
J Logic Lang Info (2007) 16:63–89
DOI 10.1007/s10849-006-9022-1

O R I G I NA L A RT I C L E

Linear temporal logic as an executable semantics for
planning languages

Marta Cialdea Mayer · Carla Limongelli ·
Andrea Orlandini · Valentina Poggioni

Received: 25 July 2006 / Accepted: 25 July 2006 /
Published online: 21 November 2006
© Springer Science+Business Media B.V. 2006

Abstract This paper presents an approach to artificial intelligence planning based on
linear temporal logic (LTL). A simple and easy-to-use planning language is described,
PDDL-K (Planning Domain Description Language with control Knowledge), which
allows one to specify a planning problem together with heuristic information that can
be of help for both pruning the search space and finding better quality plans. The
semantics of the language is given in terms of a translation into a set of LTL formulae.
Planning is then reduced to “executing” the LTL encoding, i.e. to model search in
LTL. The feasibility of the approach has been successfully tested by means of the
system Pdk, an implementation of the proposed method.

Keywords Applied temporal logic · Artificial intelligence planning · Knowledge
representation

1 Introduction

Automated planning is a field of Artificial Intelligence that studies methods and
algorithms to find action sequences (plans) achieving some given goals. If the con-
current execution of different actions is allowed, then a (parallel) plan is a sequence
of sets of actions. In general, a planning problem is specified by describing all the
executable actions, some goal, and what is known about the initial state of the world.

M. Cialdea Mayer (B) · C. Limongelli · A. Orlandini · V. Poggioni
Dipartimento di Informatica e Automazione, Università di Roma Tre, via della Vasca Navale , 79,
I-00146 Roma, Italy
e-mail: cialdea@dia.uniroma3.it

C. Limongelli
e-mail: limongel@dia.uniroma3.it

A. Orlandini
e-mail: orlandin@dia.uniroma3.it

V. Poggioni
e-mail: poggioni@dia.uniroma3.it

64 Marta Cialdea Mayer et al.

A planner is a piece of software that takes as input the description of a planning prob-
lem and outputs a sequence of actions that, if executed, transforms the initial state into
a state satisfying the goals. In order to make the planning task more precise, various
planning models can be considered. Each of them formalises different assumptions
on the class of problems that may be dealt with, in particular on the nature of actions
(see for instance Geffner, 2002). In classical planning, to which most work has been
devoted so far, actions are assumed to be deterministic and the world is finite, discrete,
fully observable, and with no exogenous events.

“Intuitively, planning is logical reasoning of some kind” (Bibel, 1997), and in fact,
beyond planners based on specialised algorithms, different logical approaches to plan-
ning have been proposed. In such approaches, a planning problem is encoded by
a logical theory and plans are synthesised by means of some general logical pro-
cedure. Representative of the great variety of approaches and logics used to this
aim are Allen (1991a), Barringer, Fisher, Gabbay, and Hunter (1991), Bibel (1997),
Calvanese, De Giacomo, and Vardi (2002), Finzi, Pirri, and Nau (2000), Kautz and Sel-
man (1992), Koehler and Treinen (1995), Levesque (1996), Lifschitz (1999), Masser-
on, Tollu, and Vauzeilles (1993), Pistore and Traverso (2001), Reiter (2001), Rintanen
(1999), Rosenschein (1981), Stephan and Biundo (1996).

Traditionally, planning has been formalised as deduction: plans are generated by
constructive proofs of so-called plan specification formulae, stating that there exists a
plan leading from the initial state to a state satisfying the goal. The best-known logical
formalisation of planning in the deductive view is the Situation Calculus (McCarthy
& Hayes, 1969). Reiter (2001) (Chap. 10) presents some Situation Calculus planning
systems, written in GOLOG, a high-level logic programming language for agents,
based on the Situation Calculus and implemented in Prolog. The GOLOG planners
show one of the main strong points of the logical approaches to planning: thanks to
the expressive power of logical languages, it is possible to enrich the description of
planning problems with problem dependent information, that can be of great help
both in reducing the search space and finding better quality plans.

Dually to the “planning as derivability” approach, the “planning as satisfiability”
paradigm was introduced by Kautz and Selman (1992), and carried on in Kautz and
Selman (1998a) and Kautz and Selman (1999). According to this paradigm, a planning
problem is encoded by a logical theory, modelling the rules governing the world evolu-
tion, in such a way that any model of the theory corresponds to a valid plan. Based on
the above cited works is the planner SATPLAN,1 the winner for optimal deterministic
planning in the last two international planning competitions (IPC 2004 and 2006).

In SATPLAN, the target logic of the encoding is classical propositional logic. This
planner can thus be considered as an application to planning of the approach based
on “executing propositional formulae”—where executing a formula means building
a model of it (Fisher & Owens, 1995). In order to represent time in classical proposi-
tional logic, the language of SATPLAN uses indexed propositional letters, the index
playing the role of a time stamp. This forces the planner to fix a time limit (layer) in
advance, in which goals have to be achieved. In order to be complete, plan search
proceeds by iteratively deepening such a limit. When solution plans are fairly long,
this method can be quite hard.

Moreover, SATPLAN does not decide, in general, the problem of existence of
a solution. In fact, when a problem has no solution, the system may not terminate,

1 SATPLAN is available at http://www.cs.washington.edu/homes/kautz/satplan/.

Linear temporal logic as an executable semantics for planning languages 65

unless a maximal layer or a timeout is fixed in advance. Note that the same can be said
of planners based on predicate logic, such as the GOLOG planners and those based
on the so called “Answer Set Planning” approach (Subrahmanian & Zaniolo, 1995;
Lifschitz, 1999).

The work presented in this paper conforms to the “planning as satisfiability”
paradigm but, differently from Kautz and Selman (1992), the logic used to encode
planning problems is propositional Linear Temporal Logic (LTL). This approach car-
ries on the idea of executing temporal logics (Barringer, Fisher, Gabbay, Gough, &
Owens, 1989) and its application to planning (already sketchily proposed in Barringer,
Fisher, Gabbay, & Hunter, 1991).

The choice of LTL is due to two main reasons. First of all, it allows a simple and
natural representation of a world that changes over time. Second, it is decidable. These
two features together free planning in LTL from the above mentioned inconveniences
of planning in (either propositional or first-order) classical logic.

Moreover, domain dependent knowledge can be expressed in LTL (see Bacchus &
Kabanza, 2000; Doherty & Kvarnström, 2001), as well as domain restrictions in the
style of Cesta and Oddi (1996) and intermediate tasks, like in Bacchus and Kabanza
(1996).

A prototype system that encodes the whole planning problem into LTL and reduces
planning to model search was presented in Cialdea Mayer, Orlandini, Balestreri, and
Limongelli (2000). The first experiments with that system showed however that stating
domain dependent and control knowledge correctly as LTL formulae can be quite a
delicate task, since the domain expert cannot be assumed to be a logician. Moreover,
with the addition of restrictions on the searched plans, completeness may be lost and
it may happen that the planner finds no solution even if one exists.

Such problems are quite general and affect any planner that allows for the specifi-
cation of extra problem-dependent knowledge. They can be addressed by providing
tools supporting the domain expert in the specification task, in particular:

(1) debugging tools, and
(2) a simple, compact and easy-to-use planning language (similar to the special pur-

pose formalisms widely adopted in the planning community), which allows the
user to include different forms of domain specific knowledge.

A proposal to achieve the second aim above is represented by the planning language
PDDL-K (Planning Domain Description Language with control Knowledge), which
is described in this paper. PDDL-K guides the user in the specification of heuristic
knowledge, providing a set of control schemata. The language is given an executable
semantics by means of its translation into LTL.

The system Pdk (Planning with Domain Knowledge)2 implements the semantics of
PDDL-K: it accepts PDDL-K as input language, translates the problem description
into its LTL representation and reduces planning to model search. Moreover, in order
to achieve the first of the two above mentioned aims, Pdk provides tools that can help
the user in the debugging phase. Such tools exploit the fact that the planning problem
is entirely encoded as a logical theory. In fact, different parts of the encoding are
subjected to logical tests, allowing one to identify where possible bugs come from.

2 Pdk is a new, more efficient implementation of the prototype presented in Cialdea Mayer, Orlan-
dini, Balestreri, and Limongelli (2000), offering also new features and tools. It is implemented in
Objective Caml (available at http://caml.inria.fr/) and C. The planner can be downloaded
from http://pdk.dia.uniroma3.it/, together with a set of sample domains and a user manual.

66 Marta Cialdea Mayer et al.

The paper is organised as follows. Sect. 2 briefly recalls the syntax and semantics of
LTL and shows how plans can be characterised in terms of temporal models. Section 3
formally defines classical planning problems, by directly using the language PDDL-K,
and shows how the specification of a planning problem is encoded into LTL. Some
examples of problems that are not easily expressible in classical planning formalisms
are also given. Since the correct formulation of domain knowledge is a delicate issue,
Sect. 4 points out some guidelines that can help in this task and describes how differ-
ent forms of heuristic information can be specified in PDDL-K, along with their LTL
semantics. The tools offered by the system Pdk to perform an off-line check of the
specification are described in Sect. 5. In Sect. 6 the language PDDL-K is compared
with the languages of other planners allowing for the specification of control knowl-
edge and some experimental results are presented, comparing the performances of
Pdk with other planning systems. Sect. 7 concludes this work.

2 Linear Temporal Logic, temporal interpretations and plans

The language of linear temporal logic considered in this paper extends classical prop-
ositional logic by means of the unary modal operators � (always), ♦ (eventually) and
© (next).

A temporal structure is a countably infinite sequence of elements called states or
time points. A temporal interpretation M consists of a temporal structure 〈s0, s1, s2, . . .〉
and a mapping vM : N → 2P, where P is the set of propositional letters of the lan-
guage. For any k ∈ N, vM(k) ⊆ P is the set of propositional letters holding at state sk.
The satisfiability relation Mk |� A, for k ∈ N, is inductively defined as follows:

1. Mk |� p iff p ∈ vM(k), for any propositional letter p ∈ P.
2. Mk |� ¬A iff Mk 	|� A.
3. Mk |� A ∧ B iff Mk |� A and Mk |� B.
4. Mk |� A ∨ B iff either Mk |� A or Mk |� B.
5. Mk |� A → B iff either Mk 	|� A or Mk |� B.
6. Mk |� �A iff for all j ≥ k, Mj |� A.
7. Mk |� ♦A iff there exists j ≥ k such that Mj |� A.
8. Mk |� ©A iff Mk+1 |� A.

Truth is satisfiability in the initial state: a formula A is true in M (and M is a model
of A) iff M0 |� A. Truth of sets of formulae is defined as usual.

In order to define the correspondence between temporal interpretations and plans,
we recall that a classical planning problem is described distinguishing fluents (proposi-
tions about the world) and actions. Accordingly, we assume that a planning problem is
described in a temporal language containing two disjoint sets of atomic propositions:
Actions, Whose elements denote actions, and Fluents, denoting facts about the world.
If a ∈ Actions, the intended meaning of a holding at state sk of a temporal model is
that the action denoted by a is performed at state sk.

Under the assumptions of classical planning, the interpretations of the language
are candidates for representing solution plans. Since a plan is a finite sequence of
(sets of) actions, we are actually interested only in finite initial fragments of temporal
interpretations (up to the achievement of the goal), in particular interpretations M
falsifying all a ∈ Actions from some state onwards. We shall abuse language and call
such interpretations finite. If M is a finite temporal interpretation, then it determines

Linear temporal logic as an executable semantics for planning languages 67

the (parallel) plan P = 〈A0, . . . , An〉 such that for every i = 0, . . . , n and action
a ∈ Actions, Mi |� a iff a ∈ Ai, and for all k > n and all a ∈ Actions, Mk 	|� a (i.e.
no action is performed after state n). If the plan P = 〈A0, . . . , An〉 determined by
the finite interpretation M is a solution plan of the problem with final goal G, then
Mn+1 |� G.

In Sect. 3 we show how to build a temporal theory T�, for each classical planning
problem �, that is a “correct and complete” encoding of the problem �, i.e. such that
every finite model of T� determines a plan solving �, and every solution plan for �

is determined by some model of T�.
The basics of the LTL encoding of a planning problem can be sketchily illustrated

here by the following small example: in the initial state a robot is in room A, its goal is
to be in room B and the only actions it can perform is going from a location to another,
specifically either from A to B, or from B to A. The problem can be described in the
syntax of PDDL, the present standard Planning Domain Description Language (Fox
& Long, 2003), as follows:

(:predicates (at ?x)) (:objects A B)
(:init (at A)) (:goal (at B))
(:action go :parameters (?from ?to)

:precondition (at ?from)
:effect (and (at ?to) (not (at ?from))))

The declarations in the first line above describe the signature of the language (the
unary predicate at and the two constants A and B); the second line declares the initial
state and goal, the last lines describe the parameters, precondition and effect of the
operator go. An “operator” is a (parametrized) action schema representing the whole
set of its ground instances. From now on, only ground instances of operators will be
called “actions”.

The signature of the target language contains a propositional letter for each ground
instance of the fluent and operator, i.e. at_A, at_B, go_A_B, go_B_A (going from x
to x is excluded, since such actions have contradictory effects). The problem itself is
represented by the following set of formulae:

S = { at_A ∧ ¬at_B, ♦at_B,
�(go_A_B → at_A), �(go_B_A → at_B),
�(©at_A ≡ (at_A ∧ ¬go_A_B) ∨ go_B_A),
�(©at_B ≡ (at_B ∧ ¬go_B_A) ∨ go_A_B)}.

The first formula represents the initial state; the second the goal of the problem
(“sometimes in the future the goal will be achieved”). The two formulae in the second
line above represent the preconditions for the executability of the two actions (the
robot can move from a place only if it is there). The last two formulae are an LTL
reformulation of Reiter’s “successor state axioms” (Reiter, 2001): at any non-initial
state, the robot is at place x if and only if either it was already there and did not
go away, or it has just arrived at x. One of the models of S is the sequence of states
s0, s1, . . . such that the only true atoms at s0 are at_A and go_A_B, and the only true
atom at si, for i > 0, is at_B. The plan corresponding to such a model is the sequence
〈{go_A_B}〉, consisting of a single action set.

Once a planning problem is encoded by a set of temporal formulae, planning is
reduced to model construction. To this aim, the planner Pdk uses the system PTL,
an efficient implementation of proof search in LTL by means of tableaux techniques
(Wolper, 1985), developed in C by Janssen at Eindhoven University (Janssen, 1999).

68 Marta Cialdea Mayer et al.

PTL is called in “satisfiability mode” on the encoding S of the planning problem and,
if this is satisfiable, it outputs a representation of a complete and open tableau for
S. Pdk extracts a plan from the first open branch of the tableau: node labels (sets of
literals) are cleaned up by keeping only (positive) atoms representing actions.

3 Planning problems and their Linear Temporal Logic encoding

A planning problem is usually described specifying what holds in the initial state, what
the goals are and which actions can be performed to change the world. In classical
planning, it is assumed that the initial state can be represented by a (classical) formula
I that completely describes the world, i.e. it is assumed that for any fluent R, it is known
whether R is initially true or false. There is a single final goal, that can be described
by a (classical) formula G built up from fluents. Each action is described specifying its
preconditions and effects on fluents; when describing the effects of an action, only the
action changes are specified, assuming that all the rest stays unchanged.

In classical planning formalisms, like STRIPS (Fikes & Nilsson, 1971) and PDDL
(Fox & Long, 2003), important restrictions are usually imposed on the syntactic form
of each of the above components. For instance, actions cannot be mentioned in action
preconditions or effects.

In what follows we describe the kernel of the language PDDL-K, that can be
viewed as an extension of the ADL-subset (Pednault, 1989) of classical PDDL (Fox &
Long, 2003), and give its semantics in terms of a translation into a set of LTL formulae
(the features of PDDL-K devoted to the representation of heuristic knowledge are
presented in Sect. 4).

A planning problem can be represented by a set of LTL formulae according to
different encodings, as shown in Cerrito and Cialdea Mayer (1998). The semantics of
PDDL-K consists of a simple form of progression encoding, that recalls the encoding
of planning problems in the Situation Calculus (Reiter, 1991) and the linear encod-
ing of Kautz, McAllester, and Selman (1996). Such an encoding schema is provably
correct and complete.

The description that follows of the language PDDL-K and its semantics will be
illustrated by use of an example, the teatime domain, one of the classical problems
in artificial intelligence planning. It consists of the class of problems where a robot
has to deliver tea to the inhabitants of a given number of rooms, where one of the
rooms contains a cup-stack and another a tea-machine. Each room is connected to
the hallway and possibly to other rooms.3 Although easy to understand and describe,
problems in the teatime domain have fairly long solution plans, and are not easy to
solve automatically.

3.1 Signature

Like in PDDL, the PDDL-K description of a planning problem follows a multi-sorted
first-order syntax, where however each domain is finite and fixed. The specification

3 This domain is a simplification of the teatime domain in the repository of
the European Planning Network of Excellence (PLANET), that can be found at
http://scom.hud.ac.uk/planet/repository/. The original domain is a multi-robot
scenario: two robots cooperate to serve tea; each robot is only allowed in some rooms and they meet
in the hallway to exchange cups.

Linear temporal logic as an executable semantics for planning languages 69

of the problem contains the definition of the signature: type, constant and predicate
declarations. In particular, wrt type declarations, subtyping is allowed. For each type,
a finite set of constants is specified, naming the objects of the domain.

For instance, in our description of the teatime domain, types consist of locations
and rooms, where location is a supertype of room:

(:types room - location /* room is a subtype of
location */

location)

In the problem with four rooms, constants may be declared as follows:

(:objects hallway - location
room1 room2 room3 room4 - room)

From such declarations, it follows thatroom1, room2, room3, room4 are also
locations.

In PDDL-K predicates are distinguished into fluents, denoting properties of the
world that may change over time, and static predicates, whose interpretation is fixed.
The declaration of the predicate symbols of the language associates a type to each of
them.

In the teatime domain, fluents (:predicates) and static predicates (:static)
can be defined as follows:

(:predicates (at ?x - location)
(hascup)
(fullcup)
(ordered ?x - room))

(:static (connected ?x ?y - location)
(cupstack ?x - room)
(teamachine ?x - room))

(identifiers beginning with a question mark are variables).
A fluent at(x) is true when the robot is at location x; hascup is true if the robot is

holding a cup; fullcup is true when the robot is holding a cup full of tea; ordered(x)

holds when the inhabitant of room x has ordered tea and it has not been served yet;
teamachine(x) means that x is the room where the teamachine is, cupstack(x) that the
cupstack is in room x, and connected(x, y) that the two locations x and y are directly
connected by a door.4

Each ground atom in the language of the PDDL-K-specification is mapped to a
propositional letter. We will continue using a first-order syntax also for LTL formulae,
in order to enhance readability. Typed quantification will be used as an abbreviation
for propositional formulae. For instance, ∀x : t A(x) stands for A(c1) ∧ · · · ∧ A(cn),
where c1, . . . , cn are all the constants of type t.

PDDL-K also accepts simple arithmetical formulae, built up from integers, (quan-
tified) variables, arithmetical functions and predicates. Their semantics is operational:
the truth value of an arithmetical atomic formula is computed just by evaluating it, like
in TLPLAN (Bacchus & Kabanza, 2000). Equality can also be applied to non-numeric
arguments and is treated according to the assumption that the objects in each domain
are pairwise distinct: if t and u are non-arithmetical terms (i.e. they are constants),
then t = u holds iff t and u are identical.

4 Here and in the following, we shall use the LISP-like syntax of PDDL when showing pieces of
PDDL-K code, and go on using the ordinary logical notation for formulae in the text.

70 Marta Cialdea Mayer et al.

3.2 Background theory

A specific section contains the background theory, i.e. knowledge about static
predicates. It contains formulae without temporal operators, that are meant to be
true throughout time, i.e. they represent facts that do not vary over time (state invari-
ants). The background theory is completed with respect to static predicates, according
to the closed world assumption: what is not classically derivable from the background
theory is false. Therefore, each ground static atom is either true or false at each time
point. All literals built up from fluents which are derivable from the background
theory are also added to its completion. After completion, the background theory
consists of a set of literals. This set is used to simplify the encoding of the planning
problem: each static atom is replaced by either true or false, and the same happens
with fluent literals occurring in the completed theory. As will be better explained later
on, the theory is also used to filter out operator instances, by elimination of those
actions whose preconditions or effects are inconsistent.

It is worth pointing out that, since the completed theory is a set of literals, in order to
carry out simplification there is no need to test derivability, but only set membership.

In our example, the background theory contains knowledge about the topology of
the rooms and the location of the cupstack and the teamachine:

(:theory (forall (?x - room) (connected ?x hallway))
(teamachine room1) (cupstack room2)
(connected room1 room3)
(connected room2 room4))

3.3 Initial state and goal

The other basic declarations in the description of the problem are the specification of
the initial state, goal and operators. Knowledge about the initial state is specified by
means of a set of formulae.

For instance, if in the initial state the robot is in the first room and all the rooms
have ordered tea, we can declare:

(:init (at room1)
(forall (?x - room) (ordered ?x)))

Negative information need not be stated explicitly. Since knowledge about the initial
state is assumed to be complete (like in classical planning), the initial state is com-
pleted wrt fluents. The LTL encoding of the initial state consists then of the set S0 of
literals built up from fluents as follows. Let Init be the set of formulae declared in the
:init section of the specification, and K the completed background theory. For any
fluent R, if Init ∪ K |� R then R ∈ S0, otherwise ¬R ∈ S0.

In our example, the encoding of the initial state is

S0 = { at(room1), ∀x : room ordered(x),
¬at(hallway), ¬at(room2), ¬at(room3), ¬at(room4),
¬hascup, ¬fullcup }

Attention must be payed to disjunctive information in the :init section. For
instance, if the signature contains only the unary predicate p and constants a and b,
the background theory is empty and the declaration of the initial state is (:init
(or (p a)(p b))), then the encoding of the knowledge about the initial state is
{¬p(a), ¬p(b)}, since neither p(a) nor p(b) is derivable from p(a) ∨ p(b).

Linear temporal logic as an executable semantics for planning languages 71

The description of the initial state may also contain temporal operators.
Non-classical formulae in the :init declaration, that will just be added to the
encoding, may be used to specify intermediate goals that have to be achieved or
actions that have to be performed. For instance, in a domain containing a go operator
(go(x, y): the agent moves from x to y), the description of the initial state may contain

♦(∃x : location go(x, bank) ∧ ♦∃x : location go(x, post_office))

During plan execution, the agent must sooner or later go to the bank and afterwards
to the post office.

The specification of the final goal is given by any first-order formula G, and its
encoding is the formula ♦G (the goal will eventually be true).

For instance:

(:goal (forall (?x - room) (not (ordered ?x))))

is translated into:

♦∀x : room ¬ordered(x)

Before dealing with the representation of actions, we observe that the computa-
tional complexity of the encoding of a PDDL-K problem into LTL is at least expo-
nential in the length of the propositional translation of the problem specification. This
is because of the derivability tests needed to complete the background theory and
the description of the initial state. Therefore, the presence of a complex background
theory can have a heavy influence on the encoding time. However, in practice the
encoding time is often a small percentage of the total execution time: the average
encoding time in solving about 100 problems in seven different domains is less than
8% of the total execution time.

3.4 Operators

The kernel description of each operator specifies its name, parameters (with associated
type), preconditions and effects.

The actions allowed in the teatime domain can be described as follows:

(:action getcup
:parameters (?x - room)
:precondition (at ?x) (cupstack ?x) (not (hascup))
:effect (hascup))

(:action fillcup
:parameters (?x - room)
:precondition (at ?x) (teamachine ?x)

(hascup) (not (fullcup))
:effect (fullcup))

(:action deliver
:parameters (?x - room)
:precondition (at ?x) (ordered ?x) (fullcup)
:effect (not (ordered ?x)) (not (fullcup))

(not (hascup)))
(:action go

:parameters (?from ?to - location)
:precondition (or (connected ?from ?to)

(connected ?to ?from))
(at ?from)

:effect (at ?to) (not (at ?from)))

72 Marta Cialdea Mayer et al.

Preconditions can have any form. For instance, the first formula in the precondition
of the go operator above is a disjunction. Such a precondition dispenses us to explicitly
declare, in the background theory, that connected is a symmetric relation. Conditional
and universally quantified effects are also allowed. For instance, a go operator with a
single parameter can be declared as follows:

(:action go :parameters (?to - location)
:precondition (forsome (?from - location)

(and (at ?from)
(or (connected ?from ?to)

(connected ?to ?from))))
:effect (at ?to)

(forall (?from - location)
(when (at ?from) (not (at ?from)))))

Here, forsome is the existential quantifier and when is used for conditional effects:

(forall (?x - location) (when (at ?x) (not (at ?x))))

means that for every location x, if the robot is at x when performing a go action, it will
no longer be at x in the next state.

As already said in Sect. 2, each ground operator instance, called “action”, is mapped
to a propositional letter, just like atoms representing facts about the world. However,
every action with contradictory preconditions or effects is eliminated from the encod-
ing (and replaced everywhere by false). For example, any instance of go(x, y) where
x = y is contradictory: its post-condition, in fact, can never be satisfied; such actions
are automatically ruled out. Actions are eliminated also when they are inconsistent
with the background knowledge about the domain. For example, if room 2 is not
connected to room 3 (and it will never be), then the actions go(room2, room3) and
go(room3, room2) could never be executed. Action filtering by use of the background
theory often dramatically reduces the search space.

In the teatime problem with four rooms, more than 50% of the total number
of operator instances are contradictory, and the percentage increases with the
dimension of the problem: in the 20 rooms problem, it becomes more than 80%.

Knowledge about actions and their effects on the world is encoded by means of
several groups of formulae.

Action preconditions. For every action a, the encoding contains a formula of the
form �(a → πa), where πa represents the preconditions for the executability of a:
“at any time, a is performed only if its preconditions πa hold”.

Some of the action precondition axioms in the teatime domain are:

�(getcup(room2) → at(room2) ∧ ¬hascup),
�(fillcup(room1) → at(room1) ∧ ¬fullcup ∧ hascup),
∀x : location �(deliver(x) → at(x) ∧ ordered(x) ∧ fullcup),
�(go(room1, hallway) → at(room1)),
�(go(room1, room3) → at(room1))

Note that, thanks to the background knowledge and the consequent simplifica-
tions, static predicates never appear in the encoding: since cupstack(x) is true if
and only if x = room2, cupstack(room2) is replaced by true and it does not appear
among the preconditions of getcup(room2). All the other instances of getcup(x)

with x 	= room2 are eliminated because cupstack(x) is in this case replaced by false.

Linear temporal logic as an executable semantics for planning languages 73

Incompatibility among actions. A set of formulae describes incompatibility relations
between actions. Obviously, if two actions a and b are incompatible because they
have conflicting preconditions or effects, this need not be represented explicitly.
In fact, no model of a complete encoding can have a and b true at the same time
point. But if a deletes a precondition of b (or vice-versa), then their incompatibility
has to be explicitly represented. For every action a, the encoding contains a for-
mula of the form �(a → ¬a1 ∧ ... ∧ ¬an), where a1, ..., an are all the actions whose
incompatibility with a must be made explicit.

For example:

�(go(room2, room4) → ¬go(room2, hallway) ∧ ¬deliver(room2)

∧ ¬fillcup(room2))

�(go(hallway, room1) →
¬go(hallway, room2) ∧ ¬go(hallway, room3)

∧ ¬go(hallway, room4) ∧ ¬deliver(hallway))

Action effects. For every ground instance R of a fluent, two formulae are computed
from the operators descriptions: G+

R specifies all the conditions that can lead to
change the truth value of R from false to true, and G−

R specifies all the conditions
that can lead to change the truth value of R from true to false. The encoding
includes the following formula, for any fluent R:

�(©R ≡ G+
R ∨ (R ∧ ¬G−

R)).

“At any non-initial time point (say sn+1), R holds iff at the previous state (sn) either
some action having R as effect is performed or else R holds and nothing is done
that causes ¬R”. This is a paraphrase of Reiter’s successor state axiom (Reiter,
1991) into LTL.

For instance:

∀x : location �(©at(x) ≡ ∃y : location go(y, x)

∨ (at(x) ∧ ¬∃y : location go(x, y)))

�(©fullcup ≡ fillcup(room2)

∨ (fullcup ∧ ¬∃x : location deliver(x)))

3.5 Actions as formulae

The fact that actions are explicitly represented by formulae is one of the main fea-
tures of the language. In order to appreciate the flexibility deriving from this fact, let
us consider the following example, borrowed from Allen (1991b), that is not easily
and naturally representable in most planning languages. In order to open the door
to the Computer Science Building at Rochester, both hands must be used: a spring
lock must be held open with one hand, while the door is pulled open with the other
hand. Unless the lock is held open, it snaps shut. This is an example where the effect
of two actions performed together is different from the sum of their effects. Let us
consider the (propositional) language with the single fluent open (the door is open)
and the two operators pull_door and hold_lock (with no parameters). The following
is a correct PDDL-K specification of a problem that can only be solved by executing
the two actions together:

(:predicates open)
(:goal open)
(:action pull_door

74 Marta Cialdea Mayer et al.

:effect (when hold_lock open))
(:action hold_lock

:effect (when pull_door open)))

This is an example with conditional effects, where conditions are actions. In general,
any formula can be used to express conditions, with no syntactical restrictions.

4 Control knowledge

The kernel specification of a planning problem, i.e. what necessarily has to be known
in order to solve the problem, can be enriched with knowledge about how to solve the
problem, in order to find a solution faster, as well as to obtain a better quality solution.
For instance, the domain expert can know that some actions are useless under certain
circumstances or that they should be preferred in other cases. Information of this
kind can be added to the LTL encoding of a planning problem in the form of a set
K = {�A1, . . . , �Ak} of temporal formulae, where the Ai’s are called control formu-
lae. The addition of a set of control formulae to the encoding of a problem in general
reduces the set of models of the resulting theory, and, consequently, the search space.

As a matter of fact, the addition of correct and effective control knowledge to a
problem specification is essential in order for the system Pdk to behave well, both in
terms of execution time and in terms of plan quality. In fact, since it relies on a depth-
first model search mechanism, the solutions Pdk can find without control knowledge
are quite disappointing in most problems. For instance, the solution found by the
planner Pdk to the teatime problem with four rooms, with no heuristic knowledge,
begins with:

(1) go_room1_room3
(2) go_room3_room1
(3) go_room1_hallway
(4) go_hallway_room4
(5) go_room4_room2
(6) getcup_room2
...

The following table compares the execution times (in seconds, columns 2 and 3) and
plan lengths (i.e. number of actions, columns 4 and 5) in the teatime domain, when
Pdk is called with control knowledge (columns 2 and 4) and without any heuristic
information (columns 3 and 5).

Number Execution time Plan length
of

rooms With Without With Without
control knowledge control knowledge

4 0.02 0.02 32 50
8 0.29 0.44 68 168
12 0.65 2.76 104 355
16 1.44 5.03 140 610
20 2.29 7.50 176 933
22 3.22 9.77 194 1120

The rest of this section is devoted to illustrate how control knowledge can be stated
in PDDL-K. Beyond control formulae, in 4.1 the main predefined control schemata

Linear temporal logic as an executable semantics for planning languages 75

provided by the language are illustrated.5 Sections 4.2 and 4.3 present other exten-
sions of PDDL that are often useful to provide heuristic information. Finally, in 4.4
we observe how the use of control knowledge allows one to define new classes of
problems that cannot be handled by classical planning formalisms.

4.1 Control formulae and control schemata

The language PDDL-K allows one to add control formulae explicitly, in a specific
section.

For instance, the constraint that tea must be delivered to a room as soon as possible
can be stated as follows:

(:control
(forall (?x - room)

(implies (and (ordered ?x) (at ?x) (fullcup))
(deliver ?x))))

As a consequence, the formula

�∀x : room(ordered(x) ∧ at(x) ∧ fullcup → deliver(x))

is added to encoding

However, heuristic knowledge is more easily described by means of specific control
schemata. The use of predefined schemata reduces the risk of introducing occasional
errors.

At present, PDDL-K accepts two kinds of control schemata: fluent-oriented and
action-oriented. Fluent-oriented control information is provided in specific sections of
the problem description. It consists essentially of knowledge about bad and good sit-
uations: situations that should never be caused by the agent’s actions (bad situations)
and subgoals that, once achieved, must never — and never need to — be undone
(good situations) (Reiter, 2001). Good situations are special cases of the “next-state”
control formulae in Bacchus and Kabanza (2000). The encoding of bad and good
situations consists of formulae of the form �(A → ©A), where either A is a good
situation or A = ¬B, where B is a bad situation.

Knowledge about good and bad situations can in most cases be stated more easily
in an action oriented way (for instance: “do not perform action a in case it destroys a
good situation”). Action oriented control schemata are given by means of additional
fields in the definition of an operator (besides the :parameters, :precondition
and :effect fields). They can be broadly classified into two main categories: reject
and select schemata.

4.1.1 Reject schemata

Reject schemata translate into formulae preventing the addition of some operator
instance to the plan, under given conditions. Such formulae are equivalent to formu-
lae of the form

∀x1 : t1 . . . ∀xn : tn�(F → ¬name(x1, . . . , xn)),

where F is a formula, name is the name of an operator and x1, . . . , xn its parameters.

5 A complete description can be found at http://pdk.dia.uniroma3.it/.

76 Marta Cialdea Mayer et al.

A simple reject schema allows one to specify conditions that should hold when an
action is executed in a state. Such conditions are specified in the :only-if field of
the operator description, in the form:

(:action name :parameters x1−t1, . . . , xk−tk
...
:only-if F1, . . . , Fn
...)

where F1, . . . , Fn are formulae, whose free variables are among x1, . . . , xk. The seman-
tics of the :only-if field is

∀x1 : t1 . . . ∀xk : tk�(name(x1, . . . , xk) → F1 ∧ . . . ∧ Fn).

The fact that the semantics of the :only-if field is the same as that of action
preconditions is not surprising (see Bacchus & Ady, 1999). It is however important
that control information is kept separate from knowledge inherent to the domain.

As an example, in the teatime domain we can specify that an action of the form
go(x, y) should not be executed if the robot has nothing to do in y, unless y is the
hallway:

(:action go :parameters (?from ?to - location)
.........
:only-if (or (= ?to hallway)

(and (fullcup) (ordered ?to))
(and (hascup) (not (fullcup))

(teamachine ?to))
(and (not (hascup)) (cupstack ?to))))

The LTL encoding of the problem is then added the following formula, suitably
simplified according to the background theory:

∀x : location ∀y : location � (go(x, y) →
y = hallway ∨ (fullcup ∧ ordered(y))∨
(hascup ∧ ¬fullcup ∧ teamachine(y)) ∨ (¬hascup ∧ cupstack(y)))

Another form of reject schema can be specified in the :next field of an oper-
ator description, specifying conditions that should hold immediately after having
performed the corresponding action.

(:action name :parameters x1−t1, . . . , xk−tk
…
:next F1, . . . , Fn
…)

where F1, . . . , Fn are formulae, whose free variables are among x1, . . . , xk. The seman-
tics of the :next field is

∀x1 : t1 . . . ∀xk : tk�(name(x1, . . . , xk) → ©(F1 ∧ · · · ∧ Fn))

Typically, the :next field is used to force a sequence of actions.
For instance, in the teatime domain the random movement of the robot can be

avoided by requiring that, after entering a room, the robot actually does something
there:

(:action go :parameters (?from ?to - location)
...........
:next (or (= ?to hallway)

(deliver ?to)(fillcup ?to)(getcup ?to)))

Linear temporal logic as an executable semantics for planning languages 77

This causes the addition of (the simplification of) the following formula to the encod-
ing:

∀x : location ∀y : location �(go(x, y) →
©(y = hallway ∨ deliver(y) ∨ fillcup(y) ∨ getcup(y)))

Note that this is a stronger requirement with respect to the sample :only-if
constraint above (allowing the robot to enter a room where it could do something and
yet exiting it immediately), and however it is much more compact and simple. This
is possible thanks to the fact that actions can be mentioned explicitly in operators
descriptions.

4.1.2 Select schemata

Select schemata translate into formulae forcing the addition of some operator instance
to the plan, under given conditions. Such formulae are equivalent to formulae of the
form

∀xj1 : tj1 . . . ∀xjm : tjm�(F → ∃xk1 : tk1 . . . ∃xkp : tkp name(x1, . . . , xn)),

where F is a formula whose free variables are among xj1 , . . . , xjm , name is the name of
an operator and {x1, . . . , xn} = {xj1 , . . . , xjm , xk1 , . . . , xkp} the set of its parameters.

PDDL-K provides select schemata representing suggestions of the kind: perform
a given action as soon as possible, possibly under other conditions. Such schemata
are called “asap” (As Soon As Possible) schemata. The weaker form of asap
field expresses the fact that, whenever the preconditions for the applications of the
operator on some values of its parameters hold, and the :only-if conditions also
hold for the same values of the parameters, then the operator has to be applied, for
some values of the parameters:

(:action name :parameters x1 − t1, . . . , xk − tk
...
:asap F1, . . . , Fn
...),

where F1, . . . , Fn are formulae, whose free variables are among x1, . . . , xk. The seman-
tics of such an :asap field is the following formula:

�(∃x1 : t1...∃xk : tk (G ∧ F1 ∧ · · · ∧ Fn) →
∃x1 : t1...∃xk : tk name(x1, . . . , xk)).

Here, G is the conjunction of the formulae in the :precondition and :only-if
fields in the definition of the operator.

As an example, the definition of the getcup operator in the teatime domain can
be enriched with:

(:action getcup :parameters (?x - room)
:precondition (at ?x) (cupstack ?x) (not (hascup))
...
:asap (exists (?y - location) (ordered ?y)))

The LTL encoding of the problems is then added the simplification of:

�(∃x : location (at(x) ∧ cupstack(x) ∧ ¬hascup∧
∃y : location ordered(y)) →

∃x : location getcup(x)))

78 Marta Cialdea Mayer et al.

I.e.:

�(at(room2) ∧ ¬hascup ∧ ∃y : location ordered(y) → getcup(room2))

The :s-asap (“strong asap”) field expresses a stronger form of “asap” field: it
forces the (concurrent) application of the operator to all the values of the parameters
to which it can be applied.

One can see how simple it is now to add the information that tea has to be delivered
as soon as possible (already presented at the beginning of Sect. 4.1, as an LTL for-
mula to be included in the :control section). In fact, it amounts to an unrestricted
:s-asap field in the definition of deliver:

(:action deliver :parameters (?x - room)
....
:s-asap)

Existential and universal quantification in “as soon as possible” restrictions can
also be mixed.

4.2 Reference to the goal and initial state

In the specification of problem-dependent control information, the possibility to refer
to the goal to be achieved, as well as to what holds in the initial state can often be
useful. To this aim, the syntax of PDDL-K formulae is extended by means of the
unary modal operators goal (which can dominate only literals) and initially (which
can dominate only atoms): goal � means that � is a goal of the problem, initially p
means that p is true in the initial state. A formula of the form goal � or initially p is
either always true or always false; consequently it is treated like static predicates and
simplified out in the final encoding. As a consequence, some operator instances can
also be eliminated.

For example, let us consider the problem where a one-arm robot has to move
objects from the locations where they initially are to given destinations, stated in the
goal. We may then want to specify that an object should be taken away from a given
location only if it is not already at its destination place. Moreover, since objects have
to be dropped only at their destinations, the robot needs to take up an object only
from its initial location. This can be specified by defining the take operator as follows:

(:action take
:parameters (?x - object ?y - location)
:precondition (atRobby ?y) (at ?x ?y)

(forall (?z - object) (not(holding ?z)))
:effect (holding ?x)
:only-if (not (goal(at ?x ?y)))

(initially (at ?x ?y)))

As a consequence, all the instances of the take operator whose arguments do not
satisfy the :only-if requirement are eliminated from the language of the encoding.
For instance, if the destination of object obj1 is room2, the atom take(obj1, room2) is
replaced by false in the encoding.

4.3 Definitions

In some cases relevant domain dependent information can be expressed in a general
form only by recourse to new defined predicates. The language PDDL-K provides

Linear temporal logic as an executable semantics for planning languages 79

this possibility. In the encoding, every instance of a defined predicate is replaced by
(the value of) its definition. Recursion is also allowed in definitions.
For instance, in the description of the well known Blocks World,6 “good towers” can
be defined as follows:

(:define goodTower (?x - block)
(or (and (goal(onTable ?x)) (onTable ?x))

(forsome (?y - block) (and (goal(on ?x ?y))
(on ?x ?y)
(goodTower ?y)))))

In a problem where the goal is to build a tower where block B is on block A which, in
turn, is on the table, every occurrence of goodTower(B) is replaced, in the encoding,
by on(B, A) ∧ onTable(A).

4.4 Control knowledge and new classes of problems

As a final observation, it is worth pointing out that the possibility to include heuristic
information in a problem description enlarges the classes of problems that can be
dealt with. For instance, there are problems whose solutions have to respect some
requirements on the order in which actions are executed, that could not be stated in
classical planning languages. As an example, we can consider a refined version of the
classical briefcase domain, where a robot has to take some objects from some places
to others, by use of a briefcase. In the new version of the problem, objects are of
two distinguished types: normal and perishable ones, that should not be kept in the
briefcase longer than necessary. The robot should therefore take perishable objects
last, still trying to minimise its own movements. This means that a normal object can
be put into the briefcase that already contains some perishables only if it is in the same
location where another perishable object is to be taken. This additional restriction,
that cannot be represented in classical planning languages, can be stated in PDDL-K
by saying that take(x, y) (take object x from location y and put it into the briefcase)
can be executed :only-if either x is perishable or there are no perishable objects
in the briefcase or x is put in the briefcase at the same time as a perishable object:

is_perishable(x) ∨ ∀z : perishable ¬in_brief case(z)

∨ ∃z : perishable take(z, y)

See http://pdk.dia.uniroma3.it for the complete specification of the
problem.

5 Meta-level tools for off-line check

A problem specification may suffer from different forms of incorrectness, conse-
quently making the planner incomplete. Moreover, the addition of control knowl-
edge sometimes risks making the search harder, instead of helping, because of the
overhead caused by the processing of the control theory itself (see Kautz & Selman,
1998b). It is therefore important that the encoding is kept as compact as possible, and
redundancies are recognised and carefully evaluated. Representing the whole plan-

6 In the blocks domain, a one-arm robot has to re-arrange a set of blocks on a table, making towers
with them.

80 Marta Cialdea Mayer et al.

ning problem in a logical language provides the possibility to perform some important
off-line consistency and redundancy checks with little extra effort.

A special utility in the system Pdk allows one to check the specification and warn the
user, with respect to some metalevel properties. Such tools analyse the set of formulae
obtained from the specification of the problem, always excluding the description of
the goal. The description of the properties, that follows, will be illustrated in some
points with examples from a simple planning problem.

A one-arm robot has to move a ball and a book from room A to room B. The
problem can be specified as follows.

(:types object location)
(:objects A B - location

ball book - object)
(:predicates (at ?x - object ?y - location)

(atRobby ?x - location) (free)
(carry ?x - object))

(:init (atRobby A) (forall (?x - object) (at ?x A))
(free))

(:goal (forall (?x - object)(at ?x B)))
(:action pick :parameters (?x - object ?y - location)

:precondition (atRobby ?y)(at ?x ?y)(free)
:effect (not (at ?x ?y))(not (free))(carry ?x))

(:action drop :parameters (?x - object ?y - location)
:precondition (atRobby ?y)(carry ?x)
:effect (at ?x ?y) (free) (not (carry ?x)))

(:action go :parameters (?x ?y - location)
:precondition (atRobby ?x)
:effect (atRobby ?y)(not (atRobby ?x)))

Consistency of the kernel of the specification: The system tests the logical consistency
of the set of LTL formulae obtained from the initial state, the background theory
and the kernel of the operators description, excluding control knowledge. This is a
minimal requirement for the specification to be sound.

Consistency of control knowledge: The system checks whether the set of formulae
obtained from the specification of control knowledge can be safely added to the
kernel of the specification.

It is reasonable to require that the robot should pick up an object whenever possi-
ble and when it is not in its goal destination. But, if a “strong asap” requirement
is added to the specification of the pick action:

(:action pick
:parameters (?x - object ?y - location)
........
:s-asap (not (goal (at ?x ?y))))

then no plan is found and the system detects an inconsistency in control knowledge.
In fact the encoding of the :s-asap field is:

�(atRobby_A ∧ at_ball_A ∧ free → pick_ball_A)

�(atRobby_A ∧ at_book_A ∧ free → pick_book_A)

Since in the initial state at_ball_A, at_book_A, atRobby_A and free are all true,
then pick_ball_A and pick_book_A should also hold in the initial state. But the
incompatibility axioms include

�(pick_ball_A → ¬pick_book_A)

Linear temporal logic as an executable semantics for planning languages 81

So, the addition of control knowledge causes the encoding to be contradictory, as
detected by this metalevel tool.

Action executability: each operator instance (which has not been already filtered out
because of its direct inconsistency with the background theory) is considered, in
turn, in order to check whether it can ever be applied. In order to do this, the
formula ♦A, where A is the considered action, is added to the set of formulae con-
sisting of the kernel of the specification and control knowledge (i.e. deriving from
the initial state, background theory, operator descriptions and control formulae),
and the resulting set of formulae is tested for satisfiability.
Let us modify our simple problem as follows: there is a third location, home, where
the robot is initially and has to go back at the end:

(:objects A B home - location
ball book - object)

(:init (atRobby home) (free)
(forall (?x - object) (at ?x A)))

(:goal (atRobby home)
(forall (?x - object)(at ?x B)))

Moreover, the following control fields are added to the operator descriptions:
(:action drop

:parameters (?x - object ?y - location)
......
:only-if (goal (at ?x ?y)))

(:action go
:parameters (?x ?y - location)
......
:next (exists (?z - object)

(or (drop ?z ?y)(pick ?z ?y))))

This problem has no solution. The reason is that no action of the form go(x, home)
can ever be executed. In fact, no object can be dropped at home, and nothing can
therefore be picked up there (there is nothing at home initially, and there will never
be).

Another frequent reason for plan search failure is that some important action
has been removed from the very beginning, because its precondition or effects are
inconsistent. The system allows one also to obtain a list of all the eliminated actions,
that can therefore be examined to check whether they are actually unnecessary.

Let us consider the same problem as above, where also the pick action is added a
control field:

(:action pick
:parameters (?x - object ?y - location)
......
:only-if (initially (at ?x ?y)))

Again, this problem has no solution because the robot cannot go back home. Differ-
ently from before, however, all actions of the form go(x, home) are contradictory
and therefore are eliminated, because all actions of the form pick(y, home) and
drop(y, home) are also removed. This fact can be recognised by examining the list
of eliminated actions.

Redundancy check: each control formula is tested for provability from the rest of
the specification. In case of a positive answer, such a formula is pointed out as
redundant. Note that redundancies are not always to be avoided. In fact, there are
cases where plan search becomes faster, notwithstanding the overhead due to a

82 Marta Cialdea Mayer et al.

larger encoding. It is however important that they are pointed out, so that the user
can carefully evaluate each case.

Let us consider our simple example with the only two locations A and B, described
at the beginning of this section, with the addition of the following control fields in
the operators description:

(:action pick
:parameters (?b - object ?r - location)
........
:only-if (not (goal (at ?b ?r)))
:asap)

(:action drop
:parameters (?b - object ?r - location)
........
:only-if (goal (at ?b ?r))
:s-asap)

(:action move
:parameters (?from ?to - location)
........
:next (exists (?x - object)

(or (pick ?x ?to)(drop ?x ?to)))))

Then the system’s metalevel tool will point out that the encoding of the :s-asap
field of the operator drop is redundant (for all its instances).

6 Experiments and comparisons

In this section, we are going to compare Pdk and its language with other existing plan-
ners. The comparison is made with respect to three main features: expressive power,
execution time and plan quality.

6.1 Expressive power

When describing a planning domain, the identification and statement of correct and
effective control knowledge is often a subtle and difficult task. Therefore, when com-
paring planners allowing one to specify problem dependent information, it is impor-
tant to evaluate the ease of use of the underlying planning languages. In this sec-
tion, we briefly compare PDDL-K with the languages accepted by other planning
systems.

The planners written in GOLOG (Reiter, 2001)7 do not accept a true planning
language, but the specification of each problem is rather a piece of Prolog code, that
defines action preconditions and successor state axioms, in the Situation Calculus
style. Control knowledge can be stated in terms of “bad situations” (which are used
to control the planners in a way similar to our reject schemata): “it is in bad sit-
uations where all the planner’s intelligence resides” (Reiter, 2001). The equivalent
of our select schemata (called “opportunistic rules” by Reiter) are to be stated in
negative terms. For instance, in the teatime domain, in order to say that tea should
be served as soon as possible, a bad situation has to be defined: the situation gen-
erated by any action destroying the existing preconditions for delivering tea (in this
domain, going away). As a further example, let us consider the blocks world and

7 The implementation of GOLOG in ECLIPSE Prolog and the planners are available at
http://www.cs.toronto.edu/cogrobo/kia/.

Linear temporal logic as an executable semantics for planning languages 83

the following “opportunistic rule”: if an action can create a good tower, don’t do a
bad-tower-creating moveToTable action. Such a rule is encoded as follows (Reiter,
2001):

badSituation(do(moveToTable(X),S)) :-

not goodTower(X, do(moveToTable(X), S)),

existsActionThatCreatesGoodTower(S).

existsActionThatCreatesGoodTower(S) :-

(A = move(Y,X) ; A = moveToTable(Y)),

poss(A ,S), goodTower(Y,do(A,S)).

It is apparent that, at present, writing (and debugging) a plan-
ning domain in GOLOG requires good Prolog programming
skills.

The same remark applies to the planner based on answer set planning,8 described
by Son, Baral, Tran, and McIlraith (2005). Planning domains and control knowledge
are in fact described in AnsProlog∗ (Baral, 2003), a logic programming language with
answer set semantics. Although also in this case writing a planning domain requires
specific programming skills, new forms of control knowledge can be specified, includ-
ing knowledge inspired by the partial-ordering constructs used in Hierarchical Task
Networks (Yang, 1990; Erol, Hendler, & Neu, 1994).

Among the logic-based planners, SATPLAN, that has already been described
in Sect. 1, is the approach that shares more features with Pdk. Kautz and Sel-
man (1998b) examine different forms of control knowledge that can be encoded
in the “planning as satisfiability” approach, and Huang, Selman, and Kautz (1999)
report experiments with an extension of PDDL that allows additional control con-
straints. They observe that the empirical results show that the addition of con-
trol knowledge speeds the system up to an order of magnitude. The style and
the encoding of the language are similar to PDDL-K, but, to our knowledge,
there is no available implementation of SATPLAN accepting this extension of
PDDL.

Also planners based on specialized algorithms can benefit from the use of a
logical language to express control knowledge. TLPLAN (Bacchus & Kabanza,
2000) and TALplanner (Doherty & Kvarnström, 2001) are based on specialized
forward-chaining search algorithms, exploring a tree-like structure of states, where
each path is expanded only if control specifications, encoded as linear temporal logic
formulae, are satisfied in the path. In particular, TLPLAN is known as the best planner
exploiting control knowledge. Its behaviour has been very effective in past planning
competitions and, in terms of execution time, it largely outperforms the perfomances
of Pdk. Nevertheless, giving an effective description of a planning domain in the lan-
guage of TLPLAN (that also extends PDDL) requires a deep analisys of the domain
and a considerable effort. In fact, in order to obtain a good behaviour of the planner,
new features have to be extracted from the original domain and the description has
to be consequently enriched with definitions of predicates and functions, often in
the style of a true programming language. Furthermore, the specification of correct

8 Answer set planning is a planning approach that translates a planning problem into a problem of
model finding in logic programming with answer set semantics. It was originally proposed by Zaniolo
(1995) and Lifschitz (1999).

84 Marta Cialdea Mayer et al.

and effective control knowledge is often quite cumbersome, because all statements
must be made in terms of fluents. For instance, the fact that, after going to a place
y, the agent has to do something at y has to be paraphrased into: “if the agent is
at a place x at time t and it is at y 	= x at time t + 1, then at time t + 2 it stays
at y”.

6.2 Time efficiency and plan quality

In this section, we compare and discuss the performances of Pdk, in terms of time
efficiency and plan quality, w.r.t. other existing planners. The experiments were run on
a PC with P4, 3.00 GHz and 1 GB RAM, running under Linux. Beyond the planners
written in GOLOG and SATPLAN, we have considered two planners that recently
showed best performances in the international planning competitions, YAHSP and
LPG. LPG9 is a planner based on a stochastic local search. YAHSP10 is based on a
complete best-first search algorithm using a look-ahead strategy.

The experiments we are going to report were carried out on the domains that have
already been briefly described in this paper, i.e. the teatime domain with one robot,
the blocks world and the briefcase domain.11

Of course, SATPLAN, YAHSP and LPG ran with no heuristic knowledge, since
they do not support control information. The GOLOG planners and Pdk ran with
substantially equivalent control knowledge. Specifically:

The blocks world: Do not destroy “good towers”; do not create a “bad tower” by
moving a block onto another one; create “good towers” as soon as possible.

The briefcase domain: Drop an object only at its destination and only when all the
other objects having the same destination are either at place or in the briefcase (so
that every location is visited at most once); don’t take an object from its destination;
take and drop objects (when allowed to) as soon as possible; don’t go to a place
then exit it immediately (i.e. don’t go wandering).

The teatime domain: Do not enter a room then exit it immediatly (the only place
where the robot needs to pass without doing anything is the hallway, that is not a
“room”); get a cup as soon as possible, when there are still rooms to be served.

The results on the execution times (in seconds) are reported in Tables 1–3. The
execution times of Pdk obviously include the encoding times. Similarly, SATPLAN,
YAHSP and LPG ran on problem specifications written in PDDL. For the GOLOG
planners, on the contrary, problems had to be encoded by hand; the GOLOG planners
have always been called with a sufficiently large depth limit. In all experiments, the
computation time has been limited to 300 seconds. (a dash in the tables means a time-
out). The tables have two columns related to the GOLOG planners: the first (Dfs)
contains data on the depth-limited planner, the second (Bfs) on the breadth-first plan-
ner. LPG and YAHSP, that can be called with different options, have been executed

9 LPG is available at http://zeus.ing.unibs.it/lpg/.
10 “Yet Another Heuristic Search Planner”(YAHSP) is available at http://www.cril.univ-ar
tois.fr/∼vidal/yahsp.en.html.
11 The domains used in the experiments represent classical problems which have been given
different formalizations in the literature or in existing planners’ repositories. Some versions of
all the three domains can be found for instance in the repository of the European Planning
Network of Excellence (PLANET) at http://scom.hud.ac.uk/planet/repository/, as
well as in the planning repository of the University of Freiburg at http://www.informa-
tik.uni-freiburg.de/∼koehler/ipp/.

Linear temporal logic as an executable semantics for planning languages 85

Table 1 The blocks world: execution times

Problem Pdk GOLOG SATPLAN YAHSP LPG

Dfs Bfs

Prob4-1 0.01 0.07 0.08 0.05 0.00 0.25
Prob6-1 0.03 0.07 0.08 0.34 0.00 0.26
Prob8-1 0.26 0.07 0.23 23.71 0.03 0.87
Prob10-1 0.77 0.08 11.66 – 0.24 2.75
Prob12-1 3.04 0.11 23.39 – 0.25 8.34
Prob14-1 3.14 0.13 – – 1.37 14.41
Prob16-1 6.88 0.22 – – 2.16 37.65
Prob18-1 41.47 0.39 – – 16.78 98.67

Table 2 The briefcase domain: execution times

Problem Pdk GOLOG SATPLAN YAHSP LPG

Dfs Bfs

3 × 3 0.01 0.07 0.11 0.21 0.00 0.21
4 × 4 0.07 0.07 0.41 7.29 0.00 0.21
6 × 3 0.03 0.08 29.85 0.15 0.00 0.20
6 × 6 0.36 0.07 273.72 – 0.00 0.26
8 × 4 0.22 0.08 – 3.95 0.00 0.28

10 × 10 2.11 0.09 – – 0.03 0.38
12 × 10 2.32 0.10 – – 0.04 0.47
14 × 10 3.81 0.10 – – 0.06 0.62
16 × 10 3.41 0.11 – – 0.08 0.76

Table 3 The teatime domain: execution times

Problem Pdk GOLOG SATPLAN YAHSP LPG

Dfs Bfs

2 0.00 0.07 0.09 0.13 0.00 0.21
3 0.01 0.08 0.25 13.88 0.00 0.22
4 0.02 0.08 2.15 – 0.00 0.24
6 0.14 0.09 265.15 – 0.04 0.31
8 0.29 0.11 – – 0.37 0.39
12 0.65 0.23 – – 18.18 0.70
16 1.44 0.54 – – – 1.29
20 2.29 1.19 – – – 2.22
22 3.22 1.79 – – – 2.84

in the modality that finds better quality solutions. Since LPG is a non deterministic
planner, each measure in its column represents the average of 50 executions on the
same problem instance.

In the tables, problem names in the blocks world have the form Probn-k, where
n is the number of blocks involved in the problem.12 Each problem in the briefcase
domain is named n×m, where n is the number of objects and m the number of rooms.
The numbers in the problem column of the teatime domain refer to the number of
rooms.

12 The blocks world problems are from the repository of the Second IPC: http://www.cs.
colostate.edu/meps/repository/aips2000.html.

86 Marta Cialdea Mayer et al.

The results reported below show that, in terms of execution times, Pdk is
comparable with YAHSP and LPG. It is generally faster than SATPLAN and the
breadth-first GOLOG planner, since the performances of these two planner, acting
by iterative deepening, rapidly degrade when the length of the solution plan increases.
For instance, SATPLAN takes almost 700 s to solve the teatime problem with four
rooms. The depth-limited GOLOG planner is faster than PDK, but, if the depth limit
is not large enough, it employs a large amount of time to discover that there is no
solution. For instance, GOLOG needs nearly 35 s to realize that there is no solution
to the teatime problem with 6 rooms in the limit of 45 actions.

In interpreting the results shown above one has to remember that only Pdk and the
GOLOG planners use heuristic knowledge and the domains used in the comparison
can all be given meaningful information (in a relatively simple form).

With respect to plan quality, in classical planning problems, where actions are
assumed to have the same cost, a reasonable measure is plan length. Plan length, in
turn, can be measured either in terms of number of actions, or, if parallel actions
are allowed, in terms of number of “layers” (sets of actions that can be executed in
parallel). SATPLAN, for instance, is optimal in terms of number of layers, but not
necessarily in terms of number of actions. The breadth-first GOLOG planner, on the
contrary, is optimal in terms of number of actions but does not allow for parallelism.
Both measures are arbitrary, in general: there are problems where it is important to
reach the goal as soon as possible, and problems where action execution costs cannot
be ignored. In the tables that follow, plan length is measured in terms of number
of actions, not to penalise planners than cannot build parallel plans (the GOLOG
planners, YAHSP and LPG). The real numbers in the LPG column are the average
of plan lengths resulting from 50 executions on the same problem.

From Tables 4–6, it appears that Pdk, both GOLOG planners and in most cases
also SATPLAN find plans close to the optimal ones. With respect to the breadth-first
GOLOG planner and SATPLAN, this is due to their iterative deepening mechanism.
The results regarding the depth-first GOLOG planner and Pdk are due to the addition
of suitable control knowledge.

With respect to YAHSP and LPG, we can note that plan lengths are comparable
with Pdk in the teatime domain, where also their execution times are closer, while the
plans found by YAHSP and LPG are about 20% longer than those found by Pdk in
the other two domains, and the percentage increases with problem difficulty.

The experimental results reported above show that Pdk often finds the right balance
between execution time and plan quality.

Table 4 The blocks world: number of actions

Problem Pdk GOLOG SATPLAN YAHSP LPG

Dfs Bfs

Prob4-1 5 5 5 5 5 5.34
Prob6-1 5 5 5 7 5 5.62
Prob8-1 10 10 10 15 10 10.44
Prob10-1 17 17 16 28 19 18.26
Prob12-1 21 21 17 – 20 22.86
Prob14-1 19 22 – – 24 23.88
Prob16-1 27 28 – – 34 36.68
Prob18-1 32 32 – – 42 43.10

Linear temporal logic as an executable semantics for planning languages 87

Table 5 The briefcase domain: number of actions

Problem Pdk GOLOG SATPLAN YAHSP LPG

Dfs Bfs

3 × 3 10 10 10 10 12 11.16
4 × 4 13 13 13 13 16 15.12
6 × 3 16 16 16 16 18 18.36
6 × 6 19 19 19 – 24 22.94
8 × 4 21 21 – 21 24 24.50

10 × 10 31 31 – – 40 38.22
12 × 10 35 35 – – 44 42.30
14 × 10 39 39 – – 48 46.40
16 × 10 43 43 – – 52 51.52

Table 6 The teatime domain: number of actions

Problem Pdk GOLOG SATPLAN YAHSP LPG

Dfs Bfs

2 16 16 14 14 14 15.00
3 24 23 22 22 22 22.40
4 32 32 30 30 30 30.40
6 50 50 48 – 48 48.58
8 68 68 – – 66 67.30

12 104 104 – – 102 105.88
16 140 140 – – – 145.10
20 176 176 – – – 185.14
22 194 194 – – – 204.36

7 Concluding remarks

Automatic planning is a computationally hard task. In fact, the general plan-existence
problem for STRIPS-like operators is known to be PSPACE-complete (Bylander,
1991). Even if modern domain-independent planners handle far more complex prob-
lems than a few years ago there is a widespread trend towards the use of extra problem
dependent information, in order to obtain enhanced performances.

However, the detection and correct statement of effective control knowledge is
often a difficult task. For this reason, it is important to have a high-level, natural and
easy-to-use specification language, requiring no specific programming skills.

To this aim, this paper presents the language PDDL-K, an extension of the ADL-
subset of the standard PDDL, that provides the domain expert with a sort of guide,
through a set of predefined schemata, and allows one to easily and naturally spec-
ify heuristic information. The planner Pdk implements the semantics of PDDL-K,
given in terms of a translation into LTL formulae. It builds the encoding of the input
specification and reduces planning to LTL model search. Thanks to the fact that the
whole problem is encoded by a logical theory, Pdk also provides a set of tools based
on metalevel properties, that can help the user in the debugging task. Experimental
results show that the performances of Pdk are comparable with other planners, both
in terms of execution time and plan quality.

88 Marta Cialdea Mayer et al.

References

Allen, J. (1991a). Planning as temporal reasoning. In Proceedings of the Second International
Conference on Principles of Knowledge Representation and Reasoning (KR-91), Cambridge, MA.
pp. 3–14.

Allen, J. F. (1991b). Temporal reasoning and planning. In J. F. Allen, H. A. Kautz, R. N. Pelavin, &
J. D. Tenenberg (Eds.), Reasoning about plans (pp. 1–68). Los Altos, CA: Morgan Kaufmann
Publishers Inc.

Bacchus, F. and Kabanza, F. (1996). Planning for temporally extended goals. In Proceedings
of the 13th National Conference on Artificial Intelligence (AAAI-96), Portland, OR. pp.
1215–1222.

Bacchus, F., & Kabanza, F. (2000). ‘Using temporal logics to express earch control knowledge for
planning’. Artificial Intelligence, 16, 123–191.

Bacchus, F., & Ady, M. (1999). Precondition control. Unpublished manuscript, available at
http://www.cs.toronto.edu/∼ fbacchus/on-line.

Baral, C. (2003). Knowledge representation, reasoning, and declarative problem solving with answer
sets. Cambridge: Cambridge University Press.

Barringer, H., Fisher, M., Gabbay, D., Gough, G., & Owens, R. (1989). MetateM: a framework for
programming in temporal logic’. In Proceedings of REX Workshop on Stepwise Refinement of
Distributed Systems: models, formalisms, correctness, Mook, The Netherlands. Springer, Vol. 430
of LNCS. pp. 94–129.

Barringer, H., Fisher, M., Gabbay, D., & Hunter, A. (1991). Meta-reasoning in executable temporal
logic. In Proceedings of the Second Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR-91). pp. 40–49.

Bibel, W. (1997). Let’s plan it deductively. In Proceedings of the 15th international Joint Conference
on Artificial Intelligence (IJCAI-97), Nagoya, Japan. Vol. 2. pp. 1549–1562.

Bylander, T. (1991). Complexity results for planning. In Proceedings of the 12th International Joint
Conference on Artificial Intelligence (IJCAI-91), Sydney, Australia . pp. 274–279.

Calvanese, D., De Giacomo, G., & Vardi, M. Y. (2002). Reasoning about actions and planning in LTL
action theories. In Proceedings of the 8th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2002), Toulouse, France. pp. 593–602.

Cerrito, S., & Cialdea Mayer, M. (1998). Using linear temporal logic to model and solve planning
problems. In F. Giunghiglia (Ed.), Proceedings of the 8th International Conference on Artificial
Intelligence: Methodology, Systems, Applications (AIMSA’98), Sozopol, Bulgaria. Springer,
LNCS 1480. pp. 141–152.

Cesta, A., & Oddi, A. (1996). DDL.1: a formal description of a constraint representaton language for
physical domains. In M. Ghallab, & A. Milani (Eds.), New direction in AI planning, pp. 341–352.
IOS Press, Amsterdam.

Cialdea Mayer, M., Orlandini, A., Balestreri, G., & Limongelli, C. (2000). A planner fully based
on linear time logic. In S. Chien, S. Kambhampati, & C. Knoblock (Eds.), Proceedings of the
5th International Conference on Artificial Intelligence Planning and Scheduling (AIPS-2000),
Breckenridge, co. pp. 347–354.

Doherty, P., & Kvarnström, J. (2001). TALplanner: a temporal logic based planner. AI Magazine, 22,
95–102.

Erol, K., Hendler, J., & Nau, D. S. (1994). HTN planning: complexity and expressivity. In Proceedings
of the 12th National Conf. on Artificial Intelligence (AAAI-94), Seattle, Washington, USA. pp.
1123–1128

Fikes, R. E., & Nilsson, N. (1971). STRIPS: a new approach to the application of theorem proving to
problem solving. Artificial Intelligence, 2(3–4), 189–208.

Finzi, A., Pirri, F., & Reiter, R. (2000). Open world planning in the situation calculus. In Proceedings
of the 17th Conf. on Artificial Intelligence (AAAI-00) and of the 12th Conf. on Innovative
Applications of Artificial Intelligence (IAAI-00), Austin, Texas, USA. pp. 754–760.

Fisher, M., & Owens, R. (1995). An introduction to executable modal and temporal logics. In
M. Fisher, & R. Owens (Eds.), Executable modal and temporal logics (Proc. of the IJCAI’93
Workshop), Chambery, France. Springer, (Vol. 897 of LNAI). pp. 1–20.

Fox, M., & Long, D. (2003). PDDL2.1: an extension to PDDL for expressing temporal planning
domains. Journal of Artificial Intelligence Research, 20, 61–124.

Geffner, H. (2002). Perspectives on artificial intelligence planning. In Proceedings of the 18th National
Conf. on Artificial Intelligence (AAAI-2002), Edmonton, Alberta, Canada. pp. 1013–1023.

Linear temporal logic as an executable semantics for planning languages 89

Huang, Y.-C., Selman, B., & Kautz, H. A. (1999). Control knowledge in planning: benefits and
tradeoffs. In Proceedings of the 16th National conf. on Artificial Intelligence (AAAI-99), Orlando,
Florida. pp. 511–517.

Janssen, G. L. J. M. (1999). Logics for digital circuit verification. theory, Algorithms and applications.
CIP-DATA Library Technische Universiteit Eindhoven.

Kautz, H., McAllester, D., & Selman, B. (1996). Encoding plans in propositional logic. In Proceedings
of the 5th International Conference on Principles of Knowledge Representation and Reasoning
(KR’96), Cambridge, Massachusetts, USA. pp. 374–384.

Kautz, H., & Selman, B. (1992). Planning as satisfiability. In B. Neumann (Ed.), Proceedings of the
10th European conf. on artificial intelligence (ECAI-92), Vienna, Austria. pp. 360–363.

Kautz, H., & Selman, B. (1998). BLACKBOX: a new approach to the application of theorem proving
to problem solving. In: Working notes of the AIPS-98 Workshop on Planning as Combinatorial
Search. Pittsburgh, Pennsylvania, USA. pp. 58–60.

Kautz, H., & Selman, B. (1998b). The role of domain-specific knowledge in the planning as satisfi-
ability framework. In Proceedings of the 4th International Conference on Artificial Intelligence
Planning systems (AIPS-98), Pittsburgh, Pennsylvania, USA. pp. 181–189.

Kautz, H., & Selman, B. (1999). Unifying SAT-based and graph-based planning. In Proceedings of
the 16th International Joint Conference on Artificial Intelligence (IJCAI-99), Stockholm, Sweden.
pp. 318–325.

Koehler, J., & Treinen, R. (1995). Constraint deduction in an interval-based temporal logic. In
M. Fisher, & R. Owens (Eds.), Executable modal and temporal logics, (Proc. of the IJCAI’93
Workshop, Chambery, France), Springer, Vol. 897 of LNAI. pp. 103–117.

Levesque, H. (1996). What is planning in the presence of sensing?. In Proceedings of the 13th National
Conf. on Artificial Intelligence, AAAI-96, Portland, Oregon, USA. pp. 1139–1146.

Lifschitz, V. (1999). Answer set planning. In Proceedings of the 16th International Conference on
Logic Programming (ICLP-99), Cruces, New Mexico, USA. pp. 23–37.

Masseron, M., Tollu, C., & Vauzeilles, J. (1993). Generating plans in linear logic: I. actions as proofs.
Theoretical Computer Science, 113, 349–370.

McCarthy, J., & Hayes, P. J. (1969). Some philosophical problems from the standpoint of502 artificial
intelligence. In B. Meltzer, & D. Michie (Eds.), Machine intelligence, Vol 4. (pp. 463–502).
Edinburgh University Press. Edinburgh.

Pednault, E. (1989). ADL: exploiting the middle ground between STRIPS and the situation calculus.
In Proceedings of the 6th International Conference on Principles of Knowledge Representation
and reasoning (KR-89), Toronto, Canada. pp. 324–332.

Pistore, M., & Traverso, P. (2001). Planning as model checking for extended goals in non-deterministic
domains. In Proceedings of the 17th International Joint Conference on Artificial Intelligence
(IJCAI 2001), Seattle, Washington, USA. pp. 479–486.

Reiter, R. (1991). The frame problem in the situation calculus: a simple solution (sometimes)
and a completeness result for goal regression. In V. Lifschitz (Ed.), Artificial intelligence and
mathematical theory of computation: papers in honor of John McCarthy pp. 359–380. Newyork:
(Academic Press).

Reiter, R. (2001). Knowledge in action: logical foundations for specifying and implementing dynamical
systems. Cambridge, MA: MIT Press.

Rintanen, J. (1999). Constructing conditional plans by a theorem-prover. Journal of Artificial
Intellingence Research, 10, 323–352.

Rosenschein, S. J. (1981). Plan synthesis: a logical perspective. In: Proceedings of the 7th Int. Joint
Conf. on Artificial Intelligence (IJCAI-81), Vancouver, Canada. pp. 331–337.

Son, T., Baral, C., Tran, N., & McIlraith, S. (2005). Domain-dependent knowledge in answer set
programming. ACM Transactions on Computational Logic. To appear.

Stephan, B., & Biundo, S. (1996). Deduction based refinement planning. In B. Drabble (Ed.),
Proceedings of the 3rd International Conference on Artificial Intelligence Planning Systems
(AIPS-96), Edinburgh, UK. pp. 213–220.

Subrahmanian, V. S., & Zaniolo, C. (1995). Relating stable models and AI planning domains. In
Proceedings of the 12th International Conference on Logic Programming (ICLP-1995), Tokyo,
Japan. pp. 233–247.

Wolper, P. (1985). The tableau method for temporal logic: an overview. Logique et Analyse, 28, 119–152.
Yang, Q. (1990). Formalizing planning knowledge for hierarchical planning. Computational

Intelligence, 6, 12–24.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

