
J Logic Lang Inf (2006) 15:233–250
DOI 10.1007/s10849-006-9016-z

ORIGINAL PAPE R

A descriptive characterisation of linear languages

Tore Langholm

Received: 17 March 2004 / Accepted: 7 February 2006
C© Springer Science + Business Media B.V. 2006

Abstract Lautemann et al. (1995) gave a descriptive characterisation of the class of context-
free languages, showing that a language is context-free iff it is definable as the set of words
satisfying some sentence of a particular logic (fragment) over words. The present notes discuss
how to specialise this result to the class of linear languages. Somewhat surprisingly, what
would seem the most straightforward specialisation actually fails, due to the fact that linear
grammars fail to admit a Greibach normal form. We identify an alternative specialisation,
based on an alternative characterisation of context-free languages, also noted by Lautemann
et al. (1995).

Keywords Descriptive complexity, Linear languages, Greibach normal form

1. Introduction

The model-theoretic approach to linguistic theory seeks to analyse membership conditions
of formal languages using methods of mathematical logic. To this end, a finite word over a
given alphabet is identified with a relational structure or “model” over a corresponding sig-
nature. Sentences of various logics appropriate for such structures then express membership
conditions of words relative to languages. One aim of the programme is to compare different
language classes in terms of the logics necessary and sufficient to define the languages of the
classes. We refer to Thomas (1997) for a brief overview. These notes identify a logic frag-
ment characterising the class LIN of linear context-free languages. Frequent reference will
be made to the corresponding characterisation of the full class CFL of context-free languages
given by Lautemann et al. (1995).

For any finite word w over a fixed, finite alphabet �, let the corresponding word model w

be the relational structure (
dom(w), <w,

(
Qw

a

)
a∈�

)
,

T. Langholm (�)
University of Oslo, Department of Informatics, P.O. Box 1080 Blindern, 0316 Oslo, Norway
e-mail: torel@ifi.uio.no

Springer

234 Tore Langholm

Fig. 1 Binary relation violating
the axiom UNCROSS

where dom(w) = {0, . . . , |w| − 1}. Here, |w| is the length of w. <w is the natural order on
dom(w), while each Qw

a collects the positions of w containing the symbol a, i.e., Qw
a =

{i ∈ dom(w) | ai = a} when w = a0 . . . an . Now the empty word determines a structure with
empty domain, which is often disallowed in other contexts but admitted here.

To talk about such structures a first-order logic is used, containing the binary relation
symbol < and unary predicate symbols Qa , in each structure w interpreted by the corre-
sponding relations displayed above, as well as Boolean connectives and individual variables
(semantically ranging over positions) with existential and universal quantifiers. Hence atomic
formulas are of the forms Qa x or x < y, where x, y are individual variables. For further
details we refer to Thomas (1997). Occasionally we shall also use the “atomic formulas”
x ≤ y, x = y and Sxy (the latter expressing immediate succession) which are shorthand for
the corresponding, more complex expressions involving <.1

A sentence ϕ now defines the language L(ϕ) = {w ∈ �∗ | w |= ϕ}. Using sentences of
the first-order logic above, exactly the subclass of regular languages known as the star-
free languages are definable. Passing from first-order logic to monadic second-order logic,
exactly the regular languages are definable. To go beyond regular languages, one can add
binary relation variables, with matching quantifiers. This, however, results in an expressive
power far beyond context-free grammars. The following example is particularly revealing
for present purposes.2

Example 1. The non-context-free3 copy-language {ww | w ∈ �∗} is defined by the sentence
∃Nϕ, where ϕ is the conjunction of the following.

∀x∃y(N xy ∨ N yx)

∀x1x2 y1 y2(N x1 y1 ∧ N x2 y2 → x1 < y2)

∀x1x2 y1 y2(N x1 y1 ∧ N x2 y2 → (x1 < x2 ↔ y1 < y2))

∀xy
∧
a∈�

(N xy → (Qa x ↔ Qa y))

When w = a0 . . . a2n−1, then the first three conjuncts of ϕ uniquely identify N as the relation
{(i, i + n) | 0 ≤ i < n} (when w is of odd length, no relation satisfies the conditions) whereas
the last conjunct of ϕ says that each position in the left half holds the same symbol as its
“copy” in the right half. Figure 1 shows the word abcdabcd with the binary relation from ϕ

envisaged as a set of arcs.

1 They are definable as ¬y < x, ¬(x < y ∨ y < x) and x < y ∧ ¬ ∃z(x < z ∧ z < y), respectively.
2 It is not equally revealing for other purposes. The copy language, although not context-free, has a low
recognition complexity. It is, however, possible to write a sentence of the form ∃Nϕ, with binary N as the
only second-order variable, that defines a language with an NP-hard membership problem, see Theorem 10.1
of Eiter et al. (2000). In fact, the proof given there can easily be modified to yield such a sentence of the form
∃N (FORWARD ∧ ϕ). FORWARD is a condition on N introduced shortly below.
3 It is non-context-free provided |�| > 1.

Springer

A descriptive characterisation of linear languages 235

Fig. 2 Matching: relation
satisfying the axioms FORWARD,

UNCROSS andSTEEP

The second conjunct of ϕ above implies the following somewhat weaker axiom stating
that N relates “earlier” positions to “later” ones:

FORWARD ∀xy(N xy → x < y)

A relation satisfying this axiom can (without loss of information) be envisaged as a set of
undirected arcs as in Figure 1. Crucial to the example above is the “cross-serial” behaviour
of the binary relation; the N-arcs connecting each symbol in the left half to its copy in the
right half all cross in a systematic manner. The axiom below expressly forbids such crossing.

UNCROSS ∀x1x2 y1 y2(N x1 y1 ∧ N x2 y2 ∧ x1 < x2 ∧ y1 < y2 → y1 < x2)

We write NEST for the conjunction of FORWARD and UNCROSS, and say that the binary relation
N is a nesting if it satisfies NEST.

Simple arithmetic expressions built up from 1, parentheses and binary infix operators
+, ∗, −, / form a typical context-free language. Nestings can be used to define this language,
using an arc between two positions to encode that they hold the left and right parentheses
of a matching pair, cf. Figure 2. The nestings used for such encodings are, however, of a
particular type, being partial functions in either direction, and thus satisfying the next axiom
as well.

STEEP ∀x1x2 y1 y2(N x1 y1 ∧ N x2 y2 → (x1 = x2 ↔ y1 = y2))

We write MATCH for the conjunction of all three axioms FORWARD, UNCROSS and STEEP, and say
(with Lautemann et al. (1995)4) that a binary relation N is a matching if it satisfies MATCH.
Now we have the following.

Theorem 1. (Lautemann et al. 1995). A language over a finite alphabet � is context-free iff
it equals L(∃N (MATCH ∧ ϕ)) for some first-order sentence ϕ over signature (N , <,(Qa)a∈�).

The authors remark that their proof of the above theorem can be modified to prove that
CFL is also characterised by general nestings in a similar way,5 but provide no further details.
In Appendix A we show how to prove Theorem 2 directly from Theorem 1.

Theorem 2. A language over a finite alphabet � is context-free iff it equals L(∃N (NEST ∧ ϕ))
for some first-order sentence ϕ over signature (N , <, (Qa)a∈�).

The relation between the two theorems is linked to the concepts below.

4 The axioms given are different, but are, in combination, equivalent to the these three.
5 They do not use the term “nesting” and in fact do not explicitly mention anything corresponding to the axiom
FORWARD in this context, but it is clear from what is stated that this axiom must be assumed.

Springer

236 Tore Langholm

Definition 1. A context-free grammar (V, �, P, S) is in Greibach normal form if the right-
hand side of every production is in �(� ∪ V)∗, i.e., if it starts with a terminal, and in strong
Greibach normal form if each right-hand side is in �V ∗. Moreover, a grammar is in double
Greibach normal form if each right-hand side is in � ∪ (�(� ∪ V)∗�), i.e., if it both starts
and ends with a terminal, and in strong double Greibach normal form if each right-hand side
is in � ∪ (�V ∗�).

Any context-free language without ε can be generated by a grammar in any of these forms,
see Greibach (1965) and Rosenkrantz(1967). The strong and regular versions are obviously
equivalent for general context-free grammars,6 but we shall see below that all forms are in
fact non-equivalent for linear grammars.

The fact that CFL is characterised both by the more (nestings) and less (matchings) general
type of relation, is intimately connected to the fact that context-free grammars admit the dou-
ble Greibach normal form. Loosely put, matchings characterise the languages generated by
context-free grammars in double Greibach normal form, while nestings characterise context-
free languages in general. Due to the normal form theorem, the distinction disappears. It
emerges, however, in the context of linear languages.

Definition 2. A context-free grammar is linear if the right-hand side of each production
contains at most one variable. A language is linear if it is generated by a linear context-free
grammar.

Applied to linear grammars, all four conditions listed in Definition 1 yield different language
classes, and all are strict subclasses of LIN. Linear grammars in these forms shall be referred
to as Greibach linear, etc., and generate Greibach linear languages, etc.

Example 2. When S is the start symbol, each set of productions below generates the corre-
sponding language.

sGl {S → aS, S → aI, I → bI, I → b} {anbm | n, m > 0}
sdGl {S → aSb, S → ab} {anbn | n > 0}
dGl {S → aaSb, S → aab} {a2nbn | n > 0}

Gl {S → aS, S → aI, I → bI c, I → bc} {anbmcm | n, m > 0}
l {S → Sc, S → I c, I → aI b, I → ab} {anbncm | n, m > 0}

Grammars in the Greibach normal forms contain no ε-productions and thus generate lan-
guages without the empty word, but apart from this fact the strong Greibach linear languages
are precisely the regular languages while the strong double Greibach linear languages are
precisely the so-called even linear languages (Amar and Putzolu, 1964). Again allowing for
this exception, it is also seen directly that the class of double Greibach linear languages is
the closure of the even linear languages under ε-free homomorphisms.

The codes to the left in Example 2 indicate the type of the grammar. The last grammar is not
Greibach linear, and {anbncm | n, m > 0} is in fact not a Greibach linear language; we refer

6 Replace A → abCd E with A → aBC DE, B → b, D → d to obtain a strong Greibach grammar from a
regular one. Similarly for the double-sided version. The original left-sided version of Greibach (1965) was
given in the strong form, while the double-sided version of Rosenkrantz was given in the regular form. The
choice of form is a matter of taste only in the general setting, but not so in the context of linear grammars.

Springer

A descriptive characterisation of linear languages 237

Fig. 3 Linear matching satisfying the conditions in Example 3

to Appendix B for a pumping lemma for Greibach linear languages that spoils this language.
The obvious strengthening of this pumping lemma to the double Greibach linear languages
moreover spoils the Greibach linear language {anbmcm | n, m > 0}, hence these two classes
are distinct. As {a2nbn | n > 0} is not an even linear language (we refer to Langholm and
Bezem (2003) for a suitable pumping lemma spoiling this language), it follows that all five
classes are distinct.

For the characterisation of linear languages we introduce the axiom below, and say that a
nesting N is linear if it satisfies this axiom.

LINEAR ∀x1x2 y1 y2(N x1 y1 ∧ N x2 y2 → x1 < y2)

The axiom says that all start points precede all endpoints, hence in particular no arc fully
precedes another arc. Given the condition UNCROSS, this means that all arcs are wrapped inside
each other in a single “well” structure. Hence we use the term well to refer to linear nestings,
i.e., relations satisfying the three7 axioms FORWARD, UNCROSS and LINEAR.

Example 3. The last language of Example 2, {anbncm | n, m > 0}, is defined by the sentence
∃N (MATCH ∧ LINEAR ∧ ϕ), where ϕ is the conjunction of the four sentences below.

∃xyz(Qa x ∧ Qb y ∧ Qcz)

∀xyz(Qa x ∧ Qb y ∧ Qcz → x < y ∧ y < z)

∀xy(N xy → Qa x ∧ Qb y)

∀x(Qa x ∨ Qbx → ∃y(N xy ∨ N yx))

An example word model (and matching) is seen in Figure 3.
This example cannot be generalised directly to a theorem, however; the class LIN is not
characterised by linear matchings in the way that CFL is characterised by matchings in
Theorem 1. In Appendix B we shall see that the linear language of the next example (like
its close relative last in Example 2) is not Greibach linear, and prove moreover that it is
not defined by any sentence ∃N (MATCH ∧ LINEAR ∧ ϕ), where ϕ is a first-order sentence over
signature (N , <, (Qa)a∈�).

Example 4. The language {anbnc2m | n, m > 0} over the alphabet � = {a, b, c} is linear, and
defined by ∃N (NEST ∧ LINEAR ∧ ϕ), where ϕ is the conjunction of the first-order8 sentences
below.

∃xyz(Qa x ∧ Qb y ∧ Qcz)

7 LINEAR of course implies FORWARD, so in fact the two axioms UNCROSS and LINEAR suffice.
8 The unique existential quantifier ∃! is defined from ordinary ∃ and ∀, Boolean connectives and = in the usual
way.

Springer

238 Tore Langholm

Fig. 4 Linear nesting satisfying
the conditions in Example 4

∀xyz(Qa x ∧ Qb y ∧ Qcz → x < y ∧ y < z)

∀x(Qa x → ∃!y(Qb y ∧ N xy))

∀y(Qb y → ∃!x(Qa x ∧ N xy))

∀xy(Sxy ∧ Qcx ∧ Qc y → ((∃zN zx) ↔ ¬(∃zN zy)))

∀xyz(N xz ∧ Syz ∧ Qcz → Qc y)

∀x∃y(x < y ∨ N yx)

These sentences say that all as, of which there is at least one, come first, all bs (also at least
one) come in the middle and all cs (again at least one) last, that N connects each a to exactly
one b and vice versa, and finally (in the last three sentences) that every second c, excluding
the first and including the last, are endpoints of N-arcs.

The corresponding start point will, by necessity, in all cases be the first a, hence this N will
not be a matching, cf. Figure 4. This definition of the language in terms of linear nestings thus
makes essential use of the fact that linear nestings in general need not be linear matchings.
An attempt to define the same language in terms of linear matchings immediately runs into
trouble: one now seems to need the entire linear matching in order to ensure an equal number
of as and bs, and hence is left with only first-order logic to ensure an even number of cs. This
latter task is impossible, as the language {c2n | n > 0} is not star-free, and thus not definable
by a first-order sentence over the signature (Qc, <). Appendix B contains a proof along these
lines.

In Sections 3 and 4 we prove the general result that LIN is characterised by linear nestings
in the same way that CFL, in Theorem 2, is characterised by nestings. Section 2 describes a
correspondence between linear nestings (i.e., “wells”) and “caterpillars,” which are essentially
the shape of the parse trees for linear grammars. This correspondence plays a central role in
Sections 3 and 4.

2. Wells and dense wells

Say that one pair (i, j) in a nesting N wraps around another pair (k, l) if the two are distinct
(i.e., either i
= k or j
= l, or both) and i ≤ k < l ≤ j . In this case we write (i, j) ≺N (k, l),
and say that the wider pair precedes the narrower. By the non-crossing condition on nestings,
if (i, j) ≺N (k, l) then (k, l) has a unique immediate predecessor, i.e., a unique narrowest
pair in the nesting that wraps around it.

Say that a position i occurs inside the pair (j, k) if j ≤ i ≤ k, and that i belongs to (j, k)
if (j, k) is the last (narrowest) pair in the nesting inside which i occurs. Then every pair in
the nesting will have at least one position that belongs to it, and every position will belong
to at most one pair in the nesting. A wide nesting on w = a0 . . . an is a nesting that contains
(0, n), i.e., a nesting satisfying the next axiom.

WIDE ∃xy(N xy ∧ ¬∃z(z < x ∨ y < z))

Springer

A descriptive characterisation of linear languages 239

Hence in wide nestings every position will belong to exactly one pair.
In general, each pair in a nesting may have several immediate successors, thus in general

≺N is not a linear order. In fact, the relation ≺N of a nesting N is a linear order precisely iff
N is linear.

Definition 3. Let w be a word; a caterpillar on w is an ordered tree with yield w, in which
every internal node has at least two children and no internal node has more than one child
that is also internal.

We shall remain at this level of formalisation, and will not spell things out further in terms
of tree domains or the like. Note that the terminal nodes of a caterpillar are decorated with
elements of �, while internal nodes are not decorated. Observe also that for any word w ∈ �∗

of length at least 2 there is a 1-1-correspondence between wide wells and caterpillars on w:

– When the wide well N onw = a0 . . . an is given, the tree (in fact caterpillar) tN is constructed
as follows: the leaves are 0, . . . , n, and the internal nodes are the members of N. Each leaf
i is decorated with ai .(0, n) is the root. The children of a pair will be the positions that
belong to it as well as the successor pair, if there is one, in the obvious sequence which
respects the ordering of positions.

– Conversely, given a caterpillar t on w, let Nt be the wide well

{(llt (z), rlt (z)) | z is an internal node}, (1)

where llt (z) is the leftmost leaf dominated by z (i.e., the leaf at the end of the path from z that
repeatedly selects leftmost children) and rlt (z) similarly is the rightmost leaf dominated
by z.

It is easy to check that the two mappings are inverses of each other, i.e., that NtN = N and
that tNt is isomorphic to t.

Definition 4. A dense well on w is a wide well on w that satisfies the following additional
requirement: for any positions i, j of w, if N (i, j) and i + 1 < j , then either N (i + 1, j) or
N (i, j − 1).

Hence a well is dense iff it satisfies the axiom WIDE and the next axiom.

DENSE ∀x1x2 y1 y2(N x1 y2 ∧ Sx1x2 ∧ Sy1 y2 → x1 = y1 ∨ N x1 y1 ∨ N x2 y2)

Note that by UNCROSS we never have both N (i + 1, j) and N (i, j − 1), hence in a dense well
exactly one of the two will hold whenever N (i, j) and i + 1 < j .

Lemma 1. Let w be a word of length at least 2. Every well on w can be extended to a dense
well on w.

Proof: Assume that w = a0 . . . an , where n > 0. We show (1) that N ∪ {(0, n)} is a well if
N is, and (2) that for any positions i, j of w, if i + 1 < j, N is a well and N (i, j), then either

Springer

240 Tore Langholm

N ∪ {(i + 1, j)} or N ∪ {(i, j − 1)} is a well also. As w is finite, this gives a process that
eventually stops.

(1) is immediate and is left to the reader. To prove (2), suppose N (i, j), where i + 1 < j .
If (i, j) has no successor in N, then N ∪ {(i + 1, j)} (the other choice is equally good) is a
well. If (i, j) has the successor (k, l), then either k = i , in which case N ∪ {(i, j − 1)} is a
well, or k > i , in which case N ∪ {(i + 1, j)} is a well. �

Definition 5. A binary caterpillar on w is a caterpillar on w in which every internal node has
exactly two children.

Observe that if N is a wide well then N is dense iff tN is a binary caterpillar. Conversely, if t
is a caterpillar with at least one internal node, then Nt is dense iff t is binary.

Finally we also consider binary caterpillars with decorations on the internal nodes. Dec-
orations taken from a set of two possible choices will suffice. The two choices are denoted
⊗ and �; this notation is borrowed from Lautemann et al. (1995), who use it for similar
purposes.

Definition 6. A Boolean binary caterpillar on w is a binary caterpillar on w in which each
internal node is decorated with either ⊗ or �. A complemental well-pair on w is a pair
(N , M) of wells on w, such that N ∩ M = ∅, and N ∪ M is a dense well.

Note that an alternative formulation of Lemma 1 would say that every well is the first
component of some complemental well-pair.

We now observe that for any word w ∈ �∗ of length at least 2 there is a 1-1-correspondence
between Boolean binary caterpillars and complemental well-pairs on w.

– When the complemental well-pair (N , M) is given, the Boolean binary caterpillar TN ,M

is constructed by taking the binary caterpillar tN∪M and decorating each internal node (i, j)
with ⊗ if N (i, j), and with � if M(i, j).
– Conversely, given a Boolean binary caterpillar T let NT and MT of the corresponding
complemental well-pair (NT , MT) be

{(llT (z), rlT (z)) | z is a node decorated with ⊗}

and

{(llT (z), rlT (z)) | z is a node decorated with �},

respectively, where llT (z) and rlT (z) are defined exactly as llt (z) and rlt (z). The two mappings
are easily seen to be inverses of each other.

3. Encoding of grammars

Say that a context-free grammar (V, �, P, S) is in weak Greibach normal form if the right-
hand sides of all productions are in (�(V ∪ �)∗) ∪ ((V ∪ �)∗�), i.e., in every case there is a
terminal symbol either first or last. Hence a linear grammar is in weak Greibach normal form
if it contains no ε-productions and no productions with a single variable on the right-hand

Springer

A descriptive characterisation of linear languages 241

side. It is straightforward to see that any linear language without ε can be generated by a
linear grammar in weak Greibach normal form. Hence the following can also be obtained.

Lemma 2. Let L be a linear language without ε. Then L is generated by a linear gram-
mar in weak Greibach normal form, with the following property. For any two nonterminal
productions A → u Bv and A′ → u′ B ′v′, if u = u′ and v = v′ then A = A′.

For a proof, we refer to the construction used to prove Lemma 2.1.2 of Lautemann et al.
(1995), and note that this construction preserves linear grammars. For languages containing
only words of length at least 2, we also note the following useful variation.

Lemma 3. Let L be a linear language containing only words of length at least 2. Then L is
generated by a linear grammar with the following properties. The right-hand side of each
production has length at least 2, and for any two nonterminal productions A → u Bv and
A′ → u′ B ′v′, if u = u′ and v = v′ then A = A′.

Proof: Suppose L ⊆ ���∗, and apply Lemma 2. We need to eliminate productions with
right-hand sides of length 1. As the grammar is in weak Greibach normal form and L ⊆
���∗, such productions are of the type A → a, with a a terminal and A distinct from the
start symbol. Remove each such production A → a, simultaneously adding B → uav for
each production B → u Av. As no new nonterminal productions are added, the uniqueness
property of the lemma is preserved. �

Before stating the main lemma of the section, we introduce some useful notation and
terminology. First define

N xy as x ≤ y ∧ ¬∃zw(x < z ∧ z < y ∧ (N zw ∨ Nwz)),

succ(x, x ′, y′, y) as N xy ∧ N x ′y′ ∧ N xx ′ ∧ N y′y ∧ ¬(x = x ′ ∧ y = y′),

last(x, y) as N xy ∧ ¬∃x ′y′succ(x, x ′, y′, y).

Hence N xy says that x ≤ y, and that no position strictly between the two is involved in N.
Assuming N is a well, succ(x, x ′, y′.y) says that the pair (x ′, y′) is the successor to the pair
(x, y), while last(x, y) says that (x, y) is the last pair of N. Furthermore, for any w ∈ �∗ let
the two formulas −→

ψw(x, y) and ←−
ψw(y, x) be defined by the following recursions.

−→
ψε(x, y) = ←−

ψε(y, x) = (x = y)
−−→
ψaw(x, y) = Qa(x) ∧ ∃z(Sxz ∧ −→

ψw(z, y))
←−−
ψwa(y, x) = Qa(x) ∧ ∃z(Szx ∧ ←−

ψw(y, z))

ψua(x, y) = −→
ψu(x, y) ∧ Qa(y)

Hence −→
ψw(x, y) says that x ≤ y, and that the positions from and including x until and not

including y contain the word w. Similarly, ←−
ψw(x, y) says that x ≤ y, and that the positions

from and not including x until and including y contain the word w. The last equation defines,
for any w ∈ �+, the formula ψw(x, y), saying that x ≤ y and that the positions from and
including x until and including y contain w.

Springer

242 Tore Langholm

Lemma 4. Every linear language L over alphabet � is definable as L(∃N (NEST ∧ LINEAR ∧
ϕL)) for some first-order sentence ϕL over signature (N , <, (Qa)a∈�).

Proof: Without loss of generality, we may assume L to contain only words of length at
least 2.9 Now L = L(G) for some linear grammar G = (V, �, P, S) of the form described
in Lemma 3, and let P0 and P1 be the subsets of P containing the productions without and
with a variable occurring on the right-hand side, respectively. Then for any productions
p0 = A → u ∈ P0 and p1 = A → u Bv ∈ P1 define

ψp0 (x, y) as last(x, y) ∧ ψu(x, y), and

ψp1 (x, y, z, w) as succ(x, y, z, w) ∧ −→
ψu(x, y) ∧ ←−

ψv(z, w).

Next for any A ∈ V let ψA(x, y) be∨
A→α∈P0

ψA→α(x, y) ∨
∨

A→α∈P1

∃x ′y′ψA→α(x, x ′, y′, y),

and finally for any production p = A → u Bv ∈ P1 let ψ p(x, y, z, w) be ψp(x, y, z, w) ∧
ψB(y, z). Then let ϕG be the conjunction of the two sentences below.

∃xy(ψS(x, y) ∧ ¬∃z(z < x ∨ y < z))

∀xyzw(succ(x, y, z, w) →
∨
p∈P1

ψ̄p(x, y, z, w)).

We argue that L(G) = {w ∈ �∗ | w |= ∃N (NEST ∧ LINEAR ∧ ϕG)}.
First suppose w ∈ L(G), i.e., there is some legal parse tree T according to G, with yield

w. By the form of G (i.e., the facts that G is linear and that every right-hand side has length
at least 2) T defines a caterpillar t on w when decorations on internal nodes are ignored. As
| w | ≥ 2, Nt is a wide well, and it is easily verified that (w, Nt) |= ϕG holds.

Conversely, suppose (w, N) |= ϕG for w = a0 . . . an , where N is a well on w. ϕG implies
that N is wide, so there exists a corresponding caterpillar tN . From this we define a legal
parse tree according to G by the addition of decorations to internal nodes of tN . This is done
by an induction going from top to bottom, which in each step decorates the next node (i, j)
with some A for which (w, N , i, j) |= ψA(x, y) holds.

First, (0, n) is decorated with S. By the first conjunct of ϕG we have (w, N , 0, n) |=
ψS(x, y).

Now suppose (i, j) ∈ N has already been decorated with A, that (w, N , i, j) |= ψA(x, y)
holds, and that (k, l) is the successor to (i, j). By the definition of ψA we know that

(w, N , i, k, l, j) |= ψA→u Bv(x, z, w, y)

9 Any linear language L over � can be formed as the union of the star-free (as it is finite) language L0 =
L ∩ (ε ∪ �) and the linear (as LIN is a full trio, see Hopcroft and Ullman (1979)) language L1 = L ∩ (���∗),
which contains only words of length at least 2. Now by the characterisation of star-free languages by first-
order logic (see Theorem 4.4 of Thomas (1997)) L0 = {w | w |= ϕ0} for some first-order sentence ϕ0 over
signature (<, (Qa)a∈�), and assuming L1 = {w | w |= ∃N (NEST ∧ LINEAR ∧ ϕ1)} for a first-order sentence
ϕ1 over signature (N , <, (Qa)a∈�), the identity L = {w | w |= ∃N (NEST ∧ LINEAR ∧ (ϕ0 ∨ ϕ1))} follows by
prenex laws.

Springer

A descriptive characterisation of linear languages 243

holds for some A → u Bv ∈ P1, and by the second conjunct of ϕG we also know that

(w, N , i, k, l, j) |= ψ A′→u′ B ′v′ (x, z, w, y)

holds for some A′ → u′ B ′v′ ∈ P1. Now this is only possible if u = u′ and v = v′, and hence,
by the form of G, if A = A′. Then decorate (k, l) with B ′. The local tree involving (i, j) and
(k, l) is then sanctioned by the production A → u B ′v, and from the definition of ψ p we
know that (w, N , k, l) |= ψB ′ (x, y) holds.

Finally, if (i, j) has been decorated with A and it has no successor, and (w, N , i, j) |=
ψA(x, y) holds, then clearly (w, N , i, j) |= ψA→u(x, y) for some A → u ∈ P0, which now
sanctions the local tree rooted in (i, j). �

4. Encoding by grammars

To prove the reverse of Lemma 4 we need to consider a monadic second-order logic over
trees, e.g. as described by Gécseg and Steinby (1997). For this purpose we declare ⊗ and
� to be symbols of rank 2; this means that for any � the {⊗, �}�-trees are the ordered,
binary trees with leaves decorated by elements of � and internal nodes decorated by ⊗
or �. The monadic second-order logic described by Gécseg and Steinby (1997) contains
primitives which (using the monadic second-order logic machinery) allows the definition of
the following relations:

Qa(x) saying that node x is a leaf decorated with a
Q⊗(x) saying that x is an internal node decorated with ⊗
Q�(x) saying that x is an internal node decorated with �
c(x, y) saying that y is a child of x
lc(x, y) saying that y is the left child of x
rc(x, y) saying that y is the right child of x
lea f (x) saying that x is a leaf
ll(x, y) saying that y is the leftmost leaf dominated by x
rl(x, y) saying that y is the rightmost leaf dominated by x
x < y saying that x is left of y in the inorder traversal of the tree.10

Now let CAT be the axiom

∀xyz(c(x, y) ∧ c(x, z) ∧ y
= z → (leaf (y) ∨ leaf (z))) ,

saying that at most one child of any internal node is itself internal. Any {⊗, �}�-tree satis-
fying this is a Boolean binary caterpillar.

Lemma 5. Let � be finite, and let ϕ be a monadic second-order sentence over signature
(N , <, (Qa)a∈�). Then L(∃N (NEST ∧ LINEAR ∧ ϕ)) is a linear language.

10 Note that the primitive symbol < provided by Gécseg and Steinby (1997) denotes an entirely different
ordering relation, but the one described here is definable from (this and) other primitives in the logic.

Springer

244 Tore Langholm

Proof: Let ϕ be as in the lemma. Without loss of generality we may assume that L(∃N (NEST ∧
LINEAR ∧ ϕ)) only contains words of length at least 2.11

Now let the sentence ϕ′ of the monadic second-order tree logic be obtained from ϕ by
restricting all first-order quantification to leaves and all second-order quantification to sets of
leaves, and by replacing x < y with its definition in the tree-logic, and finally by replacing
N (x, y) with ∃z(Q⊗(z) ∧ ll(z, x) ∧ rl(z, y)). Then (w, N) |= ϕ iff N is the first component
of some complemental well-pair (N , M) on w such that TN ,M |= ϕ′. Hence the following are
all equal.

L(∃N (NEST ∧ LINEAR ∧ ϕ))
{w | TN ,M |= ϕ′ for some complemental well pair (N , M) on w}
{w | T |= ϕ′ for some Boolean binary caterpillar T on w}
yield[{T | T is a Boolean binary caterpillar such that T |= ϕ′}]
yield[{T ∈ {⊗, �}� | T |= ϕ′ ∧ CAT}].
Now by Propositions 12.2 and 6.2 of Gécseg and Steinby (1997) it follows that {T ∈
{⊗, �}� | T |= ϕ′ ∧ CAT} is a regular tree language.
Proposition 14.3 of Gécseg and Steinby (1997) furthermore states that the yield of any regular
tree language is a context-free language. This is not helpful for our purposes, but an inspection
of the proof reveals that the following strengthening is true as well.

Proposition 1. Let � be an alphabet and let � be a ranked alphabet such that � ∩ � = ∅.

If L is a regular tree language over �� then there exists a finite number of context-free
grammars G1, . . . , Gn, where Gi = (Vi , �, Pi , Si), and mappings hi : Vi → � such that
T ∈ L iff there is an i and a legal parse tree Ti according to Gi , such that T is the result of
applying hi to the decorations of nonterminal nodes12 of Ti .

Now substituting {⊗, �} for � and {T ∈ {⊗, �}�|T |= ϕ′ ∧ CAT} for L one obtains context-
free grammars Gi as described. All legal parse trees according to any of the Gi are (binary)
caterpillars with decorations on the internal nodes, hence the Gi can be assumed to be
linear grammars. As the mappings hi do not affect the decorations on leaves, it follows that
the yield of {T ∈ {⊗, �}� | T |= ϕ′ ∧ CAT}, i.e., L(∃N (NEST ∧ LINEAR ∧ ϕ)), is the union of
finitely many linear languages, and thus itself a linear language. �

Combining Lemmas 4 and 5, we obtain the following characterisations.

Theorem 3. A language over a finite alphabet � is linear iff it equals
L(∃N (NEST ∧ LINEAR ∧ ϕ)) for some first-order sentence ϕ over signature (N , <, (Qa)a∈�).

Theorem 4. A language over a finite alphabet � is linear iff it equals
L(∃N (NEST ∧ LINEAR ∧ ϕ)) for some monadic second-order sentence ϕ over signature
(N , <, (Qa)a∈�).

11 L(∃N (NEST ∧ LINEAR ∧ ϕ)) is always the union of L(∃N (NEST ∧ LINEAR ∧ ϕ ∧ ∃xy x < y)) and L(∃N
(NEST ∧ LINEAR ∧ ϕ ∧ ¬∃xy x < y)), of which the latter is finite and thus linear, whereas the former is of
the requisite type and thus by assumption also linear. As the union of two linear languages is itself linear, this
would also follow for the original language.
12 A nonterminal node is, in this case, a node decorated with a member of �. When � contains no symbols of
rank 0 – as it will throughout these notes – a node is nonterminal iff it is internal.

Springer

A descriptive characterisation of linear languages 245

Finally, we take the next theorem to be the result suggested by Lautemann et al. (1995, top
of page 213). In Appendix B we show that the version using first-order logic would be false.

Theorem 5. A language over a finite alphabet � is linear iff it equals L(∃
N (MATCH ∧ LINEAR ∧ ϕ)) for some monadic second-order sentence ϕ over signature (N ,

<,(Qa)a∈�).

Proof: One direction follows from Lemma 5. The other direction follows from Lemma 4
and the fact that any well is representable by a linear matching and two unary predicates. We
sketch the representation, for simplicity dividing it up in two nearly identical steps; first one
step representing a well by one unary predicate and what we shall call a functional well, i.e.,
a well satisfying the rightwards half of STEEP, and then a second step representing a functional
well by another unary predicate and a linear matching.

By a functional well we mean a well satisfying the axiom below.

FUNC ∀x1x2 y1 y2(N x1 y1 ∧ N x2 y2 → (x1 = x2 → y1 = y2))

Any well can be “pruned” down to a functional well by deleting all but the outermost arc
emanating from any given start point. Deleted arcs are “remembered” by assigning a predicate
E to the endpoints of all deleted arcs, and the original well N is recoverable from E and the
functional, “pruned” well P by the equivalence between Nxy and the disjunction of Pxy and
the following.13

Ey ∧ ∃y′(y < y′ ∧ Pxy′ ∧ ∀zw(y < z < y′ → ¬PW z) ∧ ∀x ′(Px ′y′ → x ′ ≤ x))

Note that any E and P derived in this way will satisfy the condition ∀xyz(Pxy ∧ Ez →
x < z). Conversely, any E and functional well P satisfying this latter condition defines a
well N by the above equivalence. The second half of the representation is nearly identical,
and left to the reader. Since an existential quantification over a well is replaced by existential
quantifications over a matching and two unary predicates, the ϕ in Theorem 5 will be monadic
second-order. �

5. Subclasses of the linear languages

Recall that a linear grammar is even linear (Amar and Putzolu, 1964) if |u| = |v| in any
production A → u Bv, and that an even linear language is a language generated by an even
linear grammar. Langholm and Bezem (2003) gave a characterisation of the class ELL of
even linear languages as those definable by monadic second-order sentences over signature
(�, <, (Qa)a∈�), where � is a binary relation symbol which on any w = a0 . . . an denotes
the relation {(i, j)|i ≤ j, i + j = n}.

Except for the fact that � relates any middle element to itself, � is essentially a particular
linear matching, in fact the unique linear matching violating GAP1 of the definition below.

13 Intuitively, any “E-position” y is the endpoint of a deleted arc. (But only one; if two N-arcs end in y then the
innermost would (by non-crossing) be the outermost arc emanating from its start point.) Now where did this
arc start? To find the start point, first move right from y to the next position y′ which is the endpoint of some
P-arc. Then find the innermost P-arc ending in y′. The start point of this arc is the position we are looking for.

Springer

246 Tore Langholm

Definition 7. For any n > 0 let GAPn be the sentence

∃x1 . . . xn(Sx1x2 ∧ . . . ∧ Sxn−1xn ∧ ¬∃z(N x1z ∨ N zx1 ∨ . . . ∨ N xnz ∨ N zxn)) ,

declaring the existence of n consecutive positions not involved in N.
GAPn in general can be used to characterise the class of double Greibach linear languages, as
seen from the following results.

Theorem 6. An ε-free language over a finite alphabet � is double Greibach linear iff for
some n > 0 it equals

L(∃N (MATCH ∧ LINEAR ∧ ¬ GAPn ∧ ϕ))

for a monadic second-order sentence ϕ over signature (N , <, (Qa)a∈�).

Theorem 7. An ε-free language over a finite alphabet � is double Greibach linear iff for
some n > 0 it equals

L(∃N (MATCH ∧ LINEAR ∧ ¬ GAPn ∧ ϕ))

for some first-order sentence ϕ over signature (N , <, (Qa)a∈�).

Proof: The “only if” direction of Theorem 7 (and thus of Theorem 6) follows by inspection
of the proof of Lemma 4: if the given grammar G is double Greibach linear, then ϕG implies
STEEP as well as ¬GAPn for some n. The “if” direction of Theorem 6 (and thus of Theorem 7)
is expressed by Lemma 7 of Appendix B. �

Appendix A: Nestings characterise CFL

This appendix sketches a proof of Theorem 2 from Theorem 1. The crucial idea is to represent
nestings with matchings; the following concepts are involved: when M is a matching on the
word w ∈ (� ∪ {), (})∗, where), (/∈ �, then define the nesting N on w by the equivalence
below.

∀xy(N xy ↔ x < y ∧ Q�x ∧ Q� y ∧ ∃x ′y′(x ′ ��� x ∧ y ��� y′ ∧ Mx ′y′)) ,

where for variables x, y we define

Q�x as ∨a∈� Qa x,

x ��� y as x ≤ y ∧ ∀z(x < z ∧ z ≤ y → Q(z), and

y ��� x as y ≤ x ∧ ∀z(y ≤ z ∧ z < x → Q(z) .

Springer

A descriptive characterisation of linear languages 247

Hence N connects two positions iff the first is to the left of the second and they both hold
non-parentheses, and moreover the first possibly has a block of left parentheses immediately
to its left and the second possibly a block of right parentheses immediately to its right, and
some M-arc starts either in the first of the two positions or somewhere inside the block of
left parentheses to its left, and ends either in the second position or somewhere inside the
block of right parentheses to its right. It is straightforward to see that N contains no crossing
arcs if M doesn’t, and in particular that N is a nesting if M is a matching. Now from this
nesting N on w ∈ (� ∪ {)(})∗ derive a new nesting N0 on w0 simply by deleting parentheses,
i.e., w0 is the result of deleting all parentheses in w, while N0 connects precisely the same
occurrences of symbols from � as N does. Now say that the pair (w, M) represents the pair
(w0, N0) if (w0, N0) is derived from (w, M) in the way described. Note that such derivation
always succeeds, hence every pair (w, M) represents some pair (w0, N). It is also not very
difficult to see that this representation relation is surjective; that every pair (w, N), where
N is a nesting on w ∈ �∗, is represented by some pair (w′, M), where M is a matching on
w′ ∈ (� ∪ {), (})∗14

Now from any first-order sentence ϕ on signature (N , <, (Qa)a∈�) define the sentence ϕ′

on signature (M, <, (Qa)a∈�, Q), Q(), by restricting all quantification to positions holding
members of �, and by replacing any occurrence of N by its definition involving M. Then
(M, w′) |= ϕ′ iff (N , w) |= ϕ whenever (M, w′) represents (N , w).

Let h be the homomorphism from � ∪ {), (} to � that maps every member of � to itself
and both parentheses to the empty string. Then, since every pair (N , w) is represented by
some pair (M, w′) and vice versa, and since h(w′) = w,

{w ∈ �∗|w |= ∃N (NEST ∧ LINEAR ∧ ϕ)}

is the image of15

{w′ ∈ (� ∪ {), (})∗|w′ |= ∃M(MATCH ∧ LINEAR ∧ ϕ′)}

under h. Since the latter is context-free by Theorem 1, and CFL is closed under homomor-
phism, the former is context-free as well.

This proves one direction of Theorem 2. The other direction is a trivial consequence of
Theorem 1, since STEEP is a first-order sentence.

Appendix B: Linear matchings do not characterise LIN

This appendix sketches a proof that linear matchings do not characterise LIN in the same
strong sense that nestings characterise LIN, i.e., we show that the qualifier “monadic second-
order” cannot be replaced by “first-order” in Theorem 5. This negative result is intimately

14 Essentially, just add parentheses and “move” arcs “out” to separate the start points and endpoints of distinct
arcs. A more rigorous argument might employ the notions of Section 2, suitably generalised from wide wells
to nestings in general, to show that any nesting N on w defines an ordered forest on w. Then furnish every
internal node in this forest with two new children, one to the left decorated with a left parenthesis and one
to the right decorated with a right parenthesis. The modified forest would then correspond directly to a pair
(w′, M) representing (w, N).
15 We should rather write something like ∃M(MATCH(M/N) ∧ LINEAR(M/N) ∧ ϕ′), to indicate that MATCH and
LINEAR now talk about M rather than N.

Springer

248 Tore Langholm

connected to the fact that linear grammars fail to admit the Greibach normal form. To see this,
we first note the following pumping lemma, which is proved using the standard construction
in the proof of the pumping lemma for general context-free languages, and then making a
few extra observations.

Lemma 6. Let L be a Greibach linear language. Then there is some N > 0 such that any
word of L longer than N can be written in the form uvwxy, where |v| > 0, |uvxy| < N, and
where uvnwxn y ∈ L for any n ≥ 0.

This is easily seen to spoil the linear language last in Example 2, as well as the one in
Example 4, hence these are not Greibach linear.

Lemma 7. Let � be finite, and let ϕ be a monadic second-order sentence over signature
(N , <, (Qa)a∈�). Then for any n > 0 the language L(∃N (MATCH ∧ LINEAR ∧ ϕ ∧ ¬GAPn)) is
double Greibach linear if it is ε-free.

Proof: Recall that MATCH is defined as the conjunction NEST and STEEP. From the proof of
Lemma 5 we see that

{w | w |= ∃N (NEST ∧ LINEAR ∧ ϕ ∧ STEEP ∧ ¬GAPn}

is the yield of the tree language

{T ∈ {⊗, �}�|T |= ϕ′ ∧ STEEP′ ∧ ¬GAP′
n ∧ CAT},

where ϕ′, STEEP′ and GAP′
n are defined by the general translation described in the proof of

Lemma 5. STEEP′ says that llT (z1) and llT (z2) are distinct if z1, z2 are distinct ⊗-nodes, and
likewise that rlT (z1) and rlT (z2) are distinct under this condition. Moreover, ¬GAP′

n implies
that there cannot be more than 2n�-nodes directly over each other, without ⊗-nodes in
between.

Now by Proposition 1 there exist context-free grammars G1, . . . , Gm , where Gi =
(Vi , �, Pi , Si), and mappings hi : Vi → {⊗, �} such that a {⊗, �}�-tree T is included in
the above tree language iff there is an i and a legal parse tree Ti according to Gi , such that T
is the result of applying hi to the decorations of internal nodes of Ti .

Say that a variable A ∈ Vi is proper if hi (A) = ⊗, and auxiliary otherwise. The following
can now be assumed about all Gi .

– They are linear.

– If A, A′ are proper and A +⇒ u A′v then |u| > 0 and |v| > 0.
– If A0 ⇒ u1 A1v1 ⇒ . . . ⇒ u1 . . . u2n A2nv2n . . . v1, then at least one of A0, . . . , A2n is

proper.

Hence it is not difficult to see that each Gi is equivalent to a linear grammar in double
Greibach normal form (essentially by eliminating all auxiliary variables (except possibly
the start symbol, which needs special treatment) and adding finitely many new “shortcut”
productions) and that they can all be combined into a single grammar of this type. �

Springer

A descriptive characterisation of linear languages 249

Note that a stronger version of Lemma 7 without the clause ¬GAPn in the definition of
the language would yield Proposition 2 below directly, since not all linear languages are
Greibach linear. Such a stronger version of Lemma 7 is not provable, however, since the
language {anbncm |n, m > 0} is in fact first-order definable using matchings, as was seen in
Example 3, and still fails the Pumping Lemma and is thus not Greibach linear. To obtain the
proposition we shall therefore have to consider instead a somewhat more involved argument
using the language {anbnc2m |n, m > 0} of Example 4.

Proposition 2. Let � be an alphabet containing at least two symbols. Then there is a linear
language over � which is not of the form L(∃N (MATCH ∧ LINEAR ∧ ϕ)) for any first-order
sentence ϕ over signature (N , <, (Qa)a∈�).

Proof: To simplify details we consider a three-symbol alphabet, but an argument using only
two symbols would be quite similar.16

Let L be {anbnc2m |n, m > 0} and suppose, for a reductio ad absurdum argument, that
L = L(∃N (NEST ∧ LINEAR ∧ STEEP ∧ ϕ)) for some first-order sentence ϕ over the signature
(N , <, Qa, Qb, Qc).

By Lemmas 6 and 7, L cannot, however, for any n > 0, equal L(∃N (NEST ∧ LINEAR ∧
STEEP ∧ ϕ ∧ ¬GAPn)).

Now let m be the quantifier-depth of ϕ and let n be 3 · 2m ; from the above we know that
for some w = akbkc2l and some linear matching N on w, we have both (w, N) |= ϕ and
(w, N) |= GAPn . Hence w contains a block of 2m consecutive positions that are not involved
in N, and which are all decorated with the same terminal symbol.

Now by an argument that in all relevant respects is identical to the one given in Example
4.3 of Thomas (1997) (which is there used to prove that the language {a2n|n > 0} is not first-
order definable), it can be shown that (w, N) ∼=m (w′, N ′), where w′ is a word identical to w
but in which an extra position, decorated with the same terminal symbol, has been inserted
into the block mentioned above, and N ′ is exactly as N, i.e., relating the “old” positions as N
does.

But then by the Ehrenfeucht–Fraı̈ssé Theorem (for a suitably formulated reference see
Theorem 4.1 of Thomas (1997)) it follows that also (w′, N ′) |= ϕ, hence w′ ∈ L , which is
false as w′ is either ak+1bkc2l or akbk+1c2l or akbkc2l+1. �

References

Amar, V., & Putzolu, G. (1964). On a family of linear grammars. Information and Control, 7, 283–291.
Eiter, T., Gottlob, G., & Gurevich, Y. (2000). Existential second-order logic over strings. Journal of the ACM,

47, 77–131.
Gécseg, F., & Steinby, M. (1997). Tree languages. In Rozenberg, G. and A. Salomaa, editors, Handbook of

Formal Languages, vol. 3, Springer-Verlag.
Greibach, S. (1965). A new normal-form theorem for context-free phrase structure grammars. Journal of the

ACM, 12, 42–52.
Hopcroft, J.E., & Ullman, J.D. (1979). Introduction to Automata Theory, Languages, and Computation.

Addison–Wesley.
Langholm, T., & Bezem, M. (2003). A descriptive characterisation of even linear languages. Grammars 6,

169–181.

16 Using instead the language {anbna2m |n, m > 0}.
Springer

250 Tore Langholm

Lautemann, C., Schwentick, T., & Thérien, D. (1995). Logics for context-free languages. In Pacholsky, L. and
J. Tiuryn, editors, Computer Science Logic, LNCS 933, 205–216. Springer-Verlag.

Rosenkrantz, D.J. (1967). Matrix equations and normal forms for context-free grammars. Journal of the ACM,
14, 501–507.

Thomas, W. (1997). Languages, Automata and Logic. In Rozenberg, G. and A. Salomaa, editors, Handbook
of Formal Languages, Vol. 3, Springer-Verlag.

Springer

