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Abstract. We present a new framework for combining logic with probability, and demonstrate the
application of this framework to breast cancer prognosis. Background knowledge concerning breast
cancer prognosis is represented using logical arguments. This background knowledge and a database
are used to build a Bayesian net that captures the probabilistic relationships amongst the variables.
Causal hypotheses gleaned from the Bayesian net in turn generate new arguments. The Bayesian net
can be queried to help decide when one argument attacks another. The Bayesian net is used to perform
the prognosis, while the argumentation framework is used to provide a qualitative explanation of the
prognosis.
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1. Introduction

There are two key ways in which one may offer a prognosis for a patient suffering
from breast cancer. One can find arguments in favour of recurrence and arguments
against recurrence and try to balance the former against the latter to reach a con-
clusion. Or one can construct a statistical model to estimate the probability of
recurrence given the patient’s symptoms. Under the former approach the reasons
for the decision are clear, but the weighing up of arguments is difficult. The latter
approach offers reliable conclusions but no obvious qualitative chain of inference
to the conclusion.

Through a judicious combination of the two approaches one can reap the rewards
of each while avoiding their disadvantages. A statistical model can be used for the
prognosis itself, while arguments can be used to present the reasons for and against
such a prognosis. The task of this paper is to present such a combination of the two
approaches and to apply it to breast cancer prognosis.

Logic and probability can be combined in various ways. One strategy involves
creating a new formalism that encapsulates both logic and probability and new
techniques for operating within this formalism, i.e. for constructing and updating
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theories or models, and inferring conclusions from them. A second strategy
involves adopting standard logical and probabilistic formalisms, keeping the
logical and probabilistic components separate, but letting them interact. We take
this latter, modular approach: we adopt a standard argumentation formalism, a
standard probabilistic network formalism, and the two interact (the argumentation
component helps generate the probabilistic component which in turn is used to
augment the argumentation component). This modular methodology has several
advantages. First, it tends to be simpler: logical and probabilistic formalisms, while
fairly simple on their own, soon become very complicated when amalgamated.
Second one can directly employ well-understood techniques for constructing
logical theories and probabilistic models and drawing inferences from them, rather
than having to develop new methods. Third, one can more easily replace one or
other component (or both) with one’s preferred formalism, or tailor components
to particular applications.

The plan is first to introduce the breast cancer problem domain in Section 2, as
well as current methods for prognosis, argumentation and combining probabilistic
methods with argumentation. Then, in Sections 3 and 4 respectively, we shall de-
scribe the logical and probabilistic formalisms in more detail. In Section 5 the two
are combined in the context of the breast cancer problem. Finally in Section 6 we
discuss extensions of the resulting methodology.

2. Background

2.1. BREAST CANCER

Breast Cancer is one of the commonest cancers in the Western World. It is the
commonest non-skin cancer in women in the UK and US, and accounts for approx-
imately 1/3 of cancers in women, with lifetime rates of 1 in 10. Some 36 000 cases
are diagnosed each year in the UK, of whom about a 1/3rd will die from the disease
(McPherson et al., 2000). Consequently there has been a considerable amount of
research focused on breast cancer, and death rates have fallen over the last 10 years
(Quinn and Allen, 1995).

The mainstay of treatment for breast cancer remains surgery and radiotherapy
(Richards et al., 1994) with hormonal and chemotherapeutic agents often used to
treat presumed micro-metastatic disease. One of the advantages of surgery is that, as
well as removing any local disease, a sample can also be taken of the axillary lymph
nodes. These are a common site of metastatic spread for the cancer, and their removal
not only removes any spread that may have occurred, but also allows analysis of
the nodes to describe the degree of spread. The two main aims of treatment are to
provide local control of, and to prevent premature death from, disease.

Examination of the primary tumour and lymph nodes lets us define certain
characteristics of the disease that make local recurrence and death more likely.
These characteristics are primarily the grade of the tumour, (which represents the
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degree of abnormality displayed by the cells, scored 1–3), the size of the tumour (as
its maximum diameter, in mm) and the number of involved nodes (Richards et al.,
1994). There are also newer tests for the presence or absence of certain proteins
on the cell surface that may predict tumour behaviour or response to certain drugs
(Veer et al., 2005; Cristofanilli et al., 2005).

The central aim of therapy planning is to match treatment with the risk of further
disease. Thus those at high risk should be treated aggressively while those at low
risk should be treated less aggressively. This allows more efficient use of resources,
and restricts the (often considerable) side effects of intensive treatment to those
patients who would benefit most.

2.2. CURRENT PROGNOSTIC TECHNIQUES

These prognostic characteristics are currently modelled using statistical techniques
to provide an estimate of the probability of survival and local recurrence. There are
two commonly used prognostic systems. The Nottingham Prognostic Index (NPI)
(Galea et al., 1992), which uses data from large UK studies, and the SEER database,
which contains results derived from the American Surveillance, Epidemiology and
End Results survey (Ries et al., 2004). Both techniques rely on multivariate analyses
of large volumes of data (based on over 3 million people for SEER) to calculate
prognostic formulae.

These tools, and others like them, are effective at providing estimates of risk
of death and local recurrence. In contrast, humans are often poor at manipulating
explicit probabilities (Kahneman and Tversky, 1973; Borak and Veilleux, 1982),
but there are two issues with such approaches. Firstly, the lack of human-readable
explanations of the risk result in a situation where we may ‘know’ what the risk is,
but not why it is so. Secondly, clinicians have the ability to consider other data (such
as the presence and impact of other co-existing conditions) and adapt the estimates
in the light of new informations (such as the discovery of Her-2neu, a cell-surface
protein that is a marker for more aggressive disease). This allows them to (partially)
individualise risk assessments, be confident that such extra information has been
incorporated into the decision-making process, and be able to explain why the
risk estimate is what it is. Now, we seek to combine the strengths of these two
approaches. Part of this requires that we present the information on prognosis to
clinicians in a form that they can incorporate into their own reasoning. We therefore
seek to provide explicit probabilistic estimates of risk whilst also allowing the
reasoning behind this prognosis to be clear in order to help clinicians not just know
what the risk is, but to understand why that risk is so, and to be confident that they
know what factors have been considered by the system.

2.3. ARGUMENTATION

Clinicians, and more generally humans, use arguments to make decisions. The
argumentative method goes back at least 2500 years, and extends beyond the
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Graeco-Roman tradition (Gard, 1961). Arguments have the advantage that they
can present not only a conclusion, but also its justification.

The idea of trying to base decision-making on arguments has a long history.
The first clear example of an algorithm for doing so was described by Franklin
(1887). Over the last 5–10 years, there has been an increasing amount of work in
developing formal logics for argumentation (Fox and Parsons, 1997). The first major
work was by Dung (1995) who described a very abstract method for dealing with a
set of arguments that attack each other, and from this defined formal semantics to
allow calculation of stable and grounded extensions. More recent work has drawn
together developments in non-monotonic logic and insights from cognitive science
to produce a number of different argumentation frameworks (Amgoud et al., 2004;
Hunter and Besnard, 2001; Krause et al., 1995). There have also been some early
attempts to produce implemented systems (Pollock, 1999; Sutton and Fox, 2003),
some of which have been trialled in medical domains.

Although argumentation formalisms differ, they share some common features
(Prakken and Sartor, 1996). They define:

– A logical language, L
– A structure for an argument
– Conflicts between different arguments
– A notion of defeat of arguments
– A record of the status of arguments

Some are more abstract than others - for example, Dung’s argumentation frame-
work leaves the choice of logic open, and defines semantics in terms of attack
relations. Irrespective of this, an ‘argument’ in an argumentation framework should
correspond to a proof in the underlying logic. In this, they are the same as other
non-monotonic logics. However, the ideas of attack, defeat and status mark them
out as separate. Furthermore, since arguments that attack other arguments may,
themselves, be defeated, we require some semantics to define the final status of the
arguments. In this paper we use an abbreviated version of Dung’s Argumentation
framework, as presented in Dung (1995).

2.4. RELATIONSHIP TO OTHER WORK

Our approach builds on work in both argumentation and Bayesian reasoning. Work
on using qualitative constraints in Bayesian networks has been discussed by Wittig
and Jameson (2000), and previous work on fusing the two approaches has been
discussed by Parsons (2003, 2004) and Poole (2002). Although both use Bayesian
networks as a basis for developing arguments, neither use both Bayesian and ar-
gumentative techniques at the same time. Furthermore, both authors concentrate
on theoretical approaches, whereas we present Bayesian networks and arguments
learned from real data. Poole (2002) adopts a decision-theoretic framework and
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uses logic programs with probabilities to represent knowledge; in contrast under
our approach logic (the argumentation framework) and probability (the Bayesian
net) are quite separate, but interact. Saha and Sen (2004) combine Bayesian nets and
argumentation in a rather different context, negotiation, and Bayesian nets are used
to model other agents’ belief states rather than for argument generation. Similarly,
McConachy et al. (1998) use a Bayesian net to model the user’s belief state in order
to determine the persuasiveness of an argument.

3. Logical Formalism

3.1. INTRODUCTION

We may informally define an argument as being a “chain of reasoning that leads to a
conclusion via some inference mechanism.” We accept that conclusions are defea-
sible, and may be overturned in the light of new evidence via some argumentation
mechanism. Many different formalisms have been proposed for both argumenta-
tion and inference, and each has their strengths and weaknesses. Here, we shall use
a fragment of a relatively basic formalism, argument-based logic programming,1

Prakken and Sartor (1996), for inference, together with Dung’s framework for ar-
gumentation. Although these do not have all the features we would wish to find in a
framework for large-scale decision making, they have a simple syntax which makes
them a good exemplar for our work. We use a fragment of Prakken & Sartor’s rule
logic, ignoring preference ordering on rules, and using Dung’s semantics for argu-
mentation rather than theirs. Below, we present an abbreviated description of our
formalism. For a further discussion, see their original papers (Prakken and Sartor,
1996; Dung, 1995).

3.2. RULES

We define a binary connective, ⇒, which forms rules from literals, and two forms
of negation: Strong (or classical) negation, ¬L , and weak negation, or negation-
as-failure ∼L. A strong literal is an atomic first-order formula, or such a formula
preceded by strong negation. A weak literal is ∼L where L is a strong literal.

We define two different sorts of rules, r: and s:. The first, r:, are defeasible
rules. That is, rules with whom’s conclusions we may disagree. The second, s:,
are strict rules. These capture definitional rules, and as such are non-defeasible.
Strict rules follow the same form and logic as defeasible rules; they are merely
epistemologically different, and we use the → operator in strict rules for the sake
of intelligibility. Strict rules are intended to be used to express transformation

1 We have based our rule logic on that developed by Prakken and Sartor and the argumentation on
Dung’s semantics. Readers familiar with these papers may wish to omit the next sections, noting that
we have not used preference ordering in our rule logic, and we have not discussed grounded semantics
for the argumentation.



160 M. WILLIAMS AND J. WILLIAMSON

between things that are, for our purposes, identical, while defeasible rules are for
those about which we might wish to argue. To illustrate our definitions, we use the
following example:

EXAMPLE 3.1.

– A: Radiotherapy reduces mortality
– B: Chemotherapy reduces mortality
– C: An aggressive tumour increases mortality
– D: Spread of the tumour to the lymph nodes increases mortality
– E: Low mortality is the opposite of high mortality

DEFINITION 3.1. A rule is an expression of the form either r: or s:

r ∈ D : L0 ∧ L1 ∧ L2 ∧ · · · ∧ ∼ Lk ∧ Lm ⇒ Ln

s ∈ S : L0 ∧ L1 ∧ L2 ∧ · · · ∧ ∼ Lk ∧ Lm → Ln

where we denote the complement of L as L , and r: and s: are the name of the rules
and each Li (0 ≤ i ≤ n) is a strong literal. The terms to the left of the arrow are the
antecedent, and those to the right are the consequent. Together, both types of rules
form the input to our system. S is the set of all strict rules, which represents those
facts that are ‘beyond dispute’, while D is the set of defeasible rules.

A rule may have zero antecedents - such a rule is universally applicable. Variables
will be denoted by x, y, z.2

EXAMPLE 3.1.

– A: Radiotherapy(x) ⇒ Low Mortality(x)
– B: Chemotherapy(x) ⇒ Low Mortality(x)
– C: Aggressive tumour(x) ⇒ High Mortality(x)
– D: Tumour Spread(x) ⇒ High Mortality(x)
– E: Low Mortality(x) → ¬ High Mortality(x)

We now need to assemble our rules into arguments. We may regard an argument as
being formed from a set of rules, such that the antecedent of one rule is satisifed
by the consequent of the preceeding rule:

DEFINITION 3.2. An argument is a finite sequence A = [r0 . . . rn] of ground
instances of rules such that:

2 We will use the notation “x has Low Mortality” and “Low Mortality(x)” interchangeably to aid
readability.
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1. For every i(0 ≤ i ≤ n) and for every strong literal L j in the antecedent of ri
there is a k < i such that L j is the consequent of rk .

2. No two rules in the argument have the same consequent.

Condition 1 defines arguments as being formed by chaining rules together, while
condition 2 prevents circular chains of rules within an argument. One consequence
of (1) is that we may “ignore” weak literals, and use a rule for conjoining strong
literals and a rule of ‘defeasible modus ponens’ of the form:

r : L0 ∧ · · · ∧ L j∧ ∼ Lk ∧ · · · ∧ ∼ Lm ⇒ Ln
L0 ∧ · · · ∧ L j

Ln

An argument A may be said to be based on a theory (S,D) iff A ∈ S ∪ D.

DEFINITION 3.3. For any argument, A:

• A is strict iff it does not contain any defeasible rule; it is defeasible otherwise.
• L is a conclusion of A iff L is the consequent of some rule in A.

Note that the above definition of conclusion is unusual in that we define the
conclusion of any rule in a argument as a conclusion of the argument.

3.2.1. Conflicts between arguments
So far we have described a defeasible form of modus ponens. In order to allow
argumentation, we must define how we infer an attack between two arguments
(that is, define one argument as a counter-argument of another). There are three
commonly defined forms of attack between arguments. Consider the following
argument:

r : hasAggressiveTumour(x) ⇒ hasIncreasedMortality(x)
hasAggressiveTumour(x)

hasIncreasedMortality(x)

• A premise attack is to dispute that the tumour is aggressive; perhaps the pathol-
ogist was wrong about its features

• An undercutting attack is to dispute the link between the two; perhaps aggressive
tumours do not lead to increased mortality

• A rebutting attack is to directly attack the conclusion; perhaps we show a reason
why x would be expected to have low mortality

For our purposes, we need only the third form, rebuttal. It is worth noting that
rebuttal-attacks are symmetrical (that is, if A attacks B, B attacks A) whereas the
other two are not.
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Let us now consider how to formalise our definition of attack. Using rules A
and B from Example 3.1:

Chemotherapy(x) ⇒ Low Mortality(x)

Aggressive tumour(x) ⇒ High Mortality(x)

We note that at the moment there is no explicit conflict between the two rules – as
we have nothing to connect High Mortality(x) and Low Mortality(x). We therefore
need to include rule E from our example in order to demonstrate the conflict:

Low Mortality(x) → ¬High Mortality(x)

Having done this, we may now develop two arguments, which conflict:

A1: Chemotherapy(x) ⇒ Low Mortality(x),

Low Mortality(x) → ¬High Mortality(x)

A2: Aggressive tumour(x) ⇒ High Mortality(x)

However, we need to be careful in our definition of conflict. If we merely take
the final conclusion of A1 and A2, then we seem to have conflict between
the defeasible rule: Aggressive tumour(x) ⇒ High Mortality(x) and the strict
rule: Low Mortality(x) → ¬ High Mortality(x). This is counter-intuitive, as
we would normally understand the conflict as lying between the two defeasible
rules: Chemotherapy(x) ⇒ Low Mortality(x) and Aggressive tumour(x) ⇒ High
Mortality(x), rather than with the strict rule whose function is more to provide
semantic unification than make new inferences. In order to capture this, we wish
to define attack between arguments as being between defeasible rules within the
arguments, rather than the strict rules that may extend them.

DEFINITION 3.4. We define an attack thus:

– If an argument, A, has a conclusion or assumption L we should consider A being
attacked by all those arguments that can with strict rules only be extended to an
argument with conclusion L .

– Let A be an argument, and T be a sequence of rules; then A + T is the concate-
nation of A and T.

– Let A1 and A2 be two arguments. Then A1 attacks A2 iff there are sequences
S1, S2 of strict rules such that A1 + S1 is an argument with conclusion L and
A2 + S2 with conclusion L or A2 is an argument with assumption L .
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3.3. ARGUMENTATION

We are now concerned with resolving arguments; that is, with trying to decide which
of a set of arguments are justified. We use Dung’s argumentation framework.

DEFINITION 3.5. We define an Argumentation Framework:

– An Argumentation Framework (AF) is a pair AF = <AR, attacks> where AR
is a set of arguments and attacks is a binary relationship on AR: attacks ⊆ AR x
AR.

– For two arguments A, B, attacks(A,B) means that A attacks B.

Using Example 3.1:

AFEx =<{A,B,C,D,E},{(A,C),(A,D),(B,C),(B,D),(C,A),(C,B),(D,A),(D,B)}>

DEFINITION 3.6. We define the following extensions:

– A set S of arguments is said to be conflict-free if there are no arguments A, B in
S such that A attacks B.

– An argument A ∈ AR is acceptable with respect to S iff for each argument B ∈
AR, if B attacks A, then B is attacked by S.

– A conflict-free set S is admissible iff each argument in S is acceptable wrt S.
– A preferred extension of AF is a maximal admissible set of AF.
– A conflict-free set, S, is called a stable extension iff S attacks each argument

which does not belong in S.
– An admissible set S is called a complete extension iff each argument which is

acceptable wrt S belongs to S. Intuitively, this captures the notion of believing
everything that can be defended while still having consistent beliefs.

EXAMPLE 3.2. We use the rules from Example 3.1, as in AFEx :

AFEx =<{A,B,C,D,E},{(A,C),(A,D),(B,C),(B,D),(C,A),(C,B),(D,A),(D,B)}>

We define two subsets of AR: S1 = {A,B}, S2 = {C,D}. We note the following
properties:

– S1, S2 are both conflict-free.
– A and B are acceptable wrt S1; C and D are acceptable wrt S2.
– All x ∈ S1, S2 are acceptable wrt S1, S2; S1, S2 are both conflict-free; therefore,

S1, S2 are both admissible.
– S1, S2 are both preferred extensions of AR, as they are of equal size.
– S1, S2 are both stable and complete extensions.
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We have dealt with the arguments by dividing them into two sets - one for increased
mortality, and one for decreased. What Dung’s semantics suggest is that we cannot
rationally hold both sets of beliefs at the same time, but must commit to one (or
neither). One of the slight problems with our example is that S1, S2 are equally
preferred, and so there is no basis for choosing between them. That this problem
is, in part, an artifact of our example is shown in Section 5.

4. Probabilistic Formalism

Having described the logical framework that we adopt, we now turn to the proba-
bilistic framework: causally-interpreted Bayesian nets. This formalism offers the
ability to represent causal relationships amongst the domain variables as well as
probabilistic relationships.

4.1. EPISTEMIC CAUSALITY

The epistemic view of causality is concerned with determining the causal beliefs
that an agent should adopt on the basis of her background knowledge (Williamson,
2005, Chapter 9). In our application, background knowledge consists of a database
of past patient observations and a set of qualitative logical rules that concerns the
measured variables. We are interested in determining a set of causal relationships
suggested by this background knowledge. (It should be emphasised that any causal
relationships hypothesised on the basis of the background knowledge are merely
tentative beliefs—the agent’s best bet as to the causal relationships—and these
beliefs would be expected to change as background knowledge improves.)

How then are causal beliefs to be gleaned from background knowledge? The
patient database determines a probability distribution over the measured variables.
Under this probability distribution there will be a number of probabilistic depen-
dence relationships amongst the variables. Now a probabilistic dependency may
be attributable to one of several different explanations: the dependency may be
induced by a causal or a semantic or a logical relationship amongst the variables
for instance.3 However, in applications such as ours where variables tend to be
associated with spatio-temporal events, causal explanations predominate. Hence if
background knowledge does not include a non-causal explanation of the depen-
dency, it is reasonable to attribute it to a causal connection. Thus the agent’s causal
beliefs should account for all the dependencies in the database that are not already
accounted for by the agent’s other background knowledge.

More formally, we model an agent’s causal beliefs by a directed acyclic graph
whose nodes are the variables and whose arrows correspond to direct causal

3 Dependencies also arise if the variables in question are related by some mathematical equation
or non-causal physical law or if a dependency is forced by boundary conditions or induced by time
series. See (Williamson, 2005, § 4.2) for a more detailed discussion of this point.
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relationships. This causal graph should contain an arrow from A to B if A and
B are dependent when intervening to fix the value of A and when controlling for
B’s other direct causes (i.e. if they are probabilistically dependent conditional on
B’s other direct causes and conditional on a set of A’s non-effects that includes all
its direct causes) and this dependency is not accounted for by other background
knowledge. Moreover, this causal belief graph should be minimal: it should not
contain any arrows that are not warranted by the agent’s background knowledge
(Williamson, 2005, Section 9.5).

In certain circumstances one can use readily available algorithms to isolate a
causal belief graph that is rational on the basis of background knowledge. If, as in
our application, there are no non-causal inducers of dependencies (e.g. no semantic
or deductive logical relationships amongst the variables) then the causal belief graph
must satisfy the Causal Markov Condition: each variable will be probabilistically
independent of its non-effects conditional on its direct causes (Williamson, 2005,
§9.6). Moreover, the causal belief graph will be a minimal graph out of all those that
satisfy the Causal Markov Condition and any causal constraints in the background
knowledge. Now minimal graphs satisfying the Causal Markov Condition have
been investigated in some detail (Pearl, 2000; Spirtes et al., 1993) and there are
several software packages for finding such graphs, many of which allow one to
impose further causal constraints (Korb and Nicholson, 2003, Appendix B). These
packages can then be used to find those causal belief graphs that are rational on the
basis of background knowledge.

4.2. CAUSAL NETS

A Bayesian net consists of two components:

DAG a directed acyclic graph whose nodes are the domain variables V =
{A1, . . . , An},

Probability Tables the probability distribution of each variable conditional on its
parents in the graph,

together with an assumption:

Markov Condition each variable is probabilistically independent of its non-
descendants in the graph, conditional on its parents.

A Bayesian net represents a joint probability distribution over the domain variables:
under the Markov Condition, the probability of an assignment a1 · · · an of values
to the variables is a product of conditional probabilities,

p(a1 . . . an) =
n∏

i=1

p(ai | pari ),
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where pari is the assignment of values to the parents of Ai . Bayesian nets have
been widely researched in the literature and there are a whole host of algorithms
for performing probabilistic inference using Bayesian nets.4

A causally-interpreted Bayesian net or causal net is a Bayesian net whose graph
is interpreted causally: an arrow from Ai to A j means that Ai is a direct cause of
A j . Note that under a causal interpretation the Markov Condition is just the Causal
Markov Condition.

Since the causal belief graph satisfies the Causal Markov Condition one can
construct a causally-interpreted Bayesian net by extracting from the database the
probability distribution of each variable conditional on its parents. Thus the DAG
in the Bayesian net is the causal belief graph, the probability tables are determined
from the database, and the Markov Condition is guaranteed to hold by construction
of the causal belief graph.

The resulting Bayesian net can then be used to perform the prognosis: when
input a patient’s symptoms the net can be queried to determine the probability of
recurrence of breast cancer.

The causal net can also be used to generate new qualitative arguments for the
argumentation system. The causal graph provides reasons in favour of the prognosis,
e.g. if the prognosis is recurrence, the patient has breast cancer in both breasts, and
breast cancer in both breasts is a cause of recurrence, then the latter two facts provide
an argument in favour of the particular prognosis. Probabilities inferred from the
Bayesian net can be used to determine the direction of arguments. If the symptom
renders recurrence more likely then it is a positive cause of recurrence and the causal
argument supports a prognosis of recurrence. On the other hand, if the symptom
renders recurrence less likely then it is a negative cause or preventative of recurrence
and the causal argument attacks any argument for recurrence. These arguments then
provide a qualitative chain of reasoning to back up or qualify the prognosis.

5. Combining Formalisms

5.1. METHOD

We are interested in exploiting both argumentative and Bayesian techniques. Ar-
gumentation has the advantage of providing a justification (the ‘chain of reason-
ing’) for a conclusion, but cannot easily handle probabilities and is therefore often
imprecise in evaluating risk. Bayesian techniques are precise, but are often impen-
etrable to lay users. A combination of the two therefore offers both accuracy and
perspicuity.

In this section we shall show in more detail how a Bayesian network can be
used as a basis for generating a prognostic probability for individual cases, and

4 See for example the proceedings of the conferences on Uncertainty in Artificial Intelligence,
www.auai.org. Software packages are listed in (Korb and Nicholson, 2003, Appendix B).
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Figure 1. Diagram showing our methodology.

then provide arguments relevant to that case. Our approach is depicted in Figure 1
and consists of steps A-G:

• A: Separate the training and test sets.

We remove the test cases from our training data in order to avoid testing the system
on cases it has learned over.

Logical arguments deal with two-valued literals rather than many-valued vari-
ables, so we need to generate binary variables from the measured variables:

• B: For each variable, dichotomise the range of values to give two equal popula-
tions.

Ideally we would dichotomise so as to divide the variable perfectly; however, in
the situation where the data is already grouped to some degree, we cannot divide
these groups; we therefore choose to dichotomise so as to minimise the difference
in the two halves:

DEFINITION 5.1. If a variable A takes more than two possible values, a1, ..., ak ,
and these values are ordered a1 < · · · < ak , then we dichotomise the variable to
produce a two-valued variable A′ such that A′ = a′1 iff A ∈ {a1, ...a j } and A′ = a′2

iff A ∈ {a j+1, . . . ak}, where j is chosen so that the number of data points satisfying
A′ = a′1 and A′ = a′2 are as equal is possible, i.e. |(N1 + N2 +· · ·+ N j )− (N j+1 +



168 M. WILLIAMS AND J. WILLIAMSON

N j+2 + · · · + Nk)| is minimised where Ni is the number of data entries satisfying
A = ai .

Next we start on the construction of the causally interpreted Bayesian net. The
structure of the causal graph in the net is constrained by domain knowledge available
in the logical component of our system.

• C: Define constraints on the network structure based on background knowledge.

These constraints are what may be considered “incontrovertible” knowledge – that
which is true irrespective of the data in the data set. Typically, these constraints
concern the absence of causal relationships between measured variables. Such
constraints may be deduced from a variety of sources that may be relatively domain-
specific and include temporal and spatial knowledge.

DEFINITION 5.2. We define an operator, ←↩, such that A ←↩ B means that A
definitely does not cause B.

Next we use the database to generate a causal net that satisfies these constraints:

• D: Learn the constrained network.

We have a choice of algorithms for learning Bayesian networks, and we can use
any of those which will accept external constraints in their learning process. The
resulting network is ‘constrained’ in that we have removed the possibility of certain
links.

• E: Isolate the node(s) of interest.

Datasets typically include several variables, of which we are usually only interested
in a few. We therefore concentrate on these nodes, and develop probabilities and
arguments for particular conclusions, rather than retrieving them for all possible
nodes.

• F: Expose the test case(s) to the constrained network.

We use the constrained network that we developed in D to calculate the probability
of our variables of interest.

• G: Develop arguments for the test case(s).

DEFINITION 5.3. We develop rules from probabilistic data thus:
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• r: y ⇒ x represents the fact that for x,y ∈ L iff p (x | y, Z) ≥ p (x | ¬y, Z) for all
Z ∈ {z,¬ z} for which there is a rule r: z ⇒ x or z ⇒ ¬x

• r: y ⇒ ¬ x represents the fact that for x,y ∈ L iff p (x | y, Z) ≤ p (x | ¬y, Z) for
all Z ∈ {z,¬ z} for which there is a rule r: z ⇒ x or z ⇒ ¬x

• s: x1 → ¬ x2 represents the fact that for x,y ∈ L iff p (x1) = 1 - p (x2)

We use the first two definitions to develop defeasible rules about the influence of y
on x . The third states that if we have a variable, x, which takes two exclusive values
(x1, x2), then we may define an argument for x1 as being an argument against x2.

A Simple Example. We have used the example of the effect of Age on Menopause to
illustrate our approach. In this instance, we use only one test case, who is removed
from the sample. We then dichotomise the variable Age. We generate two new
values for Age, under 49 and over 49, in order to divide the sample as closely as
possible into two equal halves. We can then calculate the probabilities for these
composite groups. (See Tables I and II, where n is the number of patients satisfying
the classification.)

We then constrain the network, using the fact that we know that menopause does
not cause aging. Thus we define the constraint:

Menopause ←↩ Age

and then use the data on age and menopause to learn the constrained network, whose
causal graph is shown in Figure 2.

We use the case of a female patient, x , who is 45 years old, and for whom we
wish to know the probability of menopause. Using the Bayesian net we are able to

Table I. Probability Distribution for Age and Menopause

Age 20–29 30–39 40–49 50–59 60–69 70–79

Menopausal Status
p(Pre) 1 0.97 0.91 0.36 0 0

p(Post) 0 0.03 0.09 0.64 1 1

n 1 34 87 90 54 5

Table II. Probability Distribution for
dichotomised Age and Menopause

Age ≤ 49 >49

Menopausal Status
p (Pre) 0.93 0.22

p (Post) 0.07 0.78

n 123 149
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Figure 2. Age and Menopause.

estimate the probability of x being pre-menopausal. In this case, p(Pre-Menopausal)
= 0.93. We are also interested in presenting pertinent arguments. As x is 45, she
clearly falls into the first age group; We know that there are no other factors that
affect the relationship between Age and Menopause.5 We are then able to develop
the rule relating Age and Menopause that is relevant in her case:

age1: x has Age ≤ 49 ⇒ x is Pre-Menopausal
s : Premenopausal(x) → ¬Post Menopausal(x).

5.2. OUR DOMAIN

For our application we chose the problem of predicting recurrence in breast cancer,
a well-characterised problem in breast cancer prognosis. We used the Ljubljana
Breast Cancer Dataset (Zwitter and Soklic, 1988), a set of 286 instances of real
patient data with a binary outcome (Recurrence/ No Recurrence) and 9 possible
predictive attributes. This dataset has been used in the past for several machine
learning projects (Michalski et al., 1986; Clark and Niblett, 1987). The dataset
contains the following variables:
– Age: The age (in years at last birthday) of the patient at the time diagnosis.
– Menopause: Whether the patient is pre- or post- menopausal at time of diagnosis.
– Tumour Size: The greatest diameter (in mm) of the excised tumour.
– Degree of Malignancy: The histological grade (range 1-3) of the tumour. Tumours

that are grade 1 predominantly consist of cells that, while neoplastic, retain many
of their usual characteristics. Grade 3 tumours predominately consist of cells that
are highly abnormal. Such abnormalities include marked variation in cell size
and a high index of mitotic activity in the cells.

– Inv nodes: The number (range 0 - 26) of axillary lymph nodes that contain
metastatic breast cancer visible on histological examination. Since the the ax-
illary lymph nodes act as a primary site of drainage for the breast, they are a
common site of early metastasis.

– Node Caps: If the cancer does metastasise to a lymph node, although outside
the original site of the tumour it may remain “contained” by the capsule of the
lymph node. However, over time, and with more aggressive disease, the tumour
may replace the lymph node and than penetrate the capsule, allowing it to invade
the surrounding tissues.

5 In this case, because there are no other factors that influence Menopause.
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– Breast Quadrant: The breast may be divided into four quadrants, using the nip-
ple as a central point. Breast cancer most commonly occurs in the upper-outer
quadrant.

– Breast: Breast cancer may occur in either breast, although there is no difference
in incidence between breasts. There are some possible implications of cancer
laterality, however, as left-sided breast cancer, if treated by radiotherapy, would
involve exposing the heart to a substantial radiation dose, which might increase
the subsequent risk of cardiovascular disease.

We used an existing implementation of a machine learning algorithm (Hugin
Lite), a feature reduced version of the commercially available package, A/S (1989),
which constructs a Bayesian net from data and can also be used to perform prob-
abilistic inference from the net. We excluded five cases from the data to act as
test cases, and the rest of the data was used to construct the network (incomplete
examples deleted, NPC algorithm, p = 0.1, n = 272). Variables were dichotomised
and the following constraints were used:

Recurrence, Irradiation ←↩ inv nodes
Recurrence, Irradiation ←↩ age
Recurrence, Irradiation ←↩ menopause
Recurrence, Irradiation ←↩ tumour-size
Recurrence, Irradiation ←↩ degree malignancy
Recurrence, Irradiation ←↩ breast quadrant
Recurrence, Irradiation ←↩ breast
Recurrence, Irradiation ←↩ node-caps
Recurrence ←↩ Irradiation

These constraints were provided by existing background domain knowledge,
and are based on temporal ordering of events (i.e. Recurrence or Irradiation cannot
be a cause of other things in our example, as it occurs later than them).

After constructing the net, we then isolated the component of the graph that
involves variables connected to the Recurrence variable. Other variables were
ignored – they were unconnected to Recurrence and therefore had no bearing on it.

5.3. RESULTS

We removed five cases from the dataset to act as a test set. Their characteristics are
shown below (Table III).

Using the constraints above and the remainder of the data (with parameters as
specified above) led to the network shown in Figure 3.

The following trends were seen in p(Recurrence | X) for different X. Since the
options of recurrence/no-recurrence are mutually exclusive, we have excluded the
probabilities of no-recurrence from the tables, and the data has been dichotomised
in accordance with our method (Tables IV–VI ).
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Figure 3. Factors relating to recurrence.

Following our method above, we exposed each of the five cases in turn to the
network, and calculated the probability of their recurrence. We also developed a
set of rules that were relevant to each case (Table VII).The rules developed were of
the form varn , where var is the variable of interest and n = 1 if in the lower end
of the range and n = 2 if in the upper. These rules may be read as follows:

T S1: x has Tumour ≤ 29 mm ⇒ x will have Non-Recurrence
T S2: x has Tumour >29 mm ⇒ x will have Recurrence

Table III. Details of test cases

Patient No Age Menopause Tumour size No. Nodes Hist. Grade

1 60–69 Post 15–19 0–2 2

2 30–39 Pre 25–29 0–2 2

3 30–39 Pre 35–39 0–2 3

4 40–49 Post 20–24 0–2 3

5 50–59 Pre 25–29 3–5 3

Table IV. Tumour size and recurrence

Tumour size (in mm) ≤29 > 29

p(Recurrence) 0.24 0.36

n 160 112

Rule T S1 T S2
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Table V. Number of Involved Nodes and
Recurrence

Number of involved nodes ≤2 > 2

p (Recurrence) 0.20 0.55

n 205 67

Rule NIN1 NIN2

Table VI. Histological Grade and
Recurrence

Histological grade ≤2 3

p (Recurrence) 0.19 0.53

n 193 79

Rule H G1 H G2

Table VII. Hugin predicted p(Recurrence) and rules
instantiated, by patient

Patient no p (Recurrence) Rules instantiated

1 0.17 T S1, NIN1, H G1, S1

2 0.25 T S1, NIN1, H G1, S1

3 0.2 T S2, NIN1, H G2, S1

4 0.22 T S1, NIN1, H G2, S1

5 0.5 T S1, NIN2, H G2, S1

NIN1: x has Number of Involved Nodes ≤ 2 ⇒ x will have Non-Recurrence
NIN2: x has Number of Involved Nodes >2 ⇒ x will have Recurrence
H G1: x has Histological Grade ≤2 ⇒ x will have Non-Recurrence
H G2: x has Histological Grade >2 ⇒ x will have Recurrence
S1 : x will have Recurrence → ¬ (x will have Non-Recurrence)

These rules were then used to instantiate an individual argumentation framework
for each patient (Table VII)

The argumentation frameworks developed for each case are shown below:

AF1 = <{T S1, NIN1, H G1, S1 },{}>
AF2 = <{T S1, NIN1, H G1, S1},{}>
AF3 = <{T S2, NIN1, H G2, S1},{(T S2, NIN1),(NIN1, H G2),
(NIN1, T S2),(H G2, NIN1)}>
AF4 = <{T S1, NIN1, H G2, S1},
{(T S1, H G2),(NIN1, H G2),(H G2, T S1),(H G2, NIN1)}>
AF5 = <{T S1, NIN2, H G2, S1},{(T S1, NIN2),(T S1, H G2),
(NIN2, T S1),(H G2, T S1)}>
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6. Discussion

AF1 and AF2 are conflict free; this is because for both, all data symptoms lead to
arguments for non-recurrence. Despite this, there is a significant difference in the
p(Recurrence); this shows that the probabilistic component of the system provides
information that is complementary to that of the logical component. The other
three AFs all contain symmetrical attack relations. This comes from our definition
of attack as rebuttal, which will give rise to symmetrical AFs. In all three cases,
there are arguments both for and against recurrence; in AF3 and AF5 there are
two for recurrence and one against, while AF4has one for recurrence and two
against. Despite this, p(Recurrence) is almost identical in cases 3 and 4, while it is
substantially different in case 5.

6.1. EXTENSIONS IN AF1−AF5

Cases 1 and 2 are clearly both unusual examples, as there is no conflict. Our
definitions of semantics for the AF was based on the notion of a set of arguments,
S, where S ⊆ AR. For AF1 and AF2, S = AR, and S is clearly conflict-free, and the
preferred extension of AFn = S.

AF3 has two conflict-free subsets: S1 = {NIN1}, S2 = {T S2, H G2}. Because of
the symmetrical nature of our attacks, these two subsets are then both also admissi-
ble, and both are preferred extensions of AR, as both are maximal wrt set inclusion.
Both S1 S2 are also stable extensions, as they are able to attack any argument in
AR that attacks them. We can define similar extensions for AF4 and AF5.

6.2. LEARNING ALL THE ARGUMENTS FROM THE NETWORK

We have so far presented an approach that involves constructing a Bayesian net-
work from some data, and then using individual patient characteristics to calculate
a probability and arguments that pertain to that patient. However, there is an alter-
native approach. Instead of using individual patients to instantiate arguments, we
could instead use the structure of the network to develop all the possible arguments.
Such an approach would have the advantage of ‘capturing’ all of the network, even
if we did not yet have examples that triggered all possible nodes in the network.

If we apply this approach to our network, we see that we develop the following
rules:

T S1: x hasTumour ≤ 29 mm ⇒ x will have Non-Recurrence
T S2: x hasTumour > 29 mm ⇒ x will have Recurrence
NIN1: x has Number of Involved Nodes ≤ 2 ⇒ x will have Non-Recurrence
NIN2: x has Number of Involved Nodes > 2 ⇒ x will have Recurrence
H G1: x has Histological Grade ≤ 2 ⇒ x will have Non-Recurrence
H G2: x has Histological Grade > 2 ⇒ x will have Recurrence
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The obvious thing to note is that it gives us the same rules as our initial, individu-
alised approach! However, this is an artefact of our method. Consider our results
had we used only two test cases – the list of arguments that we developed would
be far smaller, and would not cover the entire network. If we were to use a network
of 200 nodes, it would arduous to generate a set of test cases to extract all the
arguments.

Under this alternative approach of extracting all rules from the net, one only
needs to extract rules once. However, large networks will lead to very large systems
of rules, many of which may not be needed to back up individual prognoses.6

Moreover, if new data induces modifications to the net, the set of rules will need
to be reconstructed. Under the original approach we only extract rules as and when
we need them (i.e. for each patient). However, a large number of patients will lead
to some replication of rules. Clearly the application will determine which approach
is most appropriate; in our current work the choice between the two approaches is
small and more a matter a taste than substance.

6.3. IMPLICATIONS FOR ARGUMENTATION

Our work presents a technique for combining causally interpreted Bayesian net-
works and argumentation; since we have learned the Bayesian networks from (real-
life) data, we have also demonstrated how Bayesian networks can be used as an
intermediary stage in the production of argumentation frameworks from data. Taken
as a whole, our results point to some important lessons on the real-world use of
argumentation. Firstly, the number of arguments for and against a conclusion can-
not be used in isolation to predict the likelihood of the outcome - some arguments
count more than others, and the probabilistic component provides a way to measure
this. Secondly, argumentative structures need to be richer than those used here - we
need to expand our example, and our argumentation, to capture a richer semantics
than simple rebuttal. Doing so will prevent our AFs being necessarily symmetrical,
as the ones here are. Thirdly, our notion of argument is strongly dependent on the
background on which it is used; the actual probability of recurrence in our sample
was approximately 0.3; thus arguments ‘for’ and ‘against’ recurrence need to be
taken in the light of this background rate. Failure to do so leaves argumentation
open to the same biases as human beings (notably the base rate fallacy). Finally,
our rule structure ensured that each case would generate an equal number of rules.7

6 Large networks are quite common in other applications, e.g. vision systems, natural language
processing and bioinformatics (Friedman, 2004).

7 This is due to the coverage of the rules: Consider some case, C1, in a domain which has variables
x , y and z. Since we dichotomise the variables, (x1, x2, y1, y2, z1, z2) to produce our rules, whatever
C1’s particular attributes (e.g. x = 0.4, y = 7, z = true), she will instantiate 3 rules; If we now
consider some other case, C2, with x = 1.2, y = 3, z = f alse, we see that she will also instantiate
3 rules – although they may not be the same rules as C1. Therefore each case will have an AF of the
same size.
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Such a property may seem desirable from a theoretical point of view, but from a
practical aspect it seems unlikely that every patient characteristic could be so easily
dichotomised and form the basis for one pair of disjoint rules. Therefore, in a more
realistic system we would expect the size of the AF to vary between patients, instead
of being uniform.

7. Conclusion

We have demonstrated a simple methodology for combining the explanatory power
of argumentation frameworks and argumentative logics with the precision of
Bayesian techniques. Our approach involves keeping the logical and the prob-
abilistic components distinct and letting them interact in a productive way; our
results show the practicality of this approach.

In addition, our work supports the development of richer semantics for argu-
mentation, and a better understanding of how to weigh up competing arguments.
Our examples have used relatively sparse Bayesian networks, leading to simple
argumentation structures; future work will concentrate on using richer network
structures and argumentation semantics, in particular the development of chains of
arguments, and the integration of non-probabilistic arguments into our structure.
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