
J Log Lang Inf (2010) 19:485–503
DOI 10.1007/s10849-009-9119-4

Combinations of Stit and Actions

Ming Xu

Published online: 13 January 2010
© Springer Science+Business Media B.V. 2010

Abstract We present a simple theory of actions against the background of branch-
ing time, based on which we propose two versions of an extended stit theory, one
equipped with particular actions and the other with sets of such actions. After report-
ing some basic results of a formal development of such a theory, we briefly explore
its connection to a version of branching ETL.

Keywords Stit · Action · Logic of agency · Logic of action

In the framework of stit theories, we present a way of talking about actions, and
propose an extended stit theory called “stit-action logic”. This “hybrid” theory comes
with sentences of the form [α, e]A, read “by doing e, α sees to it that A”, where α

is an agent term, e an action term, and A any sentence. The action terms display a
main difference between this theory and the early ones because they have always taken
actions or choices to be semantic notions only.

Stit theories and logic of actions (like PDL and ETL) both deal with consequences
or outcomes of events/actions or choices, but they do so in quite different and vir-
tually unrelated ways. As logic of agency, early stit theories emphasize connections
between agents and the consequences of their choices, with actions to be absent from
their languages. Meanwhile, theories like PDL, DEL and ETL emphasize connections
between events/actions and their consequences, but there is no connection between
agents and events/actions. The current project started after a conversation with Pro-
fessor Johan van Benthem last year concerning the fact that the two fields above seem

M. Xu (B)
Department of Philosophy, Wuhan University, 430072 Wuhan, People’s Republic of China
e-mail: mingxu01@hotmail.com

M. Xu
Chinese Institute of Advanced Studies, Central University of Finance and Economics,
100081 Beijing, People’s Republic of China

123

486 M. Xu

to have common goals but somehow have been “independent” for years. We need a
junction of the two roads to logic theories of actions, which I believe lies in where we
can directly connect actions, their agents and their consequences. The extended stit
theory we propose here seems to provide such a connection.

There have been attempts to bring together different frameworks of formal studies
of events/actions and knowledge. Some of these attempts have achieved a merge of var-
ious ideas related to dynamic logic (e.g., van Benthem and Pacuit 2006; van Benthem et
al. 2009); others are toward a similar merge of ideas from stit and dynamic logic (e.g.,
Brown 2008a,b; Broersen et al. 2009).1 This paper is to join their efforts, particularly
the latter, with a focus on actions rather than epistemic notions.

We start with basic semantics for stit, followed by a simple theory of events in
branching time. In Sect. 3, we present briefly a theory of actions as events, and then,
in Sect. 4, we discuss a connection between actions by agents and possible choices
for them. Our basic semantic theory for stit-action logic is given in Sect. 5, and a
report of two basic systems for the logic in Sect. 6, with their computational aspect
left open. Finally, in Sect. 7, we present a two way representation between a fragment
of stit-action logic and a fragment of branching ETL.

1 Stit Theories

Stit theories start with the basic notion [α]A (read “α sees to it that A” or “α stit A”),
where α is any agent term and A is any formula. There are quite a few versions of stit:
astit (the achievement stit), bstit, cstit, dstit (the deliberative stit), and recently xstit.2

The cstit and the dstit operators are directly relevant to our work here, for which we
use [α]c and [α]d when we need to distinguish them. The interpretation of [α]A is
roughly that A is guaranteed true due to a current choice made by agent α.3

A stit structure is a sequence 〈T,<, Agent, Choice〉 specified below. 〈T,<〉 is a
tree-like frame, i.e., T �= ∅ and < is a strict partial ordering that is linearly ordered
toward the past. We call maximal <-chains histories in 〈T,<〉, and use h, h′ (H, H ′)
etc. to range over (sets of) them. For each m ∈ T , we let Hm = {h : m ∈ h}, the set
of all histories passing through m. For each m ∈ T, m is a <-dead-end if m < m′ for
no m′ ∈ T , and is a >-dead-end if m′ < m for no m′ ∈ T . Agent is a nonempty set
whose members α, β etc., are called agents.4 Choice is a choice function that assigns

1 I have not seen the last reference, but list it here for the readers’ interests. Thanks to Johan van Benthem
and Eric Pacuit for providing this reference.
2 Astit is proposed in Belnap and Perloff (1988), bstit in Brown (1988), cstit in Chellas (1969), dstit in
von Kutschera (1986) and Horty (1989) independently, and Xstit in Broersen (2008a). For detailed discus-
sions on astit and dstit, the reader is referred to Belnap et al. (2001) and Horty (2001), and the references
therein. Another stit operator is given in the work of Broerson and his colleagues, which reads [α]A as “α
strategically sees to it that A” (see, e.g., Broersen et al. 2006a,b).
3 Astit involves an earlier choice by the agent, while bstit deals with the ability of the agent. Xstit is similar
to dstit in a way, and to astit in another. It can be show that on a discrete stit model, the xstit operator and
[α]d (or [α]c) are mutually definable at the presence of metric tense operators.
4 In this paper, we use α, β etc. ambiguously both as agents and as terms for agents, for the sake of sim-
plicity and easy comparison of stit with branching ETL in the last section. Later we will introduce actions
and sets of actions, and will follow the same practice for the same reason.

123

Combinations of Stit and Actions 487

to each α ∈ Agent and each m ∈ T a partition Choiceα
m of the set Hm , and we use

Choiceα
m(h) with h ∈ Hm for the member of Choiceα

m to which h belongs. Members
of Choiceα

m are called possible choices (available) for α at m, and are subject to the
following conditions:

• No choice between undivided histories: for all m, m′ ∈ T with m < m′, all
α ∈ Agent and all h ∈ Hm′ , Hm′ ⊆ Choiceα

m(h).
• Independence of agents: for each m ∈ T and each function f assigning to each

α ∈ Agent a possible choice f (α) ∈ Choiceα
m,

⋂
α∈Agent f (α) �= ∅.

Let F = 〈T,<, Agent, Choice〉 be any stit structure. A model on F is a pair
M = 〈F, V 〉 (or a sequence 〈T,<, Agent, Choice, V 〉) where V is a valuation assign-
ing to each propositional letter a subset of {〈m, h〉 : m ∈ h}. The satisfaction relation
M, m/h � A (m ∈ h) is defined in the usual way, plus the following clauses, where
� is the operator of historical necessity:

M, m/h � �A iff M, m/h′ � A for all h′ ∈ Hm .

M, m/h � [α]c A iff M, m/h′ � A for all h′ ∈ Choiceα
m(h).

(1)
M, m/h � [α]d A iff M, m/h′ � A for all h′ ∈ Choiceα

m(h),

and M, m/h′′
� A for some h′ ∈ Hm .

It is easy to see that each of the three operators [α]c, [α]d and � can be defined in
terms of the other two: [α]d A can be defined as [α]c A ∧¬�A, [α]c A as [α]d A ∨�A,
and �A as [α]c A ∧¬[α]d A. It is also true that � is definable in terms of [α]c and [β]c
if we fix α and β to be distinct agents: one can define �A as [α]c[β]c A (see Balbiani
et al. 2008).5

2 Outcomes, Transitions and Events

In order to combine stit with actions, we need a formal theory of the latter, and it
seems natural to build this theory on a theory of events. Xu (1997) suggests that events
can be characterized in terms of transitions against the background of branching time.
Here we briefly present this theory of events.

Let 〈T,<〉 be any tree-like frame. For all m, m′ ∈ T and all subsets X, Y of T , we
use the following abbreviations:

X < m iff m′ < m for all m′ ∈ X.

m < X iff m < m′ for all m′ ∈ X.

X < Y iff m < m′ for all m ∈ X and m′ ∈ Y.

m � m′ iff m < m′ or m = m′.

5 A basic axiomatization and the decidability of cstit and dstit logic, with � present in the language, is
given in Xu (1994), which is simplified in Balbiani et al. (2008), and a tableau calculus for the same logic
is given in Wansing (2006). A system with dstit operators alone is given in Xu (1998), a system with tense
operators is given in Wölfl (2002), and various systems connecting stit with epistemic logic or deontic logic
are found in the recent work by Jan Broerson and his colleagues, e.g., in Broersen (2008a,b).

123

488 M. Xu

Furthermore, the first three clauses above provide definitions of X � m, m � X and
X � Y if we replace < by � on both sides. A past in 〈T,<〉 is an upper-bounded
and nonempty initial segment p of a history in 〈T,<〉, i.e., a nonempty subset p of
a history h such that p � m ∈ h for some m, and m′′ < m′ ∈ p only if m′′ ∈ p. In
particular, for each m ∈ T , we use p(m) for the past {m′ ∈ T : m′ � m}.

An outcome in 〈T,<〉 is a lower-bounded and nonempty subset O of T that is
closed forward and connected backward, i.e., a nonempty subset O of T such that

• m � O for some m ∈ T .
• m < m′ and m ∈ O only if m′ ∈ O .
• for all m, m′, m′′ ∈ O, m′ < m and m′′ < m only if either m′ � m′′ or m′′ � m′.6

When a tree-like frame is clear in the context, we often omit mentioning it even
though most notions we discuss are relative to the given tree-like frame.

Definition 2.1 A transition in 〈T,<〉 is a pair 〈p, O〉, where p is a past and O is an
outcome such that p < O .

Let e be any set of transitions. We will call each member 〈p, O〉 of e an e-transition,
and call its outcome O an e-outcome. For each history h, e occurs in h iff there is
an e-outcome O such that O ∩ h �= ∅. e occurs in h at most once iff {〈p, O〉 ∈ e :
O ∩ h �= ∅} is either empty or a singleton.

Definition 2.2 An event in 〈T,<〉 is a nonempty set of transitions that occurs at most
once in each history in 〈T,<〉.

A fuller presentation and a more detailed discussion of this theory of events can be
found in Xu (1997). For similar or related theories of events, the reader is referred to
von Kutschera (1993), Belnap (1995, 1996, 2005) and Wölfl (2005).

3 Actions

Our theory of actions aims at a characterization of them in terms of transitions, events
and agents. For the purpose of the current paper, we introduce Act as a set of ac-
tions in 〈T,<〉, and content ourselves with the postulates on Act discussed in this
section.

Postulate 3.1 Each member of Act is an event.

By Definition 2.1, an action is a nonempty set of transitions which occurs at most
once in every history. Like particular events, particular actions do not occur repeatedly.
If I knock on a door three times and we take each knock as a particular action, then

6 There is another notion of outcome derived from Belnap (1995), which may be of philosophical impor-
tance: A strict outcome is an outcome O satisfying that for each m /∈ O , there is an h such that m ∈ h
and h ∩ O = ∅. Such a notion of outcome meets the informal constraint that once we are in the outcome,
we will forever remain in it; but while we are not in the outcome, there is always a way to avoid it. For a
discussion of this notion and its relation to the notion of free actions, see Xu (2009a).

123

Combinations of Stit and Actions 489

there are three distinct actions, none of which repeats itself. Of course we may take
the three knocks together as one particular action, in which case it is distinct from
any prior or subsequent action of knocking n times at the door. To characterize this in
terms of transitions, we require an action to be a set of transitions that occurs in each
history at most once.

Postulate 3.2 Each member of Act is associated with an agent.

For each action, there is a performer or doer of the action. Now for each agent
α ∈ Agent, we use Actα for a set of events, presenting members of Actα as actions
associated with α, and let Act = ⋃

α∈AgentActα , the set of all actions we want to
consider in the given context.

The purpose of associating an action with an agent is of course to pick out the per-
former of the action, but a mere association is hardly able to tell whether the associated
agent is the performer rather than a mere recipient of the action. We will deal with this
issue later, and for the moment, we only need a way of presenting such an association
in our framework.

A transition 〈p, O〉 is an immediate transition if there is no m such that p < m < O ,
i.e., no moment is between its initial and its outcome. For the purpose of the current
paper, an immediate transition is taken to be a transition

〈
p(m), O

〉
(recall that p(m) is

a past with the last moment m) with no m′ such that m < m′ < O . This being the
case, we may simply use 〈m, O〉 for the transition

〈
p(m), O

〉
, and call m the initial of

the transition.

Postulate 3.3 Each member of Act is a set of immediate transitions.

This postulate may be called the no-part condition, which amounts to saying that
members of Act are taken primitive in the sense that in the given context, we are
willing to ignore their detailed structures and the part-of relation among them. Note
that this does not commit ourselves to the “primitive actions” in the usual sense (see,
e.g., Davidson 1971).

For many reasons and in many contexts, we want or need to take certain actions to
be “primitive”, and take other actions as composed in terms of the “primitive” ones.
For example, in a chess game, a player moved his knight from position X to position
Y . When studying this game, we may take the player’s move an action, and call it e.
Surely e may be taken as a composition of a series of actions: taking the knight away
from X , holding it and moving the hand through a sequence of spatial positions until
over the position Y , and finally putting the knight down at Y and letting it go. But
very often, these parts of e are not relevant to a study of the game, and therefore can
be ignored in such a study or omitted from it.

To be willing to ignore the details of primitive actions amounts to saying that only
the initials and the outcomes of their transitions are “important”, and once we ignore
such details, we can take primitive actions to be sets of immediate transitions. This
means that we also take the time structure (not only details of actions) between initials
and outcomes of primitive actions “unimportant” to the current study of actions.

For each moment m, let ITm be the set of all immediate transitions with the same
initial m. For each set e of immediate transitions, e occurs at m iff ITm ∩ e �= ∅ (i.e.,

123

490 M. Xu

there is an outcome O such that 〈m, O〉 ∈ e), and e occurs at m/h (occurs at m in h)
iff there is an outcome O such that 〈m, O〉 ∈ e and O ∩ h �= ∅. We will use He

m for
the set {h ∈ Hm : e occurs at m/h} (which is the same as {h ∈ Hm : e ∩ ITm occurs
in h}). It is worth noting that to say e occurring at m/h (or occurring at m in h) is
more than saying that it occurs at m and that it occurs in h, and likewise He

m is not in
general the intersection of Hm and {h : e occurs in h}. Here is our next postulate:

Postulate 3.4 For all distinct actions associated with the same agent, they occur at
the same time only if they occur at the time in different histories.

The postulate above is saying that for all e, e′ ∈ Actα with e �= e′, if e and e′ both
occur at m, then they share no immediate transition 〈m, O〉, or in other words, that for
all e, e′ ∈ Actα, e �= e′ only if e ∩ e′ = ∅.

Like particular events, particular actions are taken to be objective processes, which
are independent of any linguistic expressions of them. Suppose that John knocked at
my door gently three times, Amy may describe it as John knocked at the door, Bob
may describe it as John knocked at the door three times, and Cathy may describe it as
John knocked at the door gently. But these are three descriptions of the same action,
not of three different actions at the same time.

John presumably could have done something different from what he actually did
(e), say he knocked at my door violently three times (e′), but the descriptions by Amy
and Bob above still apply. Nevertheless, e is presumably different from e′, and there-
fore each history in which e occurs should be different from all histories in which e′
occurs. This is just what Postulate 3.4 is about.

Each postulate above involves only single agents, while our next one, “indepen-
dence of actions”, involves a relation between free actions by different agents at the
same time. Before formulating this postulate, let us first consider the “rock-paper-scis-
sers” games. In such a game, two players throw their hand signs (for rock, paper and
scissers) at the same time, each such sign ties with the sign of the same kind, beats one
of the other two, and loses to the other. The central feature in such a game is that at each
time the players throw their hand signs “independently”: at each time, no matter what
hand sign a player throws, the other player can throw any of the three hand signs.7 In
other words, each of these throwings is considered free in a typical Libertarian sense,
according to which an action is free just in case under the same circumstance when
the action is performed, the same agent in question has the freedom of not performing
the action (see, e.g., Campbell 1957, pp. 162–164).

Our postulate “independence of actions” is a generalization of the consideration
above: actions free at the same time are “independent” if associated with different
agents. In order to formulate this postulate, we need the following notions. Let m
be any moment. e is free at m iff ∅ �= ITm ∩ e �= ITm , i.e., e occurs at m in some
history passing through m but not in others. Let Cα

m = ITm − ⋃
Actα for each m ∈ T

and α ∈ Agent (the “remaining” of ITm when all e-transitions with e ∈ Actα are

7 A close study of such hand-sign throwings in everyday life may show various tendencies (under various
circumstances) or probability distributions. The issue at hand, however, concerns not whether one kind of
throwings is more likely than the others, nor how much more it is likely than the others, but whether the
three kinds of throwings are equally possible.

123

Combinations of Stit and Actions 491

taken out). Provided that Cα
m �= ∅, we call it the (action) complement for α at m. A

selection function at m is a function f on Agent such that for each α ∈ Agent, f (α)

is either an action in Actα occurring at m, or the complement for α at m. Here is our
postulate:

Postulate 3.5 [Independence of actions] For each moment m and each selection
function f at m, (

⋂
α∈Agent f (α)) ∩ ITm �= ∅.

It is easy to show that this postulate is equivalent to that for each m and each selec-
tion function f at m, there is a history h ∈ ⋂

α∈Agent H
f (α)

m . As a consequence of
independence of actions (and Postulate 3.4), we have the following:

Proposition 3.6 Each action free at a moment is associated with only one agent.

Here is an argument. Suppose for reductio that an action e is free at m and is asso-
ciated with different agents α and β. According to independence of actions, for each
selection function f , there is a history h such that both f (α) and f (β) occurs at m/h.
Let f ′ be such a function that f ′(α) = e (as an action associated with α) and f ′(β) =
either a different action in Actβ occurring at m or the action complement for β at m
(taking e to be associated with β). We then obtain a history h′ such that both e and
f ′(β) occur at m/h′, which is impossible, by Postulate 3.4 and the definition of action
complements.

We said earlier that the purpose of associating an action with an agent is to associate
the action with its performer rather than a mere recipient, and whether our association
does that needs some justification. A characterization of a mere recipient of an action
obviously requires a more complex platform than what we have here, but whatever that
characterization turns out to be, it seems plausible to require it imply the following:

• A necessary condition for α to be a mere recipient of an action e is that there
is a different agent β who is the performer of e (associated with e, using our
terminology).

Taking this for granted (or as another postulate), we have the following as an easy
consequence of Proposition 3.6:

Proposition 3.7 For each e ∈ Actα , if e is free at a moment, then α is not a mere
recipient of e.

In Xu (2009a), we present a more detailed discussion of the postulates above, where
we also discuss action series and group actions among other things. From now on, we
call a sequence 〈T,<, Agent, Act〉 a stit-action structure if 〈T,<〉 is a tree-like frame,
Agent is a set of agents, and Act is a set of actions subject to Postulates 3.1–3.5. In some
contexts, stit-action structures can also be written as

〈
T,<, Agent, {Actα}α∈Agent

〉
.

4 Actions and Possible Choices

If an action is identified with the set of histories in which it occurs, it may roughly be
identified with a possible choice for an agent at a moment. We say “roughly” because

123

492 M. Xu

there is a difference between them. An action can be identified not only with a single
possible choice for an agent at a moment, but also with several such possible choices, as
long as they do not overlap. Neverthelss, each stit-action structure determines a unique
stit structure, and each stit structure determines a unique stit-action structure as well.

Let F = 〈T,<, Agent, Act〉 be any stit-action structure, and let α ∈ Agent and
m ∈ T . We define Choiceα

m as follows. If m is a <-dead-end, we let Choiceα
m =

{Hm}. Suppose that m is not a <-dead-end. We know that each immediate transi-
tion 〈m, O〉 is either an e-transition for some e ∈ Actα , or contained in the action
complement for α at m. We know by Postulate 3.4 that for all e, e′ ∈ Actα , and
for all 〈m, O〉 ∈ e and

〈
m, O ′〉 ∈ e′, if e �= e′ then O ∩ O ′ = ∅. Letting C be

{e ∩ ITm : e ∈ Actα ∧ e ∩ ITm �= ∅}, it is then easy to see that ITm is partitioned
by C if Cα

m = ∅ (recall that Cα
m = ITm − ⋃

Actα), and that ITm is partitioned by
C ∪ {Cα

m} if Cα
m �= ∅ (if the action complement for α at m exists). It follows that Hm

is partitioned by {He
m : (e ∈ Actα ∧ e ∩ ITm �= ∅) ∨ e = Cα

m �= ∅}, and hence we
can define Choiceα

m to be this partition. Note that the condition of no choice between
undivided histories is automatically satisfied due to a common feature of outcomes
(O ∩ O ′ �= ∅ only if either O ⊆ O ′ or O ′ ⊆ O). It is also easy to see that when
Choiceβ

m is thus defined for all β ∈ Agent, they satisfy the condition of independence
of agents, due to our postulate of independence of actions.

To sum up, for each stit-action structure F = 〈T,<, Agent, Act〉, we call Choice =
{〈〈α, m〉 , Choiceα

m

〉 : m ∈ T ∧ α ∈ Agent} the choice function determined by Act,
and call 〈T,<, Agent, Choice〉 the stit structure determined by F, where for each
α ∈ Agent and each m ∈ T ,

Choiceα
m =

{ {Hm} if m is a <-dead-end,

{He
m : e ∩ ITm �= ∅ ∧ (e ∈ Actα ∨ e = Cα

m)} o.w.

It is easy to verify the following:

Proposition 4.1 Let 〈T,<, Agent, Act〉 be any stit-action structure, let
〈T,<, Agent, Choice〉 be the stit structure determined by 〈T,<, Agent, Act〉, and
let m ∈ T and e ∈ Actα with α ∈ Agent. Then for all h in 〈T,<〉 , h ∈ He

m only if
Choiceα

m(h) = He
m.

It is easier to turn a stit structure into a stit-action structure than the other way
around—we only need to turn each possible choice H for α at m into an action by α

that occurs exclusively at m/h with h ∈ H .
Let F = 〈T,<, Agent, Choice〉 be any stit structure. For each m ∈ T that is

not a <-dead-end, and for each H ⊆ Hm , we use em,H for {〈m, O〉 ∈ ITm : ∃h ∈
H(O ∩ h �= ∅)}, i.e., the set of immediate transitions which occurs exclusively at
m/h with h ∈ H . For each α ∈ Agent, let

Actα = {em,H : m ∈ T ∧ H ∈ Choiceα
m ∧ m is not a <-dead-end}.

We call Act = ⋃
α∈AgentActα the set of actions determined by Choice, and call

〈T,<, Agent, Act〉 the stit-action structure determined by F. It is easy to verify that

123

Combinations of Stit and Actions 493

Act defined above satisfies all postulates discussed in the last section, by way of no
choice between undivided choices and independence of agents.

For each stit-action structure 〈T,<, Agent, Act〉, each e ∈ Act and each m ∈ T ,
if e ∩ ITm �= ∅ (i.e., e occurs at m), let us call it e-at-m. We know from the above
discussion that in the stit-action structure determined by a stit structure, each action
e occurring at m is the same as e-at-m, but this may not be the case for stit-action
structures in general. By the same token, in such a structure, each action e in Actα
occurring at m corresponds to a unique H ∈ Choiceα

m , where e occurs at m/h with
h ∈ H , but this may not be the case for stit -action structures in general. In other words,
actions in stit-action structures in general may occur at different moments (though not
in the same history), while each action determined by the choice function in a stit
structure occurs at a unique moment.8

5 Semantics for Stit with Actions

In this section, we extend the semantics for stit formulas to “stit-action formulas”,
where a stit-action formula is a formula of the form [α, e]A or [α, π]A, with α to
be an agent, e an action, π a set of actions, and A any formula.9 Such formulas may
take either the cstit version [α, e]c A (or [α, π]c A) or the dstit version [α, e]d A (or
[α, π]d A).

Let us first consider formulas of the form [α, e]A, and start with the cstit version.
Let F = 〈

T,<, Agent, {Actα}α∈Agent
〉

be any stit-action structure. A model on F is a
pair M = 〈F, V 〉 where V is a valuation as before. Intuitively, [α, e]A is interpreted
as that A is guaranteed true by α’s current action e, and our truth definition of [α, e]c A
is as follows, where M = 〈F, V 〉 and m ∈ h:

M, m/h � [α, e]c A iff e ∈ Actαand h ∈ He
m, and

(2)
M, m/h′ � A for all h′ ∈ He

m .

Original stit formulas [α]c A (and [α]d A below) are interpreted in the original way,
except the choice function Choice is now determined by Act. It is easy to see from (2)
that M, m/h � [α, e]c iff e ∈ Actα and h ∈ He

m , and then by (2) and Proposition
4.1, the following are equivalent:

M, m/h � [α, e]c A.

e ∈ Actα and h ∈ He
m and M, m/h � [α]c A. (3)

M, m/h � [α, e]c ∧ [α]c A.

8 A similar theory of actions is presented in Brown (2008a,b), which is also based on events and agents.
A main difference between that theory and ours is that actions in Brown’s theory are in general like e-at-
m above, each occurring at a unique moment and definable in terms of a possible choice. A comparison
between Brown’s theory and ours would be interesting, but I have to leave it to another occasion.
9 For convenience, we use e, e′ etc. ambiguously both as actions and as terms for actions; likewise, we use
π, π ′ etc. both as sets of actions and as terms for these sets.

123

494 M. Xu

Here is our truth definition of [α, e]d A:

M, m/h � [α, e]d A iff e ∈ Actα and h ∈ He
m,M, m/h′ � A

for all h′ ∈ He
m, and M, m/h′′

� A

for some h′′ ∈ Hm . (4)

Other semantic notions are defined as usual. It is easy to verify by (2), (3) and (4)
that the following are equivalent:

M, m/h � [α, e]d A.

M, m/h � [α, e]c A ∧ ¬�A.
(5)

M, m/h � [α, e]c ∧ [α]c A ∧ ¬�A.

M, m/h � [α, e]c ∧ [α]d A.

Let [α, e]∗ A be [α, e]c A ∧ ¬�[α, e]c A. It is easy to verify that [α, e]∗ says not
only that e ∈ Actα and e occurs at the current moment in the current history, but that e
is free at the current moment. It is also easy to verify that [α, e]d A ↔ [α, e]∗∧[α]d A
is valid.

Applying (5), we know that the following is valid:

[α, e]d A ↔ [α, e]c A ∧ ¬�A (6)

which means that at the presence of � and [α, e]c, [α, e]d is definable. Furthermore,
it is easy to see from the above that the following are valid:

[α, e]c A ↔ [α, e]c ∧ ([α]d A ∨ �A)
(7)[α, e]d A ↔ [α, e]c ∧ ([α]c A ∧ ¬�A)

which means that at the presence of any two of �, [α]c and [α]d, as well as [α, e]c
(taking as a “constant” saying “α’s current action is e”), [α, e]c and [α, e]d are all
definable.

Next we turn to formulas of the form [α, π]A, where π is a set of actions. In some
applications, it seems more useful to talk about types of actions than particular actions
themselves. What then constitute a type of actions? I do not know the answer to this
question, but if a type of actions is a set of actions “similar to each other” in some
sense, we may deal with sets of actions for now, and leave the rest for later studies,
and this is what we do here.

Let F = 〈T,<, Agent, Act, ASet〉 be a stit-action structure equipped with a non-
empty set ASet, whose members π, π ′ etc. are nonempty sets of actions. We will
call F a stit-action structure with types. A valuation V on F is as before. Intuitively,
[α, π]A is interpreted as that A is guaranteed true by α’s current action of type π , and
the truth definition of [α, π]c A is as follows, where M = 〈F, V 〉 and m ∈ h:

123

Combinations of Stit and Actions 495

M, m/h � [α, π]c A iff there is an e ∈ Actα ∩ π such that

h ∈ He
m, and M, m/h′ � A for all

h′ ∈ He
m . (8)

Here is our truth definition of [α, π]d A:

M, m/h � [α, π]d A iff there is an e ∈ Actα ∩ π such that

h ∈ He
m,M, m/h′ � A for all h′ ∈ He

m,

and M, m/h′′
� A for an h′′ ∈ Hm . (9)

Other semantic notions are defined as usual. From (8) it is easy to see that M, m/h �
[α, π]c iff there is an e ∈ Actα ∩ π such that h ∈ He

m , and then by Proposition 4.1,
the following are equivalent:

M, m/h � [α, π]c A.

there is an e ∈ Actα ∩ π such that h ∈ He
m and M, m/h � [α]c A.

M, m/h � [α, π]c ∧ [α]c A.

(10)

It is then easy to verify by (8), (9) and (10) that even with actions replaced by sets of
actions, items displayed in (5) are still equivalent, and (6) and (7) still hold.

6 Two Axiomatic Systems of Stit-action Logic Based on Metric Tense Logic

We present here two basic axiomatic systems for stit-action logic based on metric
tense logic for discrete tree-like frames, one of which takes “actions” to mean partic-
ular actions, and the other sets of particular actions.

A discrete stit-action structure (with types) is a stit-action structure (with types)
〈T,<, Agent, Act〉 (〈T,<, Agent, Act, ASet〉) with 〈T,<〉 to be a discrete tree-like
frame, i.e., a tree-like frame in which for each history h and each m ∈ h, the following
hold:

• if m is not a <-dead-end, there is a unique m∗ ∈ h such that m < m∗ and
m < m′ < m∗ for no m′ (we will use m+

h for this m∗); and
• if m is not a >-dead-end, there is a unique m∗ such that m∗ < m and m∗ < m′ < m

for no m′ (we will use m− for this m∗).

A model on such a structure (with types) F is a pair M = 〈F, V 〉, where V is a
valuation as before.

Given a discrete stit-action structure 〈T,<, Agent, Act〉, our new language is
generated as follows, where α, β ∈ Agent and e, e′ ∈ Act:

q | α = β | e = e′ | ¬A | A ∧ B | F A | P A | �A | [α]A | [α, e]A

123

496 M. Xu

The connectives F (“next”) and P (“last”) are metric tense operators, and should not
be confused with the ordinary “will-be” and “was” operators. When given a discrete
stit-action structure with types 〈T,<, Agent, Act, ASet〉, our language is also gener-
ated by the above, except that we replace e, e′ by π, π ′, and Act by ASet. From now
on, we use [α] for [α]c, and [α, e] and [α, π] for [α, e]c and [α, π]c.

The satisfaction relation M, m/h � A (m ∈ h) is defined as usual, plus (1), (2), (8)
and the following:

M, m/h � F A iff m is not a <-dead end and M, m+
h /h � A.

(11)
M, m/h � P A iff m is not a >-dead end and M, m−/h � A.

Our first system for stit-action logic takes modus ponens and the following as rules
of inference:

RM infer F A → F B and P A → P B from A → B
RN� infer �A from A

and takes as axioms (axiom schemes) all substitution instances of truth-functional
tautologies and the following:

A1 F A ∧ F B → F(A ∧ B), P A ∧ P B → P(A ∧ B)

A2 F(A ∨ B) → F A ∨ F B, P(A ∨ B) → P A ∨ P B
A3 A ∧ F B ↔ F(B ∧ P A), A ∧ P B ↔ P(B ∧ F A)

A4 S5 axioms for � and for each [α]
A5 P[α]A → �P A10

A6 A ∧ ¬F → �A
A7 �A → [α]A
A8 α = α, α = β → (A → A(α/β))

A9 (
∧

0�i �= j�n¬(βi = β j)) ∧ (
∧

k�n ♦[βk]Ak) → ♦(
∧

k�n Ak) (n > 0)11

A10 e = e, e = e′ → (A → A(e/e′))
A11 [α, e]A ↔ [α](A ∧ [α, e])

A12 [α, e]A → �([α, e] → [α, e]A)

A13 [α, e] → F
A14 Pk♦Fn([α, e] ∧ ¬�[α, e]) → ([β, e] → α = β)

A15 Pn[α, e] → ¬[β, e] (n > 0)

A16 [α, e] ∧ [α, e′] → e = e′

Our second system for the basic stit-action logic takes “actions” to mean sets of
particular actions, and thus we use π, π ′ etc. in the language instead of e, e′ etc. This
system takes as rules of inference modus ponens, RM and RN�, and takes as axioms
all substitution instances of truth-functional tautologies, A1 –A9 and the following:

10 This corresponds to the condition of no choice between undivided histories, which renders the usual
axiom P�φ → �Pφ provable.
11 This can be replaced by diff(α, β0, . . . , βn) ∧ [α](∨k�n [βk]A) → �A, as shown in Balbiani et al.
(2008), and when using [α] and [β] to define � (with the assumption of different agent terms for different
agents), the S5 axioms for � becomes redundant.

123

Combinations of Stit and Actions 497

A10′ π = π, π = π ′ → (A → A(π/π ′))
A11′ [α, π]A ↔ [α](A ∧ [α, π])

A12′ [α, π] → F
A completeness result can be found in Xu (2009b), which is based on the com-

pleteness proof in Xu (1994) for dstit logic and a straightforward completeness proof
for the metric tense logic on discrete tree-like frames.

7 Stit-action Logic Versus Branching ETL

In this section we compare stit-action logic (with types) and a version of branch-
ing epistemic temporal logic (ETL), which can be found in Chap. 9 of van Benthem
(2008). The reason why we pick up this version for comparison is that in this version,
formulas are evaluated at state/history pairs rather than at states alone, which provides
a common ground for the comparison.

There are at least two ways for our comparison to proceed: one way is to extend
stit-action logic to deals with epistemic operators as ETL does, while the other way is
to ignore the epistemic operators in ETL. We want to take the second way, not only
because it is simpler,12 but also because in my view it zooms in and gives us a close-up
view at the main connection and the main difference between the two theories.

From now on, we call the fragment of ETL without epistemic operators a temporal
event logic, or simply TEL. Its language is generated by the following, with E to be a
set of “events”:

q | ¬A | A ∧ B | Fe A | Pe A where e ∈ E

In our discussions below, all tree-like frames are discrete. In such a frame 〈T,<〉,
each outcome O is Om = {m′ ∈ T : m � m′} for a unique m ∈ T , and then each
immediate transition is 〈m, Om′ 〉 for some m, m′ ∈ T with m <1 m′, i.e., m < m′ and
m < u < m′ for no u ∈ T . Thus we will use

〈
m, m′〉 for 〈m, Om′ 〉 for convenience.

This being the case, we have that

h ∈ He
m iff 〈m, m+

h 〉 ∈ e iff m′ ∈ h for some
〈
m, m′〉 ∈ e. (12)

An TEL model is a sequence M = 〈E, S, V 〉 defined as follows. E is a nonempty
set of events (or event types), and S is a nonempty set of states, which are nonempty
finite sequences of events closed under “prefixes”. We use s, s′ etc. to range over non-
empty (finite or infinite) sequences of events. For all s = 〈ei 〉i�η and s′ = 〈

e′
i

〉
i�η′

with η, η′ � ω, s is a prefix of s′ (written s � s′) iff η � η′ and ei = e′
i for all i � η.

We will use s ∗〈e〉 for 〈e0, . . . , ek, e〉 when s = 〈e0, . . . , ek〉, and use s ≺ s′ for s � s′
but s �= s′. Maximal (possibly infinite) �-chains in S constitute histories in S (which
we also use h, h′ to range over), but for convenience we often use 〈e0, e1, . . .〉 instead
of {s0, s1, . . .} for a history in S if sk = 〈e0, . . . , ek〉 for all k � 0. When s � h with

12 Thanks to John Horty, who pointed out to me a certain complication resulted from a combination of stit
and epistemic operators. See, e.g., Broersen (2008b).

123

498 M. Xu

s ∈ S and h to be a history in S, we also say that h passes through s. Finally, V is a
valuation assigning to each propositional letter q a subset V (q) of {〈s, h〉 : h passes
through s}. The satisfaction relation M, s, h � A is defined as follows, where h passes
through s:

M, s, h � q iff 〈s, h〉 ∈ V (q);
M, s, h � ¬A iff M, s, h � A;

M, s, h � A ∧ B iff M, s, h � A and M, s, h � B;
M, s, h � Fe A iff (s ∗ 〈e〉) � h and M, s ∗ 〈e〉 , h � A;
M, s, h � Pe A iff s = s′ ∗ 〈e〉 and M, s′, h � A;

Not only will ETL be restricted in our comparison, so will be the stit-action logic.
There are a few reasons for this. First of all, ETL currently lacks a mechanism connect-
ing agents and events, and therefore the connection in stit-action logic between agents
and actions has no correspondent in ETL. Secondly, ETL does not have a necessity-
like version of Fe, which makes the stit-action operators in stit-action logic appear
too strong to find a match in ETL. Finally, there is a certain kind of situations that
stit theories can express while ETL (and DEL) cannot, which makes an unconditional
ETL representation of stit very difficult, if not impossible. The kind of situations is like
this: an agent may have different, but the same type of, alternatives at a single moment,
which may even have incompatible consequences. For example, at a moment Amy
can help either Bob or Cathy, but not both; if she helps Cathy, both Bob and Cathy
will be happy, and if she helps Bob, not both of them will be happy. Treating the two
alternatives to be of the same type (say “helping someone”), ETL (and DEL) would
not allow them both to occur at the same state.

In accordance with these considerations, we restrict our stit-action logic to a frag-
ment of it, with a single agent α and with alone to be an argument to [α, π],
and call this fragment a restricted stit-action logic (RSL). To be precise, RSL mod-
els are discrete stit-action models (with types) 〈T,<, {α}, Act, ASet, V 〉 (or simply
〈T,<, Act, ASet, V 〉) with Act to be the same as Actα , and RSL language is generated
by the following, with α to be the only agent:

q | ¬A | A ∧ B | [α, π] | F A | P A π ∈ ASet

In the remaining of this section, we present two way representations between TEL
and RSL. Let us start with the easy direction.

Given any TEL model M = 〈E, S, V 〉, we define the “RSL transformation” of M
as follows. For all s and e such that (s ∗ 〈e〉) ∈ S, let εs∗〈e〉 = {〈s, s ∗ 〈e〉〉}, and let
Act = Actα = {εs∗〈e〉 : (s ∗ 〈e〉) ∈ S}. For each e ∈ E such that (s ∗ 〈e〉) ∈ S for some
s ∈ S, let πe = {εs∗〈e〉 : (s ∗〈e〉) ∈ S}. Finally let ASet = {πe : e ∈ E∧∃s((s ∗〈e〉) ∈
S)}.

Let Mˆ = 〈S,≺, Act, ASet, V 〉 as defined above, with ≺ to be restricted to S.
We call Mˆ the RSL transformation of M. It is easy to see that 〈S,≺〉 is a tree-like
frame, that each 〈s, s ∗ 〈e〉〉 is an immediate transition in 〈S,≺〉, and that each εs∗〈e〉
is an action in 〈S,≺〉. It is also easy to verify that Act satisfies all postulates given in

123

Combinations of Stit and Actions 499

Sect. 3, and that ASet is a nonempty set whose members are nonempty sets of actions.
It follows that Mˆ is an RSL model. Note that for each s and e with s ∗ 〈e〉 ∈ S, it is
always true that εs∗〈e〉 ∈ πe = Actα ∩ πe, and hence for each h passing through s, we
have the following by (12) and truth definition (cf. the discussion following 9):

s ∗ 〈e〉 ∈ h iff h ∈ H
εs∗〈e〉
s iff Mˆ, s/h � [α, πe]. (13)

For all TEL formulas A, we define Aˆ as follows:

qˆ � q

(¬A)ˆ � ¬(Aˆ)

(A ∧ B)ˆ � Aˆ ∧ Bˆ

(Fe A)ˆ � [α, πe] ∧ F Aˆ

(Pe A)ˆ � P([α, πe] ∧ Aˆ)

The following is our first representation theorem.

Theorem 7.1 For each TEL model M = 〈E, S, V 〉, each TEL formula A, and each
s ∈ S and h in S passing through s,M, s, h � A iff Mˆ, s/h � Aˆ.

Proof We only show the case for Fe. Let A = Fe B. Then Aˆ = [α, πe] ∧ F Bˆ.
Suppose that M, s, h � Fe B. Then s ∗ 〈e〉 � h and M, s ∗ 〈e〉 , h � B. By induction
hypothesis, Mˆ, (s ∗〈e〉)/h � Bˆ. Because s ∗〈e〉 � h, it follows that s ≺1 s ∗〈e〉 and
s ∗ 〈e〉 ∈ h, and hence by (13), Mˆ, s/h � [α, πe] ∧ F Bˆ, i.e., Mˆ, s/h � (Fe B)ˆ.
Suppose that Mˆ, s/h � (Fe B)ˆ, i.e., Mˆ, s/h � [α, πe] ∧ F Bˆ. Then by (13),
s ∗ 〈e〉 ∈ h (and hence s is not a ≺-dead-end) and Mˆ, s+

h /h � Bˆ. It follows that
s ∗ 〈e〉 � h and s+

h = s ∗ 〈e〉, and thus Mˆ, (s ∗ 〈e〉)/h � Bˆ, and hence by induction
hypothesis, s ∗ 〈e〉 � h and M, s ∗ 〈e〉 , h � B, i.e., M, s, h � Fe B. ��

Let M = 〈T,<, Act, ASet, V 〉 be any rooted RSL model, i.e., an RSL model
where each history h is either finite or of order type ω, and let p = {m0, m1, . . . , mn}
and p′ = {u0, u1, . . . , uk} be any pasts in 〈T,<〉. p ≈ p′ iff m0 = u0 and k = n,
and for each i < k, there is a π ∈ ASet such that 〈mi , mi+1〉 , 〈ui , ui+1〉 ∈ ⋃

π

(i.e., 〈mi , mi+1〉 ∈ e1 ∈ π and 〈ui , ui+1〉 ∈ e2 ∈ π for some e1 and e2). Intuitively,
p ≈ p′ means that p and p′ have the same beginning, are of the same “length”, and
at each pair of corresponding “stages”, the same kind of actions occur. Let h and h′
be histories in 〈T,<〉. h �M h′ iff either of the following holds:

• there are m ∈ T and u ∈ h′ such that h = p(m) ≈ p(u), or
• h = {m0, m1, . . .} and h′ = {u0, u1, . . .} and p(mi) ≈ p(ui) for all i � 0.

It is easy to verify that the RSL transformation M = 〈T,<, Act, ASet, V 〉 of a
TEL model satisfies the following:

C1 Each immediate transition is a member of an action (i.e., no action complements).
C2 ASet is a partition of Act.
C3 Each history h is either finite or of order type ω.

123

500 M. Xu

C4 h �M h′ only if h = h′ for all histories h and h′.
C5 For each π ∈ ASet and m ∈ T , at most one action in π occurs at m.
C6 Each action is a singleton of an immediate transition.

Now we work toward the “representation theorem” of the other direction. Note
that this “representation” is not unconditional because we will start with RSL models
satisfying conditions C1–C4 above.

Let M = 〈T,<, Act, ASet, V 〉 be any RSL model satisfying C1–C4. We need to
transform M into an RSL model t(M) to satisfy all C1–C6.

Let m, m′ ∈ T. m ≈ m′ iff p(m) ≈ p(m′). Because of C2,≈ is an equivalence rela-
tion. We then use t(m), or simply [m], for the ≈-equivalence class to which m belongs,
and use t(T) for {t(m) : m ∈ T }. Let t(<) (also written as) be the following relation
on t(T): Let [m] 	0 [m′] iff [m] = [m′], and for each k � 0, [m] 	k+1 [m′] iff there
is an m0 such that [m] 	k [m0] and u <1 u′ for some u ∈ [m0] and u′ ∈ [m′]. Finally,
let [m] 	 [m′] iff [m] 	k [m′] for some k > 0. It is easy to verify that [m] 	 [m′]
iff for each u′ ∈ [m′], there is a u ∈ [m] such that u < u′, from which it follows that
〈t(T), t(<)〉 is a tree-like frame.

For each h = {m0, m1, . . .} in 〈T,<〉, let t(h) = {[m0], [m1], . . .}. It is easy to see
that

for each m ∈ h, [m+
h] = [m]+t(h). (14)

Obviously t(h) is a history in 〈t(T), t(<)〉 whenever h is a history in 〈T,<〉. Note that
there might be histories in 〈t(T), t(<)〉 that is not t(h) for any h in 〈T,<〉. Fortunately,
RSL formulas do not include those of the form �A, [α, π]A (except [α, π]) or [α]A,
which is why we can still get through our proof below.

Let t(Act) = {{〈[m], [m′]〉} : m <1 m′}. Clearly, each member of t(Act) is a single-
ton of an immediate transition in 〈t(T), t(<)〉. For each immediate transition

〈
m, m′〉

in 〈T,<〉, we know by C1–C2 that
〈
m, m′〉 ∈ ⋃

π for a unique π ∈ ASet, and if
u <1 u′ with u ∈ [m] and u′ ∈ [m′], it must be the case that

〈
u, u′〉 ∈ ⋃

π . Now
for each π ∈ ASet, let t(π) = {{〈[m], [m′]〉} : m <1 m′ ∧ 〈

m, m′〉 ∈ ⋃
π}, and let

t(ASet) = {t(π) : π ∈ ASet}. Note that by definition, the following holds for all
m, m′ ∈ T with m <1 m′:

〈
m, m′〉 ∈

⋃
π iff

〈[m], [m′]〉 ∈
⋃

t(π). (15)

Finally, let t(M) = 〈t(T), t(<), t(Act), t(ASet), t(V)〉, where t(V) is a valuation
such that for each propositional letter q, each m ∈ T and each h ∈ Hm, 〈t(m), t(h)〉 ∈
t(V)(q) iff 〈m, h〉 ∈ V (q).13 We call t(M) the t-transformation of M, and conclude
from the observations above that t(M) is an RSL model satisfying all C1–C6.

Using A(t) for the result of replacing each π in A by t(π), we have:

13 For histories h∗ in 〈t(T), t(<)〉 that are not t(h) for any histories h in 〈T, <〉, we let
〈[m], h∗〉

/∈ t(V)(q)

for every m ∈ T and every q. This will ensure a unique transformation.

123

Combinations of Stit and Actions 501

Lemma 7.2 Let M = 〈T,<, Act, ASet, V 〉 be any RSL model satisfying C1–C4, and
let t(M) be the t-transformation of M. Then for each RSL formula A, each m ∈ T
and each h ∈ Hm,M, m/h � A iff t(M), t(m)/t(h) � A(t).

Proof We only show the case for [α, π]: M, m/h � [α, π] iff h ∈ He
m for some

e ∈ π iff 〈m, m+
h 〉 ∈ ⋃

π iff (by 15) 〈[m], [m+
h]〉 ∈ ⋃

t(π) iff 〈[m], [m+
h]〉 ∈ e′ ∈ t(π)

for some e′ iff (by 14) 〈[m], [m]+t(h)〉 ∈ e′ ∈ t(π) for some e′ iff t(h) ∈ He′
[m] for some

e′ ∈ t(π) iff t(M), [m]/t(h) � [α, t(π)]. ��
Now let M = 〈T,<, Act, ASet, V 〉 be any RSL model satisfying all C1–C6. We

define the “u-transformation” of M as follows. Let us fix 	 = {m ∈ T : m is a
>-dead-end in T }, let EM = ASet ∪ 	, and let E

∗ be the set of all (finite or infinite)
sequences of members of EM. For each history h in 〈T,<〉, there are (distinct) actions
e1, e2, . . . and a maximal �-chain u(h) in E

∗ satisfying the following:

• h = {m0, m1, . . .} with 〈mk, mk+1〉 ∈ eki+1 for all k � 0, and
• u(h) = 〈

m0, π[e1], π[e2], . . .
〉
, where π[e] is the unique member of ASet to which

e belongs. (recall C2: ASet is a partition of Act.)

We call such a u(h) the correspondent of h. For each m ∈ T , there is a sequence
u(m) ∈ E

∗ such that for some k � 0 and some actions e1, . . . , ek , the following hold:

• p(m) = {m0, . . . , mk} with m = mk , and 〈mi , mi+1〉 ∈ ei+1 for all i < k, and
• u(m) = 〈

m0, π[e1], . . . , π[ek]
〉
, where π[e] is the unique member of ASet to which

e belongs.

We call such an u(m) the correspondent of m.14 Using H for the set of all correspon-
dents of histories in 〈T,<〉, we let SM be the set of all finite (nonempty) prefixes
of histories in H. It is easy to see that each s ∈ SM is a correspondent of some
m ∈ T (i.e., s = u(m) for some m ∈ T). Finally, let u(M) = 〈EM, SM, u(V)〉 where
for each propositional letter q, each m ∈ T and each h ∈ Hm, 〈m, h〉 ∈ V (q) iff
〈u(m), u(h)〉 ∈ u(V)(q). We call u(M) the u-transformation of M, and it is easy to
see that u(M) is a TEL model.

Assuming that ASet is finite. For RSL formulas A, we define A◦ as follows:

q◦ � q

(¬A)◦ � ¬(A◦)
(A ∧ B)◦ � A◦ ∧ B◦

([α, π])◦ � Fπ
(F A)◦ �

∨
π∈ASet Fπ (A◦)

(P A)◦ �
∨

π∈ASet Pπ (A◦)

14 It is easy to see that correspondents of moments can be defined recursively: For each >-dead-end m in
T,u(m) = 〈m〉; for each m such that u <1 m for some u ∈ T, u(m) = u(u) ∗ 〈π〉, where π is the unique
member of ASet to which {〈u, m〉} belongs.

123

502 M. Xu

Lemma 7.3 Let M = 〈T,<, Act, ASet, V 〉 be any RSL model satisfying all C1–C6,
and let u(M) be the u-transformation of M. Suppose that ASet is finite. Then for all
RSL formula A, all m and h,M, m/h � A iff u(M), u(m), u(h) � A◦.

Proof Using M∗ for u(M) and h∗ for u(h), we show the cases for [α, π] and F . Let
A = [α, π]. Suppose that M, m/h � [α, π]. Then there is an e ∈ Act ∩ π such
that h ∈ He

m , which implies that 〈m, m+
h 〉 ∈ e ∈ π , and hence by definition above,

u(m) ∗ 〈π〉 = u(m+
h). Clearly m+

h ∈ h, and hence (u(m) ∗ 〈π〉) � h∗. Since obvi-
ously M∗, u(m) ∗ 〈π〉 , h∗ � , it follows that M∗, u(m), h∗ � Fπ. Suppose that
M∗, u(m), h∗ � Fπ. Then (u(m)∗〈π〉) � h∗, and consequently e = {〈m, m+

h 〉} ∈ π

and hence h ∈ He
m , from which it follows that M, m/h � [α, π].

Let A = F B. Suppose that M, m/h � F B. Then m is not a <-dead-end and
M, m+

h /h � B, and hence by induction hypothesis, M∗, u(m+
h), h∗ � B◦. Clearly,

e = {〈m, m+
h 〉} ∈ Act by C1 and C6. Applying C2, e ∈ π ′ for some π ′ ∈ ASet,

and hence by definition above, u(m+
h) = u(m) ∗ 〈

π ′〉, from which it follows that
(u(m) ∗ 〈

π ′〉) � h∗ and M∗, u(m) ∗ 〈
π ′〉 , h∗ � B◦, i.e., M∗, u(m), h∗ � Fπ ′ B◦, and

hence M∗, u(m), h∗ �
∨

π∈ASet Fπ B◦. Suppose that M∗, u(m), h∗ �
∨

π∈ASet Fπ B◦.
Then for some π ∈ ASet,M∗, u(m), h∗ � Fπ B◦, and hence u(m) ∗ 〈π〉 � h∗ and
M∗, u(m)∗〈π〉 , h∗ � B◦. Because u(m)∗〈π〉 � h∗ and h∗ is the correspondent of h,
we know that there is an m′ ∈ h with m <1 m′ and {〈m, m′〉} ∈ π . Clearly, m′ = m+

h ,
and then u(m)∗〈π〉 = u(m+

h), and hence M∗, u(m+
h), h∗ � B◦. By induction hypoth-

esis, M, m+
h /h � B, and m is obviously not a <-dead-end, and hence M, m/h � F B.

��

Let M = 〈T,<, Act, ASet, V 〉 be any RSL model satisfying C1–C4. We know that
t(M) satisfies all C1–C6, and that u(t(M)) is a TEL model. We let M◦ be u(t(M)),
and call it the TEL transformation of M. For each m ∈ T , we use m◦ for u(t(m)), and
for each h in 〈T,<〉, we use h◦ for u(t(h)). Finally, for each RSL formula A, we use
A(t) for the result of replacing each π in A by t(π). Appying Lemma 7.2 and 7.3, we
can establish the following.

Theorem 7.4 For each RSL model M = 〈T,<, Act, ASet, V 〉 satisfying C1–C4 and
that ASet is finite, each RSL formula A, each m ∈ T and each h ∈ Hm,M, m/h � A
iff M◦, m◦, h◦ � (A(t))◦.

References

Balbiani, P., Herzig, A., & Troquard, N. (2008). Alternative axiomatics and complexity of deliberative
stit theories. Journal of Philosophical Logic, 37, 387–406.

Belnap, N. (1995). Outcomes on branching histories. Unpublished manuscript, Department of Philosophy,
University of Pittsburgh.

Belnap, N. (1996). The very idea of an outcome. Serbian Scientific Review, 19(20), 15–16.
Belnap, N. (2005). A theory of causation: Causae causantes (originating causes) as inus conditions in

branching space-times. British Journal of the Philosophy of Science, 56, 221–253.
Belnap, N., & Perloff, M. (1988). Seeing to it that: A canonical form for agentives. Theoria, 54, 175–199.
Belnap, N., Perloff, M., & Xu, M. (2001). Facing the future: Agents and choices in our indeterminist

world. Oxford: Oxford University Press.

123

Combinations of Stit and Actions 503

Broersen, J. (2008a). A complete stit logic for knowledge and action, and some of its applications. In
M. Baldoni, T. C. Son, M. B. van Riemsdijk, & M. Winikoff (Eds.), Declarative agent languages
and technologies VI, DALT 2008 (Vol. 5397 of Lecture Notes in Computer Science, pp. 47–59).
Berlin: Springer.

Broersen, J. (2008b). A logical analysis of the interaction between ‘obligation-to-do’ and ‘knowingly
doing’. In R. van der Meyden, & L. van der Torre (Eds.) (pp. 140–154).

Broersen, J., Herzig, A., & Troquard, N. (2006a). Embedding alternating-time temporal logic in strategic
stit logic of agency. Journal of Logic and Computation, 16(5), 559–578.

Broersen, J., Herzig, A., & Troquard, N. (2006b). A stit-extension of ATL. In M. Fisher (Ed.), Proceedings
tenth European conference on logics in artificial intelligence, JELIA 06 (Vol. 4160 of Lecture
Notes in Artificial Intelligence, pp. 69–81). Berlin: Springer.

Broersen, J., Herzig, A., & Troquard, N. (2009). What groups do, can do, and know they can do:
A normal modal logic analysis. Journal of Applied Non-Classical Logics (to appear).

Brown, M. (1988). On the logic of ability. Journal of Philosophical Logic, 17, 1–26.
Brown, M. (2008a). Acting, events and actions. In R. van der Meyden & L. van der Torre (Eds.)

(pp. 19–33).
Brown, M. (2008b). Acts and actions in branching time. Manuscript, Philosophy Department, Syracuse

University. Presented at the 36th annual meeting of the society for exact philosophy.
Campbell, C.A. (1957). On selfhood and godhood. New York: George Allen & Unwin Ltd., The

MacMillan Company.
Chellas, B. (1969). The logical form of imperatives. Stanford: Perry Lane Press.
Davidson, D. (1971). Agency. In R. B. Robert Binkley, & A. Marras (Eds.), Agent, action and reason

(pp. 43–61). Toronto: University of Toronto Press (Reprinted in Davidson 1980).
Davidson, D. (1980). Essays on actions and events. Oxford: Oxford University Press.
Governatori, G., Hodkinson, I., & Venema, Y. (Eds.). (2006). Advances in modal logic (Vol. 6). College

Publications, Department of Compuer Science, Strand, London WC2R 2LS, UK.
Horty, J. F. (1989). An alternative stit operator. Manuscript, Department of Philosophy, University of

Maryland.
Horty, J. F. (2001). Agency and deontic logic. Oxford: Oxford University Press.
van Benthem, J. F. A. K. (2008). Logical dynamics of information and interaction. Manuscript.
van Benthem, J., Gerbrandy, J., Hoshi, T., & Pacuit, E. (2009). Merging frameworks for interaction. Journal

of Philosophical Logic, 38, 491–526.
van Benthem, J., & Pacuit, E. (2006). The tree of knowledge in action: Towards a common perspective

(pp. 87–106) (in Governatori et al. 2006).
van der Meyden, R., & van der Torre, L. (Eds.). (2008). Deontic logic in computer science: 9th

International conference, DEON 2008, Luxembourg, Luxembourg, July 2008, proceedings (Vol.
5076 of Lecture Notes in Artificial Intelligence). Berlin: Springer.

von Kutschera, F. (1986). Bewirken. Erkenntnis, 24, 253–281.
von Kutschera, F. (1993). Causation. Journal of Philosophical Logic, 22, 563–588.
Wansing, H. (2006). Tableaux for multi-agent deliberative stit logic (pp. 503–520) (in Governatori et

al. 2006).
Wölfl, S. (2002). Propositional Q logic. Journal of Philosophical Logic, 31, 387–414.
Wölfl, S. (2005). Events in branching time. Studia Logica, 79, 255–282.
Xu, M. (1994). Decidability of deliberative stit theories with multiple agents. In D. M. Gabbay, &

H. J. Ohlbach (Eds.), Temporal logic, first international conference, ICTL’94, Bonn, Germany,
proceedings (Vol. 827 of Lecture Notes in Artificial Intelligence, pp. 332–348). Berlin: Springer.

Xu, M. (1997). Causation in branching time (I): Transitions, events and causes. Synthese, 112, 137–192.
Xu, M. (1998). Axioms for deliberative stit. Journal of Philosophical Logic, 27, 505–552.
Xu, M. (2009a). Actions as events. Unpublished manuscript, Department of Philosophy, Wuhan University.
Xu, M. (2009b). Axioms for stit with actions based on metric tense logic in branching time. Unpublished

manuscript, Department of Philosophy, Wuhan University.

123

	Combinations of Stit and Actions
	Abstract
	1 Stit Theories
	2 Outcomes, Transitions and Events
	3 Actions
	4 Actions and Possible Choices
	5 Semantics for Stit with Actions
	6 Two Axiomatic Systems of Stit-action Logic Based on Metric Tense Logic
	7 Stit-action Logic Versus Branching ETL
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

