives us different forms of abduc-
tive problems. We have identified formulas expressing the existence of diverse forms
of abductive problems and also expressing that certain formula is indeed a solution.
This section makes part of the discussion concrete by providing a semantic model
in which some the proposed cases can be evaluated. In order to make the discussion
precise, we will work with the following variation of a classic example (Aliseda 2006).

6 Observe how this makes every solution consistent.
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Mary arrives late to her apartment. She presses the light switch but the light
does not turn on. Knowing that the electric line is outdated, Mary assumes that
it might have failed.

Let us analyse the situation. The first step in Mary’s reasoning is her irrefutable
observation that the light does not turn on. After observing it, this fact becomes part
of Mary’s knowledge, but it is knowledge that is not justified (i.e., supported) by the
rest of her information. In other words, before the observation, Mary did not have
any piece of information that would have allowed her to predict that indeed the light
would not turn on. Nevertheless, she knows that the line is outdated, and therefore
after observing that the light does not work, it is reasonable for her to assume that
the line has failed: if she had known that before, she would have expected the lack of
light. More precisely, Mary knows a piece of information (the light does not turn on)
and she also knows how she could have predicted it (if the electric line has failed, then
there will be no light). Then, Mary has reasons to suspect that what she would have
needed to make the prediction is actually the case (she believes that the electric line
has failed).7

This shows us the needed ingredients for a semantic representation of this form of
abductive reasoning. First, we need to represent not only an agent’s knowledge but also
her beliefs. Second, we need to represent the tools the agent has to perform inferences:
these tools are precisely the ones that provide her with the possible explanations for
her observation.

There are several frameworks in the literature that allow us to represent an agent’s
knowledge and beliefs [e.g., Kraus and Lehmann (1986), Hoek (1993), Voorbraak
(1993), Baltag and Smets (2008)]. The plausibility models of Baltag and Smets (2008)
[cf. Benthem (2007)] have the further advantage of allowing us to represent the actions
that transform these notions, as observations in the case of knowledge and revision in
the case of beliefs. For the last ingredient, the agent’s inferential tools, we can look
at the approach of Velázquez-Quesada (2010) which extends plausibility models with
ideas from Fagin and Halpern (1988) and Jago (2006) in order to deal with the notions
of implicit and explicit information. The resulting framework allows us to represent
an agent’s implicit/explicit knowledge/beliefs not only about formulas but also about
rules.

4.1 Plausibility-Access Models

Definition 11 (PA language (Velázquez-Quesada 2010)) Given a set of atomic propo-
sitions P, formulas ϕ,ψ and rules ρ of the plausibility-access (PA) language L are
given by

7 Observe how this form of abductive reasoning can be seen as a particular form of belief revision driven
by the agent’s inferential abilities: she has observed and therefore knows ψ , but she also knows that from
ϕ she can derive ψ , so she will revise her beliefs in order to incorporate ϕ into them. The relation between
abductive reasoning and belief revision has been already studied, e.g., Boutilier and Becher (1995), Aliseda
(2006).

123



Generation and Selection of Abductive Explanations 155

ϕ ::= p | A ϕ | R ρ | ¬ϕ | ϕ ∨ ψ | 〈∼〉ϕ | 〈≤〉ϕ
ρ ::= ({ψ1, . . . , ψnρ }, ϕ)

where p is an atomic proposition inP. For the first component of the language, formulas
of the form A ϕ are read as “the agent has access to formula ϕ”, and formulas of the
form R ρ as “the agent has access to rule ρ”. For the modalities, 〈≤〉ϕ is read as “there
is an at least as plausible world whereϕ holds”, and 〈∼〉ϕ as “there is an epistemically
indistinguishable world where ϕ holds”. Other boolean connectives as well as the
universal modalities [∼] , [≤] are defined as usual. For the second component, a
rule ρ is a pair ({ψ1, . . . , ψnρ }, ϕ), sometimes represented as {ψ1, . . . , ψnρ } ⇒ ϕ

(ψ ⇒ ϕ in case the first component is a singleton), where {ψ1, . . . , ψnρ } is a finite
set of formulas, the rule’s premises pm(ρ), and ϕ is a formula, the rule’s conclusion
cn(ρ). We denote by L f the set of formulas of L, and by Lr its set of rules.

The language L is the propositional one extended with four new kinds of formu-
las. Formulas of the form 〈∼〉ϕ and 〈≤〉ϕ will allow us to deal with the notions of
knowledge and belief, respectively. Formulas of the form A ϕ and R ρ will allow us
to deal with the agent’s explicit beliefs/knowledge about formulas and rules.

The intuitive ideas behind the semantic model for L are the following. First, the
agent’s epistemically indistinguishable worlds are not given by a plain set but rather
by a set with a plausibility ordering; then, while knowledge is defined in terms of all
epistemically indistinguishable worlds, beliefs are defined only in terms of the most
plausible (i.e., the maximal) ones (Grove 1988; Boutilier 1994; Segerberg 2001).
Second, a non-omniscient agent may not have access to all formulas and rules that are
true and truth-preserving at each world; then, explicit knowledge/beliefs are defined in
terms of what the agent has actually access to (Fagin and Halpern 1988; Jago 2006).
Formally, the semantic model extends the plausibility models of Baltag and Smets
(2008) with two functions, indicating the formulas and the rules the agent has access
to at each possible world.

Definition 12 (PA model (Velázquez-Quesada 2010)) Let P be a set of atoms. A
plausibility-access (PA) model is a tuple M = 〈W,≤, V,A,R〉 where

– W is a non-empty set of possible worlds;
– ≤ ⊆ (W × W ) is a well pre-order (a locally connected and a conversely well-

founded preorder), the plausibility relation, representing the plausibility order of
the worlds from the agent’s perspective (w ≤ u is read as “u is at least as plausible
as w”);

– V : W → ℘(P) is an atomic valuation function, indicating the atomic propositions
in P that are true at each possible world;

– A : W → ℘(L f ) is the access set function, indicating the set of formulas the agent
has access to at each possible world;

– R : W → ℘(Lr ) is the rule set function, indicating the set of rules the agent has
access to at each possible world.

A pointed PA model (M, w) is a PA model with a distinguished world w ∈ W .
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The plausibility relation ≤ will allow us to define the agent’s beliefs as what is true in
the most plausible worlds. For defining the agent’s knowledge, the indistinguishability
relation ∼ is defined as the union of ≤ and its converse, that is, ∼ :=≤ ∪ ≥. 8

For the semantic interpretation, the two modalities 〈≤〉 and 〈∼〉 are interpreted via
their respective relations in the standard way; the two ‘access’ formulas A ϕ and R ρ
simply look at the A- and R-set of the evaluation point.

Definition 13 (Semantic interpretation) Let (M, w) be a pointed PA model with M =
〈W,≤, V,A,R〉. Atomic propositions and boolean operators are interpreted as usual.
For the remaining cases,

(M, w) � A ϕ iff ϕ ∈ A(w)

(M, w) � R ρ iff ρ ∈ R(w)

(M, w) � 〈≤〉ϕ iff there is a u ∈ W such that w ≤ u and (M, u) � ϕ

(M, w) � 〈∼〉ϕ iff there is a u ∈ W such that w ∼ u and (M, u) � ϕ

Defining the notions. For the notion of implicit knowledge, the classic EL approach is
used: the agent knows ϕ implicitly iff ϕ is true in all the worlds she considers possible
from the evaluation point. For ϕ to be explicitly known, the agent needs to have access
to it in all such worlds:

The agent knows implicitly the formula ϕ KImϕ := [∼]ϕ
The agent knows explicitly the formula ϕ KExϕ := [∼] (ϕ ∧ A ϕ)

On the other hand, the notion of beliefs does not need to look at all the epistemically
indistinguishable worlds, just to those that are the most likely to be the case: an
agent believes ϕ implicitly iff ϕ is true in the most plausible worlds under the agent’s
plausibility order. Given the properties of the plausibility relation, ϕ is true in the most
plausible worlds from the evaluation point iff there is a more plausible world from
which all better ones are ϕ-worlds (Stalnaker 2006; Baltag and Smets 2008). For its
explicit form, it is asked for the agent to have access to ϕ in these maximal worlds.

The agent believes implicitly the formula ϕ BImϕ := 〈≤〉 [≤]ϕ
The agent believes explicitly the formula ϕ BExϕ := 〈≤〉 [≤] (ϕ ∧ A ϕ)

We have now the notions of implicit/explicit knowledge/beliefs for formulas. For the
case of rules, in the implicit case, a rule ρ is translated into an implication tr(ρ)whose
antecedent is the (finite) conjunction of the rule’s premises and whose consequent is
the rule’s conclusion (

∧
ψ∈pm(ρ) ψ → cn(ρ)); in the explicit case, the ‘access to rule’

formulas are used:
8 The indistinguishability relation should not be confused with the equal plausibility relation, given by the
intersection ≤ ∩ ≥.
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The agent knows implicitly the rule ρ KImρ := [∼] tr(ρ)

The agent knows explicitly the rule ρ KExρ := [∼] (tr(ρ) ∧ R ρ
)

The agent believes implicitly the rule ρ BImρ := 〈≤〉 [≤] tr(ρ)

The agent believes explicitly the rule ρ BExρ := 〈≤〉 [≤] (tr(ρ) ∧ R ρ
)

Details of this framework can be found in Velázquez-Quesada (2010). We now
move on to a definition of two actions and how they can be used to represent some
forms of abductive reasoning.

4.2 Operations Over Plausibility-Access Models

In a PA model, the agent’s beliefs are given by the plausibility relation. Then, changes
in beliefs can be represented by changes in this relation (Ditmarsch 2005; Benthem
2007; Baltag and Smets 2008). In particular, the act of revising beliefs with the aim
to believe a given φ can be seen as a change that puts φ-worlds at the top of the
plausibility order. There are several ways in which such a new order can be defined;
each one of them can be seen as a different policy for revising beliefs. Here is one of
the many possibilities.

Definition 14 (Upgrade operation) Let M = 〈W,≤, V,A,R〉 be a PA model; letφ be
a formula in L f . The upgrade operation yields the PA model Mφ⇑ = 〈W,≤′, V,A,R〉,
differing from M just in the plausibility order:

≤′:= (≤;φ?) ∪ (¬φ?;≤) ∪ (¬φ?;∼;φ?)

The new plausibility relation, given in a Propositional Dynamic Logic style, states
that after an explicit upgrade with φ, “all φ-worlds become more plausible than all
¬φ-worlds, and within the two zones the old ordering remains” (Benthem 2007).
More precisely, we will have w ≤′ u iff (1) w ≤ u and u is a φ-world, or (2) w is a
¬φ-world and w ≤ u, or (3) w ∼ u, w is a ¬φ-world and u is a φ-world.

PA models also have syntactic components: a set of formulas and a set of rules at
each possible world. Here is an operation that modifies the first.

Definition 15 (Uncovering operation) Let M = 〈W,≤, V,A,R〉 be a PA model; let
Φ be a set of formulas. Define TΦ(M, w) as

TΦ(M, w) := {φ | φ ∈ Φ and (M, w) � φ} ∪ {¬φ | φ ∈ Φ and (M, w) �� φ}

that is, TΦ(M, w) is a set of formulas that contains, for each φ ∈ Φ, φ itself if φ holds
at (M, w), and ¬φ if φ does not hold at (M, w).

The uncovering operation produces the PA model M+Φ = 〈W,≤, V,A′,R〉, dif-
fering from M just in the access set function, given now for each w ∈ W by:

A′(w) := A(w) ∪ TΦ(M, w)
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This operation makes explicit the formulas inΦ. More precisely, for everyw ∈ W ,
A(w) will be extended with the formulas in Φ that w satisfies and with the negations
of the formulas in Φ that it does not satisfy.

For the language, we introduce the modalities 〈φ ⇑〉ϕ and 〈+Φ〉ϕ, with their
semantic interpretation given below.

Definition 16 Let M = 〈W,≤, V,A,R〉 be a PA model. Then,

(M, w) � 〈φ ⇑〉ϕ iff (Mφ⇑, w) � ϕ

(M, w) � 〈+Φ〉ϕ iff (M+Φ,w) � ϕ

Based on these two operations, we will now provide an action that represents an
abductive reasoning step.

4.3 An Action Representing Abductive Reasoning

The key observation of the discussed Mary’s example is that the described form of
abductive reasoning can be seen as a form of belief revision guided by the agent’s
inferential abilities: if the agent knows explicitly a rule and its conclusion, then it is
reasonable for her to believe explicitly all the rule’s premises. Following this idea, here
is our proposal for an action representing this form of abductive reasoning.

Definition 17 (Abductive reasoning with rule σ ) In order to represent abductive rea-
soning with a given rule σ , we introduce a new modality that allows us to build
formulas of the form 〈Abdσ 〉ϕ, read as “the agent can perform an abductive step with
rule σ after which ϕ is the case”. The semantic interpretation of formulas of this form
is defined in the following way:

(
M, w

)
� 〈Abdσ 〉ϕ iff

(
M, w

)
� KExσ ∧ KExcn(σ ) and

(
(M+pm(σ ))Pσ⇑, w

)
� ϕ

where the formula Pσ := ∧
ψ∈pm(σ ) ψ is the conjunction of all premises of σ (if

pm(σ ) is empty, then Pσ := �).

Let us spell out this definition. The agent can perform an abductive step with
rule σ after which ϕ is the case, (M, w) � 〈Abdσ 〉ϕ, if and only if she knows
explicitly the rule and its conclusion, (M, w) � KExσ ∧ KExcn(σ ), and, after
making explicit the premises of σ and then putting on top of the plausibility order
those worlds that satisfy all of them, ϕ is the case, (M+pm(σ )Pσ⇑, w) � ϕ. In other
words, an abductive step with a rule σ is an action that, provided that the rule
and its premises are explicitly known, makes explicit σ ’s premises and then lifts
those worlds satisfying all of them. In the particular case in which σ ’s premises are
propositional formulas, after this sequence of operations, the agent will believe σ ’s
premises.9

9 This does not hold in the general case because the operations do change the model (the access set
function and the plausibility relation), therefore affecting the truth-value of formulas that can see such
change (formulas including A , 〈∼〉 or 〈≤〉 ); cf. Holliday and Icard (2010).
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4.4 An Example

In the PA model below, each possible world shows the atomic propositions that are
true at it, and its A- and R-sets appear below it. In the model, Mary knows explicitly
both that the light does not turn on (¬l) and that if the electric line fails (¬e), then
there will be no light (this rule is abbreviated as ¬e ⇒ ¬l). Nevertheless, Mary does
not believe, neither explicitly nor implicitly, that the electric line fails. The formulas
on the right of the diagram express all this; they are true in every world in the model,
so no evaluation point is specified.

If we understand information as knowledge, this is a case of an abductive prob-
lem with explicit knowledge of the observation ¬l, as explained in Subsect. 3.3. The
modality 〈Disχ 〉 represents an action that removes χ from the explicit (but not from
the implicit) knowledge, so we can define it in the PA framework as an operation that
removes χ from the A-sets of the worlds in the model [cf. the dropping operation of
Benthem and Velázquez-Quesada (2010)]. Then, by applying 〈Dis¬l〉 to the PA model
above, we get a similar model in which all A-sets are empty, therefore representing a sit-
uation in which, though Mary does not have explicit knowledge of ¬l, she has implicit
knowledge about it. Now, if we understand inference as the application of explicitly
known rules with explicitly known premises (Grossi and Velázquez-Quesada 2009),
then Mary cannot make ¬l explicit only by inference (that is, only by applying the
rule ¬e ⇒ ¬l) because, even though she knows explicitly the rule, she does not know
explicitly the single premise. Hence, ¬l is objectively (InfIm ¬l) but not subjectively
(¬InfDer ¬l) implicit knowledge (Subsect. 3.2). In summary, the abductive problem
she faces is given by

〈Dis¬l〉
(¬InfEx ¬l ∧ ¬InfEx l ∧ ¬InfDer ¬l ∧ ¬InfDer l ∧ InfIm ¬l ∧ ¬InfIm l

)

This corresponds to case (1.2.a) on Table 3 with the modification introduced in Sub-
sect. 3.3 (χ becomes ¬l and ¬χ becomes l).10 According to Table 4 plus the modifi-
cation described in Subsect. 3.3, in order for ¬e to be a solution, it should satisfy

〈Dis¬l〉 〈Add¬e〉 〈¬e ⇒ ¬l〉 InfEx ¬l

While the effect of 〈Dis¬l〉 has been already described, 〈Add¬e〉 can be understood
as a form of public announcement (Plaza 1989; Gerbrandy 1999) of ¬e that removes

10 Strictly speaking, ¬χ should become ¬¬l, but using l makes the example clearer. Most importantly, as
we explain further on, it is easy to provide Mary with the reasoning ability to get l from ¬¬l.
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the worlds where ¬e is false (that is, w1) and adds ¬e to the A-sets of the remaining
worlds in which the formula is true [cf. the explicit seeing operation of Benthem
and Velázquez-Quesada (2010)]. Then, by applying 〈Dis¬l〉 and then 〈Add¬e〉 to the
initial PA-model, we get:

Now Mary’s information state is given by¬InfEx ¬l ∧ ¬InfEx l ∧ InfDer ¬l ∧ ¬InfDer l ∧ InfIm ¬l ∧ ¬InfIm l

which corresponds to the abductive problem (1.2.b) of Table 3, as indicated in Table 4.
Mary has now subjectively implicit information of ¬l; hence she only needs to apply
her reasoning abilities to make InfEx ¬l true. Thus, ¬e is indeed an abductive solution
for the problem.

Following a classic terminology in Philosophy of Science, by proving that ¬e sat-
isfies all the requisites to be a good explanation we have only dealt with the context
of justification of abductive reasoning. There are three important points still to be
discussed. First, where should the agent look for the possible explanations of the sur-
prising observation (what is commonly called the context of discovery of abductive
reasoning)? Our proposal is that candidates for solutions of a given χ -abductive prob-
lem can be found in the premises of those rules that would have allowed the agent to
derive χ . Second, though in our example there is only one candidate for a solution, in
general there will be more than one explanation for a given abductive problem, and
in such cases the agent has to choose one (some) of them. Our proposal for dealing
with this stage of the abductive process will be presented in Sect. 5. Third, once that
the agent has chosen her explanation(s), she should somehow incorporate it(them)
into her information. For this we will use the abductive operation of Definition 17 in
which the explanation is not incorporated as knowledge (though plausible, the chosen
explanation does not need to be the case) but rather as belief.

Back in our story, Mary has observed that the light does not turn on, therefore
reaching an information state described in the left model of the diagram below. In
order to explain the lack of light, Mary applies abductive reasoning with the rule
¬e ⇒ ¬l (we have already justified why ¬e is a good candidate for an explanation).
The model that results from this reasoning appears on the right.

There are two changes in the new model with respect to the original one. First, the
unique premise of the chosen rule has been made explicit by adding it to the A-set of
w2 and by adding its negation to the A-set of w1. Second, there is a new plausibility
ordering: now the unique ¬e-world, w2, has become more plausible than the unique
e-world, w1. In this resulting model Mary still knows explicitly that there is no light
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(KEx ¬l) and still knows explicitly the rule that links that with the failure of the electric
line (KEx(¬e ⇒ ¬l)). But, as a result of abductive reasoning, Mary now believes (both
implicitly and explicitly) that the electric line has failed (BEx ¬e ∧ BIm ¬e).

Note how even if the original model hadw2 abovew1 as the sentence “Knowing that
the electric line is outdated …” in the original statement (page 14) may suggest, the
operation does makes a difference since it makes explicit the premises of the chosen
rule.

5 Selecting the Best Explanation

So far our proposal does not deal with the process of choosing the best explanation.
In general, there will be more than one solution for a given abductive problem: Mary
observed the lack of light with a failure in the electric line, but it could be also the
case that the switch or even the bulb was broken. The selection of the best explanation
is a fundamental problem in abductive reasoning [see, e.g. Lipton (1991) and Hin-
tikka (1998)], and in fact many authors consider it the heart of abductive reasoning.
But beyond logical requisites to avoid triviality [e.g., Definition 3], the definition of
suitable criteria is still an open problem. In this section we adapt the ideas presented
in Nepomuceno-Fernández et al. (2013) to our non-omniscient agents case.

Some typical selection criteria are restrictions on the logical form of the solutions,
so that only abducible formulas are selected as possible explanations. For example, if
we only allow conjunctions of literals as abductive solutions, a criterion for minimal
explanation can be established on the length of these conjuncts. But finer criteria to
select between two equally valid solutions require contextual aspects (Aliseda 2006).
A typical option is the use of preferential models (e.g., Makinson (2003)), but such
approaches are often criticized because they introduce an external resource.

Our subjective approach to abductive reasoning gives us a different perspective.
The electric line in Mary’s house is outdated; knowing this, Mary considers its failure
more likely than other possible explanation, and hence she explains the lack of light by
assuming that the electric line has failed. But Mary’s friend Gaby does not know that
the line is old, and therefore she explains the same fact by assuming what she considers
more likely to happen: the bulb has failed. The two explanations are equally “logical”
since a failure on the electric line or a broken bulb would be enough to explain why
the light does not turn on; what makes Mary to choose the first and Gaby choose the
second is that they have different knowledge and different beliefs. This suggests that
instead of looking for criteria to select the best explanation, we should rather look for
criteria to select the agent’s best explanation.

More precisely, and as the example shows, the explanation an agent will choose
for a given observation depends not only on the logical properties of the candidates,
but also on what the agent herself knows and considers more likely to be the case.
This criteria is not “logical” in the classical sense, since it is not based exclusively
on what can be derived from the explanation or even the number of needed inference
steps. Nevertheless, it is logical in a broader sense since it depends on the agent’s
information: her knowledge and her beliefs.
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Here is how this idea reflects on the previous section’s proposal. We have suggested
that the agent’s reasonable candidates for explanation of an observedχ are the premises
of those rules that would allow her to derive χ . In general, the agent might have several
ways in which she could have derived the observed χ (she might have several rules
with χ as conclusion). But the agent already has knowledge and beliefs, so she already
considers, implicitly or explicitly, some of these explanations more likely than the
others. In our example, Mary explains the light problem by assuming that the line
is failing not because she does not consider the possibility that the bulb might be
broken, but because after the light does not turn on, the failure on the line is, from
her perspective, more likely to be the case. Consider this extended version of Mary’s
adventure.

Mary arrives late to her apartment. She presses the light switch but the light
does not turn on. Knowing that the electric line is outdated, Mary assumes that
it might have failed, but then she takes a quick look at the alarm clock on her
night table and realizes that it is working. This makes her to change her mind,
and now she assumes that the bulb is broken.

After observing that the light does not turn on, Mary has two hypotheses: “the
electric line fails” and “the bulb is broken”. She chooses the first as her explanation
because at her apartment it is more common than the second. But then she observes
that the alarm clock works; since this contradicts her first hypothesis, she discards the
first and selects the second.

In order to show how we can capture Mary’s reasoning in the described frame-
work, consider the PA model shown below, representing Mary’s knowledge and beliefs
immediately after she observes (and therefore knows explicitly) that the light is not
working. In the model (with reflexive arrows omitted), she has also explicit knowl-
edge of the following rules: “if the electric line fails (¬e) then the light does not work
(¬l)” (¬e ⇒ ¬l) and “if the bulb is broken (¬b) then the light does not work (¬l)”
(¬b ⇒ ¬l).

The most plausible world (w4) is the one in which nothing fails, as it is usual at
Mary’s apartment. Nevertheless, from Mary’s perspective, a problem with the bulb is
less plausible than a failure in the electric line (w3 is beloww2), and the least plausible
situation is the one in which both fail (w1 is at the bottom). This is Mary’s personal
plausibility ordering, according to her previous experience, and it will be the key for
selecting her best explanation. Observe also how though Mary believes that nothing
fails (w1 is the most plausible world), this belief is just implicit and not explicit: the
information about the failure of the electric line or the failure of the bulb is just implicit
because the A-sets do not contain formulas about them.
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After the observation, Mary does not have an explanation for ¬l: she does not
know/believe explicitly anything that entails ¬l with the rules she knows (in particular,
she knows/believes explicitly neither ¬e nor ¬b). Thus, there is an abductive problem,
and in order to solve it Mary can perform an abductive step with any of the two rules
she knows explicitly: ¬e ⇒ ¬l or ¬b ⇒ ¬l. Our proposal here is that Mary does not
need to choose one of these rules; what she can do is to consider all of them, and then
allow her previous plausibility order to decide which will be the chosen explanation,
that is, which explanation she will believe explicitly. This solution is simpler but
nevertheless more natural since the selection of the best explanation relies on Mary’s
previous beliefs. In the following section we provide the definitions to make precise
this idea.

5.1 A General Action Representing Abductive Reasoning

Definition 18 (Abductive reasoning) In order to represent general abductive reason-
ing, we introduce a new modality that allows us to build formulas of the form 〈Abdχ 〉ϕ,
read as “the agent can perform an abductive step for formula χ after which ϕ is the
case”. In order to provide the semantic interpretation of these formulas, we first make
the following definitions.

Denote by Rχ the set of the rules explicitly known by the agent at the pointed model
(M, w) that have χ as conclusion, that is,

Rχ :=
{
σ ∈ Lr | (M, w) � KExσ and cn(σ ) = χ

}

Then denote by PRχ the disjunction of the conjunction of all premises of each rule in
Rχ , that is,

PRχ :=
∨

σ∈Rχ

∧

ψ∈pm(σ )

ψ

Finally, denote by pm(Rχ ) the set of all premises of rules in Rχ :

pm(Rχ ) :=
⋃

σ∈Rχ

pm(σ )

If Rχ �= ∅, the semantic interpretation of formulas of the form 〈Abdχ 〉ϕ is defined
in the following way:

(
M, w

)
� 〈Abdχ 〉ϕ iff

(
M, w

)
� KExχ and

(
(M+pm(Rχ ))PRχ⇑, w

)
� ϕ

Let us spell out the semantic interpretation. If the agent knows explicitly at least
one rule with χ as conclusion (the Rχ �= ∅ requirement), then she can perform an
abductive step for formula χ after which ϕ is the case, (M, w) � 〈Abdχ 〉ϕ, if and only
if she knows explicitly χ , (M, w) � KExχ , and after making explicit the all premises
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of all rules for χ she knows explicitly and then lifting those worlds that satisfy all the
premises of at least one such rule, ϕ is the case, (M+pm(Rχ )PRχ⇑, w) � ϕ.

Observe the effect of this abductive step (i.e., of the sequence uncovering then
upgrade), again for the case in which the premises of all such rules are propositional
formulas. It will make explicit the premises of all the relevant rules and then it will
lift those worlds that satisfy the conjunction of all the premises of at least of one of
such rules (that is, PRχ ). But recall the effect of the upgrade operation with PRχ : “all
PRχ -worlds become more plausible than all ¬PRχ -worlds, and within the two zones
the old ordering remains”. Then, in the upper zone, the worlds that will be at the top
will be those that satisfy PRχ and were already more plausible than the rest. Hence,
the agent will believe the premises that were already more plausible for her.

5.2 The Example Revisited

We left Mary trying to explain why the light does not work. She has two rules with
¬l as conclusion, ¬e ⇒ ¬l and ¬b ⇒ ¬l. Hence, after 〈Abd¬l〉 , the formulas ¬e,
e, ¬b, b will become explicit and, more importantly, there will be a new plausibility
ordering among the worlds: those satisfying ¬e ∨ ¬b (w1, w2 and w3) become more
plausible than those satisfying its negation (w4). Still, within the upper zone, the old
ordering will be kept:w2 will be still the most plausible among these three. This gives
us the following model:

Observe how 〈Abd¬l〉 BEx¬e holds: now Mary believes that an electric problem is
responsible for the lack of light.

Mary’s best explanation relies on her previous beliefs. This can lead to incorrect
explanations, as in our case: when she observes the alarm clock working, she realizes
that the electric line has not failed. This observation of ¬¬e can be represented by
〈Add¬¬e〉 11, thus producing the following model:

11 Such action is more naturally represented as the announcement of e, but in our model Mary has explicitly
¬¬e. There are two options here. The most elegant one is to introduce an action representing Mary’s
inference from ¬¬e to e [see, again, Velázquez-Quesada (2010)], and then work with the announcement
in its most natural form (e). Due to space reasons, here we have chosen to work with this special form of
observing that the electric line works.
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The failed hypothesis emphasizes the fact that abduction is a non-monotone form
of reasoning: the explanation chosen as the best can be refuted by further information,
as Mary knows now. But note how in the model that results from observing ¬¬e, the
abductive problem ¬l is still explained, only this time the explanation is ¬b. Before
observing ¬¬e, Mary explicitly believed ¬e as the explanation of ¬l, but after the
observation she believes explicitly ¬b. She does not need a further abductive step,
as the first one reordered her beliefs to make more plausible the worlds where some
explanation for ¬l is true. Then, just as the original explanation was chosen according
to her previous beliefs, once these beliefs change, a new explanation appears.

This does not happen if we apply the action 〈Abdσ 〉 of the previous section. If
Mary chooses ¬e ⇒ ¬l (according to her original preference for ¬e over ¬b), the
model that results from applying 〈Abd¬e⇒¬l〉 is:

Then, a further observation of ¬¬e produces the following model in which ¬l is
unexplained, that is, Mary does not have any explicit information that would allow
her to derive ¬l.

This example shows two characteristics of 〈Abdχ 〉 . First, the ‘best explanation’
is selected according to the previous beliefs of the agent, thus given us the agent’s
best explanation. Second, as these beliefs change, the best explanation changes too,
without needing further abductive steps. In fact, if [ψ !] represents the observation of
a propositional formula ψ (modelled as a public announcement), and the rules that
the agent knows for χ contain only propositional formulas, the following holds:

� 〈Abdχ 〉 [ψ !]ϕ ↔ [ψ !] 〈Abdχ 〉ϕ

The formula is valid, first because 〈Abdχ 〉 does not affect the truth-value of propo-
sitional formulas, and thus the worlds [ψ !] removes when applied after 〈Abdχ 〉 are
exactly those it removes when applied before 〈Abdχ 〉 ; second, because the plausi-
bility order among ψ-worlds is not affected by [ψ !] , so 〈Abdχ 〉 has the same effect
regardless whether it takes place before or after [ψ !] ; third, because the effect of these
two actions on A-sets is the same, regardless of the order in which they are applied;
fourth, because none action changes the rules the agent explicitly knows.12

12 If ψ is not propositional, the effect of observing it is not interchangeable with an abductive step; see
Holliday and Icard (2010).
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The possibility of interchanging abductive steps and observations is a very inter-
esting property. As the example of Mary shows, new observations after the abductive
step may change the hypothesis that is believed as the best explanation. The just shown
property guarantees that after new observations there is no need of further abductive
steps: the agent’s information (and so her beliefs about the best explanation) is the same
if she performs the abductive operations before or after observing new information.

6 Summary and Future Work

We have presented definitions of abductive problem and abductive solution in terms
of an agent’s information and the way it changes, showing how different examples
of abductive reasoning correspond to different kinds of agents (e.g., those whose
information is not closed under logical consequence, or those whose reasoning abilities
are not complete). Then we have shown how a syntactic extension of the possible
worlds model allows us to represent certain forms of abductive reasoning.

Our work is just an initial exploration of abductive reasoning for non-omniscient
agents, and there are many aspects yet to be studied. The most important one is the
semantic representation of abductive reasoning, and though we have shown that certain
forms can be represented, a deep study of the diverse types that can be described is still
pending. In order to achieve this, we first should provide a proper semantic definition
for the actions we have sketched through the work: Addϕ/α , Remϕ ,α and Disϕ . Natural
candidates can be found in the current DEL literature (Plaza 1989; Gerbrandy 1999;
Benthem 2007; Baltag and Smets 2008; Velázquez-Quesada 2010). Once a full setting
has been formally defined, the next step is a proper comparison between it and other
approaches to abductive reasoning, in order to identify strengths and weaknesses and,
more importantly, in order to obtain a better picture of the abductive process.
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