
J Log Lang Inf (2011) 20:49–68
DOI 10.1007/s10849-010-9126-5

An Event-Based Fragment of First-Order Logic
over Intervals

Savas Konur

Published online: 22 July 2010
© Springer Science+Business Media B.V. 2010

Abstract We consider a new fragment of first-order logic with two variables. This
logic is defined over interval structures. It constitutes unary predicates, a binary pred-
icate and a function symbol. Considering such a fragment of first-order logic is moti-
vated by defining a general framework for event-based interval temporal logics. In this
paper, we present a sound, complete and terminating decision procedure for this logic.
We show that the logic is decidable, and provide a NEXPTIME complexity bound for
satisfiability. This result shows that even a simple decidable fragment of first-order
logic has NEXPTIME complexity.

Keywords Two variable fragments of first-order logic · Interval temporal logics ·
Decidability · Tableau methods

1 Introduction

Propositional interval logics are very expressive temporal logics, with simple, syn-
tax and semantics, which allow one to naturally express statements that refer to time
intervals. They provide a natural framework for temporal representation and reason-
ing. However, many of these logics usually exhibit a bad computational behaviour,
and they are undecidable in most of the cases. The main species of studied propo-
sitional interval temporal logics include Moszkowski’s Propositional Interval Logic
(PITL) (Moszkowski (1983)), Halpern and Shoham’s modal logic of time intervals
(HS) (Halpern and Shoham 1991), Venema’s CDT logic (Venema (1991)) (extended
to branching-time frames with linear intervals by Goranko et al. 2006), and Montanari,
Goranko and Sciavicco’s Propositional Neighborhood Logics (PNL) (Goranko 2003).

S. Konur (B)
Department of Computer Science, The University of Liverpool, Liverpool, L69 3BX, UK
e-mail: konur@liverpool.ac.uk

123

50 S. Konur

In some cases, the full expressive power of interval logics might not be needed.
In such situations, decidability can be obtained through some restrictions. For exam-
ple, there are some contexts where interpretations in which infinitely many statements
(events) hold (occur) in a finite space of time are of no interest. Examples can be
found in computational linguistics. Pratt-Hartmann (2005) and Konur (2008) devel-
oped decidable interval logics of temporal prepositions which are interpreted over
finite models. These logics are convenient for expressing the semantics of natural lan-
guage constructions, and for specifying event-based real-time system requirements.
One important aspects of these logics is that they are genuinely interval-based, and
they do not impose semantic restrictions, such as locality.

Since the logics defined in (Pratt-Hartmann 2005; Konur 2008) are modal logics, a
first-order logic can defined for these logics (and similar types of logics) as a general
framework. In this paper, we define such a framework by studying a new two-vari-
able fragment of first-order logic where unary predicates represent event types, the
only binary predicate represents an interval relation, and the only function symbol
represents the ‘duration’ operation. We call this new logic EF, which is defined over
interval structures. Although it is a simple logic, its genuinely new syntax makes this
logic worth to be explored. Although well-known propositional interval logics, like
HS, CDT, PNL and PITL are very expressive, it can be easily shown that EF cannot
be reduced to these logics (A theoretical analysis of comparing EF to these logics is
outside the scope of this paper).

By studying the logic EF, we are able to investigate a new decidable fragment of
first-order logic (FOL). In the literature, there are various decidable fragments of FOL.
Mortimer (1975) showed that the two-variable fragment of first-order logic (FO2) has
the finite model property, and hence decidable for satisfiability. One of the reasons for
the significance of this result is that many propositional modal logics can be embedded
into FO2 (Grädel and Otto 1999). Recently, the bound on model size has been improved
to locate the complexity of the satisfiability problem for FO2 in NEXPTIME-complete
(Grädel et al. 1997).

In Otto (2001) the satisfiability problem for FO2 is investigated over finite and
infinite linearly ordered and well-ordered domains, as well as over finite and infinite
domains in which one or several designated binary predicates are interpreted as arbi-
trary well-founded relations. It has been shown that FO2 over ordered and well-ordered
domains or in the presence of one well-founded relation, is decidable for satisfiabil-
ity and for finite satisfiability. Actually, the complexity of these decision problems
is NEXPTIME. In contrast, FO2 becomes undecidable for satisfiability and for finite
satisfiability, if a sufficiently large number of predicates is required to be interpreted as
orderings, well-orderings, or as arbitrary well-founded relations. This undecidability
result also entails the undecidability of the natural common extension of FO2.

Andreka et al. (1996) defined the guarded fragment of first-order logic (GF).
The authors dropped the restriction to use only two variables and only monadic and
binary predicates, but insisted that all quantifiers must be relativized (or ‘guarded’)
by atomic formulas. GF is interesting because it extends many propositional modal
logics, because it has useful model-theoretic properties and especially because it is
a decidable class that avoids the usual syntactic restrictions (on the arity of relation
symbols, the quantifier pattern or the number of variables) of almost all other known

123

An Event-Based Fragment of First-Order Logic over Intervals 51

decidable fragments of first-order logic. GF also has the finite model property, i.e.
every satisfiable formula in the guarded fragment also has a finite model.

In van Benthem (1997) the guarded fragment is generalized to the loosely guarded
fragment (LGF) where quantifiers are guarded by conjunctions of atomic formulae of
certain forms. The loosely guarded fragment has very similar properties of the guarded
fragment.

In Grädel (1999), the computational complexity of both guarded and loosely
guarded fragments is investigated. It is proved that the satisfiability problems for the
guarded fragment (GF) and the loosely guarded fragment (LGF) of first-order logic
are complete for deterministic double exponential time. For the subfragments that
have only a bounded number of variables or only relation symbols of bounded arity,
satisfiability is EXPTIME-complete. Grädel (1999) further establishes a tree model
property for both the guarded fragment and the loosely guarded fragment, and gives a
proof of the finite model property of the guarded fragment. It is also shown that some
natural, modest extensions of the guarded fragments are undecidable.

Although the fragments of FOL mentioned above are considered quite expressive
logics and the syntax of the logic EF is relatively simple, the expressive power of EF is
not comparable with the expressive power of these logics. Indeed, EF formulas cannot
be reduced to these fragments, which makes EF original, and worth exploring.

An important point is that EF is interpreted over interval structures endowed with
subinterval relations. Actually, logics of subinterval relations have been studied very
little yet. The study of subinterval structures and logics turns out to be important
because they occupy a region on the very borderline between decidability and unde-
cidability, and since decidability results in that area are preciously scarce, complete
and terminating tableau systems like those constructed in the paper are of particular
interest.

In this paper, we propose a terminating tableau system for EF, thus showing that its
satisfiability problem is decidable. We, indeed, provide a complexity bound for satis-
fiability, showing that this problem can be solved in NEXPTIME. This results shows
that even a simple decidable fragment of first-order logic has NEXPTIME complexity.

The rest of the paper is organized as follows: In Sect. 2 we define syntax and seman-
tics of the logic EF. In Sect. 3 we show how we construct models, and determine a limit
on the size of satisfying models. In Sect. 4 we propose a terminating tableau system
for the logic EF, and show that its satisfiability problem is decidable. We conclude in
Sect. 5 we with some future research directions.

2 The Logic EF

Since the logic EF is a two-variable logic, its formulas contain only two variable sym-
bols, which range over intervals. In the rest of this paper we take an interval to be
a closed, bounded and non-empty subset of the real line. More formally we say that
an interval is a pair [t1, t2] such that t1, t2 ∈ R and t1 ≤ t2. We denote the set of all
intervals {[t1, t2] : t1 ≤ t2 ∧ t1, t2 ∈ R} by I, and we use letters I, J, . . ., as intervals.
It can be simply observed that intervals may be punctual. Note that due to underlying
temporal structure, time in EF is continuous, linear and complete.

123

52 S. Konur

Another feature of EF is that it is interpreted over a linear time flow with only
finitely many events able to occur over a bounded-time interval. EF formulas are eval-
uated relative to time-intervals. Event-types are represented by predicate symbols with
arity one (unary predicate symbols). Having event-types in the syntax of the language
allows us to formalize event-based sentences of a natural language and event-based
system specifications of a real-time system. EF also incorporates the notion of duration
(of an event).

It is also important to mention that we impose some restrictions on the syntax of EF
formulas. One restriction is that we only allow unary predicate symbols, and there is
only one binary predicate symbol, which is S. We do not allow any predicate symbol
whose arity is greater than two. In addition, there is only one unary function symbol,
which is �. We do not allow any function symbol with arity greater than one. Having
these restrictions, formulas of the logic EF are constructed from the following set of
symbols:

− a finite set of temporal variables
− a finite set of predicate symbols
− a function symbol
− a finite set of operators: ¬,∧,∨,→,↔,⊥,	, ∃,∀,=,<,>,≤,≥.
− a finite set of auxiliary symbols: parentheses, comma.
− a countable sets of constant symbols.

Before giving the syntax of the logic EF, we will discuss the following remarks:
First, temporal variables, denoted x, y, z, . . ., range over intervals. Second, unary pred-
icate symbols, denoted e1, e2, e3, . . ., represent event-types. We interpret any unary
predicate e so that it is satisfied by all and only those time intervals over which e
occurs. From now on, we will treat a unary predicate e as an event atom. We will
think of e(J) as the occurrence of e over J (where J is an interval). Third, the binary
predicate symbol S denotes the (non-strict) subinterval relation, which is defined as
follows: [t1, t2] is a non-strict subinterval of [t3, t4] iff t1 ⊆ t3 and t2 ⊆ t4. Finally,
the unary function symbol � denotes the length function which returns the length of
an interval.

In the sequel, let E be a finite set. We refer to elements of E as event atoms.

Definition 1 Let e ∈ E be an event atom, S be a predicate symbol, � be a func-
tion symbol, x, y be temporal variables, k be a constant, ψ be an EF formula, and
τ ∈ {<,≤,=,≥,>}. The logic EF is defined by induction as follows:

− 	 and ⊥ belong to EF;
− The following formulas belong to EF: ∃x(e(x) ∧ S(x, y) ∧ �(x)τk ∧ ψ(x))

∀x(e(x) ∧ S(x, y) ∧ �(x)τk → ψ(x));
− EF is closed under Boolean connectives ¬,∧,∨,→ and ↔.

We assume that a function S ∈ I2 → {	,⊥} is associated with the predicate
symbol S, and a function � ∈ I → R is associated with the function symbol �.

As for the semantics, assume J is a witness for the temporal variable x in Defini-
tion 1, and the free variable y is assigned to I.e(J) means that 〈J, e〉 is an entry in an

123

An Event-Based Fragment of First-Order Logic over Intervals 53

EF model M (see Definition 2). In other words, e(J) returns true if 〈J, e〉 ∈ M, and
false otherwise. S(J, I) returns true if J is a (non-strict) subinterval of I (i.e. J ⊆ I),
and returns false otherwise. Finally, �(I)τk returns true if |I | τk, and false otherwise
(where |I | denotes the length of the interval I).

One important characteristic of EF formulas is the ‘quasi-guarded’ nature of the
quantification they feature. Thus, for example, the formula ∃x(e(x)∧S(x, y)∧�(x) ≥
0) existentially quantifies over intervals satisfying the predicate e (Similarly for uni-
versal formulas). So it does not quantify over all subintervals of the current interval
of evaluation without restriction. However, many modal logics, such as HS and CDT,
lack the ‘quasi-guarded’ character of the quantification that EF formulas feature. This
feature is very important to have a computationally manageable logic.

Before ending this section, we give an example of representing the meaning of a sen-
tence in EF. Consider the sentence “An alarm was sounded”, which asserts that within
the given temporal context, there is an interval over which an alarm was sounded.
Interpreting unary predicate alarm so that it is satisfied by all and only those time
intervals over which an alarm was sounded, we may thus represent the meaning of this
sentence by the formula ∃x(alarm(x)∧ S(x, y) ∧ �(x) ≥ 0). Note that the temporal
context to which the quantification in the sentence above is limited is represented by
the free variable y (which is mapped to an interval).

When we introduce an EF formula using the notation ϕ(x), we mean that x occurs
free in ϕ. Similarly, we use the notation ϕ(y). When a formula has been introduced
as ϕ(x), and we later on write ϕ(y), then this formula stands for the formulas which
is obtained from ϕ by exchanging x and y. Symmetrically, when a formula has been
introduced as ϕ(y) and we later on write ϕ(x), we mean the formula which is obtained
from ϕ by exchanging x and y.

3 Building Models

In this section we show that the depth of an EF model can be polynomially bounded
by the length of a given formula ϕ whose satisfiability is checked. We prove this by
finding a reduced satisfying model, whose depth is bounded by |ϕ|2. This result is
important in determining a limit on the size of a satisfying model.

Definition 2 Let I be the set of all bounded, closed and non-empty intervals of real
numbers, and E be a finite set of event atoms. An EF model M is a finite subset of
I × E . For any J ∈ I and e ∈ E,M (J) and M (e) are defined as follows:

M (e) ≡ {J ∈ I | 〈J, e〉 ∈ M}
M (J) ≡ {e ∈ E | 〈J, e〉 ∈ M}

As can be seen from the construction an EF model, intervals are primitive objects
of the model. Given that ϕ is an EF formula with one free variable, M is an EF model,
and I is an interval, we write M |� ϕ[I] if ϕ holds in M with respect to the variable
assignment that maps the free variable to I . Given two EF formulas ϕ(x) and ϕ′(x),
we say that ϕ(x)entailsϕ′(x) if for all M and I,M |� ϕ[I] implies M |� ϕ′[I].ϕ(x)

123

54 S. Konur

and ϕ′(x) are logically equivalent if ϕ(x) entails ϕ′(x) and ϕ′(x) entails ϕ(x). Given
a set of formulas�, we write M |� �[I] if M |� ϕ[I] for all ϕ ∈ �. � is satisfiable
if for some M and I,M |� �[I].

We remark that the condition in the above Definition 2 that models are finite subsets
of I × E is significant. Because there might be some EF formulas which cannot be
satisfied in a finite model. Consider, for example, the following formula:

∃x(e(x) ∧ S(x, y) ∧ �(x) ≥ 0) ∧
∀x(e(x) ∧ S(x, y) ∧ �(x) ≥ 0 → ∃x ′(e(x ′) ∧ S(x ′, x) ∧ �(x ′) ≥ 0)).

This formula is not satisfiable in a finite model; because it implies that every occur-
rence of e over an interval J requires another e to occur over a subinterval of J .
Therefore, the formula is unsatisfiable in a finite model.

After saying that EF formulas can only be satisfied in a finite model, we now turn
to determining a limit on the size of such a model. In fact, in the next section we will
establish an exponential bound on the size of satisfying models. Below we will prove
that a satisfying model has a polynomial depth bound on the size of the formula; but
before that, we will show how to normalize an EF formula to the desired form.

Lemma 1 Every EF formula is logically equivalent to one in which ¬ appears only
in subformula of the form ⊥(= ¬).
Proof The proof is trivial for ⊥ . In an EF formula ¬ can be moved inwards as follows:

¬∃x(e(x) ∧ S(x, y) ∧ �(x)τk ∧ ψ(x)) ≡ ∀x(e(x) ∧ S(x, y) ∧ �(x)τk → ¬ψ(x))
¬∀x(e(x) ∧ S(x, y) ∧ �(x)τk → ψ(x)) ≡ ∃x(e(x) ∧ S(x, y) ∧ �(x)τk ∧ ¬ψ(x))
where τ ∈ {<,≤,=,≥,>} and τ ′ is the corresponding inverted operator

of τ .1 ��
By means of Lemma we can normalize the forms of EF formulas.

Definition 3 Given an EF formula ϕ and a non-empty model M, the depth of M is
the greatest m for which there exist J1 ⊆ · · · ⊆ Jm such that for all i, 1 ≤ i ≤ m and
for some e ∈ E, 〈Ji , e〉 ∈ M. The depth of an empty model is defined to be 0.

Now we will show that the depth of models can be polynomially bounded by
the length of the formula. The proof relies on finding a reduced satisfying model
M∗ ⊆ M, whose depth is bounded by |ϕ|2, such that M |� ϕ[I] implies M∗ |� ϕ[I]
for a given interval I . Before starting the formal proof, we will give some definitions.

Definition 4 Let ϕ be an EF formula which has the form guaranteed by Lemma 1, e
be an event atom, and J ∈ I be an interval. Assume that M contains only event atoms
involved in ϕ. We define Le (J)as follows:

L (J) = {ψ(x) | ψ(x)is a subformula of ϕ with one free variable s.t. M |� ψ[J]}
Le (J) = L (J) \

⋃
{L (K) | K ⊆ J, 〈K , e〉 ∈ M}

1 For example, ≤ is the corresponding inverted operator of >.

123

An Event-Based Fragment of First-Order Logic over Intervals 55

L (J) records the subformulas of ϕ which are true at an interval J . If we look at
the definition, we can see that Le (J) records the subformulas of ϕ which are true at
an interval J , except the subformulas which are true at some subinterval K of J with
〈K , e〉 ∈ M. We say that a pair 〈J, e〉 ∈ M is redundant if Le (J) = ∅.

Lemma 2 Let the number of symbols in a given EF formula ϕ be denoted by |ϕ|. For
a given model M, and interval I , if M |� ϕ[I], then there exists a model M∗ ⊆ M,
with depth at most O

(|ϕ|2), such that M∗ |� ϕ[I].
Proof Assume that ϕ has the form guaranteed by Lemma 1. Now we will reduce the
model M to M∗ by removing redundant pairs:

M∗ = M\ {〈J, e〉 | 〈J, e〉 is redundant}

Let m be the number of event atoms occurring in ϕ, and n be the number of subfor-
mulas of ϕ. If J ⊆ J ′ such that 〈J, e〉 ∈ M and

〈
J ′, e

〉 ∈ M, then Le (J) and Le
(
J ′)

are disjoint. That is, the length of a chain of the intervals at which e occurs is bounded
by the number of the subformulas of ϕ in which e is mentioned. Therefore, M∗ is
bounded by m (n + 2). Since we know that m < |ϕ| and n < |ϕ|, it easily follows that
the depth of M∗ is bounded by |ϕ|2.

Now by using structural induction on the complexity of ϕ we will show that for
every interval I and every subformula ξ of ϕ,M |� ξ [I] implies M∗ |� ξ [I].

Base Case :
Suppose M |� ξ [I]
ξ = 	 or ξ = ⊥: Trivial
Inductive Case:
Suppose M |� ξ [I]
ξ = ∃x(e(x) ∧ S(x, y) ∧ �(x)τk ∧ ψ(x)) : Let J be a witness for the existential

quantifier in ξ , where y takes the value I . By the semantics, 〈J, e〉 ∈ M such that
J ⊆ I, �(J)τk and M |� ψ[J]. We choose such a J which is minimal under the order
⊆, so that 〈J, e〉 ∈ M∗. By the inductive hypothesis, M∗ |� ψ[J]. We now have
〈J, e〉 ∈ M∗, J ⊆ I, �(J)τk and M∗ |� ψ[J]. Thus, M∗ |� ∃x(e(x) ∧ S(x, y) ∧
�(x)τk ∧ ψ(x)).
ξ = ∀x(e(x) ∧ S(x, y) ∧ �(x)τk → ψ(x)) : Let y be mapped to the interval I .

By the semantics, for every witness J of x 〈J, e〉 ∈ M, J ⊆ I and �(J)τk imply
M |� ψ(J). By construction, M∗ ⊆ M. Since ξ is satisfied by M, it has to be satis-
fied by its subset M∗. By the inductive hypothesis, M∗ |� ψ(J) for every witness J .
Thus, M∗ |� ∀x(e(x) ∧ S(x, y) ∧ �(x)τk → ψ(x)). ��

Lemma 2 shows that, in determining satisfiability of EF formulas, we need never
consider very deep interpretations. We now illustrate the basic idea with an exam-
ple. Assume I1, I2, I3 are intervals with I3 ⊆ I2 ⊆ I1, and M is the model
{〈I1, e〉 〈I2, e〉 , 〈I3, e〉}, as shown in Part (i) of Fig. 1. Let φ = ∃x(e(x) ∧ S(x, y) ∧
�(x) ≥ 0∧(∃x ′(e(x ′)∧S(x ′, x)∧�(x ′) ≥ 0)). Obviously, for any I ⊇ I1,M |� φ [I].
However, it is clear that we can remove the occurrence of e at I3 (alternatively, I1 or
I2) without compromising this fact. Thus, if M∗ is the model {〈I1, e〉 〈I2, e〉} depicted
in Part (ii) of Fig. 1, we still have, for any I ⊇ I1,M∗ |� φ [I].

123

56 S. Konur

e

e

e

(i)

I2

I3

I1 I 1

I
2

(ii)

e

e

Fig. 1 Two models making φ true at any I ⊇ I1

We have shown that the depth of a satisfying model is bounded by |ϕ|2. In the
next section we will show that the size of this model is bounded by 2p(|ϕ|) for some
fixed polynomial p. We will actually derive the model from the tableau generated by
a tableau procedure.

4 A Tableau Based Decision Procedure for EF

In this section we propose a terminating tableau system for the logic EF, thus showing
that its satisfiability problem is decidable. Indeed, the satisfiability problem for EF
is in NEXPTIME. This is proved by building models whose sizes are exponentially
bounded.

In the following, we define a tableau-based decision procedure for EF, and analyze
its computational complexity. Then, we prove its soundness and completeness. The
procedure is based on an expansion strategy. The expansion strategy involves three
rules: the interval relation rule, which nondeterministically guesses the interval rela-
tion among nodes in the graph, the existential node expansion rule, which expands
existential subformulas in a node and the universal node expansion rule, which expands
universal subformulas in a node. A blocking condition guarantees the termination of
the method.

4.1 Preliminary Notions

In the following we introduce some preliminary notions which will be used throughout
the rest of the paper.

Definition 5 A successor of a node v is a node w such that there is an edge from v

to w. A path is a sequence of nodes v1, . . . , vk such that for all 1 ≤ i < k, vi+1 is
a successor of vi . The depth of a node v is the maximum number of edges of a path
from the root node to v.

Definition 6 A decorated graph G is a graph in which every node has a decoration.
For a node v ∈ G, a decoration λ(v) is a 5-tuple ([bv, ev], ρ(v),K(v),L(v),L′(v)),
where bv(ev) is a constraint variable denoting the beginning (ending) of the interval
represented by the node v, ρ(v) denotes the label of the node v (whereρ(v) ∈ E),K(v)
denotes a formula associated with the node v, and L(v) and L′(v) denote a set of sub-
formulas associated with the node v.

123

An Event-Based Fragment of First-Order Logic over Intervals 57

Definition 7 A temporal constraint is a relation involving constraint variables which
denote interval endpoints.

For example, the temporal constraint bv ≥ bu, ev ≤ eu shows an interval relation
between [bv, ev] and [bu, eu].
Definition 8 A tableau for a given formula ϕ is a tuple 〈G, C〉, where G denotes a
decorated graph, and C denotes the set of temporal constraints in the graph G.

4.2 Tableau Method

Let ϕ be a formula to be checked for satisfiability over an interval I0. The initial
tableau for ϕ is the tuple 〈v0, C0〉, where v0 is the initial graph with the decoration
λ(v0) = ([bv0 , ev0], ρ(v0),K(v0),L(v0),L′(v0)) such that ρ(v0) = root,K(v0) =
ϕ,L(v0) = ∅,L′(v0) = ∅, and C0 is the initial set of temporal constraints such that
C0 = {bv0 = start (I0), ev0 = end(I0)}. Assume Q denotes the queue of nodes in G
awaiting processing. Then, the initial value of Q is {v0}.

A tableau for ϕ is a tuple 〈G, C〉, where C is obtained by expanding the initial con-
straint set C0 with temporal constraints in the existing nodes, and the decorated graph
G is obtained by expanding the initial node v0 through successive applications of the
expansion strategy to existing nodes until no node remains to process. In other words,
the expansion strategy is applied to every node in Q until Q = ∅. When a node is
selected, it is removed from Q.

During the application of the expansion strategy to a node, we need to solve the
temporal constraints in C. Remember that each node of the graph represents an inter-
val. For our purposes, we model intervals as pairs of endpoints, which are distinct
numbers on the real line. Let T = {

bv1 , . . . , bvn , ev1 , . . . , evn

}
be a set of constraint

variables. The constraints of a tableau can be represented as a Simple Temporal Prob-
lem (Dechter et al. 1991). If n is the number of variables, then a solution to a STP
(if there is any) can be found in O(n3) time and O(n2) space. If the set of temporal
constraints in C is inconsistent, then a solution will not be found, and we say C is not
satisfiable.

In order to avoid infinite paths, and therefore to have a finite satisfying model
we need to guarantee the termination of the proposed tableau method below. In the
following we give a suitable stoping condition for the tableau procedure:

Definition 9 A tableau 〈G, C〉 is closed if one of the following conditions hold:

− ⊥ ∈ L(v) for some node v in G,
− C is not satisfiable,
− The depth of the shortest path v0 → . . . → v is more than |ϕ|2 for some node v

in G (where v0 is the root node.)

Definition 10 A tableau is open if it is not closed .

Once the tableau procedure terminates, we check whether the tableau generated is
open. For a given formula ϕ if there is an open tableau, then ϕ is satisfiable, and the

123

58 S. Konur

satisfying model M is derived from the tableau. We do this by picking some solution
σ , which assigns real values to constraint variables in C. Let Jv = [σ(bv), σ (ev)]
be the interval represented by a node v of G. We construct a model M as follows:
M = {〈Jv, ρ(v)〉 | for any v ∈ G s.t. ρ(v) /∈ {root}}. If the tableau is closed, then ϕ
is unsatisfiable.

Expansion Strategy

Let 〈G, C〉be a tableau,v be a node inG withλ(v)=([bv, ev], ρ(v),K(v),L(v),L′(v)),
and Q be the queue of nodes awaiting processing. We say the expansion strategy for
a node v is defined as follows:

If the tableau is open, apply the following rules:

Rule 1. Set Q := Q\{v}. If L(v) is empty, then apply the interval relation rule to
the node v.

Rule 2. Let the Disjunctive Normal Form (DNF) of K(v) be ψ1 ∨ ... ∨ ψn where
ψ i = ψ i1 ∧ . . .∧ψini (n ≥ 1, 1 ≤ i ≤ nandni ≥ 1). Select some i , and set
L′ (v) := {

ψ i1, . . . , ψ ini

}
and L (v) := L (v) ∪ L′ (v).2

Rule 3. Apply the universal node expansion rule to the node v.
Rule 4. Apply the existential node expansion rule to the node v.

In Rule 1 we check whether L(v) is empty. If L(v) is empty, then we know that the
node v has been newly created, and the interval relation rule has not been applied yet.
By applying this rule we guess the interval relation between v and any other node in
G. If L(v) is not empty, then we can conclude that the interval relation rule has been
applied before. So we do not need to guess the interval relations again.

In Rule 2 we take the normal form of K(v) as disjunctions of subformulas (Each
disjunct is composed of conjunctions of subformulas). According to this rule we non-
deterministically select one of the disjuncts and assign it to L′ (v), and add it to L (v).
As can be seen, L′ (v) only contains the selected disjunct. When the node is re-vis-
ited, we do not need to remember the previous value of L′ (v). On the other hand,
L (v) contains all subformulas assigned during the execution of the tableau proce-
dure. Therefore, when the node is re-visited, we extend it with the new material in
order to remember its previous value. It is also worth to mention that all of the elements
of L (v) are expanded during the tableau construction.

Interval Relation Rule

The interval relation rule guesses the interval relation between the given node and all
other nodes in the graph. Please note that we take Allen’s interval relations as reference
when considering an interval relation. Allen defines thirteen binary relations between
intervals on a linear ordering, which are ‘before’, ‘after’, ‘meets’, ‘starts’, ‘during’,
‘finishes’, ‘equals’, ‘overlaps’, ‘met-by’, ‘started-by’, ‘finished-by’, ‘overlapped-by’
and ‘includes’.

2 For simplicity we have not shown free variables in the formulas.

123

An Event-Based Fragment of First-Order Logic over Intervals 59

Table 1 Allen’s interval relations

Basic interval relation Relation symbol Endpoint relations

J before J ′ Rb(J, J ′) eJ < bJ ′
J after J ′ Rb(J, J ′) eJ ′ < bJ
J meets J ′ Rm (J, J ′) eJ = bJ ′
J met-by J ′ Rm (J, J ′) eJ ′ = bJ
J overlaps J ′ Ro(J, J ′) bJ < bJ ′ < eJ < eJ ′
J overlapped-by J ′ Ro(J, J ′) bJ ′ < bJ < eJ ′ < eJ
J during J ′ Rd (J, J ′) bJ > bJ ′ , eJ < eJ ′
J includes J ′ Rd (J, J ′) bJ ′ > bJ , eJ ′ < eJ
J starts J ′ Rs (J, J ′) bJ = bJ ′ , eJ < eJ ′
J started-by J ′ Rs (J, J ′) bJ ′ = bJ , eJ ′ < eJ
J finishes J ′ R f (J, J ′) bJ > bJ ′ , eJ = eJ ′
J finished-by J ′ R f (J, J ′) bJ ′ > bJ , eJ ′ = eJ
J equals J ′ Re(J, J ′) bJ = bJ ′ , eJ = eJ ′

Allen’s approach to reasoning about time is based on the notion of time intervals
and binary relations on them. Given two time intervals, their relative positions can be
described by exactly one of the elements of the set R of thirteen basic interval rela-
tions, where each basic relation can be defined in terms of its endpoint relations. For
example, giving that J and J ′ denote the intervals [bJ , eJ] and [bJ ′ , eJ ′], respectively,
with bJ , eJ , bJ ′ , eJ ′εR. An atomic formula of the form R(J, J ′), where RεR is said
to be satisfied by an interpretation iff the interpretation of the intervals satisfies the
endpoint relations specified in Table 1.

Let 〈G, C〉be a tableau, andv be a node inG withλ(v) = ([bv, ev], ρ(v),K(v),L(v),
L′(v)). Assume τ ′ is the corresponding inverted operator of τ (where τ ∈
{<,≤,=,≥,>}). The interval relation rule for a node v is defined as follows:

For any node u (except v) in G
Nondeterministically guess the interval relation between u and v:

− v before u : Set C := C ∪ {ev < bu}.
− v meets u : Set C := C ∪ {ev = bu}.
− v non-strict-during u : Set C := C ∪ {bv ≥ bu, ev ≤ eu}, and add an edge from

u to v(u → v). if ρ(v) = e and ∀x(e(x) ∧ S(x, y) ∧ �(x)τk → ψ(x)) ∈ L(u),
then set either i)C := C ∪ {

(ev − bv)τ ′k
}
; or i i)C := C ∪ {(ev − bv)τk} and

K(v) := K(v) ∧ ψ(x).
− voverlapsu : Set C := C ∪ {bv < bu < ev < eu}, and add an edge from u to

v(u → v).

v non − strict − during u is true if either v “equals” u, v “during” u, v “starts”
u or v “finishes” u is true (Since we consider the case “non-strict-during”, we do not
need to consider these cases separately.) The cases where v “after” u, v “met-by” u, v
“includes” u, v “started-by” u, v “finished-by” u and v “overlapped-by” u can be dealt
with similarly.

123

60 S. Konur

We remark that once we have guessed the interval relation, we expand C with the
corresponding endpoint relation. For example, if we have guessed v “before” u, then
we expand C with {ev < bu}. When we say, for example v “before” u, we actually
mean that this interval relation holds between the intervals Jv and Ju represented by
the nodes v and u, respectively. For simplicity, we will use this adaption.

In the interval relation rule, we consider the possibility that L(u) of an existing node
u includes a universal subformula which might update the decoration of the node v.
Consider, for example, the above case where v non-strict-during u. In this case S(x, y)
is true (x any y are instantiated by Jv and Ju , respectively). Ifρ(v) = e, than we can eas-
ily see that e(x) is true. Furthermore, if ∀x(e(x)∧ S(x, y)∧�(x)τk → ψ(x)) ∈ L(u),
then we may update K(v) depending on whether �(x)τk is true. Here, we have two
choices: either �(x)τk is false, or �(x)τk is true. If we choose the latter, then K(v)
must be updated with ψ(x) due to the implication by the universal formula.

Universal Node Expansion Rule

The universal node expansion rule expands all universal subformulas in L′(v). Let
〈G, C〉be a tableau, andv be a node inG withλ(v)=([bv, ev], ρ(v),K(v),L(v),L′(v)).
Assume τ ′ is the corresponding inverted operator of τ (where τ ∈ {<,≤,=,≥,>}).
The universal node expansion rule for a node v is defined as follows:

For every ξ∈ L′(v)

− if ξ = ∀x(e(x) ∧ S(x, y) ∧ �(x)τk → ψ(x)), then for every node w in G with
ρ(w) = e and w non-strict-during v, set either i) C := C ∪ {

(ew − bw)τ ′k
}
; or

i i) C := C ∪ {(ew − bw)τk} ,K(w) := ψ(x) and Q := Q ∪ {w}.
Where w “non-strict-during” v is true if bw ≥ bv, ew ≤ ev ∈ C. Note that above

instead of ψ(x) we have assigned K(w) ∧ ψ(x) to K(w). Because , we re-visit the
node w, and therefore we do not want to use the previous material in K(w). For this
reason, we have assigned ψ(x) to K(w) in order to process only ψ(x).

As result of applying the universal node expansion rule, some of the existing nodes
might be re-visited, which means we re-execute the expansion strategy for these nodes.
In this case, interval relations will not be guessed again; but their decoration might get
updated.

Existential Node Expansion Rule

The existential node expansion rule expands all existential subformulas in L′(v). Let
〈G, C〉be a tableau, andv be a node inG withλ(v)=([bv, ev], ρ(v),K(v),L(v),L′(v)).
Assume τ ′ is the corresponding inverted operator of τ (where τ ∈ {<,≤,=,≥,>}).
The existential node expansion rule for a node v is defined as follows:

For every ξ∈ L′(v)

− if ξ = ∃x(e(x)∧ S(x, y)∧ �(x)τk ∧ψ(x)), then add an immediate successor w
with λ(w) = ([bw, ew], ρ(w),K(w),L(w),L′(w)), where ρ(w) = e,K(w) =

123

An Event-Based Fragment of First-Order Logic over Intervals 61

ψ(x),L(w) = ∅,L′(w) = ∅, set C := C ∪ {bw ≥ bv, ew ≤ ev, (ew − bw)τk},
add an edge from v to w (v → w), and set Q := Q ∪ {w}.

The existential node expansion rule creates a new node, and L(w) and L′(w) are
initially set to ∅. In the next run, we apply the expansion strategy to this node, and
L(w) and L′(w) get updated according to Rule 2.

4.3 Tableau Method at Work

In this section we apply the proposed decision procedure to a satisfiable formula. The
decision procedure constructs a tableau 〈G, C〉 through successive applications of the
expansion strategy to existing nodes until no node remains to process.

Below we will not show free variables in the formulas to preserve the simplicity.
Assume,

ψ ′ = ∃x(e′(x) ∧ S(x, y) ∧ �(x) ≥ 0)

ψ ′′ = ∃x(e′′(x) ∧ S(x, y) ∧ �(x) ≥ 0)

ψ1 = ∃x(e(x) ∧ S(x, y) ∧ �(x) ≥ 0 → ψ ′(x))
ψ2 = ∀x(e(x) ∧ S(x, y) ∧ �(x) ≥ 0 → ψ ′′(x)).

Let ϕ = ψ1∧ψ2 be a formula to be checked for satisfiability over an interval I0. The
initial tableau for ϕ is the tuple 〈v0, C0〉, where v0 is the initial graph with the decora-
tion λ(v0) = ([bv0 , ev0], root, ϕ,∅,∅), and C0 = {bv0 = start (I0), ev0 = end(I0)}.
Also, the initial value of Q is {v0}. Now, we will show how the expansion strategy is
applied to existing nodes:

↓ Apply Rule 1 to v0

Rule 1 sets Q := Q\{v0}, and applies the interval relation rule to v0. Since v0 is
the only node in the graph, the interval rule does not do anything.

↓ Apply Rule 2 to v0

Rule 2 sets L′(v0) = L(v0) = {ψ1, ψ2}.

↓ Apply Rule 3 to v0

The universal node expansion rule does not do anything.

↓ Apply Rule 4 to v0

The existential node expansion rule expands ψ1 by adding a new node v1 (see
Fig. 2) with λ(v1) = ([bv1, ev1], e, ψ ′,∅,∅), and sets C := C0 ∪ {bv1 ≥ bv0 , ev1 ≤
ev0 , (ev1 − bv1) ≥ 0} and Q := Q ∪ {v0}.

↓ Apply Rule 1 to v1

123

62 S. Konur

v

v1

0

Fig. 2 The graph after the existential node expansion rule expands ψ1

Rule 1 sets Q := Q\{v1}, and applies the interval relation rule to v1. The interval
relation rule nondeterministically guesses the interval relation between the nodes v1
and v0. Assume the nondeterministic choice is v1 “non-strict-during” v0 (If the choice
was either “before” , “meets” or “overlaps”, then C would become inconsistent, and
therefore the tableau would become closed.) In this case, C is set to C := C ∪ {bv1 ≥
bv0 , ev1 ≤ ev0}. Moreover, since ρ(v1) = e and ∀x(e(x) ∧ S(x, y) ∧ �(x) ≥ 0 →
ψ ′′(x)) ∈ L(v0), the interval rule sets K(v1) to K(v1)∧ψ ′′ (i.e. K(v1) := ψ ′ ∧ψ ′′),
and C to C ∪ (ev1 − bv1) ≥ 0 (If the other choice was chosen, then C would be set to
C ∪ {(ev1 − bv1) < 0}. In this case, C would become inconsistent, and therefore the
tableau would become closed.)

↓ Apply Rule 2 to v1

Rule 2 sets L′(v1) = L(v1) = {ψ ′, ψ ′′}.

↓ Apply Rule 3 to v1

Since there is no universal formula in L(v1), the universal node expansion rule does
not do anything.

↓ Apply Rule 4 to v1

The existential node expansion rule expandsψ ′ andψ ′′ by adding two new nodes v2
with λ(v2) = ([bv2 , ev2], e′,	,∅,∅) and v3 with λ(v3) = ([bv3 , ev3], e′′,	,∅,∅) (see
Fig. 3), and sets C := C ∪ {bv2 ≥ bv1 , ev2 ≤ ev1 , bv3 ≥ bv1 , ev3 ≤ ev1 , (ev2 − bv2) ≥
0, (ev3 − bv3) ≥ 0} and Q := Q ∪ {v2, v3}.

↓ Apply Rule 1 to v2

Rule 1 sets Q := Q\{v2}, and applies the interval relation rule to v2. Assume that
the interval rule has chosen v2 “non-strict-during” v0 and v2 “non-strict-during” v1.
In this case, C is set to C := C ∪ {bv2 ≥ bv0 , ev2 ≤ ev0 , bv2 ≥ bv1 , ev2 ≤ ev1}.

↓ Apply Rule 2 to v2

123

An Event-Based Fragment of First-Order Logic over Intervals 63

v1

v0

v2 3
v

Fig. 3 The graph after the existential node expansion rule expands ψ ′ and ψ ′′

e’ e’’

e

I0

Fig. 4 A model for ϕ

Rule 2 sets L′(v2) = L(v2) = {	}.
The universal and existential node expansions rules do not do anything.

↓ Apply Rule 1 to v3

Rule 1 sets Q := Q\{v3}, and applies the interval relation rule to v3. Assume that
the interval rule has chosen v3 “non-strict-during” v0, v3 “non-strict-during” v1 and v2
“before” v3. In this case, C is set to C := C ∪ {bv3 ≥ bv0 , ev3 ≤ ev0 , bv3 ≥ bv1 , ev3 ≤
ev1 , ev2 ≤ bv3}.

↓ Apply Rule 2 to v3

Rule 2 sets L′(v3) = L(v3) = {	} and Q := Q\{v3}.
Similarly, the universal and existential node expansions rules do not change anything.
As can be seen, the tableau generated is open. Therefore, a satisfying model M can
be derived from the tableau (Suppose we pick some solution for constraint variables
in C.) A model for the satisfiable formula ϕ will look like Fig. 4.

123

64 S. Konur

4.4 Soundness and Completeness

The soundness and completeness of the proposed tableau method is proved below. But
we first prove the termination of the method.

Theorem 1 The tableau method for EF terminates.

Proof Let 〈G, C〉 be a tableau constructed by the tableau procedure for a given a for-
mula ϕ. By the stoping condition in the tableau procedure every branch of the tableau
is of finite length. We also know that every node of G has a finite outgoing degree.
Therefore, the tableau method terminates. ��
Theorem 2 Let ϕ be an EF formula which has the form guaranteed by Lemma 1. ϕ is
satisfiable iff there is an open tableau for ϕ.

Proof (Soundness (⇐):)
Suppose 〈G, C〉 is an open tableau for ϕ. We pick some solution σ : V → R,

which assigns real values to constraint variables in C. Let Jv = [σ(bv), σ (ev)] be
the interval represented by the node v of G. We construct a model M as follows:
M = {〈Jv, ρ(v)〉 | for anyv ∈ Gs.t.ρ(v) /∈ {root}}.

Now we show that M |� ϕ[I0] (where I0 is the initial interval). We claim
that for every v in G,M |� L(v)[Jv]. We show, by structural induction, that
φ ∈ L (v) implies M |� φ[Jv]. Note that, by construction of the tableau, L(v)
comprises formulas of the forms 	,⊥, ∃x(e(x) ∧ S(x, y) ∧ �(x)τk ∧ ψ(x)) and
∀x(e(x) ∧ S(x, y) ∧ �(x)τk → ψ(x)).

Base Case:
φ = 	 : Trivial
φ = ⊥ : Since 〈G, C〉 is an open tableau, by Definitions 9 and 10, ⊥ /∈ L (v).

Inductive Case:
φ = ∃x(e(x) ∧ S(x, y) ∧ �(x)τk ∧ ψ(x)) : By the existential node expansion

rule, there exists a node w with ρ(w) = e and K(w) = ψ(x). In addition, C con-
tains bw ≥ bv, ew ≤ ev and (ew − bw)τk. Let ψ be ψ1 ∨ . . . ∨ ψn where ψ i =
ψ i1 ∧ . . . ∧ ψini (n ≥ 1, 1 ≤ i ≤ n and ni ≥ 1). By Rule 2, ψ i1, .., ψini ∈ L(w) for
some i(1 ≤ i ≤ n). By the inductive hypothesis, M |� ψ i1[Jw]∧...∧M |� ψ ini [Jw].
Therefore, M |� ψ[Jw]. By construction, we have 〈Jw, e〉 ∈ M with |Jw| τk and
S(Jw, Jv). Thus, M |� φ[Jv].
φ = ∀x(e(x) ∧ S(x, y) ∧ �(x)τk → ψ(x)) : By the construction of M, for any

J ∈ I if 〈J, e〉 ∈ M, then there exists a node u in G such that Ju = J . According to
the universal node expansion rule (or the interval relation rule) if S(Ju, Jv), then we
do either: i) set C := C ∪ {

(eu − bu)τ
′k

}
(τ ′ is the corresponding inverted operator of

τ); or i i) set C := C∪{(eu − bu)τk} and K(u) := ψ(x) (We set K(u) := K(u)∧ψ(x)
when the interval relation rule applied.)

Assume �(Ju)τk is false. Whatever the choice is, it is trivial to see that M |� e(Ju)∧
S(Ju, Jv) ∧ �(Ju)τk → ψ(Ju). Assume �(Ju)τk is true. In this case, option i men-
tioned above cannot have been selected. Otherwise, C would contain

{
(eu − bu)τ

′k
}
,

123

An Event-Based Fragment of First-Order Logic over Intervals 65

and it would result in an inconsistency. So option i i has been taken. In this case,
we set C := C ∪ {(eu − bu)τk} and K(u) := ψ(x)(K(u) := K(u) ∧ ψ(x) in the
case of the interval relation rule). Let ψ be ψ1 ∨ ... ∨ ψn where ψi = ψ i1 ∧ ... ∧
ψini (n ≥ 1, 1 ≤ i ≤ n and ni ≥ 1). By Rule 2, ψi1, .., ψini ∈ L(u) for some
i(1 ≤ i ≤ n). By the inductive hypothesis, M |� ψ(Ju). By construction, we have
〈Ju, e〉 ∈ M. We also know that S(Ju, Jv) and �(Ju)τk. Therefore, for any witness
Ju,M |� e(Ju) ∧ S(Ju, Jv) ∧ �(Ju)τk → ψ(Ju). Thus, M |� φ[Jv].

We have proved that for every v in G,M |� L(v)[Jv]. In particular, M |�
L(v0)[I0]. We know that K(v0) = ϕ. Now assume ϕ = ϕ1 ∨ ... ∨ ϕn , where
ϕi = ϕi1 ∧ ... ∧ ϕini (n ≥ 1, 1 ≤ i ≤ nandni ≥ 1). According to Rule 2
L(v0) = {

ϕi1, . . . , ϕini

}
for some value of i . Therefore, we can easily conclude

that M |� ϕ[I0].
Completeness (⇒) :
Suppose M |� ϕ[I0]. By Lemma 2 there exists a model M∗ ⊆ M, with depth at

most of order |ϕ|2, such that M∗ |� ϕ[I0]. We will show that there is an open tableau
〈G, C〉 for ϕ.

The initial tableau for ϕ is the tuple 〈v0, C0〉, where v0 is the initial graph such
that K(v0) = ϕ and L(v0) = ∅, and C0 is the initial set of temporal constraints such
that C0 = {bv0 = start (I0), ev0 = end(I0)}. A tableau 〈G, C〉 for ϕ is obtained by
expanding the initial node v0 through successive applications of the expansion strat-
egy to existing nodes until no node remains to process, and by expanding the initial
constraint set C0 with temporal constraints in the existing nodes.

According to the expansion strategy we apply the interval relation rule to the node v0
as L(v0) is empty. But since there is only one node, K(v0) does not get updated. Let the
disjunctive normal form of K(v0) = ϕ be ϕ1 ∨ ...∨ϕn , where ϕi = ϕi1 ∧ ...∧ϕini (n ≥
1, 1 ≤ i ≤ nandni ≥ 1). Since M∗ |� ϕ[I0],M∗ |� ϕi [I0] for at least one value of
i . So in Rule 2 we pick this value of i , so that L(v0) = {

ϕi1, ..., ϕini

}
.

Now, we claim that for each node v in G, there exists an interval Jv such that
M∗ |� L(v)[Jv] (Once we pick a witness Jv , it remains assigned to the node v until
the tableau procedure terminates.) We prove the claim by induction on the stage in
tableau construction at which the node v was created.

Base case:
Above we have shown that M∗ |� ϕi [I0] for some value of i , and L(v0) ={
ϕi1, ..., ϕini

}
. So, it is trivial to see M∗ |� L(v0)[I0].

Inductive case:
Let w be a node in G such that ρ(w) = e. Then w must have been created by the
existential node expansion rule applied to a node v of which w is a successor node.
After the node w has been created, we apply the expansion strategy to the node w. So
we first apply the interval relation rule. Let us consider two cases:

i) Application of the interval relation rule adds no material to L(w):3 Assume
L(w) = {ψ0} where ψ0 = ψ01 ∧ ... ∧ ψ0n0(n0 ≥ 1). In this case, L(v)
must contain ξ = ∃x(e(x) ∧ S(x, y) ∧ �(x)τk ∧ ψ(x)), where ψ has the form

3 Normally, if some material is added to K(w) as a result of applying the interval rule or the universal node
expansion rule, L(w) does get updated in Rule 2 of the expansion strategy. Rule 2 selects some disjunct of

123

66 S. Konur

ψ0 ∨ ... ∨ ψ l(l ≥ 0). By the inductive hypothesis a witness Jv is defined such
that M∗ |� L(v)[Jv]. Let Jw be a witness for x . Thus, M∗ |� ψ[Jw].
When the existential rule was applied to v, we set K(w) := ψ(x) and C :=
C ∪ {bw ≥ bv, ew ≤ ev, (ew − bw)τk}. According to Rule 2 we select some of
the disjunct of ψ , and extend L(w) with this disjunct. It is clear that ψ0 is the
subformula which was selected. So, M∗ |� ψ0[Jw]. Hence, M∗ |� L(w)[Jw].

i i) Application of the interval relation rule adds some material to L(w):
Assume L(w) = {ψ0, ψ1, ..., ψm} where ψ i = ψ i1 ∧ ... ∧ ψ imi (0 ≤ i ≤
mandmi ≥ 1), ψ0 has been added to L(w) by applying the existential rule in v,
and ψ1, ..., ψm have been added to L(w) by applying the interval relation rule
to the node w. Above we have shown that M∗ |� ψ0[Jw].
According to the interval relation rule we guess the interval relation between w
and any node in G. Assume for any 1 ≤ j ≤ mψ j has been added to L(w) as a
result of guessing the interval relation betweenw and a node u j . Since K(w), and
therefore L(w), has been updated, this relation must have been “non-strict-dur-
ing”. In this case, L(u j)must contain ξ = ∀x(e(x)∧S(x, y)∧�(x)τk → ψ(x)),
where ψ has the form ψ j ∨ ... ∨ ψ j+l(l ≥ 0). By the inductive hypothesis we
have picked a witness Ju j such that M∗ |� L(u j)[Ju j]; thus M∗ |� ξ [Ju j]. We
know that S(Jw, Ju j) because in the interval rule we have guessed the relation
between Jw and Ju j as “non-strict-during” (As we can see in the interval rule,
C has been updated according to the corresponding non-deterministic choice of
the relation.) We also know that �(Jw)τk because we have selected the option i i
in the interval relation rule, and set C := C ∪ {(ew − bw)τk} (Otherwise, K(w)
could not have been updated). Therefore, M∗ |� ψ[Jw].

When the interval rule was applied to w, we set K(w) := K(w)∧ψ(x). It is clear
that ψ j was selected when the Rule 2 the expansion strategy was applied. Thus, for
any 1 ≤ j ≤ m M∗ |� ψ j [Jw]. Hence, M∗ |� L(w)[Jw].

So, we have shown that once a node w is created, and the expansion strategy
is applied, it is true that M∗ |� L(w)[Jw]. However, when new nodes are added
to G,L(w) might get updated through the application of the universal node expan-
sion rule in these nodes. So, we must show that whenever new material is added to
L(w),M∗ |� L(w)[Jw] remains true.

Now, assume L(w) = {ψ0, . . . , ψm, ψm+1, . . . , ψm+n} where ψ i = ψ i1 ∧ . . . ∧
ψ ini (0 ≤ i ≤ m + nandni ≥ 1), and ψm+1, . . . , ψm+n have been added to L(w) by
applying the universal node expansion rule to some nodes in G. Above we have shown
that M∗ |� {ψ0, . . . , ψm}[Jw]. Assume for any m + 1 ≤ k ≤ m + n, ψk has been
added to L(w) by applying the universal node expansion rule to a node uk in G. In this
case, L(uk)must contain ξ = ∀x(e(x)∧ S(x, y)∧�(x)τk → ψ(x)), whereψ has the
form ψk ∨ ... ∨ ψk+l(l ≥ 0). By the inductive hypothesis we have picked a witness
Juk such that M∗ |� L(uk)[Juk]; thus M∗ |� ξ [Juk]. We know that S(Jw, Juk). We

Footnote 3 continued
this material, and updates L(w) with this disjunct. Here for our convenience we will say “a formula ψ is
added to L(w) by applying the interval or universal rule” simply to express the following process: “K(w)
is updated as a result of applying the interval or universal rule. In Rule 2 ψ is selected from the material
added to K(w).L(w) is updated with ψ .”

123

An Event-Based Fragment of First-Order Logic over Intervals 67

also know that �(Jw)τk because we have selected the option i i of the universal rule,
and set C := C ∪ {(ew − bw)τk} (Otherwise, K(w) could not have been updated.)
Therefore, M∗ |� ψ[Jw].

When the universal rule was applied to uk , we set K(w) := ψ(x). It is clear that
ψk was selected when Rule 2 of the expansion strategy was applied. So, for any
m + 1 ≤ k ≤ m + nM∗ |� ψk[Jw]. Hence, M∗ |� L(w)[Jw].

Therefore, we have proved that for each node v in G, there exists an interval Jv
such that M∗ |� L(v)[Jv].

Meanwhile, we know the depth of the model M∗ is at most of order |ϕ|2 by the
assumption. Since for any node v in G M∗ |� L(v)[Jv],⊥ cannot be contained in
L(v). As we have a witness Jv for each node v, we must have a solution for C. There-
fore, C must be satisfiable. Because none of the conditions in Definition 9 holds, it
follows that 〈G, C〉 is an open tableau. ��

4.5 Computational Complexity

Theorem 3 The satisfiability problem for EF is in NEXPTIME.

Proof In Theorem 1 we show that the proposed method terminates. Now, we analyse
its computational complexity. We now give a bound on the size of any tableau for ϕ.

In any node v of G we convert K(v) into DNF, and in some cases conversion to DNF
can lead to an exponential explosion of the formula. However, in the node expansion
strategy we non-deterministically choose only one disjunct. Therefore, the out degree
of any node is bounded by |ϕ|. We also know that the depth of the longest path in the
tableau is bounded by |ϕ|2 by Lemma 2. Thus, the size of the tableau is bounded by
|ϕ||ϕ|2 = 2|ϕ|2log2|ϕ|. So, the tableau procedure builds a tableau of size 2p(|ϕ|) for some
fixed polynomial p. We can say that if an EF formula ϕ is satisfiable, then the tableau
procedure construct a graph, from which a satisfying model M is extracted, of size
bounded by 2p(|ϕ|) for some fixed polynomial p. ��

5 Conclusion and Future Work

In this paper we studied a new decidable fragment of first-order logic which is defined
over interval structures. We called this new logic EF. EF is interpreted over a linear
time flow with only finitely many events able to occur over a bounded-time interval.
We showed that the depth of an EF model is polynomially bounded on the length of
a given formula. We proved this by finding a reduced satisfying model, which has a
polynomial depth bound on the size of the formula. This result played a key role in
determining a limit on the size of a satisfying model.

We also proposed a terminating tableau system for EF, thus showing that its sat-
isfiability problem is decidable. We, indeed, provided a complexity bound for satis-
fiability, showing that this problem can be solved in NEXPTIME. This is actually a
common result for two variable fragments of first-order logic. This result shows that
even a simple decidable fragment of first-order logic has NEXPTIME complexity.

123

68 S. Konur

We already know that fragments of first-order logic are closely related to modal
logics; namely they extend modal logics. As a FOL fragment which was defined for
specific purpose, the logic EF can be a general framework for event-based proposi-
tional interval logics, such as the ones defined in (Pratt-Hartmann 2005; Konur 2008).
Such logics are decidable, and have a potential to be used in expressing the seman-
tics of natural language constructions and specifying some properties of event-based
real-time systems.

The results of this paper can be further developed in several directions. Some of
the open problems are: finding a lower bound for the complexity, proving whether the
satisfiability problem is NEXPTIME-complete, finding a finite axiomatisation for the
logic EF, comparing expressive power of EF with other interval logics, extending EF
with state types, notions of duration and accumulation and implementing the tableau
method to have an automatic decision procedure.

Acknowledgments This work is partially funded by EPSRC under the Verifying Interoperability Require-
ments in Pervasive Systems (EP/F033567) project. The author would like to thank anonymous reviewers
for their very helpful comments.

References

Andreka, H., van Benthem, J., & Nemeti, I. (1996). Modal languges and Bounded Fragments of Predicate
Logic. Research Report ML-96-03, IILC.

Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal constraint networks. Artificial Intelligence, 49, 61–95.
Goranko, V., Montanari, A., & Sciavicco, G. (2003). Propositional interval neighborhood temporal

logics. Journal of Universal Computer Science, 9(9), 1137–1167.
Goranko, V., Montanari, A., Sciavicco, G., & Sala, P. (2006). A general Tableau method for propositional

interval temporal logics: Theory and implementation. Journal of Applied Logic, 4(3), 305–330.
Grädel, E. (1999). On the restraining power of guards. Journal of Symbolic Logic, 64, 1719–1742.
Grädel, E., Kolaitis, P., & Vardi, M. (1997). On the decision problem for two-variable first-order

logic. Bulletin of Symbolic Logic, 3, 53–69.
Grädel, E., & Otto, M. (1999). On logics with two variables. Theoretical Computer Science, 224, 73–113.
Halpern, J.Y., & Shoham, Y. (1991). A propositional modal logic of time intervals. Journal of the

ACM, 38(4), 935–962.
Konur, S. (2008). An interval logic for natural language semantics. Advances in Modal Logic, 7,

177–191.
Mortimer, M. (1975). On languages with two variables. Zeitschr. F. Math. Logik U. Grundlagen d. Math.,

21, 135–140.
Moszkowski, B. (1983). Reasoning about digital circuits. Stanford University: PhD Thesis, Department

of Computer Science.
Otto, M. (2001). Two variable first-order logic over ordered domains. Journal of Symbolic Logic, 66(2),

685–702.
Pratt-Hartmann, I. (2005). Temporal prepositions and their logic. Artificial Intelligence, 166(1–2), 1–36.
van Benthem, J. (1997). Dynamic Bits and Pieces. Research Report, ILLC.
Venema, Y. (1991). A modal logic for choppping intervals. Journal of Logic and Computation, 1, 453–476.

123

	An Event-Based Fragment of First-Order Logic over Intervals
	Abstract
	1 Introduction
	2 The Logic EF
	3 Building Models
	4 A Tableau Based Decision Procedure for EF
	4.1 Preliminary Notions
	4.2 Tableau Method
	4.3 Tableau Method at Work
	4.4 Soundness and Completeness
	4.5 Computational Complexity

	5 Conclusion and Future Work
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

