
J Log Lang Inf (2012) 21:299–324
DOI 10.1007/s10849-012-9162-4

Generalized Quantifiers in Dependence Logic

Fredrik Engström

Published online: 10 March 2012
© Springer Science+Business Media B.V. 2012

Abstract We introduce generalized quantifiers, as defined in Tarskian semantics by
Mostowski and Lindström, in logics whose semantics is based on teams instead of
assignments, e.g., IF-logic and Dependence logic. Both the monotone and the non-
monotone case is considered. It is argued that to handle quantifier scope dependencies
of generalized quantifiers in a satisfying way the dependence atom in Dependence
logic is not well suited and that the multivalued dependence atom is a better choice.
This atom is in fact definably equivalent to the independence atom recently introduced
by Väänänen and Grädel.

Keywords Dependence logic · Independence friendly logic ·
Generalized quantifiers · Multi valued dependence

1 Introduction

Dependencies appear in many guises in both formal and natural languages. Several
logical systems have been constructed bringing such quantifer scope dependencies
to the forefront of the syntactical construction, but none of these handle generalized
quantifiers, one of the basic tools in logic, descriptive complexity theory, and formal
linguistics. The purpose of this paper is to introduce generalized quantifiers in these
logical frameworks in such a way that branching, i.e. non linearity, of generalized
quantifiers can be handled naturally in the logic itself.

Dependence logic, proposed by Väänänen (2007), is an elegant way of introduc-
ing dependencies between variables into the object language. It can also deal with

F. Engström (B)
Department of Philosophy, Linguistics and Theory of Science,
University of Gothenburg, Box 200, 405 30 Göteborg, Sweden
e-mail: fredrik.engstrom@gu.se

123



300 F. Engström

branching of existential and universal quantifiers, but so far it cannot handle general-
ized quantifiers. In this paper we present a way of extending Dependence logic with
generalized quantifiers.

1.1 Generalized Quantifiers and Natural Languages

When giving (parts of written) natural languages, such as English, a formal model
theoretic semantics, such as in Montague (1970), several problems naturally surface.
One is how to treat determiners such as all, some and most. It turns out that
Mostowski’s (1957) and Lindström’s (1966) notions of generalized quantifiers are
most useful when formalizing expressions with determiners, see Peters and Westerståhl
(2006) for a thorough account of this.

According to Mostowski and Lindström a quantifier of type 〈n1, . . . , nk〉, where ni

are positive natural numbers, is a class (in most cases a proper class) of structures in
the finite relational signature { R1, . . . , Rk } where Ri is of arity ni , closed under taking
isomorphic images. For example, the meaning of the determiner most is commonly
the type 〈1, 1〉 quantifier

most = { (M, A, B) : | A ∩ B| ≥ |A \ B| } .

Thus, a possible formalization of the proposition “most boys are tall” is

most x, y (Bx, T y)

where B is the predicate of being a boy and T that one of being tall. The truth condition
for this proposition is then

(M, B, T ) � most x, y (Bx, T y) iff (M, B, T ) ∈ most iff |B ∩ T | ≥ |B \ T |,

which seems to coincide with the intuitive truth condition for the proposition. Note
that we are subscribing to the sloppy style of not distinguishing between the predicate
symbols and the predicates, e.g., in the above truth condition B stands for both the
predicate symbol in the formula and a subset of the domain.

Given a generalized quantifier Q of type 〈n1, . . . , nk〉 and a domain M , let the local
quantifer QM be defined as

QM = { 〈A0, A1, . . . , Ak〉 ⊆ Mn1 × · · · × Mnk | (M, A0, A1, . . . , Ak) ∈ Q } .

Observe that local quantifiers are just sets of relations over the domain M , they are not
generalized quantifiers in the strict sense. Generalized quantifiers in the strict sense
we sometimes call global when need is to distinguish them from local quantifiers.

123



Generalized Quantifiers in Dependence Logic 301

1.2 Dependence and Independence in Natural Languages

In (1974) Hintikka claims that the proposition

(∗) Some relative of each villager and some relative of each townsmen hate each
other.

ought to be interpreted as

∀x∃y
∀z∃w A(x, y, z, w)

where A(x, y, z, w) is the quantifier free formula expressing that if x is a villager and
z is a townsman then y is a relative of x, w is a relative of z, and y and w hate each

other, and
∀x∃y
∀z∃w is the partially ordered quantifier studied by Henkin in (1961), whose

semantics is easiest expressed by its skolemization:

∃ f, g∀x, z A(x, f (x), z, g(z)),

thus y = f (x) may only depend on the value of x and w = g(z) only on z.
However this interpretation of (∗) in terms of the branching Henkin quantifier

has been strongly objected to (see for example Barwise 1979 and Gierasimczuk and
Szymanik 2009) and other more natural examples of branching have been given, such
as Barwise’s example from (1979)

(†) Most of the dots and most of the stars are all connected by lines.

It should be rather clear, we think, that one natural reading of this is that there is a
set of stars A which includes most stars, and a set B of dots including most dots, such
that each star in A is connected to each dot in B. That is the branching reading of the
sentence. Branching here means that the choice of the set of stars may not depend on
the choice of any particular dot in the earlier chosen set of dots.

It seems hard to find natural examples in natural languages of branching involving
only the first order quantifiers ∃ and ∀. Examples involving generalized quantifiers as
in (†) above is easier to find. Another example of when branching reading is natural
is with numerical quantifiers as in the following example from Davies (1989).

(+) Two examiners marked six scripts.

Maybe the most natural reading of (+) is

∃=2x
∃=6 y

(
E(x) ∧ S(y) ∧ M(x, y)

)
,

where E is the predicate of being an examiner, S that of being a script, and M(x, y)
the relation of x marking y. The numerical quantifiers ∃=k are, even though definable
in first order logic, proper generalized quantifiers.

123



302 F. Engström

To be able to handle branching readings of sentences like (∗) in a coherent logical
framework Hintikka developed Independence Friendly logic, or IF-logic for short, in
which statements of the form “there exists x , chosen independently of ȳ, such that”
can be expressed by the formal construction

∃x/ȳ A(x, ȳ).

Here ȳ is a finite sequence of variable y0, y1, . . . , yn−1. We say that∃x/ȳ is a slashed
quantifier. However IF-logic, as it stands, cannot handle generalized quantifiers, the
chief example of branching in natural languages. This paper introduces generalized
quantifiers in IF-logic, and many of its variants such as Dependence Friendly logic
(DF-logic) and Dependence logic.

Barwise (1979), among others, argues that for monotone1 quantifiers Q1 and Q2
of type 〈1〉 the branching of Q1 and Q2

Q1x
Q2 y

A(x, y)

should be interpreted as

Br(Q1, Q2)xy A(x, y),

where Br(Q1, Q2) is the type 〈2〉 quantifier

{ (M, R) | ∃A ∈ Q1, B ∈ Q2, A × B ⊆ R } .
We take this as the definition of branching of two monotone quantifiers. The correct-

ness of that definition seems to be rather universally agreed upon. Thus, our definition
of quantifiers in DF-logic should reflect upon this.

It could be worth noting that for monotone quantifiers Q1 and Q2 a formula
Q1x Q2 y ϕ can be translated into existiential second-order logic with Q1 and Q2
used as second-order predicates in the following way:

∃X
(
Q1(X) ∧ ∀x∈X∃Y

(
Q2(Y ) ∧ ∀y∈Yϕ

))
.

In this formula it is clear that the second-order variable Y depends on the first-order
variable x . By moving the ∃Y outside of the scope of ∀x ∈ X we can break this
dependence. The resulting formula then becomes:

∃X∃Y
(
Q1(X) ∧ Q2(Y ) ∧ ∀x∈X∀y∈Yϕ

))
,

which is equivalent to the branching reading: Br(Q1, Q2)xy ϕ, giving some evidence
on the correctness of the definition of Br(Q1, Q2).

In the next section we will define both IF-logic and DF-logic, but first take a look at
another variant of IF-logic developed by Väänänen (2007) called Dependence logic.

1 A quantifier Q is monotone if given A ⊆ B ⊆ M such that (M, A) ∈ Q then (M, B) ∈ Q.

123



Generalized Quantifiers in Dependence Logic 303

1.3 Dependence Logic and Related Logics

The syntax of Dependence logic is that of first order logic together with new
atoms, the dependence atoms. There is one dependence atom for each arity writ-
ten

[
t1, . . . , tn→tn+1

]
.2 For simplicity we will assume that all formulas are written

in negation normal form, i.e., all negation signs occuring in a formula occur in front
of an atomic formula. This is to make some technicalities easier, the downside of
this approach is that negation cannot be treated in a compositional way. More on this
later. Note also that negation in Dependence logic is not contradictory negation as; for
example, we will see later that � ∀x, y([x→y] ∨ ¬ [x→y]).

To define a compositional semantics for Dependence logic we need to consider sets
of assignments called teams. Formally, an assignment is a function s : V → M where
V is a finite set of variables and M is the domain under discussion. A team (on the
domain M) is a set of assignments of some fixed finite set of variables V , i.e., a subset
of { s | s : V → M } for some finite set of variables V . If V = ∅ there is only one
assignment V → M , the empty assignment, denoted by ε. Please observe that the
team of the empty assignment { ε } is different from the empty team.

Given an assignment s : V → M and a ∈ M let s[a/x] : V ∪ { x } → M be the
assignment:

s[a/x] : y �→
{

s(y) if y ∈ V \ { x }, and

a if x = y.

The domain of a (non-empty) team dom(X) is the set of variables V . The condition
M, X � ϕ means that the formula ϕ of Dependence logic is satisfied in the structure
M by the team X . We use the notation M, s � ϕ for ordinary Tarskian satisfaction of
the first order formula ϕ under the assignment s. We call this type of semantics where
a formula is satisfied by a team, not just a single assignment, Hodges semantics3 to
distinguish it from ordinary Tarskian semantics.

The truth conditions for M, X � ϕ are the following:

M, X � R(t̄) iff ∀s ∈ X : M, s � R(t̄)

M, X � ¬R(t̄) iff ∀s ∈ X : M, s � ¬R(t̄)

M, X �
[
t1, . . . , tn→tn+1

]
iff ∀s, s′ ∈ X

∧

1≤i≤n

t M,s
i = t M,s′

i → t M,s
n+1 = t M,s′

n+1

M, X � ¬ [
t1, . . . , tn→tn+1

]
iff X = ∅

M, X � ϕ ∧ ψ iff M, X � ϕ and M, X � ψ
M, X � ϕ ∨ ψ iff ∃Y ∪ Z = X : M,Y � ϕ and M, Z � ψ

2 When Väänänen introduced Dependence logic he used the notation = (t1, . . . , , tn , tn+1) for[
t1, . . . , tn→tn+1

]
, however we prefer the latter notation.

3 Hodges in (1997) invented this framework in order to give IF-logic a compositional semantics.

123



304 F. Engström

M, X � ∃yϕ iff ∃ f : X → M, such that M, X [ f/y] � ϕ
M, X � ∀yϕ iff M, X [M/y] � ϕ.

Here t M,s is the interpretation of the term t in the model M under the assignment s,

X [M/y] is the team { s[a/y] | s ∈ X, a ∈ M }

of assignments, and when ever f : X → M, X [ f/y] is { s[ f (s)/y] | s ∈ X } .
Observe that for some teams X we have M, X � [x→y] and M, X � ¬ [x→y].

In fact this is the case when M has at least two elements and X is the full team of all
assignments of x and y. Therefore, � ∀x, y([x→y] ∨ ¬ [x→y]). This illustrates that
negation is not contradictory negation.

The free variables of a formula is defined in a recursive way, like in first order logic,
with the extra base case of the dependence atom: all the variables in x̄ and y are free in
the formula [x̄→y]. Let FV(ϕ) be the set of free variables of ϕ. A sentence is a formula
without free variables. We define M � σ for a sentence σ to hold if M, { ε } � σ .

By just staring at the definition of satisfaction we can make some remarks. First,
every formula is satisfied by the empty team, which has as a consequence that for any
atomic formula ϕ we have both M,∅ � ϕ and M,∅ � ¬ϕ. Second, satisfaction is
preserved under taking subteams:

Proposition 1.1 If M, X � ϕ and Y ⊆ X then M,Y � ϕ.

The next proposition might seem a bit ad hoc at first sight, but its role will later be
apparent. It tells us that the truth condition for the existential quantifier is equivalent
to the truth condition we later introduce for generalized quantifiers.

Proposition 1.2 M, X � ∃xϕ iff there exists F : X → ∃M such that M, X [F/x] � ϕ,
where X [F/x] is the team { s[a/x] | s ∈ X, a ∈ F(s) }.

Recall that ∃M is the local existential quantifier, i.e., the set of non-empty predicates
on M : { A ⊆ M | A �= ∅ }.

Naturally, the semantic value of a formula in Dependence logic is the set of teams
satisfying the formula.

Definition 1.3 The semantic value �ϕ�M of a formula ϕ in the model M is the set of
teams satisfying it:

�ϕ�M = { X | dom(X) = FV(ϕ) and M, X � ϕ } .

Here we have chosen one of two possible paths, the other one would be to define the
semantic value of a formula to be the pair of the set of teams satisfying the formula and
the set of teams that satisfy the negation of the formula: 〈�ϕ�M , �ϕ

¬�M 〉, where ϕ¬
is the formula in negated normal form that corresponds to ¬ϕ. That would have had
the advantage of making negation compositional (i.e., a function of semantic values).
However, it would also make the theory technically much more involved.

It should also be pointed out that Kontinen and Väänänen in (2009) proved that
if ϕ and ψ are formulas in Dependence logic with the same free variables such

123



Generalized Quantifiers in Dependence Logic 305

that �ϕ�M ∩ �ψ�M = { ∅ } then there is a formula σ in Dependence logic such that
�σ �M = �ϕ�M and �σ¬�M = �ψ�M . Thus the “positive” and the “negative” seman-
tic values, taken to be �ϕ�M and �ϕ¬�M respectively, of formulas are independent,
in the sense that only knowing the positive (negative) semantic value of a formula
does not give any information on the negative (positive) semantic value of the same
formula.

DF-logic has a different syntax than Dependence logic but a similar semantics.
Instead of introducing dependence atoms we introduce new quantifiers4 ∃x\ȳ where
ȳ is a finite sequence of variables. We call ∃x\ȳ a backslashed quantifier. ∃x\ȳ ϕ has
the same truth condition as

∃x([ȳ→x] ∧ ϕ).

Independence friendly logic, IF-logic, is syntactically similar to DF-logic but with
slashed quantifiers instead of backslashed ones.5 There is a non-compositional trans-
lation of IF-logic into Dependence logic: Given a sentence σ in IF-logic we replace
each occurrence of ∃x/ȳ ϕ by

∃x([z̄→x] ∧ ϕ)

where z̄ are the variables occurring in σ but not in ȳ.
These three logics, IF-, DF- and Depedence logic, are all equivalent in the sense

that for each formula in one of the logics there are formulas in the other logics satisfied
by the same teams in the same structures. The translations from DF-logic to Depen-
dence logic and back are compositional, but the translations to and from IF-logic
is not.

IF-logic has one rather strange property which Dependence logic and DF-logic
does not. In IF-logic an extra variable could be used for “signaling” as in the follow-
ing example:

M �� ∀x∃y/x x = y

if |M | > 1, but

� ∀x∃z∃y/x x = y.

Thus quantifying over variables not occurring in a sentence might change the truth
value of that sentence. This is rather counterintuitive, which should give us a slight
preference for DF-logic and Dependence logic over IF-logic.

4 Observe that these quantifiers are not generalized quantifiers in the sense of Lindström and Mostowski
since they are defined using Hodges semantics, not Tarskian semantics.
5 In fact, what we describe here is, strictly speaking, what Hodges in (2008) calls slash logic and not
IF-logic.

123



306 F. Engström

2 Generalized Quantifiers

We will now give a rather long argumentation leading up to Definition 2.3 which
gives truth conditions for generalized quantifiers in logics whose semantics are given
in the framework of teams, such as Dependence logic. As will be apparent later, if a
generalized quantifier is definable in existential second order logic, ESO, the result of
adding the quantifier to Dependence logic will not change the strength of the logic,
it will still be of the same strength as ESO. However, the translation into ESO will
not be compositional, see the discussion in Sect. 4. The main reason for introduc-
ing generalized quantifiers in this framework is not to gain strength, but to give a
compositional explanation of branching.

In the following we fix a structure and let M ambiguously denote it and its domain.
We will ambiguously use Q to denote both a global quantifier and the local version
on M , which really should be denoted by QM . We write �ϕ� as a shorthand for �ϕ�M .

Teams are sets of assignments, and thus not relations, however if X is a team with
dom(X) = { x1, . . . , xk } let

X (x1, . . . , xk) = { 〈s(x1), . . . , s(xk)〉 | s ∈ X }

be the relation on M we get by applying the assignments in X to the tuple 〈x1, . . . , xk〉.
Furthermore, if R ⊆ Mk let [R/x1, . . . , xk] be the team

{ { 〈x1, a1〉, . . . , 〈xk, ak〉 } | 〈a1, . . . , ak〉 ∈ R } .

We will be quite sloppy in distinguishing between teams and relations, instead iden-
tifying the team X with the relation X (x̄) where x̄ is dom(X) listed with the indices
in increasing order, and R with [R/x0, . . . , xk−1] where k is the arity of R.

In (2009) Abramsky and Väänänen give an argument for the correctness of the truth
conditions for ∀ and ∃ in Hodges semantics. In short the argument goes as follows:
First they show that Hodges semantics is a special case of a more general construction,
that of the free commutative quantale. Second, they show that the truth conditions of
the quantifiers in Hodges semantics are the image under this general construction of
the usual Tarskian truth conditions. Let us see how this works.

Start off by letting the Hodges space be

H(Mn) = L(P(Mn))

where L(X) is the set of order ideals,6 or down sets, of the ordered set X and P(Mn)

is the power set of Mn ordered by set inclusion. Given a formula with n free variables
in Dependence logic the set of relations corresponding to the teams satisfying the
formula is an element of H(Mn), we therefore think of H(Mn) as the set of possible

6 Order ideals are sets closed downwards, i.e., I ⊆ P(Mn) is an order ideal if for every A ⊆ Mn and any
B ∈ I such that B ⊆ AB ∈ I .

123



Generalized Quantifiers in Dependence Logic 307

semantic values of formulas.7 Since the elements of H(Mn) are all closed downwards
we restrict ourselves, at the moment, to logics where satisfaction is closed under taking
subteams. Note that ∅ is a down set and thus an element of H(Mn).

If we reformulate the truth conditions for ∃ and ∀ in algebraic terms as opera-
tions mapping semantic values in H(Mn+1) to semantics values in H(Mn) we get the
following. The Hodges quantifiers ∃H and ∀H are families of functions

∀H, ∃H : H(Mn+1) → H(Mn),

∃H(X ) = { R | ∃ f : R → M s.t. R[ f ] ∈ X } ,
∀H(X ) = { R | R[M] ∈ X } ,

where R[ f ] = { 〈ā, f (ā)〉 | ā ∈ R } and R[M] = { 〈ā, b〉 | ā ∈ R, b ∈ M }.
The truth condition for the existential quantifier can now be restated as:

�∃xϕ� = [∃H
(
�ϕ�[ȳ, x])/ȳ

]
,

where ȳ are the free variables of ∃xϕ. The corresponding equality is of course true
also for the universal quantifier. Let us now see that these truth conditions are forced
upon us by the operation L.

Given a function h : P(A) → P(B) we define the Hodges lift of that function as:

L(h) : H(A) → H(B), X �→ ↓ { h(X) | X ∈ X } ,

where ↓X is the downward closure of X , i.e.,

↓X = { X | ∃Y ∈ X , X ⊆ Y } .

To every generalized quantifier Q of type 〈1〉 there is a corresponding function on
the Tarskian semantic values:

hQ : P(Mn+1) → P(Mn), R �→ { ā | Rā ∈ Q } ,

where Rā = { b | 〈ā, b〉 ∈ R }. Now the truth condition for ∃ and ∀ in the Hodges
setting is just the image under L of the truth conditions for ∃ and ∀ in the Tarskian
setting, in the sense that: ∃H = L(h∃), and ∀H = L(h∀). These facts follow easily
from the definitions, but see Proposition 2.4.

We do not have to stop here. Let us see what happens if we start with some other
quantifier Q of type 〈1〉 and argue in the same way that led us to the truth conditions
for ∃ and ∀ in the Hodges setting. Thus, for a generalized quantifier Q, let us write
QH, or L(Q), for L(hQ). Let Y [F] = { 〈ā, b〉 | ā ∈ Y, b ∈ F(ā) }.

7 Observe that not all elements of H(Mn) are semantic values of formulas in Dependence logic, see
Kontinen and Väänänen (2009) for a complete characterization of elements of H(Mn) which are.

123



308 F. Engström

Lemma 2.1 Suppose X ⊆ P(Mk) and Q a monadic quantifier. (a) If Q is such that
∅ /∈ Q, then

{ hQ(X) | X ∈ X } = { Y | ∃F : Y → Q s.t. Y [F] ∈ X } .

(b) Furthermore, for any Q, if X is a down set then

{ { ā | Xā ∈ Q } | X ∈ X }

is also a down set.

Proof (a) Follows from the fact that Y [F]ā = F(ā) if ā ∈ Y and Y [F]ā = ∅otherwise.
(b) Is immediate. ��

Proposition 2.2 For any Q of type 〈1〉 and any X ∈ H(Mk) we have

QH(X ) = { Y | ∃F : Y → Q s.t. Y [F] ∈ X } .

Proof Follows directly from the lemma whenever ∅ /∈ Q. On the other hand if ∅ ∈ Q
then QH(X ) = P(Mn)whenever X �= ∅ and QH(∅) = ∅. Also if F is the constant
function F(ā) = ∅ then Y [F] = ∅, thus { Y | ∃F : Y → Q s.t. Y [F] ∈ X } is ∅ or
P(Mn) depending on whatever X is the empty set or not. ��

This all leads up to the following truth condition:

Definition 2.3 Let Q be a monotone generalized quantifiers Q of type 〈1〉 and ϕ some
formula in a logic whose semantics is based on teams. We define what it means for
the team X to satisfy the formula ϕ by the following truth condition.

M, X � Qxϕ iff there exists F : X → Q such that M, X [F/x] � ϕ.

This applies even for non-monotone quantifiers but for those quantifiers Q the truth
condition above does not make a whole lot of sense as the following example shows.
Let M = N and Q = { A } where A is the set of even numbers. According to the
truth condition above M, { ε } � Qx(x = x) since there is a team X = A(x) such that
M, X � x = x .

For this reason let us, for now, restrict the definitions to monotone quantifiers.
We do not however need to restrict to type 〈1〉 as the definition easily can be extended

to all quantifiers of type 〈k〉:

M, X � Qx̄ϕ iff there exists F : X → Q such that M, X [F/x̄] � ϕ.

Here X [F/x̄] is the team { s[a1/x1, . . . ak/xk] | s ∈ X, 〈a1, . . . ak〉 ∈ F(s) }.
The following easy proposition suggests that we indeed have the right truth condi-

tion, at least for monotone quantifiers of type 〈1〉. Given some language L let L(Q)
the set of first order formulas in that language extended with the generalized quantifier
Q.

123



Generalized Quantifiers in Dependence Logic 309

Proposition 2.4 Below, let Q be a monotone quantifier of type 〈1〉.
(1) L(∃)(X ) = { Y | ∃ f : Y → M s.t. Y [ f ] ∈ X }.
(2) L(∀)(X ) = { Y | Y [M] ∈ X }.
(3) For L(Q)-formulas ϕ and teams X,M, X � ϕ iff for all s ∈ X,M, s � ϕ.
(4) For L(Q)-sentences σ,M, ε � σ iff M, { ε } � σ .8

(5) L(Q1 Q2) = L(Q1) ◦ L(Q2), where Q1 Q2 is the iteration (product) of Q1 and
Q2 and L(Q1) ◦ L(Q2) is just the ordinary composition of functions (observe
that this equality is really an infinite conjunction of equalities since L(Q) is a
family of functions).

Proof (1) The right-to-left inclusion is immediate using Proposition 2.2. The other
inclusion follows from the fact that if Y [F] ∈ X and f : Y → M is such that
f (ā) ∈ F(ā) for each ā ∈ Y then Y [ f ] ⊆ Y [F] ∈ X and thus Y [ f ] ∈ X .

(2) Any function F : X → ∀ has to be the constant function taking s to M . Thus
L(∀)(X ) = { Y | Y [M] ∈ X } follows from Proposition 2.2.

(3) The argument is an induction on the formula ϕ, the only non trivial case being
when ϕ is Qxψ . If M, X � Qxψ then there is a function F : X → Q such that
M, X [F/x] � ψ , which means that for each s ∈ X there is a set F(s) ∈ Q such that
F(s) ⊆ ψM,s , where ψM,s = { a ∈ M | M, s[a/x] � ψ }. By the monotonicity of Q
we haveψM,s ∈ Q and thus that M, s � Qxψ for every s ∈ X . For the other direction
suppose M, s � Qxψ for every s ∈ X , and let F(s) be ψM,s .

(4) Follows directly from (3).
(5) By unwinding the definitions we get

L(Q1) ◦ L(Q2)(X ) = L(Q1)({ Y | ∃F : Y → Q2 s.t. Y [F] ∈ X })
= { Z | ∃G : Z → Q1 s.t. ∃F : Z [G] → Q2, Z [G][F] ∈ X }
= { Z | ∃H : Z → Q1 Q2 s.t. Z [H ] ∈ X } .

The left to right inclusion in the last equality comes from the fact that if such F
and G exist then we can define H(s) to be

{ 〈a, b〉 | a ∈ G(s), b ∈ F(s, a) } ∈ Q1 Q2

and then Z [H ] = Z [G][F]. For the other inclusion assume that such an H is given
and let a ∈ G(s) if H(s)a ∈ Q2 and F(s, a) = H(s)a , then F : Z → Q1,G :
Z [F] → Q2 and Z [G][F] ⊆ Z [H ] ∈ X . ��

2.1 Quantifiers and Dependence

Proposition 2.4 states that the truth condition for generalized quantifiers in the Hod-
ges setting behaves nicely when applied to formulas without dependence atoms. The
reason for introducing generalized quantifiers in Hodges semantics however is to use

8 Observe that M, ε � σ uses the ordinary Tarskian truth conditions, but M, { ε } � σ Hodges semantics.

123



310 F. Engström

them with dependencies. Let us see how well they handle relations of dependences
and independences.

First let us try to see what happens if we introduce the dependence atom of Depen-
dence logic into our logic. If Q contains no singletons and not the empty set then

M � Qx([→x] ∧ x = x)

as long as X is non-empty.9 This is counterintuitive since the sentence Qx([→x]∧x =
x) should be equivalent to Qx x = x . There are also problems with the notion of defin-
ability as the next example shows

Assume that Q is definable by a first order sentence σ with P as the only unary
predicate. This means that

M � Qxϕ iff M � σ [ϕ/P]

for all first order formulas ϕ such that no free variables of ϕ occur in σ .10 It would be
natural to think that σ also defines Q in Dependence logic. However if Q = ∃≥2, σ is

∃x∃y(x �= y ∧ Px ∧ Py),

and ϕ is [→z], then �� ∃≥2zϕ. But for any |M | > 1,M � σ [ϕ/P]. Thus, introducing
dependence atoms into the language seems to destroy nice properties of the logic.
However, we think that the dependence atom should take the blame for this, and not
the truth condition for the generalized quantifier.

There are two different solutions for handling dependencies in the setting with
generalized quantifiers. Either one redefines the dependence atom, or one skips depen-
dence as an atomic property altogether and define slashed and/or backslashed versions
of the generalized quantifiers, very much as is done in DF- and IF-logic. Let us start
with the latter suggestion and postpone the definition of a new dependence atom until
Sect. 3.

M, X � Qx\ȳ ϕ iff there exists F : X → Q such that

M, X [F/x] � ϕ and F depends only on the values of ȳ.

Or slightly more formally:

Definition 2.5 M, X � Qx\ȳϕ iff there exists

G : X�ȳ → Q such that M, X [G/x] � ϕ,

where s�ȳ = { 〈v, a〉 | 〈v, a〉 ∈ s, v ∈ ȳ } , X�ȳ = { s�ȳ : s ∈ X } and X [G/x] =
X [F/x] where F(s) = G(s�ȳ).

9 [→x] is a short-hand for [∅→x], i.e., the statement that x is constant.
10 σ [ϕ/P] is σ with all occurences of P(x1, . . . , xk ) replaced by ϕ(x1, . . . , xk ).

123



Generalized Quantifiers in Dependence Logic 311

We also define M, X � Qx/ȳ ϕ in the obvious way: iff there exists

F : X�(dom(X) \ ȳ) → Q

such that M, X [F/x] � ϕ.
Let us denote first order logic with the generalized quantifiers Q by SBL(Q) when

we allow both slashed and backslashed versions of the quantifiers ∃,∀, and Q. Note that
we can translate backslashed quantifiers into formulas where we only allow slashed
ones, and vice versa. However, these translations are not compositional and therefore
we include both slashed and backslashed quantifiers in the logic SBL(Q).

Proposition 2.6 Let Q be a monotone quantifier of type 〈k〉.SBL(Q) is closed under
taking subteams, i.e., if M, X � ϕ and Y ⊆ X then M,Y � ϕ for all formulas ϕ in
SBL(Q).

Proof Easily seen by checking the truth conditions of the slashed and the backslashed
quantifiers. ��

Observe that

∃F : X → ∃M s.t. X [F/x] ∈ X and F only depends on ȳ

iff

∃ f : X → M s.t. X [ f/x] ∈ X and f only depends on ȳ,

for every down set X , making this new definition of ∃x\ȳ compatible with the old
one. Also, it is easy to see that both conditions are equivalent to the corresponding
sentence in Dependence logic:

Proposition 2.7 Let Q be a monotone quantifier of type 〈k〉 and ϕ a formula in
SBL(Q) then

M, X � ∃x([ȳ→x] ∧ ϕ) iff M, X � ∃x\ȳ ϕ.

Let Q1 and Q2 be monotone quantifiers of type 〈k〉 and 〈l〉 respectively, then

Br(Q1, Q2) = { (M, R) | R ⊆ Mk+l , ∃A∈Q1 ∃B∈Q2 : A × B ⊆ R } .

The next proposition states that Q1 x̄ Q2 ȳ/x̄ has the intended meaning Br(Q1, Q2)

Proposition 2.8 If Q1 and Q2 are monotone quantifiers of type 〈k〉 and 〈l〉 respec-
tively, then

M, X � Br(Q1, Q2)x̄ ȳ ϕ iff M, X � Q1 x̄ Q2 ȳ/x̄ ϕ,

where ϕ is in SBL(Q1, Q2).

123



312 F. Engström

Proof To simplify notation we only prove this in the case that k = l = 1. Assume that
M, X � Br(Q1, Q2)xy ϕ, i.e., there if H : X → Br(Q1, Q2) such that M, X [H ] � ϕ.
For s ∈ X define F(s) = A and G(s) = B where A ∈ Q1 and B ∈ Q2 are such
that A × B ⊆ H(s). Now X [F][G] ⊆ X [H ] and since SBL(Q1, Q2) is closed under
taking subteams we have that X [F][G] � ϕ. The functions F and G witness that
M, X � Q1x Q2 y/x ϕ.

On the other hand if there are such F and G witnessing that M, X � Q1x Q2 y/x ϕ
let H(s) = F(s) × G(s). Then X [H ] = X [F][G] and so H witnesses that M, X �
Br(Q1, Q2)xy ϕ. ��

Thus, the slashed and backslashed quantifiers seem to have the intended meanings.
One oddity arises with the universal quantifier: In Dependence logic we have that
M � ∀x([→x] ∧ ϕ) for every structure M with at least two elements. However with
the backslashed universal quantifier we have that

M � ∀x\ε ϕ ↔ ∀xϕ.

Thus, the constructions ∃x\ε and ∃x([→x] ∧ ·) are equivalent, however the anal-
ogous constructions ∀x\ε and ∀x([→x] ∧ ·) are not equivalent.

2.2 Non-monotone Quantifiers

The truth condition for monotone quantifiers cannot be extended to non-monotone
quantifiers as we have previously seen. However, with a slight twist the truth condi-
tion can actually be extended.

In the Tarskian setting we say that M � Qxϕ iff �ϕ� ∈ Q. When Q is monotone
(increasing) this is equivalent to demanding that there is some set A ⊆ �ϕ� such that
A ∈ Q, a fact we used for the truth conditions in the Hodges setting. When dealing
with non-monotone quantifiers Q we need, apart from that there is a set A ⊆ �ϕ� such
that A ∈ Q, also that it is the largest set satisfying A ⊆ �ϕ�.

Translating this into the Hodges setting we need to say not only that M, X [F/x] � ϕ
but also that F is a maximal function for which this holds. However, there might not
be a maximal F such that X [F/x] satisfies ϕ. Instead we demand that there should be
one F such that X [F/x] satisfies ϕ and such that every larger F such that X [F/x] also
satisfies ϕ is mapping X into Q. Let us try to formalize this in the following definition:

Definition 2.9 Given F, F ′ : X → P(M) let F ≤ F ′ if for every s ∈ X : F(s) ⊆
F ′(s). Let Q be a type 〈1〉 quantifier. Then M, X � Qxϕ if there is F : X → P(M)
such that

(1) M, X [F/x] � ϕ and
(2) for each F ′ ≥ F if M, X [F ′/x] � ϕ then for all s ∈ X : F(s) ∈ Q.

We call the second condition on F the largeness condition since it forces the func-
tion F to take large sets as values.

123



Generalized Quantifiers in Dependence Logic 313

This definition generalizes to other types of quantifiers as in the case of monotone
quantifiers. If Q is of type 〈k〉 then M, X � Qx̄ϕ iff there is F : X → P(Mk)

satisfying (slight variants of) the two conditions above.
This largeness condition we have added is quite similar to Sher’s maximality prin-

ciple for the branching of non-monotone quantifiers, see Sher (1990). However, as we
will see, the above condition gives rise to a slightly stronger notion of branching than
the one proposed by Sher.

We can clearly add this largeness condition to slashed and backslashed non-mono-
tone quantifiers: M, X � Qx/ȳ ϕ if there is a witness F : X → P(M) to M, X �
Qxϕ where F is independent of the values of ȳ. Observe here that demanding F to
be a witness for the statement M, X � Qx ϕ means that F is large with respect to all
functions F ′ : X → P(M) and not only those that are determined by the values of
ȳ. We define M, X � Qx\ȳ ϕ in a similar manner.

Proposition 2.10 For Q monotone the truth condition with the largeness condition
in Definition 2.9 is equivalent to the old condition without the largeness condition.

Proof Obvious since if there is F : X → Q and F ′ ≥ F then F ′(s) ∈ Q for all s ∈ X
by the monotonicity of Q. ��
Proposition 2.11 If ϕ is an L(Q)-formula then

M, X � ϕ iff for all s ∈ X : M, s � ϕ.

Proof The proof is by induction. We only need to check the induction step for the
quantifier Q. Assume M, X � Qxϕ. Let F be such that X [F/x] � ϕ and satisfying
the largeness condition, and let s ∈ X . By the induction hypothesis we have that for all
a ∈ F(s) : M, s[a/x] � ϕ. Therefore F(s) ⊆ �ϕ�M,s and by the largeness condition
on F we know that �ϕ�M,s ∈ QM and therefore M, s � Qxϕ.

On the other hand if for all s ∈ X : M, s � ϕ, then we let F(s) = �ϕ�M,s . It
is clear that F(s) ∈ QM for all s ∈ X and also that there cannot be any F ′ > F
such that M, X [F ′/x] � ϕ since that would violate the definition of F . Therefore
M, X � Qxϕ. ��
Definition 2.12 ( Sher 1990 ) A cartesian product A×B is maximal in R if A×B ⊆ R,
no A′

� A satisfies A′ × B ⊆ R and no B ′
� B satisfies A × B ′ ⊆ R.

Let the branching of two type 〈1〉 quantifiers Q1 and Q2,BrS(Q1, Q2) be the type
〈2〉 quantifier

{ (M, R) | R ⊆ M2, ∃A∈Q1∃B∈Q2 : A × B is maximal in R } .

Lemma 2.13 If R /∈ BrS(Q1, Q2) then for every A ∈ Q1 and B ∈ Q2 if A × B ⊆ R
there is either

(1) A′ ⊇ A such that A′ /∈ Q1 and A′ × B ⊆ R, or
(2) B ′ ⊇ B such that B ′ /∈ Q2 and A × B ′ ⊆ R.

123



314 F. Engström

Proof Suppose not and let A0 be the union of all A′ ⊇ A such that A′ × B ⊆ R. Then
A0 × B ⊆ R, and by the assumption A0 ∈ Q1. Let B0 be the union of all B ′ ⊇ B such
that A0 × B ′ ⊆ R. Then A0 × B0 ⊆ R and thus A × B0 ⊆ R and by the assumption
B0 ∈ Q2.

A0 × B0 is maximal in R by construction, hence R ∈ BrS(Q1, Q2) contradicting
the assumption. ��
Proposition 2.14 Suppose that ϕ is such that �ϕ� is closed downwards (ϕ could for
example be a formula of L(Q) or of Dependence logic). If M, X � Q1x Q2 y/xϕ then
M, X � BrS(Q1, Q2)xyϕ.

Proof Assume that M, X � Q1x Q2 y/xϕ, i.e., that there are F,G : X → P(M)
satisfying the relevant largeness condition. To prove that M, X � BrS(Q1, Q2)xyϕ
we need to find an H : X → P(M2) witnessing the truth condition. Let H(s) =
F(s)×G(s). We need to prove that (1) M, X [H/xy] � ϕ and (2) that for any H ′ ≥ H
such that M, X [H ′/xy] � ϕ we have that H ′(s) ∈ BrS(Q1, Q2).

(1) Since X [H/xy] = X [F/x][G/y]; M, X [H/xy] � ϕ follows from the assump-
tion that

M, X [F/x][G/y] � ϕ.

(2) Assume that H ′ ≥ H,M, X [H ′/xy] � ϕ and H ′(s0) /∈ BrS(Q1, Q2) for some
s0 ∈ X . By the lemma we either have A /∈ Q1 such that

F(s0)× G(s0) ⊆ A × G(s0) ⊆ H ′(s0)

or B /∈ Q2 such that

F(s0)× G(s0) ⊆ F(s0)× B ⊆ H ′(s0).

First assume that we have such a B. Then G does not satisfy the largeness condition,
i.e., that for every G ′ ≥ G if M, X [F/x][G ′/y] � ϕ then G ′(s) ∈ Q2 for all s ∈ X ,
this is because we could define G ′ as G except that G ′(s0) = B.

On the other hand suppose we have such an A and let F ′ be as F except that
F ′(s) = A. Then F ′ ≥ F and if we prove that M, X [F ′/x] � Q2 y/x ϕ that contra-
dicts the largeness of F since F ′(s0) /∈ Q1. Since X [F ′/x][G/y] ⊆ X [H ′/xy] and
M, X [H ′/xy] � ϕ we have that M, X [F ′/x][G/y] � ϕ. We also need to prove that
G satisfies the largeness condition. Let G ′ ≥ G be such that M, X [F ′/x][G ′/y] � ϕ,
then M, [F/x][G ′/y] � ϕ and since G satisfies the largeness condition for X [F/x]
we know that G ′(s) ∈ Q2 for all s ∈ X , proving the largeness condition for G with
X [F ′/x]. ��

We leave the question as wether the proposition holds for general formulas ϕ open.

Question 1 Is Proposition 2.14 also true for formulas ϕ such that �ϕ� is not a down
set?

123



Generalized Quantifiers in Dependence Logic 315

Fig. 1 Example of a relation R satisfying BrS(∃=1, ∃)xy and ∃y∃=1x/y but not ∃=1x∃y/x

The implication in the other direction is in general false as the following example
shows. Let

R = { 〈0, 0〉 } ∪ ({ 0, 1 } × { 1, 2 })

where 0, 1, 2 ∈ M , see Fig. 1. Then

(M, R) � BrS(∃=1, ∃)xy R(x, y)

since { 0 }×{ 0, 1, 2 } is maximal in R and { 0 } is in ∃=1 and { 0, 1, 2 } is in ∃. However,

(M, R) � ∃=1x∃y/x R(x, y)

since to get (M, R), A × B � R(x, y), A ∈ ∃=1 and B �= ∅, we are forced to choose
A = { 0 } or A = { 1 }. But then the largeness condition for A is not satisfied.

This example also shows that in general the two quantifier prefixes Q1x Q2 y/x and
Q2 yQ1x/y are not equivalent:

(M, R) � ∃=1x∃y/x R(x, y)

but

(M, R) � ∃y∃=1x/y R(x, y).

We end this section with two open questions regarding this pathology.

Question 2 Are there natural conditions under which the prefixes Q1x Q2 y/x and
Q2 yQ1x/y are equivalent?

Question 3 Are there other truth conditions for non-monotone quantifiers (and
slashed versions) such that

(1) for monotone quantifiers the truth conditions coincide with the ones for the mono-
tone case,

(2) for formulas of L(Q) we have M, X � ϕ iff for all s ∈ X : M, s � ϕ, and
(3) the prefixes Q1x Q2 y/x and Q2 yQ1x/y are equivalent?

Our proposed truth conditions satisfy (1) and (2), but not (3).

123



316 F. Engström

3 Dependence as an Atom

Let us now investigate the possibility of defining a new dependence atom D(x̄, y)
giving the intended meaning Qy\x̄ ϕ to expressions of the form Qy(D(x̄, y) ∧ ϕ).
First we observe that there is no way of doing this if we want to keep the property of
the logic being closed under taking subteams. The following argument shows this.

Assume that D(x, y) is an atom closed under subteams satisfying that

� ∀x∃≥3 y
(
D(x, y) ∧ R(x, y)

) ↔ ∀x∃≥3 y\ε R(x, y).

Fix M = { 0, 1, 2 }, then

(M,M2) � ∀x∃≥3 y\ε R(x, y).

Thus, X = [M2/x, y] has to satisfy D(x, y). By the downward closure of D, we
have that the team

X = [S/x, y], where S = ({ 0, 1 } × { 0, 1 }) ∪ ({ 2 } × { 1, 2 }), (1)

satisfies the atom D and thus that

(M, S) � ∀x∃≥2 y(D(x, y) ∧ R(x, y)),

however

(M, S) �� ∀x∃≥2 y\ε R(x, y).

This argument shows that no atom D(x, y) closed under taking subteams can have
the intended effect on both the quantifiers ∃≥2 and ∃≥3.

However, by abandoning the property that truth is closed under subteams we can
define an atom satisfying the right equivalences. To get the mind on the right track let
us go back and take a look at the formula Q1x Q2 y ϕ and its translation into existential
second order logic with Q1 and Q2 as second order predicates:

∃X
(
Q1(X) ∧ ∀x∈X∃Y

(
Q2(Y ) ∧ ∀y∈Yϕ

))
.

In this translation it is clear that the variable Y depends on the variable x . Thus
a quantifier prefix like Q1x Q2 y gives rise to a dependence in which the value of x
determines the set Y of possible values for y. The new dependence atom, which we
denote by

[
x1 . . . , xk�xk+1

]
, tries to capture this type of dependence in which the set

of possible values of xk+1 is determined by the values of the variables x1, . . . , xk . We
formalize this idea, but first we need a little bit of notation to work with.

Let X ȳ
s , for s ⊆ s′ ∈ X and ȳ ∈ dom(X), be the set of possible values of ȳ given

s, in other words:

123



Generalized Quantifiers in Dependence Logic 317

Definition 3.1 Given a team X , variables ȳ ∈ dom(X) and s ⊆ s′ for some s′ ∈ X ,
let

X ȳ
s = { s′(ȳ) | ∃s′ ∈ X, s ⊆ s′ } .

As an example let X be as in (1) and s : x �→ 1 then X y
s = { 0, 1 } and if s′ : x �→ 2

then X y
s′ = { 1, 2 }.

Definition 3.2 Assume x̄, ȳ ∈ dom(X), then

• M, X � [x̄�ȳ] iff for all s ∈ X, X ȳ
s�x̄ = X ȳ

s�x̄ z̄ , where z̄ = dom(X) \ { x̄, ȳ }.
• M, X � ¬ [x̄�ȳ] iff X = ∅.

In fact, this is functional dependence for set-valued functions: Assume that we want
to check whether M, X � [x̄�ȳ] or not. Let F map s ∈ X�x̄, z̄ to the set of possible
values of ȳ, X ȳ

s . Then M, X � [x̄�ȳ] iff F(s) is determined by the values s(x̄).
Next we give an equivalent definition for [x̄�ȳ] this time as a first order property

of X .

Proposition 3.3 M, X � [x̄�ȳ] iff

∀s, s′∈X
(

s(x̄) = s′(x̄) → ∃s0∈X
(
s0(x̄, ȳ) = s(x̄, ȳ) ∧ s0(z̄) = s′(z̄)

))
,

where { z̄ } = dom(X)\{ x̄, ȳ }.

Proof Assume M, X � [x̄�ȳ] and s, s′ ∈ X such that s(x̄) = s′(x̄). Then X ȳ
s�x̄ z̄ =

X ȳ
s′�x̄ z̄ . Clearly s(ȳ) ∈ X ȳ

s�x̄ z̄ and thus s(ȳ) ∈ X ȳ
s′�x̄ z̄ which means that there is s0 ∈ X

such that s0 ⊇ s′�x̄ z̄ and s0(ȳ) = s(ȳ), i.e., that s0(x̄, z̄) = s′(x̄, z̄) and s0(ȳ) = s(ȳ).
For the other implication let s ∈ X , we show that X ȳ

s�x̄ = X ȳ
s�x̄,z̄ . It should be

clear that X ȳ
s�x̄ ⊇ X ȳ

s�x̄,z̄ , so let ā ∈ X ȳ
s�x̄ . Then there is s′ ∈ X such that s′ ⊇ s�x̄

and s′(ȳ) = ā. By assumption there is a s0 ∈ X such that s0(x̄, ȳ) = s′(x̄, ȳ) and
s0(z̄) = s(z̄), or in other words s0 ⊇ s�x̄, z̄ and s0(ȳ) = ā, i.e., that ā ∈ X ȳ

s�x̄,z̄ . ��

The dependence relation [x̄�ȳ] is what database theorists call multivalued depen-
dence, see Beeri et al. (1977).

By some easy calculations we find that any X satisfying both [x̄�y] and [x̄, y�z]
also satisfies [x̄�y, z], i.e.,

[x̄�y] , [x̄, y�z] � [x̄�y, z] .11

11 Here, by � � ϕ we mean that for every model M and team X , whose domain includes at least all free
variable of � and ϕ, if M, X � γ for all γ ∈ � then also M, X � ϕ.

123



318 F. Engström

However it is not in general the case that an X satisfying [x̄�y, z] satisfies [x̄�y],
cf., the case of functional dependence where [x̄→y]∧[x̄→z] is equivalent to [x̄→y, z].
Here by M, X � [x̄→ȳ] we mean

∀s, s′ ∈ X
(
s(x̄) = s′(x̄) → s(ȳ) = s′(ȳ)

)
.

It should also be noted that in the case of functional dependence the dependence
atom is not dependent on context in the sense that

M, X � [x̄→ȳ] iff M, X�x̄, ȳ � [x̄→ȳ] ,

where X�x̄ is the team { s�x̄ | s ∈ X }. However multivalued dependencies are depen-
dent on context as the following easy examples shows. M, X�x � [�x] is always true
disregarding what X is. On the other hand if s(x) = s(y) = 0 and s′(x) = s′(y) = 1
then M, { s, s′ } � [�x].

There is a close connection between lossless decomposition of databases and mul-
tivalued dependencies: Let X �� Y be the natural join of the teams X and Y , i.e.,

X �� Y = { s : dom(X) ∪ dom(Y ) → M | s�dom(X) ∈ X and s�dom(Y ) ∈ Y } .

Proposition 3.4 (Fagin 1977)

X � [x̄�ȳ] iff X = (X�x̄ ȳ) �� (X�x̄ z̄),

where z̄ is dom(X) \ { x̄, ȳ }.

Observe that it follows that M, X � [�ȳ] iff there are teams Y and Z such that

dom(Y ) = { ȳ } , dom(Z) = dom(X) \ { x̄, ȳ } , and X = Y �� Z .

In this case, when dom(Y ) and dom(Z) are disjoint, the natural join of Y and Z is
nothing more than the cartesian product.

Next we prove that the functional dependence may be replaced be multivalued
dependence in a certain well-behaved syntactical fragment of Dependence logic. This
fragment is as expressive as full Dependence logic at the level of sentences.

Proposition 3.5 Let Q be monotone of type 〈1〉 and σ a sentence in SBL(Q) with
no slashed quantifiers, then the resulting sentence σ� in which all occurrences of
Qy\x̄ ϕ are replaced by Qy([x̄�y] ∧ ϕ) is equivalent to σ .

Proof We prove the more general statement that for every formulaψ of SBL(Q)with
no slashed quantifiers, the resulting formula ψ� in which all occurrences of Qy\x̄ ϕ
are replaced by Qy([x̄�y] ∧ ϕ) is equivalent to ψ . The proof is by induction on
the formula ψ . The only non trivial case is when ψ is Qy\x̄ ϕ. Then M, X � ψ

123



Generalized Quantifiers in Dependence Logic 319

iff there is F : X → Q such that M, X [F/y] � ϕ and F(s) is determined by the
values s(x̄).

M, X � Qy([x̄�y] ∧ ϕ�) iff ∃F : X → Q s.t. M, X [F/y] � ϕ�,
and M, X [F/y] � [x̄�y] .

Now M, X [F/y] � [x̄�y] iff X [F/y]y
s�x̄ = X [F/y]y

s�x̄ z̄ for every s ∈ X . However

X [F/y]y
s�x̄ z̄ = F(s),

so the result follows from the induction hypothesis. ��
It should be clear that if for all s �= s′ ∈ X there is x ∈ dom(X) \ { y } such that

s(x) �= s′(x), i.e., X (x̄, y) is (the graph of) a partial function Mk → M , then

M, X � [x̄→y] iff M, X � [x̄�y] .

Thus, if y is existentially quantified in a sentence of Dependence logic σ then the
resulting team X can be assumed to have this property and thus [x̄→y] and [x̄�y]
are interchangeable in the following restricted way:

Definition 3.6 A Dependence logic formula ϕ is normal if [x̄→y] only occurs as
∃y([x̄→y] ∧ ψ).
Proposition 3.7 If ϕ is normal and ϕ′ is the result of replacing atoms [x̄→y] by
[x̄�y] in ϕ, then for every M and X

M, X � ϕ iff M, X � ϕ′.

Proof Easy induction. ��
This means that under restricted use of the dependence atom we can use either [→]

or [�]. Since every sentence of Dependence logic can be expressed by a sentence
in DF-logic and those in turn can be expressed by a normal sentence of Dependence
logic, we know that the fragment of normal sentences is as strong as full Dependence
logic.

Let us call Dependence logic in which [�] is used instead of [→] for Multivalued
Dependence logic or MVDL for short.

The truth definition of M, X � [x̄�y] is first order in X , see Proposition 3.3, and
thus for every formula ϕ in MVDL there is a sentence σ(R) in ESO such that

M, X � ϕ iff (M, X) � σ(R).

That means that MVDL is at most as strong as existential second order logic (when
it comes to sentences) and thus as Dependence logic. Also, by translating sentences
of Dependence logic into normal sentences and then replacing the functional depen-
dence atom with the multivalued dependence atom we get a sentence of MVDL which

123



320 F. Engström

is equivalent to the original Dependence logic sentence. Thus, MVDL, Dependence
logic and ESO are all of the same strength on the level of sentences.

Recently Galliani proved that MVDL is exactly as strong as existential second order
logic also on the level of formulas:

Proposition 3.8 (Galliani 2011) Let X be a set of teams on a model M, then the
following are equivalent:

• There is a formula ϕ of MVDL such that X = �ϕ�M .
• There is a sentence of existential second order logic, ESO, σ such that X ∈ X iff
(M, X (x̄)) � σ .

Remember that X (x̄) is the relation corresponding to the team X .

3.1 Multivalued Dependence, Independence and Completeness

In a recent paper by Grädel and Väänänen (2011) independence atoms are introduced:

M, X � ȳ ⊥x̄ z̄ iff

∀s, s′∈X
(

s(x̄) = s′(x̄) → ∃s0∈X
(
s0(x̄, ȳ) = s(x̄, ȳ) ∧ s0(z̄) = s′(z̄)

))
.

This atom also applies to terms t̄ ⊥s̄ t̄ ′ by a slight change of the definition.
As easily seen, we have

M, X � [x̄�ȳ] iff M, X � ȳ ⊥x̄ z̄

where z̄ = dom(X) \ { x̄, ȳ }. The logic we get when adding independence atoms to
first order logic is called Independence logic.

The independence relation introduced by Grädel and Väänänen is in the database
theory community known as the embedded multivalued depencency. It is usually
denoted by [x̄�ȳ|z̄].

Let us use the notation D � ϕ, where D is a (finite) set of dependence atoms
(functional, multivalued or embedded multivalued) and ϕ is a single dependence atom
(of the same kind) to mean that any team X (over any domain) satisfying all the
dependencies in D also satisfies ϕ. It is well known that functional dependence is
axiomatizable:

Proposition 3.9 (Armstrong 1974) If D ∪{ϕ } is a finite set of functional dependence
atoms then D � ϕ iff ϕ is derivable from D with the following inference rules:

• Reflexivity: If ȳ ⊆ x̄ then [x̄→ȳ].
• Augmentation: If [x̄→ȳ] then [x̄, z̄→ȳ, z̄].
• Transitivity: If [x̄→ȳ] and [ȳ→z̄] then [x̄→z̄].

A complete axiomatization of multivalued dependence is also possible as was shown
by Beeri et al.:

123



Generalized Quantifiers in Dependence Logic 321

Proposition 3.10 (Beeri et al. 1977) Let U be a finite set of variables, D ∪ {ϕ } a
finite set of multivalued dependence atoms over the variables in U. Then D � ϕ iff ϕ
is derivable from D with the following inference rules:

• Complementation: If x̄ ∪ ȳ ∪ z̄ = U, ȳ ∩ z̄ ⊆ x̄ , and [x̄�ȳ] then [x̄�z̄]
• Reflexivity: If ȳ ⊆ x̄ then [x̄�ȳ].
• Augmentation: If [x̄�ȳ] then [x̄, z̄�ȳ, z̄].
• Transitivity: If [x̄�ȳ] and [ȳ�z̄] then [x̄�z̄ \ ȳ].12

We are assuming that all x̄, ȳ, and z̄ are variables in U.

However the embedded multivalued dependency is not axiomatizable as was shown
by Sagiv and Walecka in the following sense:

Proposition 3.11 (Sagiv and Walecka 1982) There is no finite set of inference rules,
where each inference rule is a recursive set of k-tuples of embedded multivalued
dependencies, axiomatizing the consequence relation D � ϕ for embedded multi-
valued dependencies.

This answers an open question stated in Grädel and Väänänen (2011).
Galliani recently observed that X � t̄ ⊥s̄ t̄ ′ iff

X � ∃x̄ ȳ z̄
(
x̄ = s̄ ∧ ȳ = t̄ ∧ z̄ = t̄ ′ ∧ ∀ū [x̄�ȳ]

)
,

where ū is the domain of X . Thus, we get the following proposition.

Proposition 3.12 (Galliani 2011) The multivalued Dependence logic has the same
strength as Independence logic, even at the level of formulas.

Thus the definable sets of teams of both Independence logic and multivalued
Dependence logic is exactly the sets of teams definable by existential second order
sentences.

4 Conclusion and Discussion

In this paper we have given truth conditions for monotone generalized quantifiers
in logics using team semantics in such a way that the meaning of L(Q)-formulas
remain the same when moving to team semantics, i.e., a team satisfies a formula
of L(Q) iff every assignment in the team satisfies the formula. It is also shown
that the truth conditions in a natural way can be extended to deal with relations of
dependence and independence between the quantifiers, in such a way that branch-
ing of two quantifiers Q1 and Q2 can be expressed by a linear quantifier prefix:
Q1x Q2 y/x .

We also gave truth conditions for non-monotone quantifiers by using an idea
from Sher in (1990) to add a largeness or maximality condition. For this condi-
tion the quantifier prefix Q1x Q2 y/x comes close to the branching BrS(Q1, Q2)xy

12 Here z̄ \ ȳ is the set difference, i.e., the set of all variables in z̄ not in ȳ.

123



322 F. Engström

defined in Sher (1990), but they are not equivalent: In the prefix Q1x Q2 y/x the
second quantifier depends on the first in a weak sense, however in the case of
BrS(Q1, Q2)xy there is full symmetry in the sense that BrS(Q1, Q2)xy is equivalent to
BrS(Q2, Q1)yx .

Is there some way of treating the maximaility principle of Sher, BrS(Q1, Q2), in
a compositional way in the framework used in this paper? Can other proposed prin-
ciples, e.g. the one in Westerståhl (1987), of branching in the non-monotone case be
handled compositional in the same way?

The question of whether the notion of dependence and independence of (monotone)
quantifiers can be handled on the atomic level is answered positively in the paper.
However, the notion of dependence is not the functional dependence of Dependence
logic, but rather a new kind of dependence atom, called multivalued dependence. This
atom is not closed under taking subteams, but can be used to express branching of
generalized quantifiers, which the functional dependence atom cannot: Br(Q1, Q2)xy
is equivalent to Q1x Q2 y([�y] ∧ . . .).

If a monotone quantifier Q is definable in ESO, i.e., there is an ESO sentence σ
such that M � σ iff M ∈ Q, then it is easy to see that the strength on sentence level
of the logic SBL(Q) is just the strength of existential second order logic, ESO. This
comes from the fact that SBL ≡ ESO and by observing that for any formula ϕ of
SBL(Q) we can find a sentence σ of ESO such that

M, X � ϕ iff (M, X (x̄)) � σ.

This is done by coding the truth conditions ofϕ into the sentenceσ . Thus, SBL(Q)≡
SBL but the translation of SBL(Q) sentences into SBL is non-compositional.

For which quantifiers Q are there compositional translations of SBL(Q) into SBL?
In particular, is there a compositional translation of SBL(Q0) into SBL, where Q0 is
the quantifier “there exists infinitely many”?

Of course we have not answered one of the basic questions regarding our defini-
tion of generalized quantifiers: When introducing a monotone quantifier, which may
not be definable in ESO, into Dependence logic, what is the strength of the resulting
logic?

In connection with investigating the strength of these kinds of logics it might be
worth mentioning Krynicki’s result in (1993) saying that there is a single quantifier
Q of type 〈4〉 such that every IF-logic sentence is equivalent to a sentence of L(Q)
over every structure with a pairing function. Is this also true for SBL(Q), i.e., is there
a single quantifier Q′ such that any sentence of SBL(Q) is equivalent to a sentence of
L(Q′) over any structure with a pairing function?

There is a connection of multivalued dependence with category theory through
pullbacks, or fibered products. Proposition 3.4 gives a characterization of multivalued
dependence in terms of natural join, which in turn has a characterization in terms of
pullbacks:

In the category of teams, where the objects are teams and the morphisms are func-
tions between teams, the natural join of X and Y is the pullback of X and Y over
Z = (X�z̄) ∩ (Y �z̄), where z̄ is dom(X) ∩ dom(Y ). More precisely; let x̄ and ȳ be
dom(X) and dom(Y ) respectively, then the following is a pullback diagram:

123



Generalized Quantifiers in Dependence Logic 323

Thus, by using Proposition 3.4, we see that X � [x̄�ȳ] holds iff the commuting
diagram

where z̄ is dom(X) \ { x̄, ȳ }, is a pullback. This suggests that there might be more,
and deeper, connections between team semantics and category theory.

Acknowledgments The author was partially supported by the EUROCORE LogICCC LINT program
and the Swedish Research Council. The author would like to thank the anonymous referee who in several
ways improved this paper.

References

Abramsky, S., & Väänänen, J. (2009). From IF to BI: A tale of dependence and separation. Synthese,
167(2, Knowledge, Rationality & Action), 207–230.

Armstrong, W. W. (1974). Dependency structures of data base relationships. In: Information processing
74, proceedings of IFIP congress, Stockholm, 1974 (pp. 580–583). Amsterdam: North-Holland.

Barwise, J. (1979). On branching quantifiers in English. Journal of Philosophical Logic, 8(1), 47–80.
Beeri, C., Fagin, R., & Howard, J. (1977). A complete axiomatization for functional and multivalued

dependencies in database relations. In: Proceedings of the 1977 ACM SIGMOD international
conference on Management of data (p. 61).

Davies, M. (1989). Two examiners marked six scripts. Interpretations of numerically quantified sentences.
Linguistics and Philosophy 12(3), 293–323.

Fagin, R. (1977). Multivalued dependencies and a new normal form for relational databases. ACM
Transactions on Database Systems (TODS), 2(3), 262–278.

Galliani, P. (2011). Inclusion and exclusion dependencies in team semantics: On some logics of imperfect
information. ArXiv e-prints.

Gierasimczuk, N., & Szymanik, J. (2009). Branching quantification vs. Two-way quantification. Journal
of Semantics, 26(4), 329–366.

Grädel, E., & Väänänen, J. (2011). Dependence and independence. To be published in Studia Logica.
Henkin, L. (1961). Some remarks on infinitely long formulas. In: Infinitistic methods. Proceedings of

the Symposium. Foundations of Mathematics, Warsaw, 1959 (pp. 167–183). Oxford: Pergamon.
Hintikka, J. (1974). Quantifiers vs quantification theory. Linguistic Inquiry, V, 153–177.
Hodges, W. (1997). Compositional semantics for a language of imperfect information. Logic Journal

of IGPL, 5(4), 539–563.
Hodges, W. (2008). Logics of imperfect information: Why sets of assignments?. In J. van Benthem,

D. Gabbay, & B. Löwe (Eds.), Interactive Logic, selected papers from the 7th Augustus de Morgan
Workshop, London (pp. 117–133).

123



324 F. Engström

Kontinen, J., & Väänänen, J. (2009). On definability in dependence logic. Journal of Logic, Language
and Information, 18(3), 317–332.

Krynicki, M. (1993). Hierarchies of partially ordered connectives and quantifiers. Mathematical Logic
Quarterly, 39(1), 287–294.

Lindström, P. (1966). First order predicate logic with generalized quantifiers. Theoria, 32, 186–195.
Montague, R. (1970). English as a formal language. In: Linguaggi nella società e nella tecnica

(pp. 189–223). Mailand.
Mostowski, A. (1957). On a generalization of quantifiers. Fundamenta Mathematicae, 44, 12–36.
Peters, S., & Westerståhl, D. (2006). Quantifiers in Language and Logic. : Oxford University Press.
Sagiv, Y., & Walecka, S.F. (1982). Subset dependencies and a completeness result for a subclass of embed-

ded multivalued dependencies. Journal of the Association for Computing Machinery, 29(1), 103–117.
Sher, G. (1990). Ways of branching quantifers. Linguistics and Philosophy, 13(4), 393–422.
Väänänen, J. (2007). Dependence logic: A new approach to independence friendly logic, London

Mathematical Society Student Texts (Vol. 70). Cambridge: Cambridge University Press.
Westerståhl D. (1987). Branching generalized quantifiers and natural language. Generalized quantifiers:

Linguistic and logical approaches (pp. 109–150).

123


	Generalized Quantifiers in Dependence Logic
	Abstract
	1 Introduction
	1.1 Generalized Quantifiers and Natural Languages
	1.2 Dependence and Independence in Natural Languages
	1.3 Dependence Logic and Related Logics

	2 Generalized Quantifiers
	2.1 Quantifiers and Dependence
	2.2 Non-monotone Quantifiers

	3 Dependence as an Atom
	3.1 Multivalued Dependence, Independence and Completeness

	4 Conclusion and Discussion
	Acknowledgments
	References


