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Abstract We present a system of relational syllogistic, based on classical proposi-
tional logic, having primitives of the following form:

Some a are R-related to some b;
Some a are R-related to all b;
All a are R-related to some b;

All a are R-related to all b.

Such primitives formalize sentences from natural language like ‘All students read
some textbooks’. Here a, b denote arbitrary sets (of objects), and R denotes an arbi-
trary binary relation between objects. The language of the logic contains only vari-
ables denoting sets, determining the class of set terms, and variables denoting binary
relations between objects, determining the class of relational terms. Both classes of
terms are closed under the standard Boolean operations. The set of relational terms
is also closed under taking the converse of a relation. The results of the paper are the
completeness theorem with respect to the intended semantics and the computational
complexity of the satisfiability problem.
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1 Introduction

It is a well-known fact that the syllogistic was the first formal theory of logic intro-
duced in Antiquity by Aristotle. It was presented by Łukasiewicz (1957) as a quan-
tifier-free extension of propositional logic, having as atoms the expressions A(a, b)

(All a are b) and I (a, b) (Some a are b) and their negations E(a, b)
def⇔¬I (a, b) and

O(a, b)
def⇔¬A(a, b), where a, b are set (class) variables interpreted in the natural lan-

guage by noun phrases like ‘men’, ‘Greeks’, ‘mortal’. An example of an Aristotelian
syllogism taken from Łukasiewicz (1957) is: “If all men are mortal and all Greeks are
men, then all Greeks are mortal”. The specific axioms for A and I from Łukasiewicz
(1957) are (in a different logical notation) the following: L1. A(a, a), L2. I (a, a),
L3. A(b, c) ∧ A(a, b) → A(a, c), L4. A(b, c) ∧ I (b, a) → I (a, c). The only rules
are Modus Ponens and substitution of a set variable with another set variable. The
standard semantics of this language consists of interpreting set variables by arbitrary
non-empty sets, A(a, b) as set-inclusion a ⊆ b, and I (a, b) as the overlap relation
between sets: a ∩ b �= ∅.

Wedberg introduced in Wedberg (1948) variations of the Aristotelian syllogistic
with the operation of complementation a′ on set variables interpreted as the Boolean
complement of the variable in a given universe. Wedberg’s system with unrestricted
interpretation on set variables is based on the following axioms (containing only A
and complementation because I (a, b) can be defined by ¬A(a, b′)): W1. A(a, a′′),
W2. A(a′′, a), W3. A(a, b) ∧ A(b, c) → A(a, c), W4. A(a, b) → A(b′, a′). W5.
A(a, a′)→ A(a, b).

Simple Henkin-style completeness and decidability proofs for Łukasiewicz’s, Wed-
berg’s and some other classical syllogistic systems were given by Shepherdson (1956).
Shepherdson’s completeness proofs are based on the notion of partially ordered set
S with an operation of complementation ‘′’ satisfying the following axioms for all
a, b ∈ S: a′′ = a, a ≤ b→ b′ ≤ a′, and a ≤ a′ → a ≤ b. Similar structures are now
known as orthoposets (see Moss 2007). Shepherdson (1956) also mentioned systems
containing not only complementation on set terms, but also Boolean intersection.

We call the variations of Aristotelian syllogistic, mentioned above, classical syllo-
gistics. All such logics are based on propositional logic, but weaker systems, which
do not contain the propositional connectives or contain only negation, have also been
considered in the literature. For instance, Moss (2008, 2007) motivated mainly with
applications of syllogistics to natural languages, considers various syllogistics of clas-
sical type, based on languages containing primitives like A, I, E, O with or without
complementation on set variables. The corresponding axiomatic systems are based on
a number of inference rules with finite sets of atomic premises.

For a long time classical syllogistic has been considered only in introductory courses
on elementary logic. Nowadays, however, syllogistic theories, extended and modified
in various ways, find applications in different areas, mainly in natural language theory
(McAllester and Givan 1992; Moss 2008, 2007, 2010; Nishihara et al. 1990; Pratt-
Hartmann 2005, 2004, 2008, 2009; Pratt-Hartmann and Third 2006; Pratt-Hartmann
and Moss 2009; Thorne and Calvanese 2009), computer science and artificial intel-
ligence (Ferro et al. 2006; Rayside and Kontogiannis 2001; Khayata et al. 2002;
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Orlowska 1998), generalized quantifiers (Westerståhl 1989), argumentation theory
(Pfeifer 2006), cognitive psychology (Leevers and Harris 2000; Politzer 2004) and
others (the list of references is fairly incomplete). Most of the extended syllogis-
tics generalize the standard syllogistic relations A(a, b), I (a, b), E(a, b) and O(a, b)
using in their definitions various non-standard quantifiers arising from natural lan-
guage. Examples: ‘At least 5 a are b’, ‘Exactly 5 a are b’, ‘Most a are b’, ‘All except
2 a are not b’, ‘Many a are not b’, ‘Only a few a are not b’, ‘Usually some a are not
b’, etc.

Some of the relations between sets a and b are determined by certain relations
between their members, expressible by some verbs or verb phrases in the natural lan-
guage. Examples: ‘All students read some textbooks’, ‘Some people don’t like any
cat’, ‘Some vegetarians eat some fish’, ‘All vegetarians don’t like any meat’, ‘At least
5 students read all textbooks’, etc. Syllogistics studying such expressions are called
by Pratt-Hartmann and Moss (2009), Pratt-Hartmann (2008) relational syllogistics.

Aristotelian syllogistic and most of its extensions can be considered as logics which
fit the structure of natural language. Their primitives like All A are B, Some A are B,
Most A are B etc, can be considered as relations between classes (sets of objects), and
in this sense syllogistic theories can be treated as certain special theories of classes. On
the other hand such primitives express kinds of quantification studied in the theory of
generalized quantifiers (Van der Does and Van Eijck 1996; Westerståhl 1989). Com-
bining some features from generalized quantifier theory and syllogistic reasoning, a
new trend in logic has been developed in recent years, called natural logic, or logic
for natural language with the aim to study logical formalisms which fit well with the
structure of natural language (see, for instance, Purdy 1991 and Van Eijck 2007 for
other references).

In this paper we introduce a quite rich system of relational syllogistic combin-
ing some semantical ideas from the aforementioned papers on relational syllogis-
tics and some technical ideas from Balbiani et al. (2007a,b). The language of the
logic is similar to the language of Dynamic Logic and contains both set variables
and relational variables from which we construct complex terms. Both classes of
terms are closed with respect to all Boolean operations while on relational terms we
also have the operation ‘−1’ of taking the converse. We have five atomic predicates
from which we construct the set of formulas using the propositional connectives:
a ≤ b, ∃∃(a, b)[α],∀∃(a, b)[α], ∃∀(a, b)[α],∀∀(a, b)[α]. Here a, b are set terms
and α is a relational term. The semantical structures are the same as in Dynamic logic
(W, R, v), where R is a mapping from relational variables to the set of binary rela-
tions on W and v is a mapping which assigns to each set variable a subset of W . The
semantics of ∀∃(a, b)[α] is the following:

(W, R, v) � ∀∃(a, b)[α] iff (∀x ∈ v(a))(∃y ∈ v(b))(x R(α)y
)
.

The semantics of the remaining atomic formulas is analogous. Linguistically these
formulas cover the examples like ‘All students read some textbooks’, taking all com-
binations of ‘some’ and ‘all’, considering subject wide scope reading. Having the
operation α−1, we may also express in our language the object wide scope reading
(see Moss 2010 for more details). By means of the Boolean operations on relational
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terms we may express “compound verbs” like ‘to read but not to write’. Also by ‘−1’
we may express the passive voice of the verbs like ‘is read’. Similarly by means of
Boolean operators on set terms we may express compound nouns. Let us note that the
signs ∃∀ in ∃∀(a, b)[α], and similarly in the other primitives, are not quantifiers on set
or relational variables, but part of the notation of our primitive sentences. We choose
this notation just because it corresponds directly to the semantics of these primitives
and in this way helps the reader to catch more easily their meaning.

We present a Hilbert-style axiomatic system for the logic based on the axioms
of propositional logic, Modus Ponens and several additional finitary inference rules
satisfying some syntactic restrictions. The list of axioms contains the finite list of
axiom schemes for Boolean algebra plus a finite list of axiom schemes for the basic
predicates. In this sense our logic is a quantifier-free first-order system, based on prop-
ositional logic. We will not treat in this paper our primitive relations as generalized
quantifiers.

Logics with similar rules, which in a sense imitate quantification, and canonical
constructions for corresponding completeness proofs are studied in Balbiani et al.
(2007a,b). We adopt and modify these canonical techniques. There are, however, new
difficulties, which have no analogs in Balbiani et al. (2007a,b). That is why we need
to combine canonical constructions from Balbiani et al. (2007a,b) with a modifica-
tion of a copying construction from Gargov et al. (1987), Gargov and Passy (1990),
Goranko (1990). The formulas of our logic have a translation into Boolean Modal
Logic (BML) (Gargov et al. 1987; Gargov and Passy 1990) extended with converse
on relational terms. We obtain that the complexity of the satisfiability problem for the
logic is the same as the complexity of BML Lutz and Sattler (2001), i.e. NExpTime if
the language contains an infinite number of relational variables, and ExpTime if only
a finite number of relational variables is available.

The present paper is an extended version of the first author’s master’s thesis (Ivanov
2009) and was inspired by Pratt-Hartmann and Moss (2009), especially by the pre-
sentation of Pratt-Hartmann and Moss (2009) by Moss (2008) as an invited lecture at
the Conference “Advances in Modal Logic 2008”.

The paper is organized as follows.
In Sect. 2, we introduce the language and semantics of our logic.
In Sect. 3, we list the axioms and inference rules of our logical system. We use

the axioms for the contact relation from Balbiani et al. (2007a) and some additional
axioms and inference rules which essentially imitate quantifiers in our quantifier-free
language.

In Sect. 4, we prove the completeness of our axiomatic system. The proof uses some
ideas from the completeness proofs for modal logics of the contact relation (Balbiani
et al. 2007a) and BML (Gargov et al. 1987; Gargov and Passy 1990).

In Sect. 5, we discuss the complexity of the satisfiability problem for the logic under
consideration and some of its fragments.

To save space some statements requiring routine verifications are formulated with-
out proofs and the proofs of some technical lemmas are presented in the appendices.
A preliminary version of the paper in which the reader can find more proofs (but fewer
explanatory notes) is available at http://arxiv.org/abs/1102.4496.
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2 Syntax and Semantics

2.1 Language

The language consists of the following sets of symbols:

(1) an infinite set VS of set variables;
(2) the set constants 0 and 1;
(3) a set VR of relational variables such that VR ∩ VS = ∅ and |VR| ≤ |VS|;
(4) relational constants 0R and 1R ;
(5) functional symbols ∩,∪ and − for the operations meet, join and complement;
(6) functional symbol −1;
(7) relational symbols ≤, ∃∃,∀∃,∀∀, ∃∀;
(8) propositional connectives ∧,∨,¬,→,↔;
(9) propositional constants ⊥ and �;

(10) the symbols ‘(’, ‘)’, ‘[’, ‘]’, ‘,’.

As the language is uniquely determined by the pair (VS,VR), we will also call
(VS,VR) a language. In the first two sections we will keep the language fixed.

Set terms are built from the set constants and set variables by means of the Boolean
connectives ∩,∪ and−. If V ⊆ VS, we will denote by TSet(V ) the set of all set terms
with variables from V .

We define the set of relational terms TRel(X) with variables in X ⊆ VR to be the
smallest set such that:

(1) X ∪ {0R, 1R} ⊆ TRel(X);
(2) If α ∈ TRel(X) then

{−α, α−1
} ⊆ TRel(X);

(3) If {α, β} ⊆ TRel(X) then {α ∩ β, α ∪ β} ⊆ TRel(X).

Atomic formulas have one of the forms

a ≤ b ∃∃(a, b)[α] ∀∃(a, b)[α] ∀∀(a, b)[α] ∃∀(a, b)[α] ,

where a and b are set terms and α is a relational term. Formulas are built from atomic
formulas by means of the propositional connectives. We will use a = b as an abbre-
viation for the formula (a ≤ b) ∧ (b ≤ a). If V ⊆ VS and R ⊆ VR, we will denote
by Form(V, R) the set of all formulas with set variables from the set V and relational
variables from R.

2.2 Semantics

Let W be a set and let R : VR → P(W 2) and v : VS → P(W ) be two functions.1

R is a valuation of the relational variables, which maps every relational variable to a
relation on W . The valuation v of the set variables maps set variables to subsets of W .
We will call the pair (W, R) a frame and the triple (W, R, v) a model. The set W is
called the domain of that frame or model.

1 We denote by P(X) the power set of the set X .
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We extend the function R to the set of all relational terms by defining R(0R) = ∅
and R(1R) = W 2 and interpreting the symbols ∩,∪,− and −1 by intersection, union,
complement in W 2 and taking the converse of the relations on W . We extend the
function v to the set of all set terms analogously.

We define the truth and falsity of atomic formulas in a model (W, R, v) by the
following equivalences:

(W, R, v) � a ≤ b⇔ v(a) ⊆ v(b)
(W, R, v) � ∃∃(a, b)[α] ⇔ (∃x ∈ v(a))(∃y ∈ v(b))((x, y) ∈ R(α)

)

(W, R, v) � ∀∃(a, b)[α] ⇔ (∀x ∈ v(a))(∃y ∈ v(b))((x, y) ∈ R(α)
)

(W, R, v) � ∀∀(a, b)[α] ⇔ (∀x ∈ v(a))(∀y ∈ v(b))((x, y) ∈ R(α)
)

(W, R, v) � ∃∀(a, b)[α] ⇔ (∃x ∈ v(a))(∀y ∈ v(b))((x, y) ∈ R(α)
)
.

The definition is extended to the set of all formulas according to the standard meaning
of the propositional connectives.

2.3 Relations with Natural Language Semantics

Linguistically the relational variables are interpreted as transitive verbs, and the set
variables—as count-nouns. The formulas a ≤ b and a ∩ b �= ∅ mean ‘Every a is a b’
and ‘Some a is a b’ respectively. To illustrate the meaning of the symbols Q1 Q2, let
us interpret a as ‘man’, b as ‘animal’, and α as the verb ‘to like’. We denote the subject
wide scope reading and the object wide scope reading of a sentence …by (…)sws and
(…)ows respectively.2 Then we have the following meanings:

∃∃(a, b)[α] means Some man likes some animal
∀∀(a, b)[α] means Every man likes every animal
∀∃(a, b)[α] means (Every man likes some animal)sws
∃∀(a, b)[α] means (Some man likes every animal)sws .

To express the object wide scope reading, we need the symbol −1 which converts
a verb into passive voice. In our example α−1 means ‘to be liked’:

∀∃(b, a)[α−1] means (Some man likes every animal)ows
∃∀(b, a)[α−1] means (Every man likes some animal)ows .

Boolean connectives in set terms formalize negated nouns and the connectives ‘and’
and ‘or’ between nouns. The presence of Boolean operators in relational terms allows
us to formalize natural language sentences, which contain negated verbs, as well as
compound predicates, such as ‘sees and hears’ (see∩hear ) and ‘sees, but is not seen’
(see ∩ (−see−1)).

2 If the two readings are equivalent, we omit the annotation.
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3 Axioms and Inference Rules

We will use the following notation: If A is a formula or a term, then VSet(A) denotes
the set of set variables which occur in A. Also, VSet(A1, . . . , An) =⋃n

i=1 VSet(Ai ).
The idea behind the list of axioms is the following. Since ∃∃ is the contact relation

from the modal logics of region-based theories of space (Balbiani et al. 2007a), we
use the same set of axioms for it. The truth of each of the other three relations Q1 Q2
is linked to the truth of ∃∃ by the following equivalences:

(W, R, v) � ∀∃(a, b)[α]
⇔ (∀p ⊆ W

)(
v(a) ∩ p = ∅ ∨ (∃x ∈ p

)(∃y ∈ v(b))((x, y) ∈ R(α)
))

(W, R, v) � ∀∀(a, b)[α]
⇔ (∀p ⊆ W

)(
v(b) ∩ p = ∅ ∨ (∀x ∈ v(a))(∃y ∈ p

)(
(x, y) ∈ R(α)

))

(W, R, v) � ¬∃∀(a, b)[α]
⇔ (∀p ⊆ W

)(
v(a) ∩ p = ∅ ∨ ¬(∀x ∈ p

)(∀y ∈ v(b))((x, y) ∈ R(α)
))

These equivalences express the following simple statement. If ϕ(x) is a property
of elements x in some set W and A ⊆ W , then (∀x ∈ A)ϕ(x) is equivalent to
(∀X ⊆ W )

(
X ∩ A �= ∅ ⇒ (∃x ∈ X)ϕ(x)

)
.

Thus, we expressed the universally quantified property (∀x ∈ A)ϕ(x) by the exis-
tentially quantified property (∃x ∈ X)ϕ(x) and a quantification over sets. Substituting
the appropriate formulas in the place of ϕ(x), we get the above equivalences.

The left-to-right direction of each of these equivalences is a universal formula. We
add it to the set of axioms. These are the axioms (AL1), (AL2), (AL3) in the list below.
We call them linking axioms, because they link relation symbols Q1 Q2 and Q′1 Q′2,
which differ in the first or second quantifier.

The right-to-left directions of the equivalences are not universal formulas. Since we
do not have quantifiers in our language, we cannot write these conditions as axioms.
Instead, we imitate them by inference rules with a special variable, corresponding to
the quantified variable p in the above equivalences, using a technique from Balbiani
et al. (2007a). These are the rules (R1), (R2), (R3) from the list below.

We will also use a rule whose only purpose is to derive all formulas of the form
a = 0∨¬∀∀(a, a)

[(
α1∩(−α1

−1)
)∪· · ·∪(

αk∩(−αk
−1)

)]
. These formulas state that

a pair of points (x, x) ∈ W 2 may not be an element of the valuation of any relational
term of the form α ∩ (−α−1).

The set of axioms consists of the following groups of formulas:

(1) A sound and complete set of axiom schemes for propositional calculus;
(2) A set of axioms for Boolean algebra in terms of the relation ≤;
(3) Axioms for equality:

Q1 Q2(a, b)[α] ∧ a = c→ Q1 Q2(c, b)[α] (A=1 )

Q1 Q2(a, b)[α] ∧ b = c→ Q1 Q2(a, c)[α] (A=2 )
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(4) Axioms for ∃∃:

a = 0 ∨ b = 0→ ¬∃∃(a, b)[α] (A0)

∃∃(a ∪ b, c)[α] ↔ ∃∃(a, c)[α] ∨ ∃∃(b, c)[α] (A∪1 )

∃∃(a, b ∪ c)[α] ↔ ∃∃(a, b)[α] ∨ ∃∃(a, c)[α] (A∪2 )

(5) Linking axioms:

∀∃(a, b)[α] → a ∩ c = 0 ∨ ∃∃(c, b)[α] (AL1)

∀∀(a, b)[α] → b ∩ c = 0 ∨ ∀∃(a, c)[α] (AL2)

¬∃∀(a, b)[α] → a ∩ c = 0 ∨ ¬∀∀(c, b)[α] (AL3)

(6) Axioms for 0R and 1R :

¬∃∃(a, b)[0R] (A0R)

∀∀(a, b)[1R] (A1R)

(7) Axioms for ∩,∪,− and −1 in relational terms:

∀∀(a, b)[α ∩ β] ↔ ∀∀(a, b)[α] ∧ ∀∀(a, b)[β] (A∩)

∃∃(a, b)[α ∪ β] ↔ ∃∃(a, b)[α] ∨ ∃∃(a, b)[β] (A∪)

∀∀(a, b)[−α] ↔ ¬∃∃(a, b)[α] (A−)

∃∃(a, b)[α−1] ↔ ∃∃(b, a)[α] (A−1)

Inference rules:

(1) Modus ponens (MP): ϕ, ϕ→ ψ � ψ ;
(2) Special rules imitating quantifiers: If p ∈ VS \ VSet(ϕ, a, b) then

ϕ→ a ∩ p = 0 ∨ ∃∃(p, b)[α] � ϕ→ ∀∃(a, b)[α] (R1)

ϕ→ b ∩ p = 0 ∨ ∀∃(a, p)[α] � ϕ→ ∀∀(a, b)[α] (R2)

ϕ→ a ∩ p = 0 ∨ ¬∀∀(p, b)[α] � ϕ→ ¬∃∀(a, b)[α] (R3)

ϕ→ a ∩ p = 0 ∨ ¬∀∀(p, p)[α] �
� ϕ→ a = 0 ∨ ¬∀∀(a, a)

[
α ∪ (

β ∩ (−β−1)
)]

(RS)

The variable p is called the special variable of the rule.

The notions of proof and theorem are defined in the standard way. We will denote
by Th(VS,VR) the set of all theorems in the language (VS,VR).

Proposition 1 All theorems are true in all models.

Proof All axioms are true in all models and the rule of MP preserves truth in each
model. Each of the special rules preserves validity in each frame, that is: if the premise
is true in all valuations on a given frame, then so is the conclusion.
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To illustrate the proof system, we will show a proof of the formula

∃∀(a, b)[α] → ∀∃(b, a)[α−1].

Let p, q ∈ VS, p �= q and {p, q} ∩ VSet(a, b) = ∅.

�¬∀∀(p, b)[α] ∨ b ∩ q = 0 ∨ ∀∃(p, q)[α] by (AL2)

�¬∀∀(p, b)[α] ∨ b ∩ q = 0 ∨ p ∩ a = 0 ∨ ∃∃(a, q)[α] by (AL1)

�a ∩ p = 0 ∨ ¬∀∀(p, b)[α] ∨ b ∩ q = 0 ∨ ∃∃(q, a)[α−1] by (A−1)

�¬∃∀(a, b)[α] ∨ ∀∃(b, a)[α−1] by (R3) and (R1)

4 Completeness

4.1 Plan of the Completeness Proof

First we review the definition of theories and the construction of maximal theories from
consistent sets of formulas in the presence of special rules of inference, which imitate
quantifiers (for details, see Balbiani et al. 2007a). We do not have bound variables
in formulas, but we will think of some of the variables as being bound by universal
quantifiers. That is why we define a theory as a set of formulas together with a set of
unbound variables. The set of formulas will not be closed under arbitrary applications
of the special rules, but only under applications of instances of these rules, in which
the special variable is among the universally bound variables.

To build a model of a consistent set of formulas, we first need to extend it into a
maximal thery. We require that such theories contain for each formula exactly one
of the formula itself or its negation, but we also require an analog of Henkin’s con-
dition—if the theory contains the negation of the conclusion of some instance of a
special rule (which is existential), it should also contain a negation of the premise of
that rule (for some special variable, which may be thought of as a witness for that
existential formula).

Our construction of the canonical model is based on the Stone representation theo-
rem for Boolean algebras. It builds the points in the model as ultrafilters in the Boolean
algebra of set terms. This gives us the correct interpretation of the Boolean operators
on set terms without further effort. The problem is that we do not obtain automatically
the intended interpretation of the Boolean operators on relational terms. We explain
how we deal with this problem in Sect. 4.4, after we introduce the necessary notation.

4.2 Theories

Definition 1 (Theory) Let Γ ⊆ Form(VS,VR) and let V ⊆ VS. We say that the pair
(V, Γ ) is a theory in the language (VS,VR)when the following conditions hold:

(1) Th(VS,VR) ⊆ Γ ;
(2) If ϕ, ϕ→ ψ ∈ Γ then ψ ∈ Γ ;
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(3) Let L(p) be a premise of a special rule, where p ∈ VS is the special variable
of the rule. Let R be the conclusion of that rule, p ∈ VS \

(
V ∪ VSet(R)

)
and

L(p) ∈ Γ . Then R ∈ Γ .

We say that the theory (V, Γ ) is consistent if ⊥ /∈ Γ .
We say that the theory (V, Γ ) in the language (VS,VR) is a good theory if |V | <

|VS|.
The theory (V, Γ ) is called complete if it is consistent and for each formula ϕ in

its language we have either ϕ ∈ Γ or ¬ϕ ∈ Γ .
The theory (V, Γ ) in the language (VS,VR) is called rich if for each special rule

with premise L(p) ∈ Form(VS,VR) and conclusion R the following implication
holds: R /∈ Γ ⇒ (∃p ∈ VS)

(
L(p) /∈ Γ )

. (The conclusion R uniquely determines
L(p) up to a substitution of p with another set variable.)

Notation We define a relation ⊆ between theories in the same language:

(V1, Γ1) ⊆ (V2, Γ2)
def⇔ V1 ⊆ V2 ∧ Γ1 ⊆ Γ2.

We will write ϕ ∈ (V, Γ ) if ϕ ∈ Γ .

Definition 2 We say that a set of formulas A is consistent if there is a consistent theory
(V, Γ ) such that A ⊆ Γ .

We fix a language (VS,VR).

Lemma 1 (Lindenbaum) Every good consistent theory T0 = (V0, Γ0) is contained in
a complete rich theory T = (V, Γ ).

In order to extend a consistent theory into a complete rich theory, we require enough
witnesses (set variables) for the negations of conclusions of special rules. Thus, we
need at least as much set variables in the language as there are formulas. This is the
reason for the restriction |VR| ≤ |VS| in our definition of language.

The Lindenbaum lemma is only applicable to good theories. That is why we will
also need the following lemma:

Lemma 2 Let T0 = (V, Γ0) be a consistent theory in a language (VS0,VR) and let
VS ⊇ VS0 with |VS| > |VS0| be an extension of VS0 with a set VS \ VS0 of new
set variables. Then there is a good consistent theory T = (VS0, Γ ) in the language
(VS,VR) such that Γ0 ⊆ Γ .

Proof Define

Γ = {
ϕ ∈ Form(VS,VR)

∣∣ (∃ψ ∈ Γ0)
(
ψ → ϕ ∈ Th(VS,VR)

)}
.

It is straightforward to check that T = (VS0, Γ ) has the desired properties.

Corollary 1 (1) Every consistent set of formulas is contained in a good consistent
theory in an extension of the language with a set of new set variables.

(2) Every consistent set of formulas is contained in a complete rich theory in an
extension of the language with a set of new set variables.

A complete rich theory is also called a maximal theory.
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4.3 Boolean Algebras of Classes of Terms

Let S be a maximal theory. We will associate with S some equivalence relations
in TSet(VS) and TRel(VR) and will show that the equivalence classes form Boolean
algebras with respect to some naturally defined operations.

4.3.1 The Boolean Algebra of Classes of Set Terms

We will associate with S a Boolean algebra of classes of set terms. We define the
relations � and ≈ on TSet(VS):

a � b
def⇔ a ≤ b ∈ S a ≈ b

def⇔(a � b ∧ b � a).

The relation ≈ is an equivalence relation. We denote by [a] the equivalence class of
a. We denote by ClS the set of all equivalence classes. We define a relation ≤ on ClS:

[a] ≤ [b] def⇔ a � b. We define the operations ∩,∪ and − on ClS:

[a] ∩ [b] def=[a ∩ b] [a] ∪ [b] def=[a ∪ b] − [a] def=[−a].

The relation ≤ and the operations ∩,∪ and − are well-defined. The six-tuple(
ClS,∩,∪,−, [0], [1]

)
is a Boolean algebra.

4.3.2 The Boolean Algebra of Classes of Relational Terms

We define the relations � and ≈ on the set of all relational terms:

α � β def⇔(∀a, b ∈ TSet(VS)
)(∃∃(a, b)[α] → ∃∃(a, b)[β] ∈ S

)

α ≈ β def⇔(α � β ∧ β � α).

The intuition behind this definition is that in every model (W, R, v) of S the following
implication must hold for arbitrary relational terms α and β: α � β ⇒ R(α) ⊆ R(β).

The relation ≈ is an equivalence relation. We denote by [α] the equivalence class
of α. We denote by ClR the set of all equivalence classes. We define a relation ≤ on

ClR: [α] ≤ [β] def⇔α � β. We define the operations ∩,∪,− and −1 on ClR:

[α] ∩ [β] def=[α ∩ β] [α] ∪ [β] def=[α ∪ β]
−[α] def=[−α] [α]−1 def=[α−1].

Proposition 2 The six-tuple (ClR,∩,∪,−, [0R], [1R]) is a Boolean algebra.

Proof See “Appendix A”.

Lemma 3 [1] ≤ [0] ⇔ [1R] ≤ [0R].
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Proof (→) Let 1 = 0 ∈ S and a, b ∈ TSet(VS). Then a = 0 ∈ S and b = 0 ∈ S. By
(A0), ¬∃∃(a, b)[1R] ∈ S, and hence

∃∃(a, b)[1R] → ∃∃(a, b)[0R] ∈ S.

(←) Assume that [1R] ≤ [0R]. Then

∃∃(1, 1)[1R] → ∃∃(1, 1)[0R] ∈ S.

By (A0R), ¬∃∃(1, 1)[0R] ∈ S, and hence ¬∃∃(1, 1)[1R] ∈ S.
By (A1R), ∀∀(1, 1)[1R] ∈ S, hence ∀∀(1, 1)[1R] ∧ ¬∃∃(1, 1)[1R] ∈ S.
Using (AL1) and (AL2), we conclude that 1 = 0 ∈ S.

4.3.3 The Boolean Algebra of Symmetric Classes of Relational Terms

We define an operation −1 on P(ClR): For each V ⊆ ClR

V−1 def={[α]−1
∣∣ [α] ∈ V

}
.

Lemma 4 (1) If α ∈ TRel(VR) then
(
α−1

)−1 ≈ α.

(2) If x ∈ ClR then
(
x−1

)−1 = x. If V ⊆ ClR then
(
V−1

)−1 = V .
(3) Let V ⊆ ClR. If V is a filter, then so is V−1. If V is an ultrafilter, then so is V−1.

Definition 3 – x ∈ ClR is called symmetric iff x = x−1.
– V ⊆ ClR is called symmetric iff V = V−1.

Lemma 5 The set of symmetric classes of relational terms is a Boolean subalgebra
of (ClR,∩,∪,−, [0R], [1R]).
Lemma 6 If a is a set term and α1, α2, . . . , αk are relational terms, then the formula
a = 0 ∨ ¬∀∀(a, a)

[(
α1 ∩ (−α1

−1)
) ∪ · · · ∪ (

αk ∩ (−αk
−1)

)]
is a theorem.

4.4 Canonical Construction

Let S be a maximal theory. We will prove that S has a model.
We denote by M∅ the model

(∅,VR × {∅},VS × {∅}
)
.

Lemma 7 If S is a maximal theory and 1 = 0 ∈ S, then M∅ � S.

We will now consider the case when 1 = 0 /∈ S.
We denote by UltS the set of ultrafilters of the Boolean algebra

(
ClS,∩,∪,−, [0], [1]

)
.

Similarly, we denote by UltR the set of ultrafilters of the Boolean algebra

(ClR,∩,∪,−, [0R], [1R]).
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Since 1 � 0, the set UltS is non-empty. By Lemma 3, we have also UltR �= ∅.
If Q is a quantifier and F(a) is a statement about set terms, such that a ≈ b

implies F(a) ⇔ F(b), we will use
(
Q[a] ∈ ClS

)
F(a) as an abbreviation for

(Qx ∈ ClS)(∃a ∈ x)F(a). We will also use a similar notation for statements about
relational terms.

For each V ⊆ ClR we define a relation R0
V ⊆ P(ClS)2:

R0
V =

{
(U1,U2) ∈ P(ClS)

2
∣
∣∣

(∀[α] ∈ V
)(∀[a1] ∈ U1

)(∀[a2] ∈ U2
)(∃∃(a1, a2)[α] ∈ S

)}
.

Lemma 8 If V ⊆ ClR, then R0
V−1 =

(
R0

V

)−1
.

Notation If a ∈ TSet(VS), we denote by [a) = {
x ∈ ClS

∣
∣ [a] ≤ x

}
the smallest filter

containing [a]. Similarly, if α ∈ TRel(VR), we denote by [α) = {
x ∈ ClR

∣∣ [α] ≤ x
}

the smallest filter containing [α].
Notation Let F1 and F2 be filters in the Boolean algebra of ClS and let G be a filter
in the Boolean algebra of ClR. We will use the following notation:

IF1,F2 =
{
[α] ∈ ClR

∣∣∣
(∃[a1] ∈ F1

)(∃[a2] ∈ F2
)(∃∃(a1, a2)[α] /∈ S

)}

IG,F2 =
{
[a1] ∈ ClS

∣∣∣
(∃[α] ∈ G

)(∃[a2] ∈ F2
)(∃∃(a1, a2)[α] /∈ S

)}

IF1,G =
{
[a2] ∈ ClS

∣∣
∣
(∃[a1] ∈ F1

)(∃[α] ∈ G
)(∃∃(a1, a2)[α] /∈ S

)}

It is easy to check that the I ’s are ideals in the respective Boolean algebras.

Lemma 9 Let F1 and F2 be filters in the Boolean algebra of ClS and let G be a filter
in the Boolean algebra of ClR. If (F1, F2) ∈ R0

G, then there are U1,U2 ∈ UltS and
V ∈ UltR such that F1 ⊆ U1, F2 ⊆ U2,G ⊆ V and (U1,U2) ∈ R0

V .

Proof We use the equivalences

(F1, F2) ∈ R0
G ⇔ F1 ∩ IG,F2 = ∅ ⇔ G ∩ IF1,F2 = ∅ ⇔ F2 ∩ IF1,G = ∅

and apply the separation theorem for filter-ideal pairs in Boolean algebras three times.

We will explain the ideas which lead us to the definition of the canonical model of
S. We may attempt to define the model as M0 = (W0, R0, v0), where:

(1) W0 = UltS;
(2) For each relational variable α let

R0(α) = W 2
0 ∩

⋃{
R0

V

∣∣ V ∈ UltR ∧ [α] ∈ V
} ;

(3) For each set variable p let v0(p) = {x ∈ W0|[p] ∈ x}.
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Then, for arbitrary set terms a, b and an arbitrary relational variable α we have:

a ≤ b ∈ S ⇔ v0(a) ⊆ v0(b)

∃∃(a, b)[α] ∈ S ⇔ (∃x ∈ v(a))(∃y ∈ v(b))((x, y) ∈ R0(α)
)
.

However, this is not true for arbitrary relational terms α. In fact M0 is not even a
model, as we do not necessarily have R0(α) ∩ R0(−α) = ∅. In order to amend this,
we should replace R0

V with another relation RV defined for each V ∈ UltR, such that
RV ′ ∩ RV ′′ = ∅ for different V ′, V ′′ ∈ UltR. The universe of our model will consist
of a number of copies of W0. If (x, y) ∈ R0

V ′ ∩ R0
V ′′ for different V ′, V ′′ ∈ UltR, we

will have some copies x ′, x ′′ of x and some copies y′, y′′ of y, such that (x ′, y′) ∈ RV ′
and (x ′′, y′′) ∈ RV ′′ .

Let us first exclude the symbol −1 from the language. To construct the relations
RV , we need the following lemma:

Lemma 10 Let (U1,U2) ∈ UltS2. Then:

(1) (U1,U2) ∈ R0
[1R)

.

(2) There is a V ∈ UltR such that (U1,U2) ∈ R0
V .

Proof (1) Suppose this is not true. Since S is a complete theory,

(∃[a1] ∈ U1
)(∃[a2] ∈ U2

)(¬∃∃(a1, a2)[1R] ∈ S
)
.

By the axiom for 1R,∀∀(a1, a2)[1R] ∈ S. Using the linking axioms, we derive
a1 = 0 ∨ a2 = 0 ∈ S. Since S is a complete theory, a1 = 0 ∈ S or a2 = 0 ∈ S,
hence [a1] = [0] or [a2] = [0]. This is a contradiction, as U1 and U2 are ultrafilters.
Thus, (U1,U2) ∈ R0

[1R)
.

(2) By the previous item, (U1,U2) ∈ R0
[1R)

. By Lemma 9, there is a V ∈ UltR such

that (U1,U2) ∈ R0
V .

Let f be a choice function for UltR. For each (U1,U2) ∈ UltS2 we define

VU1,U2 = f
({

V ∈ UltR
∣
∣ (U1,U2) ∈ R0

V

})
.

The canonical model M = (W, R, v) corresponding to S is defined as follows: The
domain is W = UltS × UltR. If x ∈ W , we denote by x1 and x2 its first and second
component respectively. For each p ∈ VS we define v(p) = {

x ∈ W
∣∣ [p] ∈ x1

}
. For

each V ∈ UltR we define the relation RV ⊆ W 2:

RV =
{
(x, y) ∈ W 2

∣∣∣
(
(x1, y1) ∈ R0

y2
∧ V = y2

)

∨(
(x1, y1) /∈ R0

y2
∧ V = Vx1,y1

)}
.
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That is, if there should be a pair
(
(x1, _), (y1, _)

)
3 in RV , we put all pairs(

(x1, _), (y1, V )
)

there; if RV should not contain a pair
(
(x1, _), (y1, _)

)
, we put

all pairs
(
(x1, _), (y1, V )

)
in RVx1,y1

.
This simple construction suffices to prove the completeness of the proof system

without (A−1) and (RS) for the language without −1.
When we include the symbol −1, however, we need something more complicated.

The problem is that we should guarantee that RV1 ∩ RV2 = ∅ for V1 �= V2 while at the

same time preserving the property stated in Lemma 8: RV−1 = (
RV

)−1. The decision
where to put pairs of points should not be made independently for (x, y) and (y, x).
We should have (x, y) ∈ RV ⇔ (y, x) ∈ (RV )

−1. To this end, we will replace the first
disjunct in the above definition of RV with a condition, in which V does not depend
solely on y2, but on a symmetric function of x2 and y2. To define such a function, we
number the elements of UltR with ordinals and define a symmetric binary operation�
on them. This is Definition 4 below. We have two different definitions of�—for finite
|UltR| and for infinite |UltR|. We will denote by Vα the element of UltR numbered
with α. We will take the second component of each point of W to be the number
(ordinal) of a relational ultrafilter rather than the ultrafilter itself. Let (x, y) ∈ W 2 and
n = x2 � y2.

First we consider the case x2 �= y2. If (x1, y1) ∈ R0
Vn
\ R0

V−1
n

, we put (x, y) in RVn

and (y, x) in RV−1
n

. If (x1, y1) ∈ R0
V−1

n
\ R0

Vn
, we put (x, y) in RV−1

n
and (y, x) in RVn .

In the case when (x1, y1) ∈ R0
Vn
∩ R0

V−1
n

, we need to choose one of (x, y) and (y, x)

and then put the chosen pair in RVn , while the other one should go to RV−1
n

.

If x2 = y2 or (x1, y1) /∈ R0
Vn
∪ R0

V−1
n

, we put the pair (x, y) in the relation corre-

sponding to some relational ultrafilter Vx1,y1 , which we choose among those V ∈ UltR
for which (x1, y1) ∈ R0

V . The reason why we treat the case x2 = y2 along with
(x1, y1) /∈ R0

Vn
∪ R0

V−1
n

rather than putting (x, y) in RVn , is that we cannot guarantee

that Vx2�x2 is symmetric. But we can choose Vx1,x1 to be symmetric according to the
following proposition:

Proposition 3 If (U,U ) ∈ UltS2, then:

(1) (U,U ) ∈ R0
V ⇔

(∀[α] ∈ V
)(∀[a] ∈ U

)(∃∃(a, a)[α] ∈ S
)
.

(2) There exists a symmetric V ∈ UltR such that (U,U ) ∈ R0
V .

Proof See “Appendix B”.

Definition 4 Let κ = ∣
∣UltR

∣
∣. We consider two cases for κ:

(1) κ < ω. Let UltR =
{

Vi
∣∣ 1 ≤ i ≤ κ

}
with (i �= j ⇒ Vi �= Vj ). We denote

Rw = {0, 1, . . . , 2κ}. For m, n ∈ Rw we define

m ⊕ n = (m + n) mod (2κ + 1)

m � n = min
(
(m − n) mod (2κ + 1), (n − m) mod (2κ + 1)

)
.

3 The symbol ‘_’ here denotes an arbitrary element of UltR.
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We have 0 ≤ m � n = n�m ≤ κ for all m, n ∈ Rw. Also, (m ⊕ n)�m = n for
arbitrary m ∈ Rw and 1 ≤ n ≤ κ . We define an irreflexive relation � on Rw

m � n ⇔ (n − m) mod (2κ + 1) < (m − n) mod (2κ + 1) ,

such that for all different m, n ∈ Rw either m � n, or n � m. We have m � m ⊕ n
for arbitrary m ∈ Rw and 1 ≤ n ≤ κ .

(2) κ ≥ ω. Let UltR =
{

Vα
∣∣ 0 < α < κ

}
with (α �= β ⇒ Vα �= Vβ). We denote

Rw = κ . For α, β ∈ Rw we define α ⊕ β = α + β4 and

α � β =
{
α − β if β < α,

β − α otherwise.

Again, we have μ � ν = ν � μ for all μ, ν ∈ Rw, and (μ ⊕ ν) � μ = ν for
arbitrary μ ∈ Rw and 0 < ν < κ . As in the previous case, we define a relation �
on Rw, which in this case is just the usual strict total order:

μ� ν ⇔ μ < ν.

We have μ� μ⊕ ν for arbitrary μ ∈ Rw and 0 < ν < κ .

The domain of the canonical model is W = UltS × Rw.
If x ∈ W , we denote by x1 and x2 its first and second component respectively. For

each p ∈ VS we define v(p) = {
x ∈ W

∣
∣ [p] ∈ x1

}
. It is easy to check that for all set

terms a we have v(a) = {
x ∈ W

∣∣ [a] ∈ x1
}
.

We denote
(
Ult2

S

)+ = {
(U1,U2) ∈ UltS2

∣∣ U1 = U2
}

and
(
Ult2

S

)− = {
(U1,U2) ∈ UltS2

∣∣ U1 �= U2
}
.

We choose a set
(
Ult2

S

)−
0 ⊆

(
Ult2

S

)− such that for each (U1,U2) ∈
(
Ult2

S

)− it
contains exactly one x ∈ {

(U1,U2), (U2,U1)
}
. We denote

(
Ult2

S

)
0 =

(
Ult2

S

)+ ∪ (
Ult2

S

)−
0 .

Let f be a choice function for UltR. For each (U1,U2) ∈ UltS2 we define

VU1,U2 = f
({

V ∈ UltR
∣∣ (U1,U2) ∈ R0

V ∧ (U1 = U2 ⇒ V = V−1)
})
.

4 Here ‘+’ denotes ordinal addition. If β < α, we denote by α−β the unique ordinal γ such that β+γ = α.
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For each V ∈ UltR we define a relation RV ⊆ W 2:

RV =
{
(x, y) ∈ W 2

∣∣
∣∣

(
x2 �= y2 ∧ (x1, y1) ∈ R0

Vx2�y2
∩ R0

V−1
x2�y2

∧
((

x2 � y2 ∧ V = Vx2�y2

) ∨ (
y2 � x2 ∧ V = V−1

x2�y2

)))

∨
(

x2 �= y2 ∧ (x1, y1) ∈ R0
Vx2�y2

\ R0
V−1

x2�y2

∧ V = Vx2�y2

)

∨
(

x2 �= y2 ∧ (x1, y1) ∈ R0
V−1

x2�y2

\ R0
Vx2�y2

∧ V = V−1
x2�y2

)

∨
((

x2 = y2 ∨ (x1, y1) /∈ R0
Vx2�y2

∪ R0
V−1

x2�y2

)

∧
((
(x1, y1) ∈

(
Ult2

S

)
0 ∧ V = Vx1,y1

)
∨

(
(y1, x1) ∈

(
Ult2

S

)
0 ∧ V = V−1

y1,x1

)))}
.

Lemma 11 (1)
⋃{

RV
∣∣ V ∈ UltR

} = W 2.
(2) V ′ �= V ′′ implies RV ′ ∩ RV ′′ = ∅.
(3) (x, y) ∈ RV implies (x1, y1) ∈ R0

V ;

(4) RV−1 = (
RV

)−1
;

(5) If (U1,U2) ∈ R0
Vν

, then for each μ ∈ Rw it holds that

(
(U1, μ), (U2, μ⊕ ν)

) ∈ RVν .

Proof The first four items may be easily verified by considering the four cases in
the definition. We prove the last one. Let (U1,U2) ∈ R0

Vν
and μ ∈ Rw. Note that

μ�μ⊕ ν and hence μ �= μ⊕ ν. Consider the pair
(
(U1, μ), (U2, μ⊕ ν)

)
. We have

(μ⊕ ν)� μ = μ� (μ⊕ ν) = ν. There are two possibilities:

– (U1,U2) ∈ R0
Vν
∩ R0

V−1
ν

. As μ� μ⊕ ν, we have
(
(U1, μ), (U2, μ⊕ ν)

) ∈ RVν .

– (U1,U2) ∈ R0
Vν
\ R0

V−1
ν

. Then
(
(U1, μ), (U2, μ⊕ ν)

) ∈ RVν .

For each α ∈ VR we define R(α) =⋃{
RV

∣∣ V ∈ UltR ∧ [α] ∈ V
}
.

Lemma 12 For each term α ∈ TRel(VR)

R(α) =
⋃{

RV
∣∣ V ∈ UltR ∧ [α] ∈ V

}
.

Proof For each (x, y) ∈ W 2 we denote by V (x, y) the unique V ∈ UltR such that
(x, y) ∈ RV . We need to prove that

R(α) = {
(x, y) ∈ W 2

∣∣ [α] ∈ V (x, y)
}
.

This can be proved by structural induction on α.
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Notation For a ∈ TSet(VS) we denote h(a) = {
U ∈ UltS

∣
∣ [a] ∈ U

}
.

For α ∈ TRel(VR) we denote h(α) = {
V ∈ UltR

∣∣ [α] ∈ V
}
.

Lemma 13 If a, b ∈ TSet(VS) and α ∈ TRel(VR), then:

∀∃(a, b)[α] ∈ S ⇔ (∀U ∈ h(a)
)(∀[c] ∈ U

)(∃∃(c, b)[α] ∈ S
)
.

Proof (→) Assume that
(∃U ∈ h(a)

)(∃[c] ∈ U
)(∃∃(c, b)[α] /∈ S

)
. By maximality

of S,¬∃∃(c, b)[α] ∈ S. [a] ∩ [c] �= [0] and hence ¬(a ∩ c = 0) ∈ S. By (AL1)
¬∀∃(a, b)[α] ∈ S.
(←) Assume that ∀∃(a, b)[α] /∈ S. Since S is a rich theory, there is a set variable

p such that a ∩ p = 0∨∃∃(p, b)[α] /∈ S. Hence a ∩ p = 0 /∈ S and ∃∃(p, b)[α] /∈ S.
Then [a] ∩ [p] �= [0] and there is an ultrafilter U ⊇ {[a], [p]}.

Lemma 14 For each formula ϕ ∈ Form(VS,VR) the following equivalence holds:
ϕ ∈ S ⇔ M � ϕ.

Proof The proof is by induction on the structure of ϕ. Since S is a maximal theory,
we need to consider explicitly only the cases where ϕ is an atomic formula.

(1) ϕ is a1 ≤ a2. By the Stone representation theorem for Boolean algebras,

a1 ≤ a2 ∈ S ⇔ h(a1) ⊆ h(a2)⇔ v(a1) = h(a1)×Rw ⊆ h(a2)×Rw = v(a2).

(2) ϕ is ∃∃(a1, a2)[α].
(→) Let ∃∃(a1, a2)[α] ∈ S. Then

([a1), [a2)
) ∈ R0

[α). By Lemma 9

(∃U1 ∈ h(a1)
)(∃U2 ∈ h(a2)

)(∃V ∈ h(α)
)(
(U1,U2) ∈ R0

V

)
.

Let V = Vμ. Then (U1, 0) ∈ v(a1), (U2, μ) ∈ v(a2) and RV ⊆ R(α). By item 5
in Lemma 11,

(
(U1, 0), (U2, μ)

) ∈ RV . This shows that M � ∃∃(a1, a2)[α].
(←) Let M � ∃∃(a1, a2)[α]. Then

(∃x ∈ v(a1)
)(∃y ∈ v(a2)

)(∃V ∈ h(α)
)(
(x, y) ∈ RV

)
.

Thus, we have [a1] ∈ x1, [a2] ∈ y1, [α] ∈ V , and item 3 in Lemma 11 gives us
(x1, y1) ∈ R0

V . Hence ∃∃(a1, a2)[α] ∈ S.
(3) ϕ is ∀∀(a1, a2)[α].

∀∀(a1, a2)[α] ∈ S ⇔ ¬∃∃(a1, a2)[−α] ∈ S

⇔ ∃∃(a1, a2)[−α] /∈ S ⇔ M � ∃∃(a1, a2)[−α]
⇔ M � ∀∀(a1, a2)[α]

(4) ϕ is ∀∃(a1, a2)[α].
(→) Let ∀∃(a1, a2)[α] ∈ S. By Lemma 13

(∀U1 ∈ h(a1)
)(∀[c] ∈ U1

)(∃∃(c, a2)[α] ∈ S
)
.
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Hence
(∀U1 ∈ h(a1)

)((
U1, [a2)

) ∈ R0
[α)

)
. By Lemma 9

(∀U1 ∈ h(a1)
)(∃U2 ∈ h(a2)

)(∃V ∈ h(α)
)(
(U1,U2) ∈ R0

V

)
.

By item 5 in Lemma 11,

(∀U1 ∈ h(a1)
)(∃U2 ∈ h(a2)

)(∃ν ∈ Rw
)(∀μ ∈ Rw

)

((
(U1, μ), (U2, μ⊕ ν)

) ∈ RVν ∧ Vν ∈ h(α)
)

and hence

(∀U1 ∈ h(a1)
)(∀μ ∈ Rw

)(∃U2 ∈ h(a2)
)(∃ν ∈ Rw

)

((
(U1, μ), (U2, μ⊕ ν)

) ∈ R(α)
)

Therefore
(∀x ∈ v(a1)

)(∃y ∈ v(a2)
)(
(x, y) ∈ R(α)

)
.

(←) Assume that M � ∀∃(a1, a2)[α]. Then

(∀x ∈ v(a1)
)(∃y ∈ v(a2)

)(∃V ∈ h(α)
)(
(x, y) ∈ RV

)
.

By item 3 in Lemma 11,

(∀x ∈ v(a1)
)(∃y ∈ v(a2)

)(∃V ∈ h(α)
)(
(x1, y1) ∈ R0

V

)
.

As Rw �= ∅,
(∀U1 ∈ h(a1)

)(∃U2 ∈ h(a2)
)(∃V ∈ h(α)

)(
(U1,U2) ∈ R0

V

)
.

Hence

(∀U1 ∈ h(a1)
)(∀[c] ∈ U1

)(∃∃(c, a2)[α] ∈ S
)
.

Then, by Lemma 13 we obtain ∀∃(a1, a2)[α] ∈ S.
(5) ϕ is ∃∀(a1, a2)[α].

∃∀(a1, a2)[α] ∈ S ⇔ ¬∀∃(a1, a2)[−α] ∈ S

⇔ ∀∃(a1, a2)[−α] /∈ S ⇔ M � ∀∃(a1, a2)[−α]
⇔ M � ∃∀(a1, a2)[α]

Theorem 1 (Completeness) If Γ ⊆ Form(VS,VR), then

Γ is consistent⇔ Γ has a model.
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Proof (→) Let Γ be a consistent set of formulas. By item 2 in Corollary 1 there is a
maximal theory S which contains Γ . S has a model which is also a model of Γ .
(←) Let M � Γ and let Δ = {

ϕ ∈ Form(VS,VR)
∣∣ M � ϕ

}
. As (MP) preserves

the truth in every model, the setΔ is closed under (MP). Since M � ⊥,⊥ /∈ Δ. Hence
(VS,Δ) is a consistent theory. As Γ ⊆ Δ, the set Γ is consistent.

5 Complexity

Before we consider the complexity of the satisfiability problem, we first note that our
logic is a fragment of BML (Gargov et al. 1987; Gargov and Passy 1990) extended
with a symbol ‘−1’ for the converse of the accessibility relation.

BML is a multimodal logic, whose language contains two types of variables—a set
of relational variables (atomic modal parameters) and an infinite set of propositional
variables. The set of modal parameters consists of the set of relational variables, the
relational constant 1 and all their Boolean combinations. The set of formulas is the
smallest set which contains the propositional variables and is closed under prefixing
a formula by a box or diamond modality as well as connecting formulas with the
propositional operators.

A model for BML is a triple M = (W, R, v), where W �= ∅ is the domain, R
is a function, which assigns to each atomic modal parameter a relation on W , and
v assigns to each propositional variable a subset of W . R is extended to all modal
parameters according to the standard interpretation of the Boolean operators as set
intersection, union and complement, interpreting 1 as the universal relation W 2. We
have the standard meaning of the modal operators:

(M, x) � 〈α〉ϕ ⇔ (∃y ∈ W )
(
(x, y) ∈ R(α) ∧ (M, y) � ϕ

)

(M, x) � [α]ϕ ⇔ (∀y ∈ W )
(
(x, y) ∈ R(α)⇒ (M, y) � ϕ

)
.

We consider the extension of the language of BML with a symbol ‘−1’ in modal
parameters. We interpret it as taking the converse of the relation: R(α−1) = (

R(α)
)−1.

The formulas of our language have equivalents in this extension of the language of
BML:

a ≤ b is equivalent to [1](a→ b)
∃∃(a, b)[α] is equivalent to 〈1〉(a ∧ 〈α〉b)

∀∃(a, b)[α] is equivalent to [1](a→ 〈α〉b)

∀∀(a, b)[α] is equivalent to [1](a→ [−α]¬b
)

∃∀(a, b)[α] is equivalent to 〈1〉(a ∧ [−α]¬b
)
.

The satisfiability problem for our logic is decidable in NExpTime, since the formu-
las are translatable (in polynomial time) into the NExpTime-decidable two-variable
fragment of first-order predicate logic. We argue that the complexity is the same as
the complexity of BML, which is proved by Lutz and Sattler (2001) to be NExpTime
if the language contains an infinite number of relational variables, and ExpTime if

123



Full Boolean Reasoning 453

only a finite number of relational variables is available. Also, the complexity does not
depend on whether we allow −1 in the language.

In the case of an infinite number of relational variables, the lower NExpTime bound
is proved in Lutz and Sattler (2001) by a reduction from an NExpTime-complete tiling
problem. The BML formula, used to encode the tiling, is a conjunction of a formula,
which describes the initial condition for the problem, and several conjuncts, which
ensure that every model satisfying the formula is indeed a tiling. All conjuncts but the
one for the initial condition can be translated into our fragment. The formula for the
initial condition can be replaced by a formula from our fragment, such that the whole
conjunction is equisatisfiable with the original one.

In the case of a finite number of relational variables, the lower ExpTime bound of
BML follows from the ExpTime-completeness of Ku (the basic modal logic enriched
with the universal modality). However, the intersection of Ku with our fragment is
also ExpTime-hard, hence the ExpTime-hardness of our logic.

The upper ExpTime bound for BML is proved in Lutz and Sattler (2001) by reduc-
tion to the satisfiability problem for the basic multimodal logic enriched with the
universal modality. The same reduction is applicable in the presence of −1, and mul-
timodal Ku enriched with −1 is also ExpTime-complete.

These high complexities are due to the presence of ∀∃ and ∃∀ in the language. If
we remove these symbols from the language, the resulting logic has an NP-complete
satisfiability problem, as it possesses the polysize model property. This can be proved
by selection of points from a model in the way it is done in Balbiani et al. (2007b) for
the dynamic logics of the region-based theory of discrete spaces.

6 Concluding Remarks

The first completeness proof for a non-classical relational syllogistic (i.e. one that con-
tains relational terms) was given by Nishihara et al. (1990). Their fragment contains
variables for proper nouns and n-ary relational terms closed only under complemen-
tation and does not allow Boolean operations on set terms.

Later works on relational syllogistics, devoted mainly to the computational com-
plexity problems, are McAllester and Givan (1992), Pratt-Hartmann (2005, 2004,
2008) and Pratt-Hartmann and Third (2006). The paper by Pratt-Hartmann and Moss
(2009) is devoted both to complete axiomatizations and some computational complex-
ity results. A successor of Pratt-Hartmann and Moss (2009) is Moss (2010), devoted
to axiomatizations and completeness proofs for a number of relational syllogistics.

Our logic differs in expressiveness from all systems of relational syllogistic men-
tioned above. One of the reasons is that we have quite rich language based on both
class terms and relational terms, while the other logics are based on languages that
are weaker than our system, or incomparable with it, some of them dealing only with
atomic formulas. Such is, for instance, the system of McAllester and Givan (1992)
and some systems studied in Pratt-Hartmann and Moss (2009) and Moss (2010). The
fragment of our language, which contains only two relational terms α and −α and all
set terms are variables or negated variables, coincides with the language of the system
R† studied by Pratt-Hartmann and Moss (2009).
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In the present paper we have proved the completeness of a syllogistic logic with
a set of binary relations closed under the Boolean operations and under taking the
converse. The completeness proof can be generalized to the case of n-ary relations
for arbitrary n, which will cover the case of n-transitive verbs. We also plan to study
extensions of our logic with several kinds of nominals making it possible to cover
sentences from natural language like ‘Socrates is a man’, ‘Socrates is mortal’.

The construction of the canonical model in our logic is similar to that for BML.
It is also possible to use the construction of the relations RV from R0

V to prove the
completeness of BML extended with a symbol −1 for the converse of the accessibility
relation.
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Appendix

A. Proof of Proposition 2

In the proof of Proposition 2 we will need the following lemmas.
If Q is a quantifier, we will denote by Q the dual quantifier.

Lemma 15 Let a and b be set terms and let α be a relational term. Then, for arbitrary
quantifiers Q1 and Q2 the formula

Q1 Q2(a, b)[−α] ↔ ¬Q1 Q2(a, b)[α]

is a theorem.

Lemma 16 Letα, β ∈ TRel(VR) and let B = TSet(VS). Then the following conditions
are equivalent:

(1) (∀a, b ∈ B)
(∃∃(a, b)[α] → ∃∃(a, b)[β] ∈ S

)

(2) (∀a, b ∈ B)
(∀∃(a, b)[α] → ∀∃(a, b)[β] ∈ S

)

(3) (∀a, b ∈ B)
(∀∀(a, b)[α] → ∀∀(a, b)[β] ∈ S

)

(4) (∀a, b ∈ B)
(∃∀(a, b)[α] → ∃∀(a, b)[β] ∈ S

)

Proof We will prove (1)→(2). Assume that item 1 is true and suppose that there are
set terms a and b such that ∀∃(a, b)[α] → ∀∃(a, b)[β] /∈ S. Since S is a rich theory,
there is a set variable p such that

∀∃(a, b)[α] → a ∩ p = 0 ∨ ∃∃(p, b)[β] /∈ S.

Hence ∀∃(a, b)[α] → a ∩ p = 0 ∨ ∃∃(p, b)[α] /∈ S.
This is a contradiction, since the last formula is a theorem.
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Lemma 17 If a, b, c, d are set terms and α, β are relational terms, then the following
formulas are theorems:

(1) ∀∀(a, b)[α] ∧ ∀∀(c, d)[β] → ∀∀(a ∩ c, b ∩ d)[α ∩ β]
(2) ∀∀(a, b)[α] ∧ ¬∃∃(c, d)[α ∩ β] → ∀∀(a ∩ c, b ∩ d)[−β]
Proof We will prove item 2. Let p and q be different set variables which do not occur
in a, b, c and d.

�∀∀(a, b)[α] ∧ ¬∃∃(c, d)[α ∩ β] ∧ ∀∀(p, q)[β]
→ ∀∀(a ∩ p, b ∩ q)[α ∩ β] ∧ ¬∃∃(c, d)[α ∩ β] by item 1

�∀∀(a, b)[α] ∧ ¬∃∃(c, d)[α ∩ β] ∧ ∀∀(p, q)[β]
→ a ∩ p ∩ c = 0 ∨ b ∩ q ∩ d = 0 by (AL1) and (AL2)

�∀∀(a, b)[α] ∧ ¬∃∃(c, d)[α ∩ β]
→ a ∩ c ∩ p = 0 ∨ b ∩ d ∩ q = 0 ∨ ¬∀∀(p, q)[β]
�∀∀(a, b)[α] ∧ ¬∃∃(c, d)[α ∩ β]
→ a ∩ c ∩ p = 0 ∨ b ∩ d ∩ q = 0 ∨ ∃∃(p, q)[−β] by Lemma 15

�∀∀(a, b)[α] ∧ ¬∃∃(c, d)[α ∩ β]
→ b ∩ d ∩ q = 0 ∨ ∀∃(a ∩ c, q)[−β] by (R1)

�∀∀(a, b)[α] ∧ ¬∃∃(c, d)[α ∩ β]
→ ∀∀(a ∩ c, b ∩ d)[−β] by (R2)

Proof of Proposition 2 We need to verify the following properties for arbitrary rela-
tional terms α, β and γ :

(1) α � α, (α � β ∧ β � γ )⇒ α � γ , (α � β ∧ β � α)⇒ α ≈ β
(2) α ∩ β � α, α ∩ β � β, (γ � α ∧ γ � β)⇒ γ � α ∩ β
(3) α � α ∪ β, β � α ∪ β, (α � γ ∧ β � γ )⇒ α ∪ β � γ
(4) 0R � α, α � 1R

(5) α ∩ (β ∪ γ ) � (α ∩ β) ∪ (α ∩ γ )
(6) α ∩ −α � 0R

(7) 1R � α ∪ −α
(1) follows directly from the definition of the relation �. (2) follows from (A∩). (3)
follows analogously from (A∪). (4) follows from (A0R) and (A1R). We will prove the
remaining three theorems. Let a, b ∈ TSet(VS).

(5) We will make use of item 2 in Lemma 17. Let p, q ∈ VS, p �= q and {p, q} ∩
VSet(a, b) = ∅.

�∀∀(a, b)
[
α ∩ (β ∪ γ )] ∧ ¬∃∃(p, q)

[
(α ∩ β) ∪ (α ∩ γ )]

→ ∀∀(a, b)[α] ∧ ∀∀(a, b)[β ∪ γ ] ∧ ¬∃∃(p, q)[α ∩ β]
∧ ¬∃∃(p, q)[α ∩ γ ] by (A∩) and (A∪)

�∀∀(a, b)
[
α ∩ (β ∪ γ )] ∧ ¬∃∃(p, q)

[
(α ∩ β) ∪ (α ∩ γ )]
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→ ∀∀(a, b)[β ∪ γ ] ∧ ∀∀(a ∩ p, b ∩ q)[−β] ∧ ∀∀(a ∩ p, b ∩ q)[−γ ] by Lemma 17

�∀∀(a, b)
[
α ∩ (β ∪ γ )] ∧ ¬∃∃(p, q)

[
(α ∩ β) ∪ (α ∩ γ )]

→ ∀∀(a, b)[β ∪ γ ] ∧ ¬∃∃(a ∩ p, b ∩ q)[β] ∧ ¬∃∃(a ∩ p, b ∩ q)[γ ] by (A−)

�∀∀(a, b)
[
α ∩ (β ∪ γ )] ∧ ¬∃∃(p, q)

[
(α ∩ β) ∪ (α ∩ γ )]

→ ∀∀(a, b)[β ∪ γ ] ∧ ¬∃∃(a ∩ p, b ∩ q)[β ∪ γ ] by (A∪)

�∀∀(a, b)
[
α ∩ (β ∪ γ )] ∧ ¬∃∃(p, q)

[
(α ∩ β) ∪ (α ∩ γ )]

→ a ∩ p = 0 ∨ b ∩ q = 0 by (AL1) and (AL2)

�∀∀(a, b)
[
α ∩ (β ∪ γ )]

→ a ∩ p = 0 ∨ b ∩ q = 0 ∨ ∃∃(p, q)
[
(α ∩ β) ∪ (α ∩ γ )]

�∀∀(a, b)
[
α ∩ (β ∪ γ )]

→ b ∩ q = 0 ∨ ∀∃(a, q)
[
(α ∩ β) ∪ (α ∩ γ )] by (R1)

�∀∀(a, b)
[
α ∩ (β ∪ γ )]→ ∀∀(a, b)

[
(α ∩ β) ∪ (α ∩ γ )] by (R2)

(6)

�∀∀(a, b)[α ∩ −α]
→ ∀∀(a, b)[α] ∧ ∀∀(a, b)[−α] by (A∩)

�∀∀(a, b)[α ∩ −α]
→ ∀∀(a, b)[α] ∧ ¬∃∃(a, b)[α] by (A−)

�∀∀(a, b)[α ∩ −α] → a = 0 ∨ b = 0 by (AL1) and (AL2)

�∀∀(a, b)[α ∩ −α] → ¬∃∃(a, b)[−0R] by (A0)

�∀∀(a, b)[α ∩ −α] → ∀∀(a, b)[0R] by Lemma 15

(7)

�¬∃∃(a, b)[α ∪ −α]
→ ¬∃∃(a, b)[α] ∧ ¬∃∃(a, b)[−α] by (A∪)

�¬∃∃(a, b)[α ∪ −α]
→ ¬∃∃(a, b)[α] ∧ ∀∀(a, b)[α] by Lemma 15

�¬∃∃(a, b)[α ∪ −α] → a = 0 ∨ b = 0 by (AL1) and (AL2)

�¬∃∃(a, b)[α ∪ −α] → ¬∃∃(a, b)[1R] by (A0)

�∃∃(a, b)[1R] → ∃∃(a, b)[α ∪ −α]

B. Proof of Proposition 3

Proof of Proposition 3 (1) This is obvious and is used only to shorten the notation.
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(2) Let

I0 =
{
[α] ∈ ClR

∣∣∣ α ≈ α−1 ∧ (∃[a] ∈ U
)(∃∃(a, a)[α] /∈ S

)}

I1 =
{
[α] ∈ ClR

∣∣∣ α ≈ α−1 ∧ There exists a finite set {α1, α2, . . . , αk}
⊆ TRel(VR), such that α � (

α1 ∩ (−α1
−1)

) ∪ · · · ∪ (
αk ∩ (−αk

−1)
)}

I2 =
{

x ∈ ClR
∣∣ x = x−1 ∧ (∃y ∈ I0)(∃z ∈ I1)(x ≤ y ∪ z)

}

The sets I0, I1, and I2 are ideals in the Boolean algebra of symmetric classes of
relational terms, I0 ⊆ I2 and I1 ⊆ I2.
Suppose that [1R] ∈ I2. Let [α] ∈ I0 and [β] ∈ I1, where

β = (
α1 ∩ (−α1

−1)
) ∪ · · · ∪ (

αk ∩ (−αk
−1)

)
,

are elements of ClR, such that [1R] ≤ [α]∪[β]. Let a ∈ U and¬∃∃(a, a)[α] ∈ S.
Then 〈∀∀〉(a, a)[−α] ∈ S. From −α � β, we get 〈∀∀〉(a, a)[β] ∈ S. Since
¬(a = 0) ∈ S, by Lemma 6 we have ¬∀∀(a, a)[β] ∈ S. This is a contradiction.
Hence [1R] /∈ I2.
Note that [1R) =

{[1R]
}

is a filter in the Boolean algebra of symmetric classes of
relational terms and we have I2∩[1R) = ∅. By the separation theorem for filter-
ideal pairs, there exist a maximal ideal I ⊇ I2 and an ultrafilter V s ⊇ [1R) in the
Boolean algebra of symmetric classes of relational terms, such that I ∩ V s = ∅.
Let

V = {
x ∈ ClR

∣∣ x ∩ (x−1) ∈ V s}.

V has the following properties:
– V ∈ UltR.

We will check the defining properties for ultrafilters.
(a) [1R] ∈ V , since [1R) ⊆ V s .
(b) Let x ∈ V, y ∈ ClR, and x ≤ y. Then x∩(x−1) ∈ V s and x∩(x−1) ≤

y ∩ (y−1). Hence y ∩ (y−1) ∈ V s and y ∈ V .
(c) Let x, y ∈ V . Then x ∩ (x−1) ∈ V s and y ∩ (y−1) ∈ V s . Hence

x ∩ y ∩ (x−1) ∩ (y−1) ∈ V s and x ∩ y ∈ V .
(d) Let x ∈ ClR and suppose that x,−x /∈ V . Then x ∩ (x−1) /∈ V s and

(−x)∩ (−x−1) /∈ V s . Hence (−x)∪ (−x−1) ∈ V s and x ∪ x−1 ∈ V s .
Since V s is a filter, the equivalence class

(
(−x) ∪ (−x−1)

) ∩ (
x ∪ x−1) = x ∩ (−x−1) ∪ (−x) ∩ (x−1)

belongs to V s . On the other hand, x ∩ (−x−1)∪ (−x)∩ (x−1) ∈ I1 ⊆
I2 ⊆ I . Thus we obtain a contradiction with I ∩ V s = ∅.
Hence

{
x,−x

} ∩ V �= ∅.
(e) [0R] /∈ V , since [0R] /∈ V s .
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– V = V−1.
– (U,U ) ∈ R0

V .
Since I0 ∩ V s = ∅, (∀[α] ∈ V

)(∀[a] ∈ U
)(∃∃(a, a)[α ∩ α−1] ∈ S

)
and

hence
(∀[α] ∈ V

)(∀[a] ∈ U
)(∃∃(a, a)[α] ∈ S

)
.
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