
J Log Lang Inf (2013) 22:249–267
DOI 10.1007/s10849-013-9179-3

On the Origin of Ambiguity in Efficient Communication

Jordi Fortuny · Bernat Corominas-Murtra

Published online: 27 September 2013
© Springer Science+Business Media Dordrecht 2013

Abstract This article studies the emergence of ambiguity in communication through
the concept of logical irreversibility and within the framework of Shannon’s informa-
tion theory. This leads us to a precise and general expression of the intuition behind
Zipf’s vocabulary balance in terms of a symmetry equation between the complexities
of the coding and the decoding processes that imposes an unavoidable amount of logi-
cal uncertainty in natural communication. Accordingly, the emergence of irreversible
computations is required if the complexities of the coding and the decoding processes
are balanced in a symmetric scenario, which means that the emergence of ambiguous
codes is a necessary condition for natural communication to succeed.

Keywords Ambiguity · Logical (ir)reversibility · Communicative efficiency ·
Shannon’s entropy

This work has been supported by the Secretary for Universities and Research of the Ministry of Economy
and Knowledge of the Government of Catalonia and the Cofund programme of the Marie Curie Actions of
the 7th R&D Framework Programme of the European Union, the research projects 2009SGR1079,
FFI201123356 (JF) and the James S. McDonnell Foundation (BCM).

J. Fortuny (B)
Department of Catalan Philology, Facultat de Filologia, Universitat de Barcelona,
Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain
e-mail: fortuny.jordi@gmail.com

B. Corominas-Murtra
Section for Science of Complex Systems, Medical University of Vienna,
Spitalgasse 23, 1090 Vienna, Austria

B. Corominas-Murtra
ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr. Aiguader 80,
08003 Barcelona, Spain

123

250 J. Fortuny, B. Corominas-Murtra

1 Introduction

It is a common observation that natural languages are ambiguous, namely, that lin-
guistic utterances can potentially be assigned more than one interpretation and that
receivers of linguistic utterances need to resort to supplementary information (i.e., the
linguistic or the communicative context) to choose one among the available interpre-
tations.

Both linguists and logicians have been interested in this observation. On the one
hand, a traditional task of grammar is to illustrate and classify ambiguity, which may
be of different types, as well as to determine how apparently ambiguous utterances
are disambiguated at the relevant level of representation; indeed, the search for a par-
simonious treatment of certain ambiguities such as scope ambiguities has been one
of the most powerful motors in the development of the formal inquiry of the syntax-
semantics interface, since its modern inception in Montague’s semiotic program (Mon-
tague 1974). It is no exaggeration at all, in our opinion, to say that the presence of
ambiguity (particularly, scope ambiguity) and the apparent mismatch between the
form and the alleged semantic structure of quantified expressions in natural languages
have been the two major guiding problems in the development of a formal theory of
the syntax-semantics interface of natural languages.

On the other hand, logicians in general would not be as interested in describing
or characterizing the phenomenon of ambiguity, as in the construction of unambigu-
ous artificial languages whose primitive symbols have a univocal interpretation and
whose formulae are constructed by the appropriate recursive syntactic definitions and
unambiguously interpreted by the relevant compositional semantic rules, formulated
as recursive definitions that trace back the syntactic construction of the formulae. Not
surprisingly, some philosophers, such as (Wittgenstein 1992, 3.323–3.325), identi-
fied the ambiguity of ordinary language as the source of philosophical confusion, and
aspired to construct a language whose signs were univocal and whose propositions
mirrored the logical structure of reality itself.

It is a rather common view that the presence of phenomena such as ambiguity
and garden path sentences suggests that language is poorly designed for communi-
cation (Chomsky 2008). In fact, there are at least two opposite starting hypotheses
about the nature and emergence of ambiguity in natural communication systems. It
could well be that ambiguity is an intrinsic imperfection, since natural, self-organized
codes of communication are not perfect, but coevolved through a fluctuating medium
and no one designed them. But it may be as well that ambiguity is the result of an
optimization process, inasmuch as natural, self-organized codes of communication
must satisfy certain constraints that a non-ambiguous artificial language can afford
to neglect. Logical languages, for instance, are constructed to study relations such
as logical consequence and equivalence among well-formed formulae, for which it
is desirable to define syntactic rules that do not generate syntactically ambiguous
expressions.1 However, in the design of logical languages that provide the appropriate

1 It is desirable, but not mandatory. As noted by Thomason in his ‘Introduction’ (Montague 1974, Chapter
1), “[A] by-product of Montague’s work (…) is a theory of how logical consequence can be defined for
languages admitting syntactic ambiguity. For those logicians concerned only with artificial languages this

123

On the Origin of Ambiguity in Efficient Communication 251

tools for that particular purpose, certain features that may be crucial in the emergence
of natural communication systems are neglected, such as the importance of the cost in
generating expressions and the role of cooperation between the coder and the decoder
in the process of communicating those expressions (Wang and Steels 2008), a factor
that is completely extraneous to the design of logical languages.

Despite the indisputability of ambiguity in natural languages and the attention that
this observation has received among linguists, philosophers and logicians, it is fair to
conclude that the emergence of ambiguity has not come yet under serious theoretical
scrutiny.

In this article we provide a general mathematical definition of ambiguity through
the computational concept of logical irreversibility and we quantify the ambiguity of
a code in terms of the amount of uncertainty of the reversal of the coding process. We
finally capitalize on the two above-mentioned factors (the importance of the cost
in generating expressions and the role of cooperation between the coder and the
decoder) in order to provide a detailed argument for the idea that ambiguity is an
unavoidable consequence of the following efficiency factor in natural communication
systems: interacting communicative agents must attain a code that tends to minimize
the complexities of both the coding and the decoding processes. As a proof of concept,
we thoroughly explore a simple system based on two agents—coder and decoder—
under a symmetrical—cooperative—scenario, and we show that ambiguity must
emerge.

The remainder of this article is organized as follows. In Sect. 2 we introduce Lan-
dauer’s concept of logical (ir)reversibility of a given computational device and we
quantify the degree of ambiguity of a code as the amount of uncertainty in reversing
the coding process. In Sect. 3 we introduce Zipf’s vocabulary balance condition, a
particular instance of Zipf’s Least Effort Principle (Zipf 1965), and we show how it
can be properly generalized and accommodated to the information-theoretic frame-
work adopted in Sect. 2. We conclude our reasoning by showing that, if the cod-
ing and the decoding processes are performed in a cooperative regime expressed in
terms of a symmetry equation between coding and decoding complexities, a certain
amount of logical uncertainty or ambiguity is unavoidable. In Sect. 4 we recapitulate
our derivation of the presence of ambiguity and we stress a further important result
intimately related to our development: Zipf’s law, another well-known and ubiqui-
tous feature of natural language products, is the sole expected outcome of an evolv-
ing communicative system that satisfies the symmetry equation between coding and
decoding complexities, as argued in (Corominas-Murtra et al. 2011). “Appendix” sec-
tion emphasizes the relationship between logical irreversibility and thermodynamical
irreversibility.

Footnote 1 continued
generalization will be of little interest, since there is no serious point to constructing an artificial language
that is not disambiguated (p. 4, note 5)” if the objective is to characterize logical notions such as consequence.
However, this generalization is relevant for the development of ‘Universal Grammar’ in Montague’s sense,
i.e., for the development of a general and uniform mathematical theory valid for the syntax and semantics
of both artificial and natural languages.

123

252 J. Fortuny, B. Corominas-Murtra

2 Ambiguity and Logical Reversibility

In this section we begin by informally presenting the concept of logical (ir)reversibility
of a given computation (Sect. 2.1). Subsequently we formally explain how a code gen-
erated through logically irreversible computations is necessarily ambiguous (Sect. 2.2)
and we quantify the degree of ambiguity as the minimum amount of information needed
to properly reconstruct a given message (Sect. 2.3).

2.1 Logical Irreversibility

Traditionally, the concept of computation is theoretically studied as an abstract process
of data manipulation and only its logical properties are taken into consideration; how-
ever, if we want to investigate how an abstract computation is realized by a physical
system, such as an electronic machinery, an abacus or a biological system as the
brain, it becomes important to consider the connections between the logical properties
of (abstract) computations and the physical—or more precisely, thermodynamical—
properties of the system that perform those computations.

The fundamental examination of the physical constraints that computations must
satisfy when they are performed by a physical system was started by Landauer (1961),
and continued in several other works (Bennett 1973, 2008; Bennett and Landauer
1985; Ladyman et al. 2007; Toffoli 1980). The general objective of these approaches
is to determine the physical limits of the process of computing, the “general laws that
must govern all information processing no matter how it is accomplished” (Bennett
and Landauer 1985, p. 48). Accordingly, the concept of computation is subject to the
same questions that apply to other physical processes, and thus the following questions
become central to the physical study of computational devices (Bennett and Landauer
1985, p. 48):

1. How much energy must be expended to perform a particular computation?
2. How long must a computation take?
3. How large must the computing device be?

It must be remarked that by answering these questions one expects to find funda-
mental physical principles that govern any kind of information processing, and not the
actual limits of a particular technological implementation. A central objective within
this general framework is the study of the properties of reversibility and irreversibility
relative to a computational process, a distinction that was first considered in relation to
the problem of heat generation during the computational process. An important idea
relative to question (1) is formulated in the so-called Landauer’s principle, according
to which any irreversible computation generates an amount of heat (cfr. Bennett and
Landauer 1985 and also “Appendix” section). Let us thus introduce the concept of
logical reversibility/irreversibility, which is crucial to our concerns.

As remarked by Bennett and Landauer (1985), no computation ever generates infor-
mation since the output is implicit in the input. However many operations destroy
information whenever two previously distinct situations become indistinguishable, in
which case the input contains more information than the output. For instance, if we
consider the operation + defined on N, the output 5 can be obtained from the following

123

On the Origin of Ambiguity in Efficient Communication 253

Fig. 1 A computation is said to be logically irreversible if the input cannot be univocally defined only
with the knowledge of the output. Here we have two examples of simple logic gates performing irreversible
computations. The AND gate (which corresponds to the logic connective ∧) has the truth table shown on the
bottom. Although the output 1 can be uniquely obtained through the input (1, 1) as input, the input for the
output 0 can be either (1, 0), (0, 1) or (0, 0). The presence of a 0 in the output is not enough to properly revert
the computational process, and therefore we need an amount of extra information if we want to know the
inputs with no errors. Therefore, the computations of this gate are logically irreversible. The same occurs
with the OR gate, corresponding to the logical connective ∨. This example has been taken from Bennett
and Landauer (1985)

inputs: (0, 5), (1, 4), (2, 3), (3, 2), (4, 1), (5, 0). The concept of logical irreversibility is
introduced in (Landauer, 1961, p. 264) in order to study those computations for which
its input cannot be unequivocally determined from its output:

We shall call a device logically irreversible if the output of a device does not
uniquely define the inputs.

Conversely, a device is logically reversible if its output can be unequivocally defined
from the inputs—see Fig. 1.

2.2 Logical (Ir)Reversibility in Terms of Turing Machines

In this subsection we define logically (ir)reversible computations in terms of a Turing
machine.

We informally describe, as usual, the action of a Turing machine on an infinite
tape divided into squares as a sequence of simple operations that take place after an
initial moment. At each step, the machine is at a particular internal state and its head
examines a square of the tape (i.e., reads the symbol written on a square). The machine
subsequently writes a symbol on that square, changes its internal state and moves the
head one square leftwards or rightwards or remains at the same square.

Formally, a deterministic Turing machine T M is a triple composed of a finite set
of internal states Q, a finite set of symbols Σ (an alphabet) and a transition function δ,

T M = (Q,Σ, δ).

123

254 J. Fortuny, B. Corominas-Murtra

Fig. 2 The sequence of a given computation in a Turing machine—see text

There is an initial state s belonging to Q and in general Q∩Σ = ∅. Two special symbols,
the blank � and the initial symbol �, belong to Σ . Additionally the transition function
δ is understood as follows:

δ : Q × Σ → Q × Σ × {L, R,�} ,

where ‘L’ and ‘R’ mean, respectively, “move the head one square leftwards or right-
wards”, and ‘�’ means “stay at the square just examined”.

Thus, δ is the program of the machine; it specifies, for each combination of current
state σi ∈ Q and current symbol rk ∈ Σ , a triple

〈σ j , r�, D〉,

where σ j is the step immediately after σi , r� is the symbol to be overwritten on rk , and
D ∈ {L, R,�}. A schema of how a computation is performed in a Turing machine is
shown in Fig. 2.2

In general, we say that T M performs only logically reversible computations if the
inverse function of δ, δ−1, defined as

δ−1 : Q × Σ × {L, R,�} → Q × Σ,

exists. This implies that for any input we have a different output and, therefore, we
can invert the process for every element of the input set. If δ−1 does not exist then

(∃α, β ∈ Q × Σ) : ((α �= β) ∧ (δ(α) = δ(β) ∈ Q × Σ × {L, R,�})) .

2 If δ is not a function from Q×Σ to Q×Σ ×{L, R, �} but rather a subset of (Q×Σ ×Q×Σ ×{L, R, �}),
then T M is non-deterministic. This means that non-deterministic T Ms differ from deterministic T Ms
in allowing for the possibility of assigning different outputs to one input. For simplicity we will consider in
our argumentation only deterministic T Ms. Note that this does not entail any loss of generality, since all
non-deterministic T Ms can be simulated by a deterministic T M, although it seems that the deterministic
T M requires exponentially many steps in n to simulate a computation of n steps by a non-deterministic
T M (cfr. Lewis and Papadimitriou 1997, pp. 221–227).

123

On the Origin of Ambiguity in Efficient Communication 255

Therefore, from the knowledge of γ = δ(α) = δ(β) we cannot determine with
certainty whether the actual value of the input was either α or β.

After these general definitions, we shall provide a particular definition of a Turing
machine suitable for the study of the coding process. This coding machine T will be
compounded of a set of internal states Q, a transition function δ and two alphabets—an
input alphabet Ω = {m1, . . . , mn} and an output alphabet S = {s1, . . . , sm}:

T = (Q,Ω, S, δ) .

We shall call the elements of Ω referents and the elements of S signs. We assume
that Q ∩ S = ∅ and that Q ∩ Ω = ∅. For simplicity, we also assume that, in a coding
process, the two alphabets are disjoint,

Ω
⋂

S = ∅,

i.e., an object is either a sign or a referent, but not both. Technically, this implies that
T can never reexamine a square where a sign has been printed, which means that T
must move always in the same direction; assume for concreteness that it must move
rightwards. Accordingly, we define the transition function as follows:

δ : Q × Ω → Q × S × {R} (1)

In order to clearly identify input and output configurations, we express the applications
of δ in the following terms:

σkmi → σ j s� R,

where σkmi and σ j s� R, (σk, σ j ∈ Q, mi ∈ Ω, s� ∈ S) are respectively input and
output configurations.

A coding machine T will perform solely logically reversible computations if there
exists the inverse function of δ, δ−1, defined as

δ−1 : Q × S × {L} → Q × Ω.

This implies that for any input configuration we have a different output configuration
and, therefore, we can invert the process for every element of Ω . The inexistence of
δ−1 is due to the fact that

(∃α, β ∈ Q × Ω) : ((α �= β) ∧ (δ(α) = δ(β) ∈ Q × S × {R})) .

If a coding machine is logically irreversible then it generates signs which are ambigu-
ous in the sense that they encode more than one referent.

As shown by Bennett (1973), a logically irreversible Turing machine can always be
made logically reversible at every step. Thus, logical irreversibility is not an essential
property of computations. Regarding the general questions (2) and (3) above formu-
lated, it is particularly relevant for our concerns that a logically reversible machine

123

256 J. Fortuny, B. Corominas-Murtra

need not be much more complicated than the irreversible machine it is associated
with: computations on a reversible machine take about twice as many steps as on the
irreversible machine they simulate and do not require a remarkably larger computing
device.3

Therefore, the study of the complexity of the computations of the coding device
alone does not seem to offer a necessity argument for the emergence of ambiguity
but only a relatively weak plausibility argument, since reversible computations do not
need to be significantly more complex than irreversible computations. However, as
we shall see, it is possible to obtain a strong necessity argument for the emergence of
ambiguity if instead of considering the complexity of the coding machine in isolation
we study how a coding machine interacts with a decoding machine in an optimal way.

2.3 Logical Reversibility and Ambiguous Codes

Before proceeding further in studying the concepts of logical (ir)reversibility in a
communication system formed by two agents (a coder and a decoder) and the channel,
some clarifications are in order. Firstly, we note that logical reversibility refers to the
potential existence of a reconstruction or decoding algorithm, which does not entail
that, in a real scenario, such algorithm is at work; in other words, logical (ir)reversibility
is a feature of the computations alone. Secondly, in the process of transmitting a signal
through a channel, the presence of noise in the channel through which the output is
received may be responsible for the emergence of logical irreversibility. This implies
that, although the coder agent could in principle compute in a reversible regime, the
noise of the channel makes the cascade system coder agent + channel analogue to
a single computation device working in an irreversible regime. And finally, whereas
logical (ir)reversibility is a property of the computational device (or coding algorithm)
related to the potential existence of a reconstruction algorithm (or decoding algorithm),
ambiguity is a property referred to signs: we say that a sign (an output of a coding
computation) is ambiguous when the decoder can associate it with more than one
referent (or input). A sign transmitted through a channel is ambiguous if the cascade
coder agent+channel is logically irreversible, which may be due to the computations
of the coding agent itself or due to the noise of the channel.

2.3.1 Noise: Quantifying the Degree of Ambiguity

The minimal amount of additional information needed to properly reconstruct the
input from the knowledge of the output is identified as the quantitative estimator of
ambiguity. The more additional information we need, the more ambiguous the code
is. This minimal amount of dissipated information is known as noise in standard

3 The basic idea is that an irreversible computer can always be made reversible by having it save all the
information it would otherwise lose on a separate extra tape that is initially blank. As Benett shows, this
can be attained “without inordinate increase in machine complexity, number of steps, unwanted output,
or temporary storage capacity”. We refer the interested reader to Bennett (1973) for a detailed proof and
illustration of this result.

123

On the Origin of Ambiguity in Efficient Communication 257

information theory, and its formulation in terms of the problem we are dealing with is
the objective of this subsection and the following one.

To study logical irreversibility in information-theoretical terms, we choose the fol-
lowing simpler version of the transition function δ given in (1):

δ : Ω → S.

This choice puts aside the role of the states but is justified for the sake of clarity and
because the qualitative nature of the results does not change: the only changes are the
sizes of the input and output sets. Let δi j be a matrix by which

δi j =
{

1 ⇔ δ(mi) = s j

0 otherwise.

Since the machine is deterministic, there is no possibility of having two outputs for a
given input; therefore

(∀k ≤ n)(∃!i ≤ m) : [
(δki = 1) ∧ (∀ j �= i)(δk j = 0)

]
.

In terms of probabilities, this deterministic behavior means that:

P(sk |mi) = δik . (2)

To properly study the reversibility of the above defined coding machine T , let
us define two random variables, XΩ, X S . XΩ takes values on the set Ω following
the probability measure p, being p(mk) the probability to have symbol mk as the
input in a given computation. Essentially, XΩ describes the behavior of a fluctuating
environment. X S takes values on S and follows the probability distribution q, which
for a given si ∈ S, takes the following value:

q(si) =
∑

k≤n

p(mk)δki , (3)

i.e., the probability of obtaining symbol si as the output of a computation. The amount
of uncertainty in recovering the inputs from the knowledge of the outputs of the
computations performed by T is related to logical irreversibility. In fact, this amount
of uncertainty is precisely the amount of extra information we need to introduce to have
a non-ambiguous code. This amount of conditional uncertainty or extra information
needed is well defined by the uncertainty function or Shannon’s conditional entropy:4

H(XΩ |X S) = −
∑

k≤m

q(sk)
∑

i≤n

P(mi |sk) log P(mi |sk). (4)

4 Throughout the paper, log ≡ log2.

123

258 J. Fortuny, B. Corominas-Murtra

To properly derive P(mi |sk) in terms of the transition function of the coding machine
we know, virtue of Bayes’ theorem, that:

P(mi |sk)q(sk) = P(sk |mi)p(mi),

which, using Eqs. (2, 3) leads us to a general expression only depending on the tran-
sition function of the coding machine and the prior probabilities p:

P(mi |sk) = p(mi)δik

⎛

⎝
∑

j≤n

δ jk p(m j)

⎞

⎠
−1

.

We observe that in the special case where (∀mi)(p(mi) = 1
n), the above equation

simply reads:

P(mi |sk) =
⎛

⎝
∑

i≤n

δ jk

⎞

⎠
−1

δ jk .

Eq. (4) is the amount of noise, i.e., the information that is dissipated during the com-
municative exchange or, conversely, the (minimum) amount of information we need
to externally provide for the system in order to perfectly reconstruct the input. Con-
sistently with this interpretation, the amount of information shared by XΩ and X S , to
be written as I (X S; XΩ), will be:

I (X S; XΩ) = H(XΩ) − H(XΩ |X S), (5)

which is the so-called Shannon Information or Mutual Information among the two
random variables X S, XΩ (Cover and Thomas 1991; Ash 1990). In our particular
case, such measure quantifies the amount of information we have from the input set
by the only knowledge of the output set after the computations.

2.3.2 Ambiguity and Logical Irreversibility

The interpretation we provided for the noise equation enables us to connect ambiguity
and logical (ir)reversibility. First, we emphasize a crucial fact: by the properties of
Shannon’s entropy,

H (XΩ |X S) ≥ 0,

which explicitly states that information can be either destroyed or maintained but
never created in the course of a given computation—as pointed out in (Bennett and
Landauer 1985).

123

On the Origin of Ambiguity in Efficient Communication 259

If there is no uncertainty in defining the input signals by the only knowledge of the
outputs, then

H(XΩ |X S) = 0,

i.e., there is certainty when reversing the computations performed by the coding
machine. Therefore, the computations performed by T to define the code are log-
ically reversible and the code is not ambiguous. Otherwise, if

H(XΩ |X S) > 0,

then, we need extra information (at least H(XΩ |X S)) to properly reverse the process,
which indicates that the computations defining the code are logically irreversible and,
thus, that the code is ambiguous.

We have therefore identified in a quantitative way the ambiguity of the code with
the amount of uncertainty of the reversal of the coding process or the minimal amount
of additional information we need to properly reverse the coding process. Further-
more, we have identified the source of uncertainty through the concept of logical
irreversibility, which is a feature of the computations generating the code. In this way,
we establish the following correspondences:

logically reversible computations ⇔ No Ambiguity ⇔ H(XΩ |X S) = 0

logically irreversible computations ⇔ Ambiguity ⇔ H(XΩ |X S) > 0

Amount of Ambiguity = H(XΩ |X S).

Now that we have rigorously defined ambiguity on theoretical grounds of compu-
tation theory and information theory, we are ready to explain why it appears in natural
communication systems. As we shall see in the following section, the reason is that
natural systems must satisfy certain constraints that generate a communicative tension
whose solution implies the emergence of a certain amount of ambiguity.

3 The Emergence of Ambiguity in Natural Communication

The tension we referred to at the end of the last section was postulated by the lin-
guist Zipf (1965) as the origin of the widespread scaling behavior of word appearance
having his name. Such a communicative tension was conceived in terms of a balance
between two opposite forces: the speaker’s economy force and the auditor’s economy
force.

3.1 Zipf’s Hypothesis

Let us thus informally present Zipf’s vocabulary balance between two opposite forces,
the speaker’s economy force and the auditor’s economy force (Zipf 1965, pp. 19–31).
The speaker’s economy force (also called unification force) is conceived as a tendency

123

260 J. Fortuny, B. Corominas-Murtra

“to reduce the size of the vocabulary to a single word by unifying all meanings”,
whereas the auditor’s economy force (or diversification force) “will tend to increase
the size of a vocabulary to a point where there will be a distinctly different word for
each different meaning”. Therefore, a conflict will be present while trying to simulta-
neously minimize these two theoretical opposite forces, and the resulting vocabulary
will emerge from a cooperative solution to that conflict. In Zipf’s words,

whenever a person uses words to convey meanings he will automatically try to
get his ideas across most efficiently by seeking a balance between the economy
of a small wieldy vocabulary of more general reference on the one hand, and
the economy of a larger one of more precise reference on the other, with the
result that the vocabulary of n different words in his resulting flow of speech will
represent a vocabulary balance between our theoretical Forces of Unification
and Diversification (Zipf 1965, p. 22).

Obviously the unification force ensures a minimal amount of lexical ambiguity, since
it will require some words to convey more than one meaning, and the diversification
force constrains such amount. Thus, lexical ambiguity can be viewed as a consequence
of the vocabulary balance. Although Zipf’s vocabulary balance, as stated, provides a
useful intuition to understand the emergence of lexical ambiguity by emphasizing the
cooperative strategy between communicative agents, it lacks the necessary generality
to provide a principled account for the origins of ambiguity beyond the particular case
of lexical ambiguity. In the following sections we shall present several well-known
concepts in order to generalize Zipf’s informal condition and provide solid foundations
for it.

We remark that Zipf conceived the vocabulary balance as a particular case of a
more general principle, the Least Effort Principle, “the primary principle that governs
our entire individual and collective behaviour of all sorts, including the behaviour of
our language and preconceptions” (Zipf 1965, p. 22). In Zipf’s terms,

the Principle of Least Effort means, for example, that a person in solving his
immediate problems will view these against the background of his probable
future problems as estimated by himself. Moreover he will strive to solve his
problems in such a way as to minimize the total work that must be expended
in solving both his immediate problems and his probable future problems. That
in turn means that the person will strive to minimize the probable average rate
of his work-expenditure (over time). And in so doing he will be minimizing his
effort, by our definition of effort. Least effort, therefore, is a variant of least work.

Hence, we consider the symmetry equation between the complexities of the coder and
the decoder we shall arrive at to be a particular instance of the Least Effort Principle.

3.2 Symmetry in Coding/Decoding Complexities

How can we accommodate the previous intuitions to the formal framework proposed
in Sect. 2? The auditor’s economy force leads to a one-to-one mapping between Ω and
S. In this case, the computations performed by T to generate the code are logically

123

On the Origin of Ambiguity in Efficient Communication 261

reversible and thus generate an unambiguous code, and no supplementary amount
of information to successfully reconstruct XΩ is required. However, the speaker’s
economy force conspires exactly in the opposite direction. In these latter terms, the
best option is an all-to-one mapping, i.e., a coding process where any realization of XΩ

is coded through a single signal. The coding computations performed byT are logically
irreversible and the generated code is ambiguous, for it is clear that the knowledge of
the output tells us nothing about the input. In order to characterize this conflict, let us
properly formalize the above intuitive statement: the auditor’s force pushes the code
in such a way that it is possible to reconstruct XΩ through the intermediation of the
coding performed by T . Therefore, the amount of bits the decoder of X S needs to
unambiguously reconstruct XΩ is

H (XΩ, X S) = −
∑

i≤n

∑

k≤n

P(mi , sk) log P(mi , sk),

which is the joint Shannon entropy or, simply, joint entropy of the two random variables
XΩ, X S (Cover and Thomas 1991). From the codification process, the auditor receives
H(X S) bits, and thus, the remaining uncertainty it must face will be

H (XΩ, X S) − H(X S) = H (XΩ |X S) ,

where

H(X S) = −
∑

i≤n

q(si) log q(si),

(i.e, the entropy of the random variable X S) and

H(XΩ |X S) = −
∑

i≤n

q(si)
∑

k≤n

P(mk |si) log P(mk |si),

the conditional entropy of the random variable XΩ conditioned to the random variable
X S . At this point Zipf’s hypothesis becomes crucial. Under this interpretation, the
tension between the auditor’s force and the speaker’s force is cooperatively solved by
imposing a symmetric balance between the efforts associated to each communicative
agent: the coder sends as many bits as the additional bits the decoder needs to perfectly
reconstruct XΩ :

H(X S) = H(XΩ |X S). (6)

This is the symmetry equation governing the communication among cooperative agents
when we take into account computational efforts—which have been associated here
with the entropy or complexity of the code.5 Selective pressures will push H(X S) and,

5 In the context of this section, complexity has to be understood in the sense of Kolmogorov complexity.
Given an abstract object, such a general complexity measure is the length, in bits, of the minimal program

123

262 J. Fortuny, B. Corominas-Murtra

at the same time, by Eq. (6), the amount of ambiguity will also grow, as a consequence
of the cooperative nature of communication.6

Equation (6) specifies that a certain amount of information must be lost (or equiv-
alently, a certain amount of ambiguity must appear) if coder and decoder minimize
their efforts in a symmetric scenario. A further question is how much information is
lost due to Eq. (6). In order to measure this amount of information, we must take
into consideration the properties of the Shannon Information or Mutual Information
among the two random variables X S, XΩ , defined in Eq. (5). An interesting property
of Shannon information is its symmetrical behavior, i.e., I (X S; XΩ) = I (XΩ ; X S)

(Cover and Thomas 1991; Ash 1990). Thus, by Eq. (5),

H(XΩ) − H (XΩ |X S) = H(X S) − H (X S|XΩ) ,

where H(Xs |XΩ) = 0, because the Turing machine is deterministic.7 Therefore, by
applying directly Eq. (6) to the above equation we reach the following identity:

H(X S) = 1

2
H(XΩ). (7)

Thus,

I (X S; XΩ) = H(XΩ) − H(XΩ |X S)

by eq. (6) = H(XΩ) − H(X S)

by eq. (7) = 1

2
H(XΩ). (8)

The above derivation shows that half of the information is dissipated during the com-
municative exchange if coding and decoding computations are symmetrically or coop-
eratively optimized. Accordingly, an amount of ambiguity must emerge. Ambiguity is
not an inherent imperfection of a communication system or a footprint of poor design,
but rather a property emerging from conditions on efficient computation: coding and
decoding computations have a cost when they are performed by physical agents and
thereby it becomes crucial to minimize the costs of coding and decoding processes.
Whereas studying the process of an isolated coding agent would not provide a neces-
sity argument for the emergence of ambiguous codes (as noted in Sect. 2.2, following
Bennett 1973), a formalization of an appropriately general version of Zipf’s intuitions

Footnote 5 continued
whose execution in a Universal Turing machine generates a complete description of the object. In the
case of codes where the presence of a given signal is governed by a probabilistic process, it can be shown
that Kolmogorov complexity equals (up to an additive constant factor) the entropy of the code (Cover and
Thomas 1991).
6 Equations of this kind have been obtained in the past through different approaches; cfr. Harremoës and
Topsœ (2001) and Ferrer-i-Cancho and Solé (2003).
7 Notice that, if the Turing machine is deterministic, every input generates one and only one output. The
problem may arise during the reversion process, if the computations are logically irreversible.

123

On the Origin of Ambiguity in Efficient Communication 263

along the course we have developed provides a general necessity argument for the
emergence of ambiguity.

Note that he derivation in (8) has been performed by assuming that there is no
noise affecting the process of output set observation. If we assume the more realistic
situation in which there is noise in the process of output observation, the situation
is even worse, and, actually, I (Xs; XΩ) = 1

2 H(XΩ) would be considered as an
upper bound; therefore, in presence of noise in the process of output observation, this
equation must be replaced by:

I (X S; XΩ) <
1

2
H(XΩ).

We will end this section by finding a bound on the wrong messages one can expect
for an ambiguous code arising from Eq. (6). Let pe be the probability of wrongly
decoding a given signal—which, as shown by the fact that H(XΩ |X S) > 0, will
necessary happen. Let h(pe) be the following binary entropy:

h(e) = −pe log pe − (1 − pe) log(1 − pe),

then, by the so-called Fano’s inequality, we have that:

pe ≥ H(XΩ |X S) − h(e)

log(n − 1)
.

Therefore,

pe ≥ H(XΩ |X S) − h(e)

log(n − 1)

by eq. (6) = H(X S) − h(e)

log(n − 1)

by eq. (7) = H(XΩ) − 2h(e)

2 log(n − 1)
.

The above equation can be rewritten, in the paradigmatic case in which

(∀mi)

(
p(mi) = 1

n

)
,

as

pe ≥ 1

2
,

since H(Ω) = log n. This means that, in this case, at least one message out of two
will be wrongly decoded or, in other words, in the kind of ambiguous codes we
described and under the condition of equiprobability among the elements of Ω , the
correct decoding of more than half of the sent messages will depend on some external,
additional source of information.

123

264 J. Fortuny, B. Corominas-Murtra

4 Discussion

In this article we have constructed a communicative argument based on fundamental
concepts from computation theory and information theory in order to understand the
emergence of ambiguity.

We have identified the source of ambiguity in a code with the concept of logical
irreversibility in such a way that a code is ambiguous when the coding process performs
logically irreversible computations. Since logical irreversibility is not an essential
property of computations and a logically reversible machine need not be much more
complicated than the logically irreversible machine it simulates, we have inquired into
how a coding machine interacts with a decoding machine in an optimal way in order
to identify the source of ambiguity. We have quantified the ambiguity of a code in
terms of the amount of uncertainty of the reversal of the coding process, and we have
subsequently formulated the intuition that coder and decoder cooperate in order to
minimize their efforts in terms of a symmetry equation that forces the coder to send
only as many bits as the additional bits the decoder needs to perfectly reconstruct the
coding process. Given the symmetric behaviour of Shannon information it has been
possible to quantify the amount of ambiguity that must emerge from the symmetry
equation regardless the presence of noise in the channel: at least half of the information
is dissipated during the communicative process if both the coding and the decoding
computations are cooperatively minimized. As noted explicitly in “Appendix” section,
the presence of ambiguity associated to a computational process realized by a physical
system seems as necessary as the generation of heat during a thermodynamical process.

The interest of the symmetry equation from which we derive a certain amount
of ambiguity in natural languages is further corroborated in Corominas-Murtra et al.
(2011). In this study it is shown that Zipf’s law emerges from two factors: a static
symmetry equation that solves the tension between coder and decoder (namely, our
symmetry Eq. 6) and the path-dependence of the code evolution through time, which is
mathematically stated by imposing a variational principle between successive states of
the code (namely, Kullback’s Minimum Discrimination of Information Principle). We
thus conclude this study by emphasizing the importance of the symmetry equation for
the understanding of how communicative efficiency considerations shape linguistic
productions.

Acknowledgments We would like to thank the members of the Centre de Lingüística Teòrica that attended
the course on ambiguity for postgraduate students we taught within the PhD program on cognitive science
and language (fall semester, 2010). We are especially grateful to M. Teresa Espinal for many interesting
discussions during the elaboration process of this study and to Adriana Fasanella, Carlos Rubio, Francesc-
Josep Torres and Ricard Solé for carefully reading a first version of this article and providing us with multiple
improvements. We also wish to express our gratitude to two anonymous reviewers for several remarks that
helped us to clarify and strengthen our developments.

Appendix: Ambiguity and Physical Irreversibility

Throughout the paper we have highlighted the strict relation between the logical irre-
versibility of the computations generating a given code and the ambiguity of the latter.

123

On the Origin of Ambiguity in Efficient Communication 265

In this appendix we briefly revise the role of logical irreversibility in the foundations
of physics, through its relation to thermodynamic irreversibility.

Our objective here is to show, in a rather informal way, that reasonings and concepts
that are commonly used in physics can be naturally connected to the conceptual devel-
opment of this paper. We warn the reader that this appendix does not attempt to provide
formal relations between ambiguous codes and its energetic cost or other thermody-
namic quantities, nor to relate the emergence of ambiguity to some explicit physical
process. The rigorous exploration of the above mentioned topics is a fascinating issue,
but lies beyond the scope of this paper.

The strict relation of thermodynamic irreversibility and logical irreversibility is a
hot topic of debate since the definition of the equivalence of heat and bits by Landauer
(1961). This equivalence, known as Landauer’s principle, states that, for any erased
bit of information, a quantity of at least

kB T ln 2

joules is dissipated in terms of heat, being kB = 1.38×10−23 J/K the Boltzmann con-
stant and T the temperature of the system. This principle relates logical irreversibility
and thermodynamical irreversibility; however, it is worth noting that it provides only
a lower bound and that it is far away from the energetic costs of any real computing
process. To see how we can connect both types of irreversibility, we first state that ther-
modynamical irreversibility is a property of abstract processes—interestingly, almost
all processes taking place in our everyday life are irreversible. The common property
of such processes is that they generate thermodynamical entropy. The second law of
thermodynamics states that any physical process generates a non-negative amount of
entropy; i.e., for the process P,

ΔS(P) ≥ 0.

The units of physical entropy are nats instead of bits. Now suppose that we face
the problem of reversing the process P—for example, a gas expansion—by which
ΔS(P) > 0. Without further help, the reversion of this process is forbidden by the
second law, since it would generate a net amount of negative entropy. Therefore, we
will need external energy to reverse the process. Similarly, we have observed that

H(XΩ |Xs) ≥ 0,

which means that information cannot be created during an information process.
A negative amount of H(XΩ |Xs) would imply, by virtue of Eq. (5), a net creation of
information. Therefore, we face the same problem. Indeed, if we have a computational
process C by which HC(XΩ |Xs) > 0, the reversion of such a process, with no further
external help, would be a process by which the computations would generate infor-
mation. The reversion, as we have discussed above, is only possible by the external
addition of information. Thus the information flux can only be maintained (in the case
where all computations are logically reversible) or degraded, and the same applies for

123

266 J. Fortuny, B. Corominas-Murtra

the energy flux: by the second law, the energy flux can only be maintained (in the case
of thermodynamically reversible processes) or degraded.

We can informally find a quantitative connection between the two entropies. If
Q(P) is the heat generated during the physical process, its associated physical entropy
generation is defined as

ΔS(P) = Q(P)

T
.

In turn, if we consider an ideal—from the energetic viewpoint—computational process
C, we know, from Landauer’s principle, that

Q(C) = kB T ln 2 × erased bits.

And we actually know how many bits have been erased –or dissipated. Exactly
H(XΩ |Xs) bits. Therefore, the physical entropy generated by this ideal, irreversible
computing process will be:

ΔS(C) = kB ln 2HC(XΩ |Xs).

Accordingly, logically irreversible computations are thermodynamically irreversible.
Notice that this only proves the implication between both irreversibilities, but is of no
practical use, since it is a lower bound. Any real computing process will be such that:

ΔS(C) � kB ln 2HC (XΩ |Xs) .

We finally highlight that one could object that, under the above considerations, the
most favorable situation would be the one in which all computations are performed
in a logically reversible way, since there would not be an energy penalty. However,
this interpretation is misleading. Imagine a coding machine receiving an informational
input but working in a totally irreversible way. In this case, there would be a dissipation
of information that would undergo into heat production. The energy dissipated in terms
of heat, however, would come from the environment, not from the machine, which
would be only heated. The creation of a code in this machine to let information be
coded and flow would imply, on the contrary, to write a code into the machine, and thus,
to erase the initial configuration of the machine—whatever it was, maybe a random
one—, to properly adapt it to a consistent coding process. We observe that this process
would demand energy that would not come, at least directly, from the environment.
Therefore, a perfect coding performing logically reversible computations only would
be, in principle, energetically more demanding than a logically irreversible coding.

We insist that the above considerations fall into the abstract level and practical
implementations must face multiple additional problems which have been not been
taken into consideration. With this short exposition we only want to emphasize the
general character of logical irreversibility and ambiguity in natural communication
systems. More than an imperfection, ambiguity seems to be, for natural communication
systems, a feature as unavoidable as the generation of heat during a thermodynamical
process.

123

On the Origin of Ambiguity in Efficient Communication 267

References

Ash, R. B. (1990). Information theory. New York: Dover Publications.
Bennett, C. (1973). Logical reversibility of computation. IBM Journal of Research and Development, 17(6),

525–532.
Bennett, C. (2008). Notes on Landauer’s principle, reversible computation, and Maxwell’s Demon. Studies

In History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics,
34(3), 501–510.

Bennett, C., & Landauer, R. (1985). The fundamental physical limits of computation. Scientific American,
253(1), 38–46.

Chomsky, N. (2008). On phases. In R. Freidin, C. P. Otero, & M. L. Zubizarreta (Eds.), Foundational issues
in linguistic theory: Essays in honor of Jean-Roger Vergnaud. Cambridge, MA: The MIT Press.

Corominas-Murtra, B., Fortuny, J., & Solé, R. V. (2011). Emergence of Zipf’s law in the evolution of
communication. Physical Review E, 83(3), 036–115.

Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. New York: Wiley.
Ferrer-i-Cancho, R., & Solé, R. V. (2003). Least effort and the origins of scaling in human language.

Proceedings of the National Academy of Science, 100, 788–791.
Harremoës, P., & Topsœ, F. (2001). Maximum entropy fundamentals. Entropy, 3, 191–226.
Ladyman, J., Presnell, S., Short, A., & Groisman, B. (2007). The connection between logical and thermo-

dynamic irreversibility. Studies In History and Philosophy of Science Part B: Studies In History and
Philosophy of Modern Physics, 38(1), 58–79.

Landauer, R. (1961). Irreversibility and heat generation in the computing process. IBM Journal of Research
and Development, 5(3), 183–191.

Lewis, H. R., & Papadimitriou, C. H. (1997). Elements of the theory of computation. Upper Saddle River,
NJ: Prentice Hall.

Montague, R. (1974). Formal philosophy: Selected papers of Richard Montague, edited and with an intro-
duction by Richmond Thomason. New Haven: Yale University Press.

Toffoli, T. (1980). Reversible computing. In J. de Bakker & J. van Leeuwen (Eds.), Automata, languages
and programming. Berlin: Springer.

Wang, E., & Steels, L. (2008). Self-interested agents can bootstrap symbolic communication if they pun-
ish cheaters. In A. D. M. Smith, K. Smith, & R. Ferrer-i-Cancho (Eds.), The evolution of language:
Proceedings of the 7th international conference (EVOLANG7). Singapore: World Scientific Publishing.

Wittgenstein, L. (1922/1961). Tractatus logico-philosophicus. London: Routledge.
Zipf, G. (1965). Human behavior and the principle of least effort: An introduction to human ecology.

New York: Hafner Publishing.

123

	On the Origin of Ambiguity in Efficient Communication
	Abstract
	1 Introduction
	2 Ambiguity and Logical Reversibility
	2.1 Logical Irreversibility
	2.2 Logical (Ir)Reversibility in Terms of Turing Machines
	2.3 Logical Reversibility and Ambiguous Codes
	2.3.1 Noise: Quantifying the Degree of Ambiguity
	2.3.2 Ambiguity and Logical Irreversibility

	3 The Emergence of Ambiguity in Natural Communication
	3.1 Zipf's Hypothesis
	3.2 Symmetry in Coding/Decoding Complexities

	4 Discussion
	Acknowledgments
	Appendix: Ambiguity and Physical Irreversibility
	References

