
J Logic Lang Inf (2006) 15:273–295
DOI 10.1007/s10849-006-9018-x

ORIGINAL PAPE R

A ‘Natural Logic’ inference system using the Lambek
calculus

Anna Zamansky · Nissim Francez · Yoad Winter

Received: 9 June 2004 / Accepted: 25 April 2006
C© Springer Science + Business Media B.V. 2006

Abstract This paper develops an inference system for natural language within the ‘Natu-
ral Logic’ paradigm as advocated by van Benthem (1997), Sánchez (1991) and others. The
system that we propose is based on the Lambek calculus and works directly on the Curry-
Howard counterparts for syntactic representations of natural language, with no intermediate
translation to logical formulae. The Lambek-based system we propose extends the system
by Fyodorov et al. (2003), which is based on the Ajdukiewicz/Bar-Hillel (AB) calculus Bar
Hillel, (1964). This enables the system to deal with new kinds of inferences, involving relative
clauses, non-constituent coordination, and meaning postulates that involve complex expres-
sions. Basing the system on the Lambek calculus leads to problems with non-normalized
proof terms, which are treated by using normalization axioms.

Keywords Natural logic . Inference . Lambek calculus . Normalization

1. Introduction

Model-theoretic semantics of natural language involves partially ordered domains, so that
meanings of expressions of the same semantic type are naturally comparable. Formal seman-
tics treats order relations between denotations of complex expressions as compositionally
derived from order relations between denotations of their subexpressions, described using
a given grammar and semantic properties of lexical items. For instance, under standard as-
sumptions about the meaning of the adjective tall, the meaning of nominal expressions like
tall student is “smaller” than the meaning of the noun student. This ordering, together with the
“order reversing” meaning of the determiner no, is responsible for the fact that the meaning
of the noun phrase no tall student is “greater” than the meaning of the noun phrase no student.
Such order relations between constituents often result in an ordering of meanings of natural
language sentences. In an adequate semantic theory, this ordering between sentence mean-
ings corresponds to intuitively valid entailment relations. For instance, the above mentioned

A. Zamansky
School of Computer Science, Tel-Aviv University, Ramat-Aviv, Israel
N. Francez · Y. Winter
Faculty of Computer Science, Technion - IIT, Haifa, Israel

Springer

274 Anna Zamansky et al.

order relations, together with the other elements in the sentence, are responsible for the valid
entailment John saw no student ⇒ John saw no tall student.

In modeltheoretic semantics, appealing to models makes it hard to derive inferences in
a computationally feasible way. On the other hand, working with proof systems for first
order logic (FOL) for natural language, as proposed in many works (see, e.g., Pratt-Hartman,
(2004)) also has its weaknesses. First of all, not all NL constructs are expressible in FOL.
For instance, in the valid entailment: John is very tall ⇒ John is tall, the restrictive modifier
‘very’ is not expressible in FOL. Furthermore, using FOL proof systems for computing
natural language entailments requires complex mappings from syntactic structures to FOL
formulae. These mappings are motivated mainly by the particular choice of syntax, and not
by independent linguistic considerations. This paper follows previous work in aiming to
develop an inference system that is based on insights from model-theoretic semantics, but
using only syntactic representations of natural language, with no direct appeal to models.
The close relationship between syntactic structure and meaning in model-theoretic semantics
eliminates the need for translating the syntactic representations into intermediate logical levels
of representation, such as first order logic.

This initial conception of Natural Logic was introduced in van Benthem, (1987). Different
versions of Natural Logic were proposed by Sánchez, (1991), Bernardi, (2002), Fyodorov,
et al. (2003) and others. Sánchez (1991) proposes a mechanism that decorates categorial
grammar proofs of natural language expressions using signs that indicate the monotonicity
properties of the denotations of these expressions. Bernardi, (2002) follows Sánchez and in-
troduces a system for monotonicity reasoning that is based on a more complex categorial type
logic than Sánchez’ work. Bernardi concentrates on monotonicity reasoning as capturing the
syntactic distribution of negative polarity items. Neither Sánchez nor Bernardi provide a for-
mal calculus for computing inferences. The situation was partially amended in Fyodorov, et
al. (2003). Fyodorov et al. define an Order Calculus based on similar annotations decorating
syntactic derivations of the Ajdukiewicz/Bar-Hillel (AB) calculus, a simple version of cate-
gorial grammar that only contains slash elimination rules. Fyodorov et al.’s calculus allows
a rather straightforward derivation of inferences with monotone and some non-monotone
quantifiers and cross-categorial conjunctions and disjunctions. However, despite the value
of Fyodorov et al.’s proposal for demonstrating a novel technique of inference in natural
language, it fails to derive many inferences, even ones that are strictly based on simple se-
mantic order relations between expressions (see some examples below). One of the reasons
for this weakness comes from the limitations of the AB calculus as a categorial grammar.

In this paper we show that Fyodorov et al.’s system can be improved by basing the
inference mechanism on the Lambek calculus (L, see Lambek, (1991) and Moortgat, (1997)),
which also contains slash introduction rules in addition to the elimination rules of the AB
calculus. We propose an L-based Order Calculus (L-OC) as an intermediate step towards
a more general system that would support various kinds of inferences in natural language
in a more expressive syntactic framework. As in the previous works that were mentioned,
the items on which the inferential system works are syntactic terms, representing structural
derivations of natural language expressions. These derivations now also include deductions
using hypothetical reasoning produced by the introduction rule of the Lambek calculus, and
not only function-argument constructions as in the AB-based order calculus of Fyodorov et al.
Despite the more general syntactic formalism we employ, the manipulation of semantically-
motivated annotations is still done at the level of the syntactic representation. In this sense,
we believe that our proposal is within the realm of what previous works called Natural
Logic.

We extend the system of Fyodorov et al. in a number of aspects:

Springer

A ‘Natural Logic’ inference system using the Lambek calculus 275

1. The inferences are computed using proof terms representing syntactic derivations via the
Curry-Howard correspondence, as opposed to the manipulation in Fyodorov, et al. (2003)
of the syntactic derivations directly.

2. We add an inference rule called Abstraction, which works on proof terms in L with
free variables, corresponding to undischarged assumptions. This rule enables the Order
Calculus to deal with inferences involving sentences with extraction. Consider for example
the following entailments, which are now derivable in our system (using additional axioms,
as will be shown in the sequel):

(a) Every student whom Mary touched smiled ⇒ Every student whom Mary kissed smiled

(b) Some boy, the brother of whom Mary loves, walked ⇒ Some boy walked

3. We add β/η-normalization axioms, based on β/η-reduction of proof terms, which resolve
complications caused by proof terms in L that are not in normal form. The normalization
axioms enable the system to compute more entailments, like, for instance, entailments
that involve “non-constituent” conjunctions as in the following example:

John does and Mary doesn’t move ⇒ Mary doesn’t walk

4. Extending the system of Fyodorov, et al. (2003) to L also enables us to formulate non-
logical axioms about complex expressions. For example, it is possible to express the fact
that the relation denoted by passionately love (though not necessarily the love relation
itself) contains in every model the relation denoted by adore. This is made possible due
to the derivability of function composition in L.

As in Fyodorov, et al. (2003), we concentrate on entailments between natural language
sentences that are syntactically disambiguated. For the sake of simplicity, we do not assume
any ambiguity at a semantic level. A proof search procedure for L-OC, which is an extension
of the proposal by Fyodorov, et al. (2003) including treatment of abstraction, is formulated
in Zamansky, et al. (2003).

The structure of this paper is as follows. Section 2 provides definitions of some basic
notions from model-theoretic semantics, and introduces decorated semantic types to be used
in L-OC. Section 3 describes L derivations and their corresponding proof terms with deco-
rated semantic types. Section 4 defines the Order Calculus L-OC and its semantics. Section
5 demonstrates how L-OC can be applied for deriving natural language inferences. Sec-
tion 6 focuses on the problem of normalization, explaining how the non-normalized proof
terms are created in L-OC, why they pose a problem and how the problem is solved using
normalization. Section 8 presents conclusions and directions for further research.

2. Semantic types and order relations

The main objective of the Natural Logic systems, as introduced by Van Benthem, Sánchez,
and Fyodorov et al., is to use the boolean regularities in natural language (cf. Faltz, et al.
(1985)) as a key for an inference system that works directly on syntactic representations. In
this section we review the basic boolean semantic notions that will be employed in this work,
and introduce the way they are used for decorating types by semantic features.

Springer

276 Anna Zamansky et al.

2.1. Basic semantic notions

Model-theoretic semantic theories associate natural language expressions with syntactic cat-
egories, and their denotations with (closely related) semantic types. Furthermore, most ex-
pressions denote objects in partially ordered (PO) domains, so that meanings of equi-typed
expressions are naturally comparable. Thus in the finite set of primitive types (denoted by
T 0), we distinguish the subset of partially ordered primitive types, denoted by T 0

po, which
are interpreted over partially ordered domains.

Formally, the set of types is defined as the smallest set T so that T 0 ⊆ T and if τ ∈ T and
σ ∈ T then also (τσ) ∈ T . The set of PO types is the smallest set Tpo ⊆ T s.t. T 0

po ⊆ Tpo

and if τ ∈ T and σ ∈ Tpo then also (τσ) ∈ Tpo. Standardly, types e (for entities) and t (for
truth values) are among the primitive types, where t is among the PO primitive types.

For each primitive type τ ∈ T 0, let Dτ be a non-empty domain, assuming that the domains
for primitive types are mutually disjoint. We also assume that the domain Dσ of any primitive
PO type σ is endowed with a given partial order relation ≤σ . For each non-primitive type τσ ,
the domain Dτσ is the set of all functions from Dτ to Dσ . The partial order ≤τσ for complex
PO types is defined pointwise: if σ is a PO type with partial order ≤σ over the domain Dσ ,
then for any d1, d2 ∈ Dτσ : d1 ≤τσ d2 iff for every d ′ ∈ Dτ d1(d ′) ≤σ d2(d ′).

Next, we review some semantic properties of functions over these typed domains, which
will be useful in the rest of this paper. First, we refer to types of the form ττ as modifier types.
When τ is a PO type, a function f ∈ Dττ of the modifier type ττ is called restrictive iff for
every d ∈ Dτ : f (d) ≤τ d . For example, the denotations of adjectives like tall, pretty and
adverbs like slowly, happily are commonly analyzed as restrictive functions of type (et)(et).
Thus, it is assumed that the denotation of an expression like tall boy is “smaller” or equal to
the denotation of the expression boy, and that the denotation of slowly move is “smaller” or
equal to the denotation of move. Order relations produced by restrictive modifiers are one of
the simplest ways for generating order relations between natural language expressions in the
order calculus.

Another important source for order relations are expressions of the coordination types -
types of the form τ (ττ). Functions of this type in natural language are often interpreted as
greatest lower bound or least upper bound operators. A function f ∈ D(τ (ττ)), where τ is
a PO type, is called a greatest lower bound (g.l.b.) function iff for all d1, d2, d3 ∈ Dτ the
following two conditions hold:

1. (f (d1))(d2) ≤τ d1 and (f (d1))(d2) ≤τ d2;
2. if d3 ≤τ d1 and d3 ≤τ d2 then d3 ≤τ (f (d1))(d2).

The first requirement requires that f be restrictive, or returns a lower bound, on both of its
arguments; the second requirement ensures that f returns a greatest lower bound on both of
its arguments.

A dual notion is the notion of least upper bound (l.u.b.) functions: a function f ∈ Dτ (ττ)

of the coordination type τ (ττ), where τ is a PO type, is called a l.u.b. function iff for all
d1, d2, d3 ∈ Dτ the following two conditions hold:

1. d1 ≤τ (f (d1))(d2) and d2 ≤τ (f (d1))(d2));
2. if d1 ≤τ d3 and d2 ≤τ d3 then (f (d1))(d2) ≤τ d3.

In natural language there are at least three kinds of g.l.b. functions:

Springer

A ‘Natural Logic’ inference system using the Lambek calculus 277

1. Conjunctions: the standardly assumed meaning of conjunctions such as dance and smile,

Mary danced and John smiled, and every teacher and some student is the g.l.b. of the meanings
of the conjuncts.

2. Relative clauses: a ‘subject oriented’ relative clause such as child who sneezed is treated as
a g.l.b. of the noun (child) denotation and the verb phrase (sneezed) denotation. Similarly,
an ‘object oriented’ relative clause such as child whom Mary saw is treated as a g.l.b. of the
noun (child) denotation and the denotation of the “gapped” verb phrase (Mary saw), which
is interpreted as the set of objects seen by Mary.

3. Intersective adjectives: adjectives such as blue and pregnant when viewed as modifiers are
often assumed to denote ‘intersective functions’: functions of type ((et)(et)) that intersect
their argument with an implicit argument of type (et). For instance, the nominal blue car

is synonymous with the nominal car that is blue, which is formed using a g.l.b. relative.

One l.u.b. function in natural language is the disjunction or: the standardly assumed
meaning of disjunctions such as dance or smile, Mary danced or John smiled, and every
teacher or some student is the l.u.b. of the meanings of the disjuncts.

Another useful property of functions in natural language is monotonicity, namely, order
preservation/reversal. Let σ1 and σ2 be PO types. A function f ∈ D(σ1σ2) is:� upward monotone iff for all d1, d2 ∈ Dσ1 : d1 ≤σ1 d2 ⇒ f (d1) ≤σ2 f (d2);� downward monotone iff for all d1, d2 ∈ Dσ1 : d1 ≤σ1 d2 ⇒ f (d1) ≥σ2 .

For example, the denotation of the determiner every is analyzed as a function of type
((et)((et)t)) that is downward monotone w.r.t. its first argument and upward monotone w.r.t.
its second argument. In this way we capture the following entailments:� Every student ran ⇒ Every tall student ran (assuming tall student ≤ student)� Every student ran ⇒ Every student moved (assuming ran ≤ moved)

2.2. Decoration of types

In order to use the semantic properties that were reviewed above in a calculus, we follow
Fyodorov, et al. (2003) and use semantic decorations of types of linguistic expressions as
an abstraction of their full denotations. In this way the decorated type of an expression E
can be used to derive order relations between more complex expressions containing E, and
ultimately entailment relations with sentences containing E.

We first define the set of semantic features that decorate types according to the semantic
properties discussed above.

Definition 2.2.1. (Semantic features) The set of semantic features Feat = {+, −, R, C, D}.
Henceforth we use the meta-variables F, F ′ to range over subsets of Feat.
The intended use of these marks is as follows:� ‘+’/‘-’ marks upward/downward monotonicity of functional types τσ , where both τ and

σ are PO types.� ‘R’ marks restrictivity of modifier types ττ , where τ is a PO type.� ‘C’/‘D’ marks g.l.b./l.u.b. behavior of coordination types τ (ττ), where τ is a PO type.

Definition 2.2.2. (Decorated types and decorated PO types) Let T 0 be a set of primitive types
and T 0

P O a set of primitive PO types, such that T 0
P O ⊆ T 0. The sets of decorated types and

PO decorated types are the smallest sets Tdec, T P O
dec so that:

Springer

278 Anna Zamansky et al.� T 0 ⊆ Tdec, T 0
P O ⊆ T P O

dec (null decoration)� if τ ∈ Tdec, σ ∈ Tdec and ρ ∈ T P O
dec then (τ Fσ) ∈ Tdec, (τ Fρ) ∈ T P O

dec for any F ⊆ Feat
satisfying the following conditions:

1. If F 	= ∅, then τ, σ ∈ T P O
dec .

2. If R ∈ F then τ = σ .
3. If C or D ∈ F then (i) If τ = (τ F ′

1 τ2) then F ′ = ∅ and (ii) σ = (τ ∅τ).

Condition 1 guarantees that only functional types (τ Fσ), where both τ and σ are PO
decorated types can be marked with F 	= ∅. Condition 2 guarantees that only modifier types
are marked with ‘R’. Condition 3 guarantees that an expression of a type marked with ‘C’ or
‘D’ is treated as denoting a binary function and all its markings are specified on the functor
type.

Definition 2.2.3. Let τ be a decorated type in Tdec. The (non-decorated) type τ ◦ ∈ Tdec cor-
responding to τ is defined by:

1. If τ is primitive then τ ◦ = τ .
2. If τ = (αFβ) then τ ◦ = (α◦β◦).

After defining the decorated types, the corresponding domains are naturally defined as
follows.

Definition 2.2.4. (Domains of decorated types) For each non-primitive decorated type τ Fσ ∈
Tdec\T 0, the domain Dτ Fσ ⊆ Dτσ is the set of functions in Dτσ that have the semantic
properties denoted by the semantic features in F.

For example, D(σ+τ) is the set of upward monotone functions from Dσ to Dτ .

3. The calculus L

In the proposed system, entailments between natural language sentences are computed based
on lambda terms with decorated types, representing the syntactic derivations of these sen-
tences. The Lambek calculus is an appealing formalism to be used in such framework because
of the built-in interface between the syntactic structure of natural language expressions and
their compositional semantics due to the Curry-Howard correspondence between proofs1 and
lambda terms. We use the product-free associative Lambek calculus (in its Natural Deduction
formulation, see Moortgat, (1997)) and extend it to the calculus L defined below enriched
with decorations of semantic types. The set of syntactic categories CAT is the smallest set,
such that a finite set of primitive categories CAT0 (standardly containing s) is included in
it, and for every A, B ∈ CAT : (A/B), (A\B) ∈ CAT. Let type0 : CAT0 → T be a typing
function for primitive categories, such that type0(s) = t . This function is extended to the
function type: CAT → T as follows2: type(A/B) = type(A\B) = (type(A)type(B)).

In our original presentation of L-OC (Zamansky et al. (2002) and Zamansky et al. (2003))
we presented the system using directed linear lambda terms, as only such terms materialize
the Curry-Howard correspondence with L as 1-1. However, directionality is not essential for

1 By ‘proofs’ we mean here derivation from assumptions.
2 Note that the function type returns a non-decorated type.

Springer

A ‘Natural Logic’ inference system using the Lambek calculus 279

conveying the main ideas of L-OC, and here we simplify the presentation by using ordinary
linear lambda terms (see Wansing, (1993)). Free(ψ), the set of free variables of a linear term
ψ , is defined standardly. For any term γ such that no free variables of γ occur bound in α,
the term α[x/γ] is obtained from α by substituting all free occurrences of x by γ .

Our term language contains also a set Const of constants, that are in a 1-1 correspondence
with the set of natural language words. The NL words are displayed in san-serif font, and the
constants in italic font. Thus, the constant girl corresponds to the word girl. Most importantly,
the constants are typed, carrying the decorated types driving the inferences.

Similarly to Fyodorov, et al. (2003)., we say that two decorated types τ, σ are formally
equivalent, and denote it by τ ≡ f , σ , if τ and σ are identical up to their decoration.

Definition 3.1. (The calculusL) Let
,
1,
2 range over finite non-empty sequences of pairs
A : ψτ , where A is a syntactic category and ψτ a term of a (decorated) type τ . The notation

 � A : ψτ means that the sequence
 is reducible to A : ψτ . The rules of L, are as follows:

(axiom)A : xτ � A : xτ , where xτ ∈ VAR ∪ Const and type(A) = τ ◦

(/E)

1 � (A/B) : ψ(τ1F τ2)
2 � B : ϕτ ′

1

1
2 � A : (ψ(τ1F τ2
)(ϕτ ′

1
))τ2

, (\E)

2 � B : ϕτ ′

1

1 � (A\B) : ψ(τ F

1 τ2)

2
1 � A : (ψ(τ F
1 τ2)(ϕτ ′

1
))τ2

where τ ≡ f τ ′
1, type(A) = τ ◦

2 , type(B) = τ ◦
1

(/I)

1, B : xτ1 � A : ψτ2

1 � (A/B) : (λxτ1 , ψτ2)(τ1τ2)
(/I)

B : xτ1 � A : ψτ2

1 � (A/B) : (λxτ1 , ψτ2)(τ1τ2)

f or
1 not empty, type(A) = τ ◦
2 , type(B) = τ ◦

1

If a sequent
 � A : ψ has a proof in L, we denote it by �L
 � A : ψ .

Definition 3.2. (Type-Logical Categorial Grammar) A type-logical categorial grammar is a
tuple G = 〈, CAT0, A0, α〉3, where:� is the alphabet.� CAT0 is the set of basic syntactic categories.� A0 is the target category.� α : → 2CAT×Const is an assignment of finite sets of (abstracted) signs, pairs of categories

and constants, to lexical items, such that for every 〈A, wr 〉 ∈ α(w) : τ ◦ = type(A). We will
refer to an assignment α as a lexicon.� The abstracted language L[G] is defined as:

L[G] = {〈w, Mt 〉|∃
 ∈ α(w), s.t. �L
�s : Mt }

Note that M, which usually specifies the semantic denotation of w, is used here to carry
the abstracted type of the denotation. In a similar way, we define L[G, A], the expressions
of category A, so that L[G] = L[G, s].

3 Standardly, A0 is taken to be s, the category designated for sentences in natural language.

Springer

280 Anna Zamansky et al.

4. The L-based order calculus

In this section we introduce the main part of the proposed system - theL- based Order Calculus
(L-OC).L-OC manipulates ordered pairs of proof terms that representLderivations of natural
language expressions. These pairs, which are referred to as order statements, are so defined to
specify semantic order relations between denotations of proof terms. Similarly to Fyodorov,
et al. (2003), however, order statements are purely syntactic objects with no direct appeal to
models (as opposed to the works of Sánchez, (1991) and Bernardi, (2002)). The soundness
proof in Zamansky, (2004) implies that the denotations of terms in a L-OC-provable order
statement indeed satisfy the ordering in every model.

4.1. L-OC

Order statements - the items that are manipulated by L-OC- are defined to be of the form
ϕτ ≤τ ◦ ψτ ′ , where ϕ and ψ are directed lambda terms of formally equivalent types τ and τ ′,
and τ ◦ is the non-decorated type derived by recursively erasing the decorations from τ (or
equivalently, from τ ′).

The definition of L-OC contains, similarly to the system of Fyodorov, et al. (2003), rules
of the following three kinds:

1. Structural rules of reflexivity (REFL) and transitivity (TRANS) for the order relation ≤τ .
2. Rules that describe the order behavior of monotonic expressions (MON+ and MON-),

restrictive modifiers (RMOD), conjunctions (C1−2) and disjunctions (D1−2).
3. A rule of “function replacement” (FR), which captures the pointwise behavior of the order

relation.

In addition to the rules of the Order Calculus of Fyodorov, et al. (2003),L-OC also includes
an abstraction (Ab) rule and standard β and η normalization axioms. The abstraction rule
of L-OC is used for deriving order statements between terms that are obtained using the
introduction rule of the L calculus. The normalization axioms solve some problems that
appear due to possible loss of semantic features when derivations of order relations contain
non-normalized terms.

Definition 4.1.1. (L-OC:)
For τ ≡ f τ ′ ≡ f τ̂ ≡ f τ̃ , ρ ≡ f ρ ′4:

(REFL)
∅

ατ ≤τ ◦ α′
τ

(TRANS)
ατ ≤τ ◦ δτ ′δτ ′ ≤τ ◦ γτ̂

ατ ≤τ ◦ γτ̂

(MON+)
ατ ≤τ ◦ δτ ′

γ(τ̂+ρ)(ατ) ≤ρ◦ γ(τ̂+ρ)(δτ ′)
(MON−)

δτ ′ ≤τ ◦ ατ

γ(τ̂−ρ)(ατ) ≤ρ◦ γ(τ̂−ρ)(δτ ′)

(FR)
α(τ F ρ) ≤(τρ)◦ ψ(τ ′F ′

ρ ′)γτ̂ ≡τ ◦ δτ̂

α(τ F ρ)(γτ̂) ≤ρ◦ ψ(τ ′F ′
ρ ′)(δτ̃)

(RMOD)
∅

α(τ Rτ ′)(γτ̂) ≤τ ◦ γτ̂

(Ab)
αρ ≤ρ◦ γρ ′

λxτ .αρ ≤(τρ)◦ λxτ ′ · γρ

4 Note that τ ◦ is equal to τ without any semantic decorations, thus τ ◦ ≡ f τ ≡ f τ ′ ≡ f τ̂ ≡ f ˜̂τ and ≤τ◦ is
compatible with ≤τ , ≤τ ′ , ≤τ̂ and ≤τ̃ . The case for ρ◦ is similar.

Springer

A ‘Natural Logic’ inference system using the Lambek calculus 281

λx, α, λx · γ are linear terms

(C1)
∅

(δ(τC (ττ))(γτ ′))(ψτ̂) ≤τ ◦ �
(C2)

ατ̂ ≤τ ◦ ψτ ′ατ̂ ≤τ ◦ γτ̂

ατ̂ ≤τ ◦ (δ(τC (ττ))(γτ̂))(ψτ̂ ′)

� = ψτ̂ or � = γτ̂ ′

(D1)
∅

� ≤τ ◦ (δ(τ D (ττ))(γτ ′))(ψτ̂)
(D2)

ψτ̂ ≤τ ◦ ατ ′γτ̂ ≤τ ◦ ατ̂

(δ(τ D (ττ))(γτ̂))(ψτ̂ ′) ≤τ̂ ◦ ατ̂

� =
τ ′ or � = γτ̃

Normalization axioms :

(β)
∅

(φτ [yp/γρ ′])τ ≡τ ◦ (λyρ.φτ)(ρτ)(γρ ′)
(η)

∅
ψ(τ F ρ) ≡(τρ)◦ (λxτ .ψ(τ F ρ)(xτ))(τρ)

xτ /∈ Free(ψ)

The Abstraction (Ab) rule captures the discharge of an assumption in aL- derivation. Given
a premise ϕ1 ≤ ϕ2, where both ϕ1 and ϕ1 represent derivation trees with a free variable x
occurring exactly once, the order statement λx .ϕ1 ≤ λx .ϕ2 is derived. The normalization
axioms (β) and (η) capture β and η reductions of proof terms. The application of these
axioms is discussed in detail in section 6. For explanation of the rest of the rules, the reader
is referred to Fyodorov, et al. (2003).

4.2. The semantics of L-OC

The semantics of L-OC is naturally denned using standard models (i.e., full Henkin models,
see Henkin, (1950)) for the extensional fragment of Montague’s IL Gamut, (1991) and the
point-wise definition of semantic order relations. A model M is a set of (non-empty) domains
Dτ for every primitive type τ ∈ T 0

dec. For each non-primitive type σ = (τ Fρ), D(σ) is the
domain of all functions from Dτ to Dρ , satisfying the semantic conditions specified by F.
Every proof term ϕρ is associated with a denotation [[ϕρ]]M,g relative to a model M and an
assignment function g, which assigns to any variable of decorated type p some element of
Dρ .

Definition 4.2.1. (Denotations of proof terms) Let M be a model and g an assignment func-
tion. For a given proof term ψτ , the denotation [[ψτ]]M,g is defined as follows:� If ψτ VAR, then [[ψτ]]M,g = g(ψτ).� If ψτ = ϕ(σ F

au)(φσ), then [[ψτ]]M,g = [[ϕ(σ F τ)]]M,g([[φσ]]M,g).� If ψτ = λxσ .ϕρ , then [[ψτ]]M,g is that function h ∈ Dτ s.t. for all d ∈ Dσ : h(d) =
[[ϕρ]]M,g[x :=d], where g[x := d] is an assignment function similar to g, except that it
assigns dσ to xσ .

Definition 4.2.2. (Semantics of order statements) Let ϕ1, ϕ2 be terms of (decorated) type τ

and g an assignment function.

1. M, g � ϕ1 ≤τ ϕ2 iff [[ϕ1]]M,g ≤τ [[ϕτ]]M,g

2. M � ϕ1 ≤τ ϕ2 iff ∀g : M, g � ϕ1 ≤τ ϕτϕ2.

Springer

282 Anna Zamansky et al.

Table 1 Lexicon

Word Category Type

W T s t
every ((s/(s\np))/n), ((s\(s/np))/n) ((et)−((et)+t))
no ((s/(s\np))/n), ((s\(s/np))/n) ((et)−((et)−t))
some ((s/(s\np))/n), ((s(s/np))/n) ((et)+((et)+t))
student, boy n (et)
walk, walked, smile, smiled, move, moved (s\np) (et)
touched, loved ((s\np)/np) (e(et))
tall, nice, smart, intelligent, creative (n/n) (et)R(et)
Mary, John (s/(s\np)), (s(s/np)) ((et)+t)
does ((s\np)/(s\np)) (et)+(et)
doesn’t ((s\np)/(s\np)) (et)−(et)
whom ((n\n)/(s/np)) (et)C ((et)(et))
the-brother-of-whom ((n\n)/(s/np)) (et)C ((et)(et))
and ((s\s)/s), (((s\np)(s\np))/(s\np)) (tC (t t)), ((et)C ((et)(et))),

In Zamansky, (2004) it is shown that L-OC is strongly sound relative to this semantics, that
is:

�L-OC α ≤ γ ⇒ ∀M, g : [[α]]M,g ≤ [[γ]]M,g

5. L-OC-based inference system for natural language

This section illustrates howL-OC can be used for deriving inferences in natural language. We
first introduce a toy lexicon which is used for defining a small fragment of English. Then we
define a way to represent natural language assertions as L-OC order statements. In addition,
we extend the postulate introduced by Fyodorov, et al. (2003) for universal quantification in
order to expand the range of inferences derived by the system. We also introduce some non-
logical axioms for complex expressions. Finally, we present examples of deriving inferences
with sentences involving relative clauses and pied piping, as well as inferences using the
extended postulate for universal quantification.

To keep the relation between terms (derivations) and natural language expressions clear, we
sometimes denote a term ϕ(ψ) by [ψ]ϕ , thus restoring the distinction between the rightward
and leftward slash elimination rules. For instance, the (normalized) L-derivation of adores

and loves is represented by the directed term ([adores]and)(loves), rather than the non-directed
term (and(adores))(loves).

5.1. Lexicon

A lexicon in a type-logical categorial grammar is a function α : → 2CAT×Const, from words
to finite sets of pairs of categories and constants with decorated types. These sets are of course
non-empty, and contain more than one pair for any word that is lexically ambiguous. In
Table 1 we introduce a toy lexicon for a fragment of English, including the decorated types
that are assigned to the decorated syntactic categories.

Some remarks on this lexicon are in place:

1. Following Fyodorov, et al. (2003), we use a fictitious sentence W T that is assigned the
constant proof term W T

t . This proof term is used in the representation of a natural language

Springer

A ‘Natural Logic’ inference system using the Lambek calculus 283

Fig. 1 Deriving S1, . . . , Sn �Nat Log S in the system

assertion S as the order statement W T
t ≤t ψ S

t , where ψ S
t is a proof term representing an

L-derivation of S. This representation of assertions makes it easy to treat natural language
sentences using order relations, where wT

t is understood as a sentential “top-element”
term, with a denotation that is constantly true.

2. Determiners and proper names are assigned two categories, which allow them to appear in
both subject and object positions. The semantic markings of their types, as in Fyodorov,
et al. (2003), captures their monotonicity properties. For instance, the determiner every is
marked as downward monotone on its noun argument, and upward monotone on its verb
argument.

5.2. Natural logic inferences

In general, we represent Natural Logic inferences in L-OC as follows.

Definition 5.2.1. (�Nat Log) Let G be some type-logical grammar. Let S, S1, . . . , Sn be non-
ambiguous sentences in L[G] (i.e., having only one reading) and let αS

t , α
S1
t , . . . α

Sn
t be

any proof terms representing L- derivation trees of S, S1̄, . . . , Sn respectively. We say that
S1, . . . , Sn �Nat Log S if �L-OC wT

t ≤ α
S1
t , . . . , �L-OC wT

t ≤ α
Sn
t implies �L-OC wT

t ≤ αS
t .

In order to prove S1 �Nat Log S2, it is enough to show �L-OC , α1 ≤ α2, where α1, α2 are proof
terms representing derivations of S1, S2 resp., and the rest follows from transitivity. We do
so in all the following examples to shorten up the presentation.
The general process of deriving S1, . . . , Sn �Nat Log S is summarized in Figure 1. In this
paper we only handle the case of n = 1.

5.3. Non-logical axioms and the ‘every’ postulate

Non-logical axioms are order statements that reflect possible meaning assumptions on the
denotations of natural language expressions. For example, in the models that we would like to
consider, a student is also a person, and a walking object is a moving object. It is also natural
to assume that in the relevant models a creative intelligent X is a smart X, for any nominal X.
Similarly, we may assume that passionately loving some x entails adoring x, for any entity
x. The following non-logical axioms of L-OC, which correspond to these intuitions, will be
useful in the examples of L-OC proofs that are introduced below.

∅
walked(et) ≤ moved(et)

a1
∅

walk(et) ≤ move(et)
a2

∅
kissed(et) ≤ touched(et)

a3
∅

student(et) ≤ person(et)
a4

∅
λxet .creative((et)R (et))(intelligent((et)R (et))(x(et))) ≤ smart((et)R (et))

a5

Springer

284 Anna Zamansky et al.

∅
λxe.passionately((et)R (et))(loves((et)R (et))(x(e))) ≤ adores(e(et))

a6

Our L-based system, as opposed to the AB-based system of Fyodorov, et al. (2003), makes
it possible to define non-logical axioms involving complex proof terms. For example, one
of the terms involved in a4 is a composition of two functional terms creative(et)R (et) and
intelligent((et)R (et)), which can not be derived in the less powerful AB calculus.

Another advantage of L is that it allows us to use the ad hoc postulate that Fyodorov,
et al. (2003) defines for the determiner ‘every’ also for other positions beside subject position.
The determiner ‘every’ is treated by inducing an order statement between its two arguments.
For example, from the order statement

wT
t ≤ (every(et)−((et)+t)(student))(smiled)

Fyodorov, et al. (2003) induce the order statement student(et) < smiled(et). However,
Fyodorov, et al. (2003) cannot handle a similar case when ‘every’ is in an object position.
For example, the fact that the order statement

(∗) student(et) ≤ λxe · (Mary((et)+t)(kissed(e(et))(xe)))

should be induced from the order statement

wT
t ≤ [λxe.Mary((et)+t)(kissed(e(et))(xe))](every(et)−((et)+t)(student(et)))

cannot be accounted for by Fyodorov, et al. (2003). We define a generalized postulate for
‘every’ as follows:

wT
t ≤ (every(et)−((et)+t)(α(et)))(γ(et))

α(et) ≤ γ(et)
((ev))

Some examples for the use of the postulates above for deriving inferences are given in the
following subsection.

5.4. Examples of L-OC derivations

In this subsection we show examples of L-OC derivations of inferences involving sentences
with relative clauses and pied piping, as well as inferences using the extended ‘every’ postu-
late, which cannot be derived by the AB-based system in Fyodorov, et al. (2003). Instances
of the Reflexivity axiom are omitted. Also, when the rule FR is used with its second premise
an identity (not just formal equivalence), the second premise is omitted for brevity.

Figures 2 and 3 illustrate the derivation of inferences with simple relative clauses including
an object gap. In Figure 2 we see anL-OC derivation, from which it follows that Every student

whom Mary touched smiled �Nat Log Every student whom Mary kissed smiled. In this derivation the
Abstraction rule ofL-OC is used to discharge the assumption xe. In Figure 3 we show aL-OC
derivation, from which we conclude Some boy, the brother of whom Mary loves, walked �Nat Log

Some boy walked. For simplicity we assume that the category ((n\n)/(s/np))(et)C ((et)(et)) can
be derived for the expression the brother of whom. In Figure 4 the extended ‘every’ postulate

Springer

A ‘Natural Logic’ inference system using the Lambek calculus 285

is used. Figures 5 and 6 illustrate the use of L-OC for term composition as in the non-logical
axioms a4 and a5.

6. Normalization in L-OC

In this section we focus on normalization5 in L-OC. First of all, we demonstrate how non-NF
proof terms emerge in L-OC. Consider the following example.

∅
λx(et).creative((et)R (et))(intelligent((et)R (et))(x(et)))≤smart((et)R (et))

a5

λx · creative(intelligent(x))(boy(et)) ≤ smart(boy(et))
FR

5 Normalization in L-OC was initially proposed in [15].

Fig. 2 Relative clauses: Every student whom Mary touched smiled �Nat Log Every student whom Mary
kissed smiled

∅
[boy(et)](the-brother-of-whom((et)C((et)(et)(λx. Mary(loves(x))(et)))

≤ boy(et)

C1

some(et)+((et)+t)([boy(et)](the-brother -of -whom((et)C((et)(et)(λx. Mary(loves(x))(et))))
≤ some(et)+((et)+t)(boy)

MON+

some(et)+((et)+t)([boy(et)](the-brother-of-whom((et)C((et)(et)((λx. Mary(loves(x)))(et))))(walked(et))
≤ (some(et)+((et)+t)(boy))(walkedet)

FR

Fig. 3 Pied piping, Some boy, the brother of whom Mary loves, walked �Nat Log Some boy walked

Fig. 4 Using the extended non-logical postulate for ‘every’: Mary kissed every student, No student whom
Mary kissed walked �Nat Log No student walked

Springer

286 Anna Zamansky et al.

Fig. 5 Mary adores and passionately loves John �Nat Log Mary loves John

Fig. 6 Some creative intelligent boy smiled �Nat Log Some smart boy smiled, using the non-logical axiom
(a5).

In this example the term λx .creative(intelligent(x))(boy) is not in NF and it β-reduces to
creative(intelligent(boy)).

Another example for the creation of non-NF terms is as follows:

∅
happy(et)R (et)(tall(et)R (et)(x(et)))≤tall((et)R (et))(x(et))

RMOD

λx · happy(et)R (et)(tall(et)R (et)(x(et))) ≤ λx .tall(et)R (et)(x(et))
Ab

Here, the term λx .tall(x) is not in NF and it η-reduces to tall.
In these examples we see two main problematic aspects in the emergence of non-

normalized terms in L-OC. The first problem is abstraction terms with unmarked semantic
types. Basing the system on L allows us to derive order statements that involve non-lexical
expressions, and apply composition of terms in the representation of their derivation. In AB,
in contrast, the creation of functional terms that do not originate from the lexicon is impos-
sible due to the lack of introduction rules. In L-OC new functional terms that are created
via abstraction can apply as functions to other terms, creating non-NF terms. Some of the
abstraction terms may denote monotone (restrictive, etc.) functions, but their types are not
respectively marked. For instance, consider the abstraction term μ = λxτ .ψ(σ+ρ)(φ(τ+σ)(xτ)),
which is a composition of the terms φ and ψ . Since their types are marked for upward mono-
tonicity, the denotation of their composition is an upward monotone function. Thus, given
�L-OC γτ ≤τ δτ we expect L-OC to derive (λx .ψ(φ(x)))(γ) ≤ρ (λx .ψ(φ(x)))(δ). But the
type of λx .ψ(φ(x)) is not marked for monotonicity, thus we cannot directly use the MON+
rule (or any other L-OC rules).

Let us show a more concrete example. Using (a1), MON and FR we can derive:

�L-OC Mary(doesn′t(move)) ≤ Mary(doesn′t(walk))

Springer

A ‘Natural Logic’ inference system using the Lambek calculus 287

Fig. 7 The problematic inference is derivable using β-normalization

Consider, however a similar order statement:

�L-OC [λx .John(does(x))]and(λy · Mary(doesn′t(y)))(move) ≤
λy.Mary(doesn′t(y))(walk)

Since the type of λy.Mary(doesn′t(y)) is not marked for downward monotonicity, without
normalizing it we cannot use the non-logical axiom (a1) in any way. In Figure 7 we show
a derivation of this example using β-normalization. Alternatively, instead of normalization
we can add to L-OC a mechanism for dynamically marking monotonicity of types, so that
markings of lexical expressions are correctly inherited by complex expressions, also with
non-normalized derivations. Such a method is described in the next section.

Another problematic aspect of non-NF terms in L-OC is effectiveness considerations.
In the general architecture of our system (Figure 1), one of the integral parts is finding
L-derivations for the goal sentences. However, finding a non-normalized derivation of a
natural language expression is problematic due to the lack of the sub-formula property in
non-normalized derivations, which in turn creates an infinite proof search space. Therefore,
any realistic L parser would search for normal form derivations only. Thus, for the purpose
of implementation, we need to express the relation between non-NF terms representing L
derivations of the goal sentences and their normal form equivalents. This technical develop-
ment is carried out in Zamansky, (2004).

7. Dynamic marking

In this section we focus on the problem of marking the types of abstraction terms created in
L-OC derivations. We describe a method of dynamic marking (first proposed in Zamansky,
(2002)), which marks the types of abstraction terms for monotonicity. We show that the
proposed method does not in fact increase the expressive power of L-OC, in the sense that
any derivation using dynamic marking can be simulated by L-OC.

To implement dynamic marking we use the notion of polarity introduced by van Benthem,
(1987) and used by Sánchez, (1991) and Bernardi, (2002).

Definition 7.1. (Polarity of occurrences) Given a term ψ and a subterm φ of ψ , a specified
occurrence of φ in ψ is called positive (negative) according to the following clauses:

1. φ is positive in φ.
2. If ψ = α(γ) then:

– φ is positive (negative) if ψ if φ is positive (negative) in α.
– φ is positive (negative) in ψ if φ is positive (negative) in γ and α denotes an upward

monotone function.

Springer

288 Anna Zamansky et al.

– φ is negative (positive) in ψ if φ is positive (negative) in γ and α denotes a downward
monotone function.

3. If ψ = λx .μ, then φ is positive (negative) in ψ if φ is positive (negative) in μ.

Fact 7.2 van Benthem, (1987) If x is positive (negative) in φ then λx .φ denotes an upward
(downward) monotone function.

Dynamic marking is performed by DDL – an extended version of L. Instead of linear
lambda terms, DDL uses extended linear terms, where variables are assigned a polarity
marking � ∈ Pol = {⊗, �, ⊗}, which is an abstraction of its actual polarity: ⊕, �, ⊗,
mark positive, negative and unspecified polarity respectively.

Definition 7.3. (Extended linear terms) Let V E = {y�|y ∈ VAR, � ∈ Pol}. The set EL-
Terms is the smallest set s.t.:� VE ∪ Const ⊆ E LT erms� If �(σ F τ), �σ ∈ ELTerms, then (�(�))τ ∈ ELTerms� If xρ ∈ VAR, �τ ELTerms and for some � ∈ Pol : x�

ρ occurs in �τ exactly once, then
(λx, �)(ρτ) ∈ ELTerms

The set of free variables (with an assigned polarity marking) Free(�) for � ∈ ELTerms

is standardly defined.

Definition 7.4. (�-strip) For� ∈ E LT erms, its�-strip linear term� − strip(�) is defined
as follows:

�strip(α�) = α, f or α ∈ Var, � ∈ Pol

�strip(�(�)) = �strip(�)(�strip(�))

�strip(λx .�) = λx .�strip(�)

In words, �strip(�) is the term obtained from � by deleting the polarity marking of all
of its variables. It is easy to show that given a linear extended term �, representing some
DDL derivation, the term �strip(�), obtained by deleting all polarity markings from �, is a
linear term representing some L derivation. Next, we define the functions Flip : ELTerms →
ELTerms and Anull : ELTerms → ELTerms. Flip(�) is the (extended) term obtained from �

by swapping the polarity marking of the free variables in � as follows: ‘�’ to ‘⊕’, ‘⊕’ to ‘�’,
‘⊗’ to ‘⊗’. Anull(�) is the (extended) term obtained from � by setting the polarity marking
of all the free variables in � to ‘⊗’. We also define the function Pol2Feat : Pol → 2Feat that
decorates the type of abstraction terms according to the polarity marking of the discharged
assumption:

Pol2Feat(⊕) = {+}, Pol2Feat(�) = {−}, Pol2Feat(⊗) = ∅

Definition 7.5. (DDL) Let
,
1,
2 range over finite non-empty sequences of pairs A : �τ ,
where A is a syntactic category and � ∈ E LT erms. The notation
 � A : �τ means that the

Springer

A ‘Natural Logic’ inference system using the Lambek calculus 289

sequence
 is DDL-reducible to A : �τ . The rules of DDL are as follows:

(axiom1) A : x⊕
τ � A : x⊕

τ f or xτ ∈ VE and type(A) = τ ◦

(axiom2) A : wτ � A : wτ f or wτ ∈ Const and type (A) = τ ◦

f or τ1 ≡ f τ ′
1, type(A) = τ ◦

2 , type(B) = τ ◦
1 :

Elimination rules:

(/E�)

1 � (A/B) : �(τ1−τ2)
2 � B : �τ ′

1

1
2 � A : (�(τ1−τ2)(Flip(�τ ′
1
)))τ2

(\E�)

2 � B : ϕτ ′

1

1 � (A\B) : �(τ1−τ2)

2
1 � A : (�(τ1−τ2)(Flip(�τ ′
1
)))τ2

(/E⊕)

1 � (A/B) : �(τ1+τ2)
2 � B : �τ ′

1

1
2 � A : (�(τ1+τ2)(�τ ′
1
))τ2

, (\E⊕)

2 � B : �τ ′

1

1 � (A\B) : �(τ1+τ2)

2
1 � A : (�(τ1−τ2)(�τ ′
1
))τ2

For F /∈ {{+}, {−}} :

(\E)

1 � (A/B) : �(τ 1

F τ2)
2 � B : �τ ′
1

1
2 � A : (�(τ 1
F τ2)(Anull(�τ ′

1
)))τ2

, (\E)

2 � B : �τ ′

1
1 � (A\B) : �(τ 1
F τ2)

2
1 � A : (�(τ 1
F τ2)(Anull(�τ ′

1
)))τ2

Introduction rules:

(/I)

1, B : x�

τ1
� A : �τ2

1 � (A/B) : (λxτ1 · �τ2)(τ Pol2Feat(�)
1 τ2)

(\I)
B : x�

τ1
,
1 � A : �τ2

1 � (A\B) : (λxτ1 · �τ2)(τ Pol2Feat(�)
1 τ2)

f or
1 not empty, xτ1 ∈ VAR

The Elimination rules update the polarity marking of the variables of the argument term: a
downward monotone function triggers a “flipping” of polarity marking, an upward monotone
function leaves polarity intact, and a function unmarked for monotonicity nullifies polarity
marking. The Introduction rules mark the type of the dynamically created functional term
according to the polarity marking of the abstracted variable corresponding to the discharged
assumption. (The polarity marking of the bound variables becomes irrelevant.)

The rules of the Order Calculus that is based on DDL (DDL-OC) are very similar to the
rules of L- OC, except that they manipulate order-statements between extended linear terms,
representing DDL derivations. We do not include normalization axioms in DDL-OC.

Definition 7.6. (DDL-OC:)
For τ ≡ f τ ′ ≡ f τ̂ ≡ f τ̃ , ρ ≡ f ρ ′ ≡ f ρ̂

(REFL)
∅

�τ ≤τ ◦ �τ ′
(TRANS)

�τ ≤τ ◦ τ ′τ ′ ≤τ ◦ �τ̂

�τ ≤τ ◦ �τ̂

(Mon+)
�τ ≤τ ◦ τ ′

�(τ̂+ρ)(�τ) ≤ρ◦ �(τ̂+ρ)(τ ′)
(MON−)

τ ′ ≤τ ◦ �τ

�(τ̂−ρ)(Flip(�τ)) ≤ρ◦ �(τ̂−ρ)(Flip(τ ′))

(FR)
�(τ F ρ) ≤(τρ)◦
(τ ′ F ′ρ ′)�τ̂ ≡τ ◦ τ̃

�(τ F ′ρ)(�F [�τ̂]) ≤ρ◦
(τ ′F ′ρ ′)(�F ′ [τ̃])

where �{+} = idELTerms
6�{−} = Flip, �F = Anull f or F /∈ {{+}, {−}}

Springer

290 Anna Zamansky et al.

(RMOD)
∅

(τ Rτ ′)(�τ̂) ≤τ ◦ �τ̂

(Ab)
�ρ(x�

τ) ≤ρ◦ �ρ ′ (x�′
τ ′)

(λxτ.�ρ)(τ Pol2Feat(�)ρ) ≤(τρ)◦ (λxτ ′.�ρ)(τ ′Pol2Feat(�′)ρ)

λx .�, λx .� ∈ ELTerms

(C1)
∅

((τC (ττ))(Anull(�τ ′)))(Anull(
τ̂)) ≤τ ◦ �

×(C2)
�τ̃ ≤τ ◦
τ ′�τ ′ ≤τ ◦ �τ̂

�τ̃ ≤τ ◦ ((τC (ττ))(Anull(�τ̂)))(Anull(
τ ′))

� =
τ̂ or � = �τ ′

(D1)
∅

� ≤τ ◦ ((τ D (ττ))(Anull(�τ ′)))(Anull(
τ̂))

×(D2)
ψτ ′ ≤τ ◦ �τ̂�τ̃ ≤τ ◦ �τ̂

((τ D (ττ))(Anull(�τ̃)))(Anull(
τ)) ≤τ ◦ �τ̂

� =
τ ′ or � = �τ̃

Let us now demonstrate the way DDL-OC works. Consider the following orderstatement
between extended terms7:

(1) [λx .John(does(x⊗))]and(λy.Mary(doesn′t(y�)))(move)

≤ λy.Mary(doesn′t(y�))(walk)

First let us note that the extended term λy.Mary(doesn′t(y�)) represents a valid DDL
derivation, where its type is dynamically marked for downward monotonicity:

(s/((s\np))) : Mary(et)+t
((s\np)/(s\np)) : doesn′t(et)−(et) (s\np) : y⊕

(s\np) : doesn′t(y�)
(/E�)

s : Mary(doesn′t(y�))

s/(s\np) : (λy.Mary(doesn′t(y�)))(et)−(et)
(/I)

(/E⊕)

In Figure 8 we present the DDL-OC derivation of (1). Note that by discarding all polarity
markings from it, we do not necessarily get a valid L-OC derivation. This is because the type

6 By idELTerms we mean the identity function id: ELTerms → ELTerms, such that id(�) = � for every
ELTerm �.
7 Note that we specify here the polarity marking of the bound variables.

Fig. 8 A DDL-OC derivation

Springer

A ‘Natural Logic’ inference system using the Lambek calculus 291

of λy.Mary(doesn′t(y)) cannot be marked for downward monotonicity in L, and so the
MON rule cannot be applied. Nevertheless, we can still show that we can simulate in L-OC
any derivation of DDL-OC. More precisely, for any order-statement � ≤ � derivable in
DDL-OC (where �, � are extended linear terms), �strip(�) ≤ �strip(�) is derivable in
L-OC (where �strip(�), �strip(�) are the linear terms obtained from �, � respectively
by deleting their polarity markings). From this we conclude that basing the Order Calculus on
DDL instead of L does not increase its expressive power. Note, however, that this negative
result only holds for the current semantic features. In general, there need not exist such
a bypass, and therefore dynamic marking is a general solution which should be further
investigated.
The following lemma formalizes the relation betweenDDL- OC andL-OC discussed above:

Lemma 7.7. �DD-OC � ≤ � ⇒�L-OC �strip(�) ≤ �strip(�).

The full proof of the lemma is deferred to appendix A. Now we exemplify the lemma by
returning to the DDL-OC derivation in Figure 8. According to the above lemma, we should
be able to show the following:

�L-OC [λx .John(does(x))]and(λy.Mary(doesn′t(y)))(move)

≤ λy.Mary(doesn′t(y))(walk)

It was already shown in Figure 7 that:

�L-OC [λx .John(does(x))]and(λy.Mary(doesn′t(y)))(move)

≤ λy.Mary(doesn′t(walk))

Using the (β) axiom:

λy.Mary(doesn′t(walk)) ≡ λy.Mary(doesn′t(y))(walk)

and the TRANS rule, we can indeed construct the desired L-OC derivation.

8. Conclusions

In this paper we have proposed a Natural Logic inference system that is based on L and
transcends the AB-based system of Fyodorov, et al. (2003). Basing the system on L brought
about a complication – non-normalized proof terms, with which we dealt by augmenting the
system with normalization, or, alternatively, using dynamic monotonicity marking. We have
shown that this allows to derive new kinds of inferences involving sentences with extraction,
pied piping and non-logical axioms with complex expressions. Further work is needed to
allow inferences with more than one sentential premise. It is clear, however, that L is also not
the optimal categorial formalism to underly a Natural Logic inference system, due to its own
limitations, mainly overgeneration and incapability of dealing with non-peripheral extraction.
Therefore, we view the proposed inference system only as an intermediate step towards a
more complex one, to be finally based on some decidable fragment of type-logical grammar.
Much work still has to be done in this direction. Further research should also enlarge the

Springer

292 Anna Zamansky et al.

variety of semantic properties used for natural language inference, beyond the ones employed
in current work on Natural Logic. These reservations notwithstanding, we believe that the
present work has shown some advances in extending the Natural Logic paradigm to a more
substantial system of reasoning in natural language.

9. Proof of Lemma 7.7

First we prove the following lemma that we will use in the sequel:

Lemma A.1. Let � ∈ ELTerms s.t. x ∈ Free(�strip(�)) and x is marked8 for positive (neg-
ative) polarity in �. Then �L-OC γ ≤σ δ(�L-OC δσ γ) implies �L-OC �strip(�)[x/γ] ≤τ

�strip(�)[x/δ].

Proof: by induction on the complexity of �. We prove only for the positive polarity case;
the proof for negative polarity is symmetric.� � = x⊕. Then �strip(�) = x and �L-OC γ ≤σ δ implies �L-OC x[x/γ] ≤ σ x[x/δ].� � = �(ζ F ρ)(�ζ). Then (since the terms are linear) only one of the following holds: x ∈

Free(�strip(�)) or x ∈ Free(�strip(�)).

• Suppose x ∈ Free(�strip(�)). If x is marked for positive polarity in �, then x is
marked for positive polarity also in �. By the induction hypothesis, �L-OC γ ≤σ δ

implies �L-OC �strip(�)[x/γ] ≤(ζρ) �strip(�)[x/δ]. By applying the FR rule, we
can prove

�L-OC (�strip(�)[x/γ])(�strip(�))︸ ︷︷ ︸
�strip(�(�))[x/γ]

≤ρ (�strip(�)[x/γ])(�strip(�))︸ ︷︷ ︸
�strip(�(�))[x/γ]

• Suppose x ∈ Free(�strip(�)). If x is marked for positive polarity in �, then (i) either
the type of � is marked for upward monotonicity and x is marked for positive polarity in
� or (ii) the type of � is marked for downward monotonicity and x is marked for negative
polarity in �. Suppose that (i) holds. By the induction hypothesis, �L-OC γ ≤σ δ implies
�L-OC �strip(�)[x/γ] ≤ζ �strip(�)[x/δ]. By applying MON+ rule, we can prove

�L-OC (�strip(�)(ζ+ρ))(�strip(�)ζ [x/γ])︸ ︷︷ ︸
�strip(�(�))[x/γ]

≤ρ (�strip(�)(ζ+ρ))(�strip(�)[x/δ])︸ ︷︷ ︸
�strip(�(�))[x/δ]

The proof for (ii) is symmetric.� � = λyζ .�, where y 	= x . Since x is marked for positive polarity in �, then it is marked
for positive polarity in �. By the induction hypothesis, �L-OC γ ≤σ δ implies �L-OC

�strip(�)[x/γ] ≤ρ �strip(�)[x/δ].
By applying the Ab rule, we can prove �L-OC λy.(�strip(�)[x/γ]) =
�strip(λy.�)[x/y] ≤ρ λy.(�strip(�)[x/δ]) = �strip(λy.�)[x/δ], and so we
have:

8 Recall that since we use extended linear terms, every variable occurs at most once, and so we can speak of
the marking of x and not of its specific occurrence.

Springer

A ‘Natural Logic’ inference system using the Lambek calculus 293

�L-OC �strip(λy.�)[x/γ] ≤(ζρ) �strip(λy.�)[x/δ] �

Now we prove lemma 7.7, which states the following:

�DDL-OC � ≤ � ⇒�L-OC �strip(�) ≤ �strip(�)

Suppose that there is a proof �1 of � ≤ � in DDL-OC . We construct a L-OC proof �2 of
�strip(�) ≤τ �strip(�). First we delete all polarity markings from the variables of the
extended terms in �1. Then we delete all monotonicity markings of abstraction terms in �1.
If the proof contains no MON rule applications based on dynamic marking of types of
abstraction terms, then it is easy to see that the obtained derivation is a valid L-OC proof of
�strip(�) ≤τ �strip(�).
Otherwise, the resulting invalid applications of the MON rule of the form:

�
∇

�strip(�) ≤τ �strip(�)

(λxτ .�strip(�))(τρ)(�strip(�τ)) ≤ρ (λxτ .�strip(�))(τρ)(�strip(�τ))
MON (1)

where the type of λxτ .�strip(�) is not marked for monotonicity. We choose the innermost
invalid MON instance, that is such that does not have invalid MON instances in �. First of
all, due to its being the innermost non-valid instance of MON, � is a valid L-OC proof of
the order statement �strip(�) ≤ �strip(�). Secondly, since the type of λx .� is marked
for upward monotonicity, x must be marked for positive polarity in �. By lemma A.1:

�L-OC �strip(�)[x/�strip(�)] ≤(τρ) �strip(�)[x/�strip(�)]

Thus we can replace (1) by the following valid L-OC proof:
In this way we can systematically remove all invalid instances of MON.

∅
λx .�strip(�)(�strip(�))

≡(τρ) �strip(�)[x/�strip(�)]

β
∇

�strip(�)[x/�strip(�)]
≤(τρ) �strip(�)[x/�strip(�)]

∅
�strip(�)[x/�strip(�)]

≡(τρ) λx .�strip(�)(τρ)(�strip(�))

β

(λx .�strip(�))(�strip(�)) ≤ (λx .�strip(�))(�strip(�))
TRANS

Example 1. Let us demonstrate the method presented above using the DDL-OC derivation
from Figure 8. First we delete all the polarity markings and monotonicity markings of types
of abstraction terms and get the following “derivation”:

∅
[λx .John(does(x))]and(λy.Mary(doesn′t(y)))

CL

≤ λy.Mary(doesn′t(y)) walk ≤ move

[λx .John(does(x))]and(λy.Mary(doesn′t(y)))(move)

FR

λy.Mary(doesn′t(y))(et)(et)(move)
≤ (λy.Mary(doesn′t(y)))(move) ≤ λy.Mary(doesn′t(y))(et)(et)(walk)

mon

TRANS

[λx .John(does(x))]and(λy.Mary(doesn′t(y)))(move) ≤ λy.Mary(doesn′t(y))(walk)

Springer

294 Anna Zamansky et al.

F
ig

.
9

E
xa

m
pl

e
of

ap
pl

yi
ng

le
m

m
a

7.
7:

L-
O

C
de

ri
va

tio
n

Springer

A ‘Natural Logic’ inference system using the Lambek calculus 295

Of course, the underlined application of MON is not valid, since the type of
λy.Mary(doesn′t(y)) is no longer marked for downward monotonicity.
Since the type of abstraction term λy.Mary(doesn′t(y)) was dynamically marked for ‘-’,
it means that y was marked for ‘�’ in Mary(doesn′t(y�)). By lemma A.I and using the
non-logical axiom walk ≤ move:

�L−OC Mary(doesn′t(move)) ≤ Mary(doesn′t(walk))

(see the right side of Figure 7), and using β-normalization as described above, we obtain the
L-OC derivation in Figure 9.

References

Bernardi, R. (2002). Reasoning with polarity in categorial type grammar. Ph.D. thesis, Utrecht University.
Faltz, L., & Keenan, E.L. (1985). Boolean semantics for natural language. Reidel.
Fyodorov, Y., Winter, Y., & Francez, N. (2003). Order-based inference in natural logic. Logic Journal of the

IGPL.
Gamut, L.T.F (1991). Logic, language and meaning (Vol. 2). The University of Chicago Press, Chicago,
Henkin, L. (1950). Completeness in the theory of types. Journal of Symbolic Logic, 81–91.
Bar Hillel, Y. (1964). Language and information. Addison Wesley, Reading MA.
Lambek, J. (1991). The mathematics of sentence structure. Amer. Math. Monthly, Chicago, 64.
Moortgat, M. (1997). Categorial type logics, handbook for logic and language. In Johan van Benthem, &

Alice ter Muelen (Eds.) Elsevier/MIT Press.
Pratt-Hartman, I. (2004). Fragments of language quantification. Journal of Logic, Language and Information,

13, 207–223.
Sánchez, V. (1991). Studies on natural logic and categorial grammar. Ph.D. thesis, University of Amsterdam.
van Benthem, J. (1987). Meaning: interpretation and inference. Synthese, 73, 451–470.
Wansing, H. (1993). The logic of information structures. Springer Lecture Notes, Springer-Verlag, Berlin.
Zamansky, A. (2004). A ‘Natural Logic’ inference system based on the Lambek calculus. Master’s thesis,

Technion, Haifa.
Zamansky, A., Winter, Y., & Francez, N. (2002). Order-based inference using the lambek calculus. In Pro-

ceedings of the 7-th conference on Formal Grammar, University of Trento.
Zamansky, A., Winter, Y., & Francez, N. (2003). A ‘Natural Logic’ inference system using normalization. In

P. Nancy, & J. Bos Blackburn (Eds). Proceedings of the 4-th Workshop on Inference in Computational
Semantics, LORIA.

Springer

